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Abstract We present an algorithmic approach for solving two-stage stochastic mixed 0–1

problems. The first stage constraints of the Deterministic Equivalent Model have 0–1 variables

and continuous variables. The approach uses the Twin Node Family (TNF) concept within

the so-called Branch-and-Fix Coordination algorithmic framework to satisfy the nonantici-
pativity constraints, jointly with a Benders Decomposition scheme to solve a given LP model

at each TNF integer set. As a pilot case, the structuring of a portfolio of Mortgage-Backed

Securities under uncertainty in the interest rate path on a given time horizon is used. Some

computational experience is reported.

Keywords Stochastic programming . Benders Decomposition . Branch-and-Fix

Coordination . MBS portfolio structuring

Introduction

Very frequently, mainly in problems with a given time horizon to exploit, some coefficients

in the objective function and the right-hand-side (rhs, for short) vector and, to a lesser extent,
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the constraint matrix are not known with certainty when decisions are to be made, but some

information is available. This type of problem can also have logistic constraints. These

circumstances allow Stochastic Integer Programming (SIP) to be used to solve 0–1 programs

under uncertainty. It has a broad field of application, mainly in production planning, energy

generation planning, and finance. See Ziemba and Mulvey (1998), Uryasev and Pardalos

(2001) and Wallace and Ziemba (2005), among others.

The main focus and contribution of the paper is on the design and computational assess-

ment of a Branch-and-Fix Coordination (BFC) scheme to obtain the optimal mixed 0–1

solution to the two-stage stochastic program, where parameter uncertainty is represented

by a set of scenarios. The special structure of the Deterministic Equivalent Model (DEM)
is exploited. The relaxation of the nonanticipativity constraints of the first stage variables

allows for the independent solution of the so-called scenario cluster-related problems. The

constraints related to the 0–1 variables are satisfied by using a scheme that is based on the Twin
Node Family (TNF) concept introduced in Alonso-Ayuso, Escudero, and Ortuño, (2003). The

scheme is specifically designed to coordinate node branching selection and pruning, and 0–1

variable branching selection and fixing at each Branch-and-Fix (BF) tree.

An important feature of our approach with respect to some other approaches for large-

scale two-stage SIP is that it addresses the problem where 0–1 variables and continuous

variables have nonzero elements in their first stage constraints. The difficulty of the algorith-

mic approach is greatly increased by having continuous variables in the first stage constraints.

The approach proposed in this paper introduces the notion of TNF integer sets and consid-

ers the compact representation of the DEM at each one of them. By fixing those variables

to the nodes’ values, the DEM has only continuous variables. By exploiting the remaining

structure of the model a Benders Decomposition (Benders, 1962) allows the nonantici-
pativity constraints on the first stage continuous variables to be satisfied, thus obtaining

the LP optimal solution for the given TNF integer set. The conditions for pruning a TNF
are stated. So a mixture of the BFC approach and a Benders Decomposition scheme is

proposed.

Given a time horizon, a set of available securities and an available budget for investment,

the Mortgage-Backed Securities Portfolio Structuring Problem (MBSPSP) is concerned with

determining the subset of securities that will be included in the portfolio as well as determining

the fraction of the face value to be considered for each security under uncertainty in the interest

rate path over the time horizon. The problem in question can be viewed as the problem

considered in Escudero (1995), see also Zenios (1993), but forcing an upper bound on the

number of securities in the portfolio and requiring a minimum conditional on the face value

for each security, among other constraints for structuring the portfolio. The problem is used

as a pilot case for validating the stochastic integer programming approach to be introduced

in the paper, since it can be treated as a two-stage stochastic mixed 0–1 model. The first

stage constraints in the problem have the 0–1 variables for determining the securities in the

portfolio, and the continuous variables for determining the fraction of the related face value to

be considered. The second stage constraints determine the net available cash at the so-called

dedicated time periods and represent certain types of mismatching related to durations and

present values under each scenario. Some computational experience is reported to compare

the quality of the solution obtained by our approach and the optimization of the average

scenario problem. A comparison is also performed, solving the DEM by a plain use of a

state-of-the-art optimization engine.

The remainder of the paper is organized as follows. Section 1 sets out the MBSPSP.

Section 2 presents the mixed 0–1 DEM. Section 3 presents the BFC algorithmic framework

for problem solving. Section 4 reports on the computational results. Section 5 concludes.
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1 Statement of the problem

Let a security be defined as an asset that entitles the holder to a return over a time horizon.

In our case, the asset is a financial right comprising a principal and a yield backed by a

mortgage (called Mortgage-Backed Security, MBS for short), whose principal can be prepaid

and even delayed. So each security (e.g. a loan) to be considered for inclusion in the portfolio

should have the following features: principal amortization structure up to maturity; (usually

adjustable) yield to be paid over time; partial or full potential prepayment, such that the

prepayment of a security will affect its duration and the cashflow generated; potential delay

of the principal’s amortization; and type of risk measured by the interest rate weighting factor,

the so-called Option Adjusted Spread (OAS).

The OAS is used to weight the discount rate for obtaining the present value of a given se-

curity. It can be interpreted as the implied risk penalty for a particular security, see Hayre and

Lauterbach (1991) and Ben-Dov, Hayre and Pica, (1992), among others. Note: The value 0 (re-

spectively, 1) means a neutral factor for an additive (respectively, multiplicative) scheme, see

below.

MBS securitization consists of structuring a portfolio from a set of available securities. The

problem in question is how to securitize MBS under uncertainty in the interest rate path over

a given time horizon, which implies uncertainty in yield, prepayment and payment delay of

securities. As said above, uncertainty is represented by a set of scenarios. One characteristic of

our problem is the need to resort to an integer formulation (rather than using only continuous

variables). That need is motivated by the problem’s requirements in terms of the maximum

number of securities in the portfolio, the MBS face value conditional minimum, etc.

There are three important issues that have not been considered in the paper, namely the

recursive contingent claim option Dunn and McConnell, 1981 and (Schwartz and Torous,

1989), the transaction costs on exercising the options, Stanton (1995) and Longstaff (2004)

and the heterogeneity among mortgage borrowers for determining the MBSs Deng, Quigley,

and Van Order (2000). Although important issues, they are not crucial for assessing the

performance of the proposed algorithmic approach for optimizing two-stage SIP problems.

A feasible structuring of a portfolio requires two types of constraints to be satisfied,

namely: (a) first stage constraints that force some types of relationships between securities,

e.g. an upper bound on the number of securities in the portfolio, investment budget for their

total face value, equilibrium in the total face value of the different types of security, etc.; and (b)

second stage constraints for basically analyzing the performance of the securities’ portfolio

over the time horizon under all the scenarios. Typical constraints are the portfolio’s cashflow

balance equation including the cash inflow and outflow due to the liability satisfaction for

each dedicated time period under any scenario, the lower and upper bounds for the net

available cash in those periods under any scenario, the requirement that the present value of

the portfolio should not be smaller than the present value of the liabilities under any scenario,

the requirement that the absolute mismatchings of the unit durations and the present values

of the MBS in the portfolio and the set of securities from which it is taken should not be

greater than given thresholds, etc.

There are different types of goals. Scenario tracking through the minimization of the

expected difference between the MBS portfolio’s and liabilities’ duration mismatching and

the optimal related mismatching under any scenario is covered in Escudero (1995). However,

we consider the minimization of the expected absolute mismatching of the durations of the

MBS portfolio and the liabilities over the scenarios. This is another approach for hedging the

return on the investment against small changes in the interest rate over the time horizon, for

given portfolio management fees and others.
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The notation used throughout the paper is as follows.

Sets:

I, set of available securities.

T , set of time periods.

�, set of scenarios to represent uncertainty.

Deterministic parameters:

b1, maximum number of securities allowed in the MBS portfolio to be structured.
�b2, right-hand-side vector for the subsystem of constraints for the 0–1 variables δi , i ∈ I.

A2, constraint matrix for the subsystem of constraints for the 0–1 variables δi , i ∈ I.

b3, investment budget available at time period 0 to create the MBS portfolio.

h, net unit return on investment b3 (including management fees) as a target to reach for each

dedicated time period.

αt , amortization of investment considered for time period t , for t ∈ T , such that

b3 =
∑
t∈T

αt . (1)

ϕt , liability to be met at (the end of) dedicated time period t , for t ∈ T . This can be expressed

as

ϕt = αt + h
∑

τ∈T :τ>t

ατ . (2)

�, latest dedicated time period where the cash inflow from the portfolio is committed to satisfy

the liabilities, for � ∈ T .

σ , σ , unit lower and upper bounds of the investment face value allowed to be kept in cash at

any dedicated time period, respectively.

st , st , lower and upper bounds of cash available at dedicated time period t , respectively, for

t = 1, . . . , �, such that

st = σ
∑

τ∈T :τ>t

ατ (3)

st = σ
∑

τ∈T :τ>t

ατ . (4)

fi , principal (face) value of security i , for i ∈ I.

xi , xi , conditional lower and upper bounds of the principal (face) value fi for security i to

be included in the MBS portfolio, respectively, for i ∈ I.

ti , maturity period for security i (i.e., last period where any payment is planned). Note: ti ∈ T ,

∀i ∈ I.

ait , unit amortization of principal of security i at (the end of) time period t , for t = 1, . . . , ti ,
i ∈ I.

Springer



Ann Oper Res (2007) 152:395–420 399

Ait , accumulated unit amortization of principal of security i at time period t , for t = 1, . . . , ti ,
i ∈ I, such that

Ait =
∑

τ=1,...,t

aiτ , (5)

so that Ait = 1 for t = ti .
cξ

i , extra interest rate to be charged for each time period with payment delay in security i , for

i ∈ I.

oi , OAS assigned to security i , for 0 ≤ oi , i ∈ I.

τ , maximum number of time periods where a principal’s amortization payment can be delayed

for any security. Note: τ ≤ |T | − ti , i ∈ I.

Uncertain and scenario related parameters:

wω, weight factor assigned to scenario ω, for ω ∈ �, such that
∑

ω∈� wω = 1.

rω
t , interest rate at time period t under scenario ω, for t ∈ T , ω ∈ �. The scenarios for the

interest rate path over the time horizon can be generated from the binomial lattice

approach given in Black, Derman, and Toy (1990) as in Zenios (1993). See other

schemes in Frauendorfer and Schürle (1998) and Mulvey and Thorlacius (1998). See

Kleywegt, Shapiro, and Homem-de Mello (2001) and Ahmed and Shapiro (2002) for

some approaches to approximating the underlying two-stage stochastic program with

integer recourse via sampling, among other approaches for dealing with the size of the

scenario set.

cω
i t , unit yield of security i at (the end of) time period t under scenario ω. This is a function

of the interest rate rω
t and the security itself under scenario ω, for t = 1, . . . , ti , i ∈ I,

ω ∈ �. Notice that rω
1 = r1, where r1 is the interest rate at time t = 1.

βω
i t , (partial or full) prepayment of the accumulated unit amortization of the principal of

security i at time period t under scenario ω, for t = 1, . . . , ti , i ∈ I, ω ∈ �. This is a

function of the security, the age of the security, the month of the year and the interest

rate at the given period. The function is usually obtained by statistical means. However,

see Kang and Zenios (1992) for some complete prepayment models.

κω
i tτ , unit payment delay in τ time periods of the amortization of the principal of security i

that is due at time period t under scenario ω, for
∑

τ=1,...,τ κω
i tτ ≤ ait , t = 1, . . . , ti ,

τ = 1, . . . , τ , i ∈ I, ω ∈ �. This is a function of the security, the month of the year,

the number of delay periods and the interest rate at the given time period.

eω
i t , net unit amortization of principal of security i at time period t plus interest payments due

to principal delays. This can be expressed as

eω
i t = ait

[
1 −

t−1∑
j=1

βω
i j − (

1 + cω
i t

) τ∑
τ=1

κω
i tτ

]
+

∑
τ :1≤t−τ≤τ

aiτ
[
1 + (t − τ )

(
cω

iτ + cξ

i

)]
κω

iτ (t−τ )

(6)
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γ ω
i t , unit return on security i at time period t under scenario ω, for t = 1, . . . , ti + τ , i ∈ I,

ω ∈ �. Under mild assumptions, this can be expressed as

γ ω
i t = eω

i t + βω
i t Ait+1 + cω

i t Ait

(
1 −

t−1∑
j=1

βω
i j

)
. (7)

�ω
i , present value of unit return on security i under scenario ω, for i ∈ I, ω ∈ �. This can

be expressed as

�ω
i =

∑
t=1,...,ti

γ ω
i t

∏
τ=1,...,t

(
1 + oi · rω

τ

)−1
. (8)

Note that oi has been used as a multiplicative factor of rω
τ , so the zero-value is not

allowed. However, it is allowed when the OAS is used as an additive factor. Notice that

the greater the risk penalty OAS oi is, the smaller the present value �i is, ∀i ∈ I.

dω
i , change in the present unit value of the return on security i due to a small change in the

interest rate over the time horizon under scenario ω, for i ∈ I, ω ∈ �. This can be

expressed as

dω
i = −(

1/�ω
i

) ∑
t=1,...,ti

t · γ ω
i t · oi

∏
τ=1,...,t

(
1 + oi · rω

τ

)−1
. (9)

Note: |dω
i | is the so-called modified Macaulay duration for a flat interest rate over a

time horizon.

�ω, present value of the liabilities under scenario ω, for ω ∈ �. This can be expressed as

�ω =
∑
t∈T

ϕt

∏
τ=1,...,t

(
1 + rω

τ

)−1
. (10)

d ′ω, change in the present unit value of the liabilities due to a small change in the interest

rate over the time horizon under scenario ω, for ω ∈ �. This can be expressed as

d ′ω = −(1/�ω)
∑
t∈T

t · ϕt

∏
τ=1,...,t

(
1 + rω

τ

)−1
. (11)

Additional deterministic parameters:

z, upper bound on the absolute difference between the unit duration of the MBS portfolio to

be structured and the unit duration of the set of securities available I.

v, upper bound on the absolute difference between the present unit value of the MBS portfolio

to be structured and the present unit value of the set of securities available I.

Note. The parameters z and v allow some slackness in the representation of the MBS
portfolio with respect to the set of securities available.

Structuring variables. These are 0–1 variables, such that

δi =
{

1, if security i is selected for the MBS portfolio to be structured

0, otherwise.
∀i ∈ I

Face value variables. These are continuous variables, such that
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xi , principal (face) value of fi for security i that is included in the MBS portfolio, where

xi ≤ xi ≤ xi for δi = 1 and, otherwise zero, for i ∈ I.

Performance variables. These are continuous variables, such that

sω
t , cash availability at (the end of) dedicated time period t under scenario ω, for t = 1, . . . , �,

ω ∈ �.

yω, free variable to take the (positive or negative) difference of the MBS portfolio’s duration

and the liabilities’ duration under scenario ω, for ω ∈ �.

zω, free variable to take the (positive or negative) difference of the unit durations of

the MBS portfolio and the set of available securities I under scenario ω, for

ω ∈ �.

vω, free variable to take the (positive or negative) difference of the present unit values

of the MBS portfolio and the set of available securities I under scenario ω, for

ω ∈ �.

2 Mixed 0–1 Deterministic Equivalent Model (DEM)

The goal is to structure the MBS portfolio (i.e. obtain xi , i ∈ I) to dedicate cash avail-

ability to satisfy the liabilities for the given set of dedicated time periods, and to pro-

tect the present value of investment, such that a set of constraints is satisfied by the

portfolio.

The following is a compact representation of the mixed 0–1 DEM for the two-stage

stochastic MBSPSP with complete recourse.

Objective: To minimize the expected duration mismatching of the MBS portfolio and the

liabilities over the scenarios, subject to the constraints (13)–(25).

Z I P = min
∑
ω∈�

wω|yω| (12)

Constraints: ∑
i∈I

δi ≤ b1 (13)

A2
�δ = �b2 (14)

δi ∈ {0, 1} ∀i ∈ I (15)

xiδi ≤ xi ≤ xiδi ∀i ∈ I (16)∑
i∈I

xi = b3 (17)

∑
i∈I

�ω
i xi ≥ �ω ∀ω ∈ � (18)

(
1 + rω

t

)
sω

t−1 +
∑
i∈I

γ ω
i t xi = ϕt + sω

t ∀t = 1, . . . , �, ω ∈ � (19)

st ≤ sω
t ≤ st ∀t = 1, . . . , �, ω ∈ � (20)
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i∈I

dω
i xi − d ′ω�ω = yω ∀ω ∈ � (21)

( ∑
i∈I

dω
i xi

)/
b3−

( ∑
i∈I

dω
i fi

)/ ∑
i∈I

fi = zω ∀ω ∈ � (22)

|zω| ≤ z ∀ω ∈ � (23)( ∑
i∈I

�ω
i xi

)/
b3−

( ∑
i∈I

�ω
i fi

)/ ∑
i∈I

fi = vω ∀ω ∈ � (24)

|vω| ≤ v ∀ω ∈ �. (25)

The constraint system (13)–(25) has three different subsystems. Subsystem (13)–(17)

comprises the first stage constraints to structure the MBS portfolio by considering all the

scenarios via the other subsystems but without being subordinated to any of them in particular.

Subsystem (18)–(20) basically protects the investment and forces some constraints for each

dedicated time period under each scenario. Subsystem (22)–(25) forces the representativeness

of the portfolio under each scenario.

Constraint (13) bounds above the number of securities in the MBS portfolio to be structured.

System (14) imposes exclusivity and implicative constraints on the MBS portfolio for the 0–1

variables δi , for i ∈ I. Examples of this type of constraint are the exclusion of a particular

security if certain others are in the portfolio, and the need to have certain securities in the

portfolio if certain others are in it.

Constraints (16) define the semi-continuous character of the x-variables, such that no

investment in any security can have more than a given weight in the portfolio, and no security

can have less than a given face value, if any.

Constraint (17) forces the total investment in the portfolio to a given budget.

Constraint (18) protects the investment in the sense that the present value of the MBS
portfolio cannot be smaller than the liabilities’ present value under any scenario.

Constraints (19)–(20) give the balance equations for the cashflow in the dedicated time

periods, such that the return on the amortization and yield of the investment as well as the

management fees are guaranteed under any scenario. It is assumed that the available cash is

short-time invested in a risk free environment and, in any case, is bounded below and above

by given values.

Constraint (21) gives the duration balance equations of the MBS portfolio and the liabilities

under each scenario. The goal is precisely to minimize the expected absolute difference in

the durations.

The constraint system (22)–(25) forces the representativeness of the MBS portfolio with

respect to the set of available securities I, as measured by the unit duration and the unit

present value under any scenario. It allows some upper bounds in the related differences.

Consider the compact representation of the mixed 0–1 DEM (12)–(25).

Z I P = min
∑
ω∈�

wω|yω|
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s.t. �e �δ ≤ b1

A2
�δ = �b2

�δ ∈ {0, 1}n

−Ix �δ +Ix �x ≤ �0
−Ix �δ +Ix �x ≥ �0

�e �x = b3

�aω
4 �x ≥ bω

4 ∀ω ∈ �

A5
ω �x +Bω�sω = �b5 ∀ω ∈ �

�s ≤ Is �sω ≤ �s ∀ω ∈ �

�aω
6 �x +yω = bω

6 ∀ω ∈ �

�aω
7 �x +zω = bω

7 ∀ω ∈ �

|zω| ≤ z ∀ω ∈ �

�aω
8 �x +vω = bω

8 ∀ω ∈ �

|vω| ≤ v ∀ω ∈ �,

(26)

where the additional notation is as follows: n = |I|, bω
4 , bω

6 , bω
7 and bω

8 are the right-hand-

side (rhs for short) parameters for the second stage constraints under scenario ω; �b5 is the

rhs vector of the parameters for the cashflow balance equations; �e is the unit row vector;

Ix and Ix are the diagonal matrices whose diagonal vectors are the conditional lower and

upper bounds of the x-variables, respectively; Ix and Is are the unit diagonal matrices for

the x-and sω-variables, respectively, �aω
4 , �aω

6 , �aω
7 and �aω

8 are the constraint row vectors related

to the x-variables for the second stage constraints; Aω
5 and Bω are the constraint matrices

related to the x-and sω-variables for the second stage constraints under scenario ω, respec-

tively, for ω ∈ �; and the pair (�s, �s) gives the vectors of the lower and upper bounds for the

sω-variables.

The compact representation (26) can be transformed into a splitting variable representa-

tion, such that the variables δi and xi are replaced with δω
i and xω

i , respectively, ∀ω ∈ �,

i ∈ I. So there is a model for each scenario ω ∈ �, but they are linked by the so-called

nonanticipativity constraints

δω
i − δω′

i = 0 (27)

xω
i − xω′

i = 0, (28)

∀i ∈ I, ω, ω′ ∈ � : ω 	= ω′. Then the splitting variable representation is as follows,

Z I P = min
∑
ω∈�

wω|yω|
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s.t. �e �δω ≤ b1 ∀ω ∈ �

A2
�δω = �b2 ∀ω ∈ �

�δω ∈ {0, 1}n ∀ω ∈ �

−Ix �δω +Ix �xω ≤ �0 ∀ω ∈ �

−Ix �δω +Ix �xω ≥ �0 ∀ω ∈ �

�e �xω = b3 ∀ω ∈ �

�aω
4 �xω ≥ bω

4 ∀ω ∈ �

A5
ω �xω +Bω�sω = �b5 ∀ω ∈ �

�s ≤ Is �sω ≤ �s ∀ω ∈ �

�aω
6 �xω +yω = bω

6 ∀ω ∈ �

�aω
7 �xω +zω = bω

7 ∀ω ∈ �

|zω| ≤ z ∀ω ∈ �

�aω
8 �xω +vω = bω

8 ∀ω ∈ �

|vω| ≤ v ∀ω ∈ �

�δω − �δω′ = �0 ∀ω, ω′ ∈ � : ω 	= ω′

�xω − �xω′ = �0 ∀ω, ω′ ∈ � : ω 	= ω′.

(29)

Notice that the dualization (or, as the case may be, the relaxation) of the constraints (27)

and (28) from model (29) results in |�| independent mixed 0–1 models. To solve the original

model (29), we propose to execute a Branch-and-Fix Coordination (BFC) scheme for each

of the scenario-related models to ensure the integrality condition on the δ-variables, such that

the nonanticipativity constraints (27) are satisfied while selecting the branching nodes and

the branching variables. For this purpose the Twin Node Family (TNF) concept introduced in

Alonso-Ayuso, Escudero, and Ortuño (2003) is used. Additionally, the approach proposed

optimizes the LP model that results from model (26) at each TNF integer set, so that the

nonanticipativity constraints (28) are also satisfied, see below.

3 Branch-and-Fix Coordination algorithmic framework

3.1 BFC methodology

The scenario-related model for ω ∈ � results from the relaxation of the nonanticipativity
constraints (27) and (28) in model (29).

Instead of obtaining the optimal solution of the resulting programs independently , we pro-

pose a specialization of the BFC approach, see Alonso-Ayuso, Escudero and Ortuño. (2003).

It is especially designed to coordinate the selection of the branching node and branching

variable for each scenario-related Branch-and-Fix (BF) tree, such that the relaxed constraints

(27) are satisfied when fixing the appropriate variables at either one or zero. The approach

also coordinates and reinforces the scenario-related BF node pruning, the variable fixing and

the objective function bounding of the subproblems attached to the nodes. See similar de-

composition approaches in Carøe and Schultz (1999), Takriti and Birge (2000), Hemmecke

and Schultz (2001), Klein Haneveld and van der Vlerk (2001), Römisch and Schultz (2001),

Nowak, Schultz, and Westphalen (2002) and Schultz (2003), among others. However, those
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0 − 1 variables δ1, δ2, δ3 a

b − → scen 1

c − → scen 2

d − → scen 3

1

δ3

BF tree R1

4

δ1

0

10

0

11

1
5

δ2

1

12

0

13

1

2

δ3

BF tree R2

6

δ1

0

14

0

15

1
7

δ2

1

16

0

17

1

3
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1

Twin Node Families (TNFs)
H1 = {1, 2, 3}, H2 = {4, 6, 8}, H3 = {5, 7, 9}, H4 = {10, 14, 18}

H5 = {11, 15, 19}, H6 = {12, 16, 20}, H7 = {13, 17, 21}

Fig. 1 Branch-and-Fix Coordination scheme

approaches focus more on using a Lagrangian relaxation of the constraints (27) to obtain good

lower bounds, and less on branching and variable fixing. In any case, Lagrangian relaxation

schemes can be added on top.

For the specialization of the BFC approach to solve problem (29), let Rω denote the BF
tree associated with scenario ω, and Gω the set of active nodes in Rω, ω ∈ �. Any two active

nodes, say, g ∈ Gω and g′ ∈ Gω′
are said to be twin nodes if they are either the root nodes or

the paths from the root nodes to each of them in their own BF trees Rω and Rω′
, respectively,

have branched on or are fixed at the same 0–1 values for the same variables δω
i and δω′

i ,

for ω, ω′ ∈ �, i ∈ I. A Twin Node Family (TNF), say H f , is a set of nodes, such that any

one is a twin node to all the other members of the family, for f ∈ F , where F is the set

of TNFs. Note that g, g′ ∈ H f for any family f ∈ F implies that ω 	= ω′ for g ∈ Gω and

g′ ∈ Gω′
, ω, ω′ ∈ �. A TNF integer set is a a set of integer BF nodes, one per tree, where the

nonanticipativity constraints (27) of the 0–1 variables are satisfied.

Let us consider the scenario tree and the BF trees shown in Fig. 1, where δi gives the

generic notation for the variables δω
i , ∀ω ∈ �. Notice that the first TNF to be used is H1.

Based on the LP optimal solution of the scenario related models attached to the nodes in H1,

let us assume that the selected branching variable is δ3 and, so, the nodes 4 and 5, 6 and 7,

and 8 and 9 are created. The new TNFs are H2 = (4, 6, 8) and H3 = (5, 7, 9), and so forth.

It is clear that the relaxation of the nonanticipativity constraints (27) is not required for all

pairs of scenarios in order to obtain computational efficiency. So the number of scenarios to

be considered in a given model basically depends on the dimensions of the scenario related

model (i.e, the parameters |I| and ti , ∀i ∈ I). The criterion for scenario clustering in the

sets, say, �1, . . . , �q , where q is the number of clusters to consider, could alternatively be

based on the smallest internal deviation of the uncertain parameter (i.e., the interest rate

rω
t , ∀t ∈ T ), the greatest deviation, etc. The determination of the most efficient criterion is
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instance dependent. In any case, notice that �p ∩ �p′ = ∅, p, p′ = 1, . . . , q : p 	= p′ and

� = ∪q
p=1�p. The specific measure for quantifying the deviation of the interest rate path for

any two scenarios is another instance dependent element. In any case, by slightly abusing the

previous notation, the problem to be considered for the scenario cluster p = 1, . . . , q can be

expressed as follows:

Z p
I P = min

∑
ω∈�p

wω|yω|

s.t. �e �δ p ≤ b1

A2
�δ p = �b2

�δ p ∈ {0, 1}n

−Ix �δ p +Ix �x p ≤ �0
−Ix �δ p +Ix �x p ≥ �0

�e �x p = b3

�aω
4 �x p ≥ bω

4 ∀ω ∈ �p

A5
ω �x p +Bω�sω = �bω

5 ∀ω ∈ �p

�s ≤ Is �sω ≤ �s ∀ω ∈ �p

�aω
6 �x p +yω = bω

6 ∀ω ∈ �p

�aω
7 �x p +zω = bω

7 ∀ω ∈ �p

|zω| ≤ z ∀ω ∈ �p

�aω
8 �x p +vω = bω

8 ∀ω ∈ �p

|vω| ≤ v ∀ω ∈ �p.

(30)

The q problems (30) are linked by the nonanticipativity constraints

δ
p
i − δ

p′
i = 0 (31)

x p
i − x p′

i = 0, (32)

∀i ∈ I, p, p′ = 1, . . . , q : p 	= p′.

3.2 All x-variables alone. Benders Decomposition scheme

By slightly abusing the notation, let the following represent the LP model after fixing the

δ-variables at the 0–1 values related to a given TNF integer set in model (26). In the new

model, �x1 will denote the vector of the x-variables whose related δ-variables have taken the

value 1, and the pair (�x1
, �x1

) gives the related lower and upper bounds.

Z T N F
L P = min

∑
ω∈�

wω|yω|
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s.t. �e �x1 = b3

�aω
4 �x1 ≥ bω

4 ∀ω ∈ �

�x1 ≤ �x1 ≤ �x1

A5
ω �x1 +Bω�sω = �b5 ∀ω ∈ �

�s ≤ Is �sω ≤ �s ∀ω ∈ �

�aω
6 �x1 +yω = bω

6 ∀ω ∈ �

�aω
7 �x1 +zω = bω

7 ∀ω ∈ �

|zω| ≤ z ∀ω ∈ �

�aω
8 �x1 +vω = bω

8 ∀ω ∈ �

|vω| ≤ v ∀ω ∈ �.

(33)

By assuming that the x1–variables are the complicating ones and replacing the free vari-

ables yω, zω and vω with yω
1 − yω

2 , zω
1 − zω

2 and vω
1 − vω

2 , respectively, for yω
1 , yω

2 , zω
1 , zω

2

vω
1 , vω

2 ≥ 0, the original program (33) can be expressed

min
x

Fx

s.t. �e �x1 = b3

�aω
4 �x1 ≥ bω

4 ∀ω ∈ �

�x1 ≤ �x1 ≤ �x1
,

(34)

where

Fx =
∑
ω∈�

wω Fω
x (35)

and

Fω
x = min yω

1 + yω
2

s.t. Bω�sω = �b5 − Aω
5 �x1

yω
1 − yω

2 = bω
6 − �aω

6 �x1

zω
1 − zω

2 = bω
7 − �aω

7 �x1

zω
1 + zω

2 ≤ z

vω
1 − vω

2 = bω
8 − �aω

8 �x1

vω
1 + vω

2 ≤ v

�s ≤ Is�sω ≤ �s
yω

1 , yω
2 , zω

1 , zω
2 , vω

1 , vω
2 ≥ 0.

(36)
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The dual of the primal LP problem (36) can be expressed

Fω
x = max

(�b5 − Aω
5 �x1

)T �μω
5 + (

bω
6 − �aω

6 �x1
)
μω

6 + (
bω

7 − �aω
7 �x1

)
μω

7 − zλω

+(
bω

8 − �aω
8 �x1

)
μω

8 − vβω + �sT �αω
1 − �sT �αω

2

s.t. BωT �μω
5 +Is �αω

1 −Is �αω
2 ≤ �0

−1 ≤ μω
6 ≤ 1

μω
7 −λω ≤ 0

μω
7 +λω ≥ 0

μω
8 −βω ≤ 0

μω
8 +βω ≥ 0

�αω
1 , �αω

2 , λω, βω ≥ 0

�μω
5 , μω

7 , μω
8 unrestricted.

(37)

Given the structure of the constraint matrix that defines the feasible region in problem (37),

it can be decomposed into a series of independent subproblems, such that

Fω
x = Fω

x

( �μω
5 , �αω

1 , �αω
2

) + Fω
x

(
μω

6

) + Fω
x

(
μω

7 , λω
) + Fω

x

(
μω

8 , βω
) ∀ω ∈ �, (38)

where

Fω
x

( �μω
5 , �αω

1 , �αω
2

) = max
(�b5 − Aω

5 �x1
)T �μω

5 + �sT �αω
1 − �sT �αω

2

s.t. BωT �μω
5 + Is �αω

1 − Is �αω
2 ≤ �0

�αω
1 , �αω

2 ≥ 0

�μω
5 unrestricted,

(39)

Fω
x

(
μω

6

) = max
(
bω

6 − �aω
6 �x1

)
μω

6

s.t. − 1 ≤ μω
6 ≤ 1,

(40)

Fω
x

(
μω

7 , λω
) = max

(
bω

7 − �aω
7 �x1

)
μω

7 − zλω

s.t μω
7 − λω ≤ 0

μω
7 + λω ≥ 0

λω ≥ 0

μω
7 unrestricted,

(41)

and

Fω
x

(
μω

8 , βω
) = max

(
bω

8 − �aω
8 �x1

)
μω

8 − vβω

s.t μω
8 − βω ≤ 0

μω
8 + βω ≥ 0

βω ≥ 0

μω
8 unrestricted.

(42)

The assumption of feasibility in the original model (33) requires the feasibility of the

primal problems (36) ∀ω ∈ � for all feasible values of the vector �x1 in the model (33). So,

by the Duality Theorem, Fω
x in the model (37), and therefore Fx (35), also have finite values.
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Let J p and J r denote the sets of the extreme points and extreme rays of the feasible

region in each problem (37), respectively. And let an extreme point from J p and an extreme

ray from J r be denoted as follows,

�νω
j ≡ ( �μω

5 , μω
6 , μω

7 , μω
8 , �αω

1 , �αω
2 , λω, βω

)
j ω ∈ �, j ∈ J p ∪ J r . (43)

The problem (37) for ω ∈ � is finite if and only if

−�c ω
j �x1 + kω

j ≤ 0 j ∈ J r , (44)

where

kω
j = [ �μω

5

]t

j
�b5+�st[�αω

1

]
j − �st[�αω

2

]
j +bω

6

[
μω

6

]
j + bω

7

[
μω

7

]
j −z[λω] j +bω

8

[
μω

8

]
j −v[βω] j

c ω
j = [ �μω

5

]t

j
Aω

5 + [
μω

6

]
j
�aω

6 + [
μω

7

]
j
�aω

7 + [
μω

8

]
j
�aω

8 . (45)

We can outer linearize the infimal value function in (37), such that it can be expressed as

max
j∈J p

∑
ω∈�

wω
( − �c ω

j �x1 + kω
j

)
. (46)

By expressing the infimal value function by the outer linearized dual functions (37) and

letting Z denote the smallest upper bound, the original problem (33) for the given Twin Node
Family (TNF) can be represented as follows,

Z T N F
L P = min Z (47)

s.t. �e �x1 = b3 (48)

�aω
4 �x1 ≥ bω

4 , ∀ω ∈ � (49)

�x1 ≤ �x1 ≤ �x1
(50)

Z ≥
∑
ω∈�

wω
( − �c ω

j �x1 + kω
j

)
, ∀ j ∈ J p (51)

−�c ω
j �x1 + kω

j ≤ 0 ∀ω ∈ �, j ∈ J r . (52)

Problem (47)–(52) is known as the Benders Master Program, see Benders (1962). It is

not efficient to compute all its extreme points and rays (if any) (43), and on the other hand

very few induced cuts (51)–(52) are frequently active at its optimal solution. A necessary

condition for the implementation of this procedure is that the feasible region defined by

(48)–(50) be finite. So the solution can be iteratively obtained by identifying extreme points

and rays–based cuts from the optimization of the so-called Auxiliary Program (AP), and

appending them to the so-called Relaxed Master Program (RMP) for its optimization. The

RMP can be expressed as

Z = min Z

s.t. �e �x1 = b3

�aω
4 �x1 ≥ bω

4 ∀ω ∈ �
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�x1 ≤ �x1 ≤ �x1

Z ≥
∑
ω∈�

wω
( − �c ω

j �x1 + kω
j

) ∀ j ∈ J p
(53)

−�c ω
j �x1 + kω

j ≤ 0 ∀ω ∈ �, j ∈ J r
,

whereJ p ⊆ J p andJ r ⊆ J r are the subsets of the extreme points and extreme rays already

identified, respectively.

At the first iteration, RMP is only included by the submodel (47)–(50). The AP is given by

the model (37), whose value (38) is obtained by solving independently the models (39)–(42)

for a given value, say �̂x1
, of the vector of the �x1-variables. This value is the optimal solution

in the RMP solved in the previous iteration, its solution value being Z .

Notice that the primal infeasibility (i.e., dual unboundness) of model (36) is detected for

the vector �̂x1
if there is a scenario whose model (39)–(42) is unbounded for that vector. In

this case, by Farkas’ lemma, there exists an extreme ray �νω
j (43) such that �νω

j W ≤ 0 and

−�cω
j �x1 + kω

j > 0, where W is the matrix of the feasible region for the dual problem (37).

Then, at least one feasible cut from set (54) should be appended to the RMP.

−�cω
j �x1 + kω

j ≤ 0 ∀ω ∈ �0, (54)

where �0 gives the set of scenarios from � whose related models (39)–(42) are unbounded,

and (43) gives the corresponding extreme ray.

On the other hand, if all dual models (39)–(42), ∀ω ∈ � are bounded for the vector �̂x1
,

let Z = Fx̂ denote the optimal value of the objective function (38) and (55) be the optimality
cut to be appended to the RMP if Z (38) > Z (53).

Z ≥
∑
ω∈�

wω
( − �cω

j �x1 + kω
j

)
, (55)

where (43) gives the corresponding extreme point as the AP optimal solution for the point

�̂x1
.

Notice that if Z = Z then �̂x1
is the optimal solution of model (33), with Z T N F

L P = Z .

3.3 All x-variables with fractional δ-variables. Benders Decomposition scheme

By again abusing the notation let �δ f denote the vector of the δ-variables to be allowed to take

fractional values, �δ1 the vector of the δ-variables that have been branched or fixed at one, �x1 f

the vector of the x-variables whose related δ-variables have not branched or fixed to zero in

model (33), and �e f and A f
2 (res., �e1 and A1

2) the unit row vector and constraint matrix for the

variables’ vector �δ f (res., �δ1). The model can be expressed as follows,

Z f
L P = min

∑
ω∈�

wω|yω|
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s.t. �e �δ f ≤ b1 − �e1�δ1

A f
2

�δ f = �b2 − A1
2
�δ1

�δ f ∈ [0, 1]n

−Ix �δ f +Ix �x1 f ≤ �0
−Ix �δ f +Ix �x1 f ≥ �0

�e �x1 f = b3

�aω
4 �x1 f ≥ bω

4 ∀ω ∈ �

A5
ω �x1 f +Bω�sω = �b5 ∀ω ∈ �

�s ≤ Is �sω ≤ �s ∀ω ∈ �

�aω
6 �x1 f +yω = bω

6 ∀ω ∈ �

�aω
7 �x1 f +zω = bω

7 ∀ω ∈ �

|zω| ≤ z ∀ω ∈ �

�aω
8 �x1 f +vω = bω

8 ∀ω ∈ �

|vω| ≤ v ∀ω ∈ �.

(56)

By assuming that the δ f - and x1 f -variables are the complicating ones and replacing the

free variables yω, zω and vω with yω
1 − yω

2 , zω
1 − zω

2 and vω
1 − vω

2 , respectively, for yω
1 , yω

2 ,

zω
1 , zω

2 vω
1 , vω

2 ≥ 0 as above, the program (56) can be expressed as

min
x

Fx

s.t. �e �δ f ≤ b1 − �e1�δ1

A f
2

�δ f = �b2 − A1
2
�δ1

�δ f ∈ [0, 1]n

−Ix �δ f +Ix �x1 f ≤ �0
−Ix �δ f +Ix �x1 f ≥ �0

�e �x1 f = b3

�aω
4 �x1 f ≥ bω

4 ∀ω ∈ �,

(57)

where

Fx =
∑
ω∈�

wω Fω
x (58)

and Fω
x can be expressed following the same rationale as in (36)–(46), but replacing �x1 with

�x1 f . From which it results that Z f
L P can be expressed as

Z f
L P = min Z
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s.t. �e �δ f ≤ b1 − �e1�δ1

A f
2

�δ f = �b2 − A1
2
�δ1

�δ f ∈ [0, 1]n

−Ix �δ f +Ix �x1 f ≤ �0
−Ix �δ f +Ix �x1 f ≥ �0

�e �x1 f = b3

�aω
4 �x1 f ≥ bω

4 ∀ω ∈ �

Z ≥ ∑
ω∈� wω

( − �c ω
j �x1 f + kω

j

) ∀ j ∈ J p

−�c ω
j �x1 f +kω

j ≤ 0 ∀ω ∈ �, j ∈ J r .

(59)

Problem (59) is the Benders Master Program. The Relaxed Master Program (RMP) can be

expressed as the same problem (59), where the sets J p and J r are replaced with the subsets

J p ⊆ J p and J r ⊆ J r . Again, the feasible region of the initial relaxed master program

must be finite.

The Auxiliary Problem (AP) is given by model (37) whose value (38) is obtained by

solving models (39)–(42) independently, but now replacing the vector �̂x1
with the vector

�̂x1 f
.

The feasibility and optimality cuts from AP to be appended to RMP are given by the

constraints (54) and (55), respectively, where again �̂x1
is replaced with �̂x1 f

.

3.4 BFC implementation

Different BFC implementations can be considered. We present the version that has been

implemented to perform the computational experimentation reported in Section 4.

Notice that the δ-and x-variables have zero coefficients in the objective function (12).

In fact the y-variables are the only variables in the objective function. These variables give

the residual values of the duration balance equation (21) of the MBS portfolio and liabilities

under each scenario. So there is no clear criterion for assigning branching priorities to the

δ-variables. We have chosen the model’s input order (i.e. a random order) as the branching

priority.

Based on the same reason, the value of the objective function is not a good indication for

node branching selection. So we have chosen the depth first strategy for TNF branching se-

lection, having first ”branching on the zeros” and then ”branching on the ones” for the chosen

δ–variable to satisfy the nonanticipativity constraints (31) for the selected TNF to be branched.

Notice that a TNF can be pruned due to any of the following reasons: (a) the LP relaxation

of the scenario-cluster model (30) attached to a given node member is infeasible; (b) there

is no guarantee that a better solution than the incumbent one can be obtained from the best

descendant TNF integer set (in our current implementation, it is based on its objective function

value, also called solution value); (c) the LP model (33) attached to the TNF integer set is

infeasible or its solution value is not better than the solution value of the incumbent solution

if all δ-variables have already been branched on or fixed for the family; and (d) see below

when there is a δ-variable in the TNF integer set that has not yet been branched on or fixed.

Once a TNF has been pruned, the same branching criterion allows one to perform either

a “branching on the ones” (if case “branched on the zeros” has already taken place) or a

backtracking to the previous branched TNF.

The solution to be obtained by solving the LP model (33) attached to a TNF integer set
could be the incumbent solution. However, this does not necessarily mean that it should be
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pruned, except if all δ-variables have been branched on or fixed for the family, as said above.

Otherwise, a better solution can still be obtained by branching on the not-yet branched on or

fixed δ-variables. Let Z T N F
L P be the solution value in (33) that satisfies the nonanticipativity

constraints (28) by fixing the δ-variables at their 0–1 values (where constraints (27) are

already satisfied). The family can be pruned if Z T N F
L P = Z f

L P , where Z f
L P is the solution

value of model (56), where both constraint types are satisfied, but the not-yet branched on or

fixed δ-variables are allowed to take fractional values. Notice that the solution space defined

by model (33) is included in the space defined by model (56). In this case, there is no better

solution than Z T N F
L P to be obtained from the descendant TNF integer sets.

To present the BFC algorithm to solve model (29), the following additional notation is

adopted:

Rp, BF tree for the scenario cluster p, for p = 1, . . . , q.

L P p, LP relaxation of the scenario cluster-related model (30) attached to a given node

member of the BF tree Rp in the given TNF, for p = 1, . . . , q.

Z p
L P , solution value of the LP model L P p, for p = 1, . . . , q . By convention, let Z p

L P = +∞
in case of infeasibility. Note: Z p

L P is the expected duration mismatching of the MBS
portfolio and the liabilities over the scenarios in cluster p, for the LP relaxation case.

Z I P , lower bound of the solution value of the original model (29) to be obtained from

the best descendant TNF integer set for a given family. This will be computed as

Z I P = ∑
p=1,...,q Z p

L P for any family, except the one included by the root nodes of

the BF trees. For the latter family, Z I P is given by the L P relaxation of the original

problem (26); the value is reported as ZL P in the computational experience shown in

Section 4 when computed in Step 1 below, and it is obtained by solving problem (56),

via Benders Decomposition, without fixing a priori any δ-variable.

By convention, Z T N F
L P = +∞, for the infeasible problem (33) related to a given TNF

integer set, and Z f
L P = +∞, for the infeasible problem (56).

BFC Algorithm

Step 0: Initialize Z I P := +∞.

Step 1: Solve the LP relaxation of the original problem (26) and compute Z I P . If there is

any δ-variable that takes a fractional value then go to Step 2. Otherwise, the optimal

solution to the original problem has been found and, so, Z I P := Z I P and stop.

Step 2: Initialize i := 1 and go to Step 4.

Step 3: Reset i := i + 1. If i = |I| + 1 then go to Step 8.

Step 4: Branch δ
p
i := 0 and, so, fix x p

i := 0, ∀p = 1, . . . , q.

Step 5: Solve the linear problems L P p, ∀p = 1, . . . , q and compute Z I P .

If Z I P ≥ Z I P then go to Step 7. If there is any δ-variable that either takes fractional

values or takes different values for some of the q scenario clusters then go to Step 3.

If all the x-variables take the same value for all scenario clusters p = 1, . . . , q then

update Z I P := Z I P and go to Step 7.

Step 6: Solve the LP model (33) to satisfy the constraints (32) for the x1-variables in the

given TNF integer set. Notice that the solution value is denoted by Z T N F
L P .

Update Z I P := min{Z T N F
L P , Z I P}. If i = |I| then go to Step 7.

Solve the LP model (56), where the fractional δ-variables are those not-yet branched

on or fixed in the current TNF. Notice that the solution value is denoted by Z f
L P . If

Z T N F
L P = Z f

L P or Z8
L P ≥ Z I P then go to Step 7, otherwise go to Step 3.
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Table 1 Test bed dimensions

Case |I| l |T | b1 |�|

P1 10 5 10 4 10

P2 20 8 12 7 20

P3 20 5 10 6 50

P4 20 5 10 4 50

P5 20 5 10 12 50

P6 20 5 10 4 1000

P7 20 5 10 8 1000

P8 40 10 12 20 1000

P9 100 5 10 30 1000

P10 100 5 10 50 2000

P11 200 5 10 50 2000

P12 300 5 10 200 2000

P13 500 5 10 300 1500

P14 700 5 10 400 1000

P15 1000 5 10 600 1000

Step 7: Prune the branch.

If δ
p
i = 0, ∀p = 1, . . . , q then go to Step 10.

Step 8: Reset i := i − 1.

If i = 0 then stop, since the optimal solution Z I P has been found.

Step 9: If δ
p
i = 1, ∀p = 1, . . . , q then go to Step 8.

Step 10: Branch δ
p
i := 1 and, therefore, xi ≤ x p

i ≤ xi , ∀p = 1, . . . , q.

Go to Step 5.

4 Computational results

We report the results of the computational experiment obtained while optimizing the model

for structuring the MBS portfolio for a set of instances by using the BFC approach presented

in the previous section.

The scenarios are generated as follows:

1. The scenarios for the interest rate path rω
t , ∀t ∈ T , ω ∈ � have been generated by

using the binomial lattice approach given in Black, Derman, and Toy (1990).

2. The unit returns on the securities in the dedicated time periods for the scenarios have

been randomly generated as a function of the interest rate.

3. The Option Adjusted Spread oi has been obtained for each security i by solving the

nonlinear function

�0
i =

∑
ω∈�

wω

(
ti∑

t=1

γ ω
i t

t∏
τ=1

(
1 + oi · rω

τ

)−1

)
,

where �0
i is the current unit return value of security i , for i ∈ I.

We should mention again that MBSPSP has been used as a pilot case to test out the

stochastic integer approach proposed in the paper: it is not intended to serve as a basis for

drawing economic conclusions for decision making in managing portfolios of Mortgage

Backed Securities.
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Table 1 gives the dimensions of the cases. They can be split into three categories. The first

includes those cases with a maximum of |�| = 50 scenarios, the second includes cases with

|�| = 1000 and 2000 scenarios and |I| ≤ 100 securities, and the third includes cases with

|�| = 1000, 1500 and 2000 scenarios and 200 ≤ |I| ≤ 1000 securities.

Our algorithmic approach has been implemented in a FORTRAN 90 experimental code,

which uses the optimization engine IBM OSL v2.0 to solve the LP models. The computational

experiments were conducted in a WS Sun Park under the Solaris 2.5 operating system.

Table 2 gives the dimensions of the DEM (12)–(25), compact representation (26). It

also gives the dimensions of the scenario cluster related deterministic model (30). The new

headings are as follows: m, number of constraints; nδ, number of (0–1) δ-variables (and

also number of x–variables); n2, number of (continuous) second-stage variables; nc, total

number of continuous variables; nel, number of nonzero elements in the constraint matrix;

dens, constraint matrix density (in %).

Table 3 shows the main results of our computational experimentation for given values of

the number of scenario clusters. The headings are as follows: ZL P , solution value of the LP
relaxation of the original problem (12)–(25); Z I P , solution value of the original problem;

G AP , optimality gap defined as (Z I P − ZL P )/ZL P %; nn, number of TNF branches for the

set of BF trees; TL P and T B
L P , the elapsed time (sec.) to obtain the L P solution without using

Benders Decomposition (BD) and using it, respectively; T , T B and T O SL , the total elapsed

time (sec.) to obtain the optimal solution to the original problem by using the BFC procedure

without BD, by using BFC jointly with BD and by plain use of the optimization engine for

solving the DEM, respectively. Notice that the LP relaxation of the original problem (12)–

(25) is optimized in Step 1 of the BFC algorithm, the LP relaxation of the scenario cluster
model (30) is optimized in Step 5, and the linear programs (33) and (56) are optimized in

Step 6 by using Benders Decomposition for the TNF integer sets.

The first conclusion that can be drawn from the results shown in Table 3 is that our

approach obtains the optimal solution in all the cases we have experimented with. Generally

speaking, it seems that the optimization engine requires less computational effort than the

approach proposed when the cases have small dimensions. In other words, it seems that the

greater the dimensions of the cases (particularly the number of scenarios and securities), the

better the performance of the proposed approach is, especially considering that our testing

has been done with an experimental code. Note that our algorithm when using the BD scheme

(besides the BFC approach) reduces by one order of magnitude the elapsed time required by

the plain use of the optimization engine for the second category of cases.

Additionally, we can observe the good performance of the BD scheme in Table 3 by

comparing the elapsed times TL P and T B
L P to obtain the L P solution value without using

BD and using it, respectively. In any case, the time spent by our approach not counting these

times (e.g. Step 1 of the algorithm) is relatively small. Notice that Step 1 is only used for

computing the lower bound of the solution.

The computational results for the third category of cases are also very interesting. Notice

in Table 3 that the optimization engine cannot find any solution within the time limit allowed

(6 hours) except in cases P11 and P12. On the other hand, the mixture BFC–BD obtains the

optimal solution in relatively small elapsed time, for a rather large number of scenario clusters
and securities in all cases. Moreover, the performance of steps 2 to 10 of the algorithm is

much better when using B D than when not using it, in all cases.

Another interesting observation in Table 3 is that the G AP is zero in 12 of the 15 test

cases. This result is entirely different from the result obtained when the L P relaxation of

the original problem is also included by the relaxation of the nonanticipativity constraints

(i.e. the solution value of the L P models L P p, ∀p = 1, . . . , q). We have not reported the
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Table 4 Performance of the BFC approach

q nn T − TL P T B − T B
L P

(a) Case P6

2 22 255.39 85.57

5 22 84.92 25.51

10 22 14.16 10.65

50 22 85.98 4.77

100 22 81.75 5.07

1000 22 94.99 16.71

(b) Case P9

2 106 712.85 703.33

5 108 415.45 371.98

10 108 257.01 252.20

50 107 385.12 184.12

100 106 397.25 172.69

1000 106 457.14 194.17

Table 5 The value of the stochastic solution

Case EV WS Z I P EEV VSS

P1 0.00 964.19 2583.62 2731.96 148.34

P2 23696.07 23622.99 23693.57 *(76.18) *

P3 0.00 263.52 1225.11 2224.75 999.64

P4 3412.16 4749.08 4907.18 4907.18 0.00

P5 0.00 431.45 1225.11 2223.40 998.29

P6 2447.11 4754.12 4825.39 4825.39 0.00

P7 0.00 1115.81 5163.87 5476.30 312.43

P8 57023.95 56782.23 57179.60 *(50.01) *

P9 0.00 7.43 13.74 26.74 13.00

P10 11000.72 12691.41 13341.88 14893.33 1551.45

P11 21628.06 24973.57 26255.09 29306.11 3051.02

P12 31922.18 36845.90 38736.99 43238.46 4501.47

P13 76879.07 83518.02 87808.01 93177.51 5369.50

P14 168948.95 174405.56 183384.04 184490.58 1106.54

P15 240386.53 248095.70 260870.26 262444.67 1574.41

∗Infeasible solution. (.)Weighted percentage of infeasible scenarios

related G AP that is obtained by using this other approach, but it is very frequently greater

than 100%.

Tables 4a and 4b show the performance of the BFC approach for different sizes of the

scenario clusters and then different dimensions of model (30) for cases P6 and P9. We can

observe how sensitive the elapsed time for the solution to the problem is to the number of

scenario clusters (all of which have the same dimensions for each q value).

Table 5 shows some parameters for analyzing the goodness of the stochastic approach,

see e.g. Birge and Louveaux (1997) for more details. The headings are as follows: W S (Wait-
and-See), which can be expressed as W S = ∑

ω∈� wω Zω
I P , where Zω

I P is the solution value

of the model for scenario ω; EV is the solution value of the model for the average scenario

(i.e., the Expected Value of the interest rate over the time horizon); E EV is the Expected
result of the Expected Value, which can be expressed as E EV = ∑

ω∈� wω Zω, where Zω is
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the solution value of the model for scenario ω, whose solution for the first stage variables

has been fixed at the optimal solution for the average scenario model; and V SS is the Value
of the Stochastic Solution, which can be expressed as V SS = E EV − Z I P .

We can observe in Table 5 that VSS is strictly positive in 13 out of the 15 test cases.

There are two cases, namely P2 and P8, where the EV solution is infeasible; they have 15

and 500 infeasible scenario related models, respectively. The results demonstrate that the use

of stochastic programming is worthwhile, as opposed to using average scenario approaches,

even though there are two cases where VSS = 0.

5 Conclusions

In this paper a new scheme for assessing the performance of the standard Benders Decom-

position in two-stage stochastic integer programming is presented for cases where the first

stage includes 0–1 variables plus continuous variables, and the second stage has only con-

tinuous variables. The approach is based on a mixture of Branch-and-Fix Coordination and

Benders Decomposition schemes. The first scheme coordinates the execution of the branch-

and-bound phases to satisfy the nonanticipativity constraints for the 0–1 variables among the

scenario cluster-related sub-problems. The second scheme is designed to satisfy the nonan-
ticipativity constraints for the first stage continuous variables at each TNF integer set. We

have used the Mortgage-Backed Securities (MBS) structuring portfolio problem as an illus-

trative case to test our approach. The goal is to minimize the expected absolute mismatching

of the durations of the MBS portfolio and the liabilities over the scenarios. The results have

been obtained using an experimental code. They are very interesting when compared them

with the non-stochastic strategy based on the average scenario approach. They also show a

remarkable reduction in the elapsed time when comparing the new approach with the plain

use of a state-of-the-art optimization engine. In any case, further experimentation with the

hybrid decomposition approach that we have presented seems worthwhile.
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