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Abstract We present an approximate Maximum Likelihood estimator for univariate Itô

stochastic differential equations driven by Brownian motion, based on numerical calculation

of the likelihood function. The transition probability density of a stochastic differential equa-

tion is given by the Kolmogorov forward equation, known as the Fokker-Planck equation.

This partial differential equation can only be solved analytically for a limited number of

models, which is the reason for applying numerical methods based on higher order finite

differences.

The approximate likelihood converges to the true likelihood, both theoretically and in

our simulations, implying that the estimator has many nice properties. The estimator is

evaluated on simulated data from the Cox-Ingersoll-Ross model and a non-linear extension

of the Chan-Karolyi-Longstaff-Sanders model. The estimates are similar to the Maximum

Likelihood estimates when these can be calculated and converge to the true Maximum Like-

lihood estimates as the accuracy of the numerical scheme is increased. The estimator is also

compared to two benchmarks; a simulation-based estimator and a Crank-Nicholson scheme

applied to the Fokker-Planck equation, and the proposed estimator is still competitive.

Keywords Approximate likelihood function · Durham-Gallant estimator ·
Crank-Nicholson scheme · Cox-Ingersoll-Ross model · Non-linear CKLS model

Modelling stochastic, non-linear dynamical systems using continuous time models differ

from using discrete time models. The vast majority of statistical or econometric models are

discrete time models as these are easier to estimate, but continuous time models have attracted

more attention over the last years. There are several reasons for this.

The most important reason is that the laws of nature (interpreted in a broad sense) are

usually defined in continuous time. This alone makes continuous time models the appro-

priate class of models for a large class of dynamical systems. Moreover, continuous time

models can handle non-equidistantly sampled data consistently, which can be of importance
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for many macroeconomic applications. Finally, there are areas like financial mathematics

where continuous time models (more specifically stochastic differential equations (SDEs) or

diffusion processes) are the standard working tool to price contingent claims.

However, a theoretical model is only applicable when the parameters of the model are

known. Reliable estimates of parameters in the mathematical models for derivative instru-

ments on financial markets are of great economical importance.

Estimation of parameters in stochastic differential equations is a rapidly expanding area of

research, see e.g. Nielsen, Madsen, and Young (2000) or Sørensen (2004). There are mainly

two branches in the community of parameter estimation in stochastic differential equations;

the branch adopting the Maximum Likelihood framework by approximating the likelihood

function and the branch developing estimation techniques based on moment matching. It is

sometimes argued that the class of estimators based on matching moments is a more general

class of estimators than the class of likelihood-based estimators as the score function could

(at least theoretically) be used as a moment. The moment-based estimator would then obtain

Cramer-Rao efficiency. Some of the moment-based estimators are

– Generalized Method of Moments (GMM), see Hansen (1982), is an extension of the clas-

sical method of moments which, has the advantage of being less sensitive to specification

errors than a Maximum Likelihood estimator. GMM has some drawbacks when model-

ing in continuous time as the moment conditions are simpler to implement if they are

calculated for a discretized version of the SDE. However, this discretization introduces

bias. Recent research has extended GMM to continuous time Markov processes, see e.g.

Hansen and Scheinkman (1995), and Duffie and Glynn (2004).

– Indirect Inference, see Gourieroux, Monfort, and Renault (1993), and Efficient Method of

Moments (EMM), see Gallant and Tauchen (1996), are special implementations of GMM

using an auxiliary model to fit the parameters in the diffusion process, transforming the

problem from finding moment conditions for the diffusion to finding an auxiliary model

that can capture the features of the diffusion. Both estimators are consistent and it can

be shown that EMM is asymptotically efficient as the score generator of the auxiliary

model can approximate the log-likelihood arbitrarily well if enough data is available using

e.g. semi non-parametric expansion of the score. However, there are no guarantees for

efficiency for finite samples of data.

– Martingale Estimating functions, see e.g. Bibby and Sørensen (1995), is a mixture of the

moment-based approach and the Maximum Likelihood approach. Estimation functions

solve the estimation problem by finding the zeros of functions of data instead of through

optimization. These functions should be chosen to mimic the score function, but conditional

moments are sometimes used instead, as the score function usually is not available in closed

form. Other choices include eigenfunctions of the generator, see Kessler and Sørensen

(1999).

Common for all these estimators is that the efficiency depends on the moment generator

(or auxiliary model). Another problem is that the methods mentioned above require higher

order moments to be calculated in order to be efficient as the optimal weights for the moments

used in estimation are chosen as the inverse of the covariance matrix of these moments. This

can be a problem if data is heavy tailed, a common feature for financial data.

The loss of efficiency using moment-based estimators can sometimes be substantial, cf.

Durham (2004), who finds Maximum Likelihood estimators to have significantly better

precision when estimating parameters in non-linear diffusions. A fast and computationally
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reliable method based on the Maximum Likelihood framework would hence be desirable.

Previous research on approximate Maximum Likelihood estimation include

– Simulation of likelihood, is a very flexible method that has the drawback of being slow but

the virtue of being simple to implement, see Pedersen (1995b). The method is also simple

to generalize to multivariate systems. Markov Chain Monte Carlo (MCMC) techniques

are suggested in Eraker (2001) and a faster MCMC algorithm was presented in Elerian,

Chib, and Shephard (2001). The speed of Monte Carlo simulation-based estimators can be

vastly improved by using importance sampling and other variance reduction techniques,

see Elerian, Chib, and Shephard (2001) and Durham and Gallant (2002).

– Expansion of the transition probability density in Hermite polynomials, see Aı̈t-Sahalia

(1999, 2002), yielding a closed form expression for the transition probability density. This

approach has a computational advantage both in terms of calculating the likelihood and

in terms of optimizing the likelihood. The expansion is also very accurate, see e.g. Jensen

and Poulsen (2002).

The method corrects for deviation from the standard Gaussian density using an expansion

in Hermite polynomials. However, the expansion requires the transition probabilities of

the model to be fairly close to standard Gaussian to converge, and this is usually achieved

by transforming the process to a representation where the diffusion term is independent

of the process, and by standardizing the variance. The increments will then be close to

standard Gaussian if the sampling interval is small, cf. the Euler-Maruyama discretization

Kloeden and Platen (1992).

It should be noted that there is a minor technical issue when applying the method.

The required transformation does not exist (analytically) for models having complicated

diffusion terms, e.g. the diffusion term of the preferred model in Aı̈t-Sahalia (1996),

σ (x) =
√

θ1 + θ2x + θ3xθ4 , does not belong to the class of (analytically) transformable

models. Transforming the model using a numerical scheme would introduce numerical

errors which are likely to dominate the errors of the method as the number of included

correction terms increases. However, additional research has to be conducted to evaluate

the consequences of a numerical transformation.

– Solving the Fokker-Planck equation numerically. The Fokker-Planck equation is a partial

differential equation (PDE) describing the evolution of the transition probability density.

Generalized Itô processes are treated in Lo (1988), while Poulsen (1999) and Christensen,

Poulsen, and Sørensen (2001) estimate parameters in general univariate diffusion processes

by solving the Fokker-Planck equation using Crank-Nicholson finite difference procedures.

Different estimators for diffusion processes were compared in Christensen, Poulsen, and

Sørensen (2001) where the optimal quadratic martingale estimation function and a Fokker-

Planck-based approximate Maximum Likelihood estimator were compared to exact and

discretized GMM, Quasi Maximum Likelihood and indirect inference estimators. Their con-

clusion is that the approximate Maximum Likelihood estimator is slightly more accurate

than the optimal quadratic martingale estimation function and is more accurate than the other

estimators. It was also shown that the computational demand for the approximate Maxi-

mum Likelihood estimator is less than for e.g. the indirect inference estimator, making the

approximate Maximum Likelihood estimator the estimator of choice.

Different approximate Maximum Likelihood estimators were evaluated in Jensen and

Poulsen (2002), using the Vasiček model, the Cox-Ingersoll-Ross model and Geometric

Brownian motion as benchmark models. They found that the Hermite polynomial expansion

is the fastest method of the approximate Maximum Likelihood estimators, followed by the
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Fokker-Planck-based estimator, while the Monte Carlo-based estimator proposed in Pedersen

(1995b) lags behind.

But is this conclusion uniformly valid? The introduction of fast simulation-based approx-

imate Maximum Likelihood estimators, see e.g. Durham and Gallant (2002) has presented

another option. Furthermore, little is known for processes outside the class of transformable

processes. The Fokker-Planck-based estimators and the simulation-based estimators can be

applied to a larger class of processes than the class of analytically transformable processes.

These estimators allow us to test general non-linear models, which is the reason why we

develop an estimator based on solving the Fokker-Planck equation numerically using higher

order numerical schemes and comparing the estimator to the Crank-Nicholson scheme in

Poulsen (1999) and the simulation-based estimator in Durham and Gallant (2002). The

estimators are applied without using any transformations of the models to compare the per-

formance of the estimators for non-Gaussian processes.

1 Models

Consider a univariate stochastic process {Xt } defined on a subset of R and described by

a parameter vector θ ∈ � ⊆ Rd . Let the process {Xt } be a solution to the Itô Stochastic

Differential Equation

dXt = μ(t, Xt ; θ ) dt + σ (t, Xt ; θ ) dWt ,

Yk = Xtk , (1)

where the drift term, μ : [0, T ] × R × � �→ R and the diffusion term σ : [0, T ] × R ×
� �→ R are sufficiently smooth, measurable functions and Wt is a standard Brownian motion.

We have studied two models in this paper; the Cox-Ingersoll-Ross (CIR) model, see Cox,

Ingersoll, and Ross (1985) and a non-linear extension of the Chan-Karolyi-Longstaff-Sanders

(CKLS) model, see Aı̈t-Sahalia (1996), and Durham (2004).

1.1 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross model Cox, Ingersoll, and Ross (1985) was suggested as a model of

the short interest rate, although the mathematical model was originally introduced by Feller

(1951). Different parameterizations have been presented in the literature, but we have the

used the following

dXt = α (β − Xt ) dt + σ
√

Xt dWt ,

X0 = x0 > 0. (2)

By limiting the parameter space � to {α, β, σ } = {(0, ∞) × (0, ∞) × (0, ∞)}, the state

space is given by {Xt , t} = {[0, ∞) × [0, T ]}. The origin (x = 0) is inaccessible if 2αβ ≥ σ 2,

otherwise it is reflecting, see Feller (1951). Similarly, the Maximum Likelihood regularity

conditions are valid if 2αβ ≥ σ 2, see Overbeck and Rydén (1997). The success of this model

is due to the fact that (given the requirements on the parameters)

– The process is always non-negative.

– The mean converges towards the steady-state mean, β.
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– Closed form expressions can be derived for a large class of financial contracts due to the

affine form of the drift term and the squared diffusion term.

Furthermore, the parameters in the model can be estimated using Maximum Likelihood

estimation since the transition probabilities are explicitly known. It can be shown that the

transition probability density is given by

p(t, xt ; s, xs ; θ ) = ∂

∂xt
Pθ (Xt ≤ xt | Xs = xs, θ )

= c exp (−cxt − cδxs)

(
xt

xsδ

)q/2

I
(
q, 2c

√
xs xtδ

)
, (3)

where

δ = e−α(t−s), c = 2α

σ 2(1 − δ)
, q = 2αβ

σ 2
− 1, (4)

and I (q, z) is a modified Bessel function of the first kind of order q. We will use the Cox-

Ingersoll-Ross model to measure the accuracy of the approximation of the transition proba-

bility density, as the model is non-linear, yet has a closed form expression for the transition

probability density.

1.2 Non-linear CKLS

A generalization of the CIR model is the CKLS model, see Chan et al. (1992). The difference

between these models is that the CKLS-model allows the diffusion term to depend on the

state in a general way.

The CKLS model was further extended in Aı̈t-Sahalia (1996), although later studies, see

e.g. Durham (2004) did not find statistical support for the full model, specified as

d Xt =
(

a0 + a1 Xt + a2 X2
t + a3

Xt

)
dt +

√
θ1 + θ2 Xt + θ3 X θ4

t , (5)

where θ1 + θ2x + θ3xθ4 > 0 for all values of x > 0. This model cannot be estimated using

the Hermite expansion method, cf. Aı̈t-Sahalia (2002), but the Fokker-Planck or simulation-

based estimators should be able to estimate the parameters.

2 Estimators

We present general approximate Maximum Likelihood Estimators (AMLE) for non-linear

diffusion processes. Different numerical schemes for solving the Fokker-Planck equation are

compared to the simulation-based estimator presented in Durham and Gallant (2002) and the

Fokker-Planck-based estimator presented in Poulsen (1999).

The estimators are evaluated on simulated data (using exact simulation) from the Cox-

Ingersoll-Ross model using several different parameter vectors and on simulated data from

the non-linear CKLS model. The benchmarks are similar to Durham and Gallant (2002) and

Jensen and Poulsen (2002) but has been modified to give an estimate of the criteria derived

in Pedersen (1995a).
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2.1 Durham & Gallant estimator

Numerical approximation of the likelihood for diffusions processes using Monte Carlo tech-

niques was introduced in Pedersen (1995b). An approximation was obtained using iterated

Euler approximations, see e.g. Kloeden and Platen (1992)

pE (t, xt ; s, xs) ∈ N (xs + μ(s, xs)(t − s), σ 2(s, xs)(t − s)) (6)

to calculate

p(M)(t, xt ; s, xs) =
∫ M∏

m=1

pE (τm, um ; τm−1, um−1) dλ(u1, . . . , uM−1), (7)

where u0 = xs, uM = xt , and λ is the Lebesgue measure. A Monte Carlo approximation is

obtained by simulating um,k from the Euler scheme um,k = um−1,k + μ(τm−1, um−1,k)(τm −
τm−1) + σ (τm−1, um−1,k)(dWm,k − dWm−1,k). The approximation of p(M)(t, xt ; s, xs) is then

written as

p(M,K )(t, xt ; s, xs) ≈ 1

K

K∑
k=1

pE (t, xt ; τM−1, uM−1,k). (8)

Although this method has great theoretical appeal, see Pedersen (1995a), the computational

efficiency is not competitive, see Jensen and Poulsen (2002), and Durham and Gallant (2002).

The approach taken in Durham and Gallant (2002) is to introduce an importance sam-

pler, i.e. to sample more frequently from the relevant parts of the distribution. Formally, let

q(u1, . . . , uM−1) be a probability density on RM−1 and let {uk = (u1,k, . . . , uM−1,k), k =
1, . . . , K } be independent samples from q(u1, . . . , uM−1). The transition probability density

can be calculated as

p(M,K )(t, xt ; s, xs) ≈ 1

K

K∑
k=1

∏M
m=1 pE (τm, um,k ; τm−1, um−1,k)

q(uk,1, . . . , uk,M−1)
. (9)

It is argued in Durham and Gallant (2002) that this approximation converges to the transition

probability density as M, K → ∞. However, the flexibility of the importance sampler allows

for good approximations using moderate values of M and K .

The performance of the approximation depends heavily on a clever choice of the impor-

tance sampler, q(u1, . . . , uM−1). We have used the modified bridge sampler in Durham and

Gallant (2002) and the Milstein/Elerian subdensity, and the performance was improved fur-

ther by using normalized variates. This approximation was found to be the best approximation

for models with state dependent diffusion terms, see Durham and Gallant (2002).

2.2 Fokker-Planck-based estimators

Another method of calculating the transition probability density p(t, xt ; s, xs) is to solve

the Fokker-Planck equation. We have implemented several different numerical algorithms

approximating the time and space derivatives at different levels of accuracy. The partial

differential equation was discretized using O(h2) and O(h4) discretizations of the space
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derivatives and Padé(1,1) and Padé(2,2) approximations of the matrix exponential. Finally,

different approximations of the initial condition were also evaluated.

It was shown in Lindström (2003) that Richardson extrapolation applied to the O(h2)

solution gives similar results to the O(h4) discretization but the algorithm is somewhat

slower. It is also less robust, and has thus been excluded.

2.2.1 Fokker-Planck equation

It is known from e.g. Karatzas and Shreve (1999), and Øksendal (2000) that, given some

regularity conditions, the time evolution of the transition probability density p(t, xt ; s, xs)

of the solution of a stochastic differential equation d Xt = μ(t, Xt ; θ )dt + σ (t, Xt ; θ )dWt is

given by the Kolmogorov forward equation, or the Fokker-Planck equation,

∂p

∂t
= A � p, (10)

p(s, x ; s, xs) = δ(x − xs), (11)

where the operator A � applied on p(t, xt ; s, xs) is given by

A � p(t, xt ; s, xs) = − ∂

∂xt
(μ(t, xt )p(t, xt ; s, xs)) + 1

2

∂2

∂x2
t

(σ 2(t, xt )p(t, xt ; s, xs)). (12)

It is possible to derive the transition probability densities, p(t, xt ; s, xs) using numerical

methods. We have solved the Fokker-Planck equation using the method of lines, see e.g.

Smith (1986). This means that a grid in the space-time domain approximates the domain for

which the continuous Fokker-Planck equation is defined. The space derivatives in the partial

differential equation are approximated by central finite differences of O(h2) and O(h4)

accuracy, where h is the distance between the lines in the grid, transforming the problem

into a system of ordinary differential equations. The resulting system of ordinary differential

equations is of the form

dp
dt

= A(t)p + b(t), (13)

where A(t) is the finite difference approximation of A � and b(t) corrects for boundary

conditions. A(t) and b(t) would be time dependent in the general case but are time invariant

for the models used in this paper.

The problem of solving a partial differential equation is transformed into finding the

solution to the system of ordinary differential equations as fast and as accurately as possible.

This system of linear ordinary differential equations can be solved analytically. Denote the

initial condition p(0) = p0. The vector valued solution, assuming that A and b are time

invariant, is given by

p(t) = −A−1b + exp(tA)(p0 + A−1b). (14)

The system is stiff, i.e. the largest eigenvalue is much larger than the smallest. Stiff systems

of ordinary differential equations should preferably be solved using implicit numerical meth-

ods. We have tried two different Padé approximations to calculate the matrix exponential,

the Padé(1,1) approximation and the Padé(2,2) approximation. The Padé(1,1) approximation

is equivalent to the Crank-Nicholson method and is able to handle stiff problems, see Smith

(1986). The approximation is given as exp (ξ ) ≈ (1 − ξ/2)−1(1 + ξ/2). The Padé(2,2) is
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similar but more accurate than the Padé(1,1) approximation, see Smith (1986), and is given

as exp(ξ ) ≈ (1 − ξ/2 + ξ 2/12)−1(1 + ξ/2 + ξ 2/12). The accuracy of the approximation is

improved by splitting the distance between the observations into Nstep equal intervals,

applying the approximation to each of the intervals.

Defining the grid over R+ or R would lead to an infinite dimensional system of differential

equations. This is not necessary as the transition probability density is concentrated to a much

smaller subset of R, S. Thus, the equation is only solved for the subset S. The subset is defined

by discretizing the model using an Euler approximation, and estimating the parameters using

GMM, see e.g. Chan et al. (1992). These estimated parameters are used to define S as

the expected value ±6σ for the approximated model. The subset is modified if it covers

values outside the domain of the process or if the next observation is not covered. The

distance between the lines is chosen by considering the conditional distribution implied by

the discretized, estimated model. The natural choice of boundary conditions is to fix the

solution of the discretized Fokker-Planck equation to be zero at the boundaries. Finally, the

grid is constructed by dividing S in Hstep intervals for each approximate standard deviation,

i.e. h = σ (s, xs ; θ̂G M M )
√

/Hstep, where  is the sampling distance.

2.2.2 Improvement using path integration

It is known from e.g. Smith (1986), and Poulsen (1999) that Crank-Nicholson methods tend

to behave badly for non-smooth initial data, especially when the drift is large (and non-linear).

The reason is that the initial probability density is given by a Dirac distribution

p(s, x ; s, xs) = δ(x − xs). This initial distribution cannot be used for numerical solutions

as the finite difference approach is based on smooth and bounded functions. The numeri-

cal approximation of a Dirac distribution is all but smooth, resulting in oscillations in the

numerical solution.

However, during a short time interval δ, the transition probability density is close to

Gaussian and is therefore approximated as such, cf. Kloeden and Platen (1992). The initial

density used for solving the PDE is therefore not a Dirac function but Gaussian, according to

Xt+δ = Xt + μ(t, Xt )δ + σ (t, Xt )δW,

∈ N (Xt + μ(t, Xt )δ, σ
2(t, Xt )δ), (15)

where δ is small both compared to the distance between the observations and the dynamics of

the model. This initial condition was used in Poulsen (1999), and can be interpreted as a first

step in a path integration solution of the transition probability density, see e.g. Skaug (2000).

It is possible to further improve the approximation of the initial condition by consid-

ering the Milstein approximation of the stochastic differential equation. Let σx (t, xt ) =
∂σ (t, Xt )/∂x . The Milstein approximation is then given by

Xt+δ = Xt + μ(t, Xt )δ + σ (t, Xt )δW + 1

2
σ (t, Xt )σx (t, Xt )(δW 2 − δ). (16)

A closed form expression for the transition probability density of the Milstein approximation

was derived in Elerian (1998)

f (xt+δ | xt ) = exp(−λ/2)

|A|√2π
z−1/2

t+δ exp
(
− zt+δ

2

)
cosh

(√
λzt+δ

)
, (17)

Springer



Ann Oper Res (2007) 151:269–288 277

where

zt+δ = xt+δ − B

A
,

λ = 1

δ (σx (t, xt ))
2
,

A = σ (t, xt )σx (t, xt )δ

2
,

B = − σ (t, xt )

2σx (t, xt )
+ xt + μ(t, xt )δ − A.

The density is defined for zt+δ ∈ R+ and σx (t, xt ) �= 0 (σx (t, xt ) = 0 would reduce the Mil-

stein scheme to the Euler scheme). The Milstein initial condition is theoretically superior to

the Euler initial condition as the rate of convergence is higher, see e.g. Kloeden and Platen

(1992).

2.2.3 Convergence

It can be shown that the approximate likelihood converges uniformly to the true likelihood

and the speed of convergence can be derived.

Lemma 1. Assume that a O(h2k), k ≥ 1 central discretization is used to discretize to state
derivatives in the Fokker-Planck equation. The approximate solution can then be written as

p(h, x) = pTrue(x) + c2k(x)h2k + O(h2k+2). (18)

The discretization transforms the Fokker-Planck equation into a linear system of ordi-

nary differential equations, which has a closed form solution. The only source of systematic

errors is thus the finite difference discretization. Using a Padé(1,1) or Padé(2,2) approxi-

mation of the matrix exponential introduces errors in the time integration as well, but the

principal error term of the matrix exponential approximations can be chosen to balance

(smaller or equal to) the error of the state space error, and is thus included in the error

term.

Theorem 1. Assume that the transition probability density is discretized using a O(h2k)

discretization and that the true transition probability density is bounded. The approximate
solution then converges uniformly to the true likelihood as h → 0 and the error of the
likelihood is of order O(h2k).

Proof: We can write the conditional transition probability density (suppressing arguments)

as

p(h, x) = pTrue(x) + O(h2k). (19)
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Using this, we can write the approximated likelihood as

LAML(θ ; x, h) = p(h, x1)
n∏

i=2

p(h, xi | xi−1)

= p(h, x1)
n∏

i=2

(pTrue(xi | xi−1) + O(h2k)). (20)

Rewriting (where pTrue,−i (x) = p−1
True(xi | xi−1)

∏n
j=2 pTrue(x j | x j−1))

= (pTrue(x1) + O(h2k))

[
n∏

i=2

pTrue(xi | xi−1) + O(h2k)

(
n∑

i=2

pT rue,−i (x) + O(h2k)

)]
(21)

which equals

L AM L (θ ; x, h) = pTrue(x1)
n∏

i=2

pTrue(xi | xi−1) + O(h2k)g(x)

= L(θ ; x) + O(h2k)g(x), (22)

where g(x) = ∏n
i=2 pTrue(xi | xi−1) + pTrue(x1)(

∑n
i=2 pTrue,−i (x) + O(h2k).

However, the function g(x) is bounded as the transition probability density is bounded

and finite multiplications of bounded terms also are bounded. Hence, L AM L (θ ; x) converges

uniformly to L(θ ; x) as h → 0. �

A theoretical study of approximate Maximum Likelihood estimators for diffusion pro-

cesses can be found in Pedersen (1995a). That paper derives conditions for the approximate

likelihood function to converge to the true likelihood function as well as alternative conditions

to ensure consistency and asymptotic normality of approximate Maximum Likelihood esti-

mators. It is shown that convergence of the estimates is obtained if the approximate likelihood

function and the true likelihood function are continuous for all θ ∈ � and if the approximate

likelihood function converges uniformly in probability to the true likelihood function. Given

these conditions, the estimate generated by the approximate Maximum Likelihood estima-

tor will converge in probability to the estimate generated by the true Maximum Likelihood

estimator.

The estimator obtained using our methodology converges uniformly to the true Maxi-

mum Likelihood estimator. Furthermore, we have obtained a description of how fast the

approximate likelihood converges.

2.2.4 Poulsen estimator

The Fokker-Planck-based estimator introduced in Poulsen (1999) is a Crank-Nicholson

scheme. Our construction of the grid resembles the construction in Poulsen (1999), although

Poulsen (1999) uses an Euler discretization to obtain a smooth starting condition. Richard-

son extrapolation was applied in Poulsen (1999) but the results presented in Jensen and

Poulsen (2002) suggest that the scheme using Richardson extrapolation is less robust and

not more accurate than the ordinary Crank-Nicholson scheme. The Poulsen estimator is used
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in Christensen, Poulsen, and Sørensen (2001) where numerical experiments showed that it

outperformed all non-Maximum Likelihood estimators.

We will implement the Poulsen estimator by using the Euler discretization of the starting

condition and the O(h2)-Padé(1,1) discretization of the Fokker-Planck equation, but not

applying Richardson extrapolation.

2.3 Criteria of estimator performance

The most important condition in Pedersen (1995a) is the uniform convergence of the approx-

imate likelihood to the true likelihood for all values of θ ∈ �. This condition is impossible to

test numerically, but it is possible to test if the approximate likelihood converges for a fixed θ .

A conservative approximation of the distance between the approximate and true likelihood

function is given by∣∣∣∣∣ n∑
i=1

log p̂(ti , xti ; ti−1, xti−1
) − log p(ti , xti ; ti−1, xti−1

)

∣∣∣∣∣ (23)

≤
n∑

i=1

| log p̂(ti , xti ; ti−1, xti−1
) − log p(ti , xti ; ti−1, xti−1

)|. (24)

By weighting the distance by p(ti , xti ; ti−1, xti−1
) and scaling by the number of observa-

tions, we derive the mean absolute error (MAE) of the log-likelihood function

MAE = 1

N

N∑
i=1

|log p̂(xi+1 | xi ) − log p(xi+1 | xi )|

(25)

≈
∫

|log p̂(xi+1 | xi ) − log p(xi+1 | xi )| p(xi , xi−1)dxi dxi−1.

This criterion is similar to the criterion in Durham and Gallant (2002) where the conver-

gence is measured as the root mean square error (RMSE) of the log-likelihood function

RMSE =
(

1

N

N∑
i=1

(log p̂(xi+1 | xi ) − log p(xi+1 | xi ))
2

)1/2

. (26)

However, the RMSE is less robust and is slightly more restrictive than the MAE. Also, one

of the benchmarks in Jensen and Poulsen (2002) can be obtained using a Taylor expansion

of the MAE (assuming that log p̂(xi+1 | xi ) ≈ log p(xi+1 | xi )) as

MAE = 1

N

N∑
i=1

|log p̂(xi+1 | xi ) − log p(xi+1 | xi )|

≈ 1

N

N∑
i=1

∣∣∣∣ p̂(xi+1 | xi ) − p(xi+1 | xi )

p(xi+1 | xi )

∣∣∣∣ . (27)

The MAE was evaluated on a data series of N = 100 000 observations, and gives an upper

bound of the errors in the log-likelihood function. However, the MAE of the log-likelihood
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can only be calculated if the true likelihood is known, and does not tell us whether the

estimates are sufficiently close to the true parameter values or not. Following Durham and

Gallant (2002), we also introduce the root mean squared error of the parameter estimates

RMSETrue−MLE =
{

1

J

J∑
j=1

(
θ

( j)
0 − θ̂

( j)
MLE

)2

}1/2

, (28)

RMSEMLE−AMLE =
{

1

J

J∑
j=1

(
θ̂

( j)
MLE − θ̂

( j)
AMLE

)2

}1/2

. (29)

The parameters are estimated on J = 500 data sets of length T = 1000 observations for

three different parameter vectors.

This criterion cannot be used to compare the estimators applied to the non-linear CKLS

model, as the Maximum Likelihood estimate is unknown. Two other measures are used

RMSETrue−AMLE =
{

1

J

J∑
j=1

(
θ

( j)
0 − θ̂

( j)
AMLE

)2

}1/2

, (30)

RMSEAMLE1−AMLE2
=

{
1

J

J∑
j=1

(
θ̂

( j)
AMLE1

− θ̂
( j)
AMLE2

)2

}1/2

. (31)

We can compare the RMSE of the different approximate Maximum Likelihood estima-

tors, but the estimators are expected to generate similar estimates (and also similar to the

Maximum Likelihood estimate). This makes it difficult to draw any firm conclusions from

RMSETrue−AMLE.

We therefore test if they generate similar estimates. This would indicate that they are

able to work as a proxy for the true Maximum Likelihood estimator, especially if the

RMSEAMLE1−AMLE2
is significantly smaller than the RMSETrue−AMLE. The RMSEAMLE1−AMLE2

should be small as

‖θ̂AMLE1
− θ̂AMLE2

‖ = ∥∥(
θ̂AMLE1

− θ̂MLE
) − (

θ̂AMLE2
− θ̂M L E

)∥∥ (32)

which can be bounded by the triangle inequality as

≤ ‖θ̂AMLE1
− θ̂MLE‖ + ‖θ̂AMLE2

− θ̂MLE‖. (33)

However, these terms → 0 as the estimates converges to the true Maximum Likelihood

estimates in probability.

We have used the BHHH algorithm for maximizing the log-likelihood function, see Berndt

et al. (1974). This is a Quasi-Newton optimization algorithm using the sample covariance

matrix of the score functions to approximate the Hessian of the log-likelihood function. The

advantage of this algorithm is that the covariance matrix is always positive definite, thus

implying that the likelihood increases for each iteration.
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3 Monte Carlo studies

The estimators were evaluated on simulated data, using the criteria defined in the previous

section. All simulations were run using Matlab 6.5 on a 1.8 GHz personal computer. Matlab

is an interpreting language, which can be significantly slower than a compiled language, es-

pecially if the code cannot be vectorized properly. The results should therefore be interpreted

with caution, especially when comparing the results to e.g. Durham and Gallant (2002). Still

the complexity of the algorithms does not depend on the type of language.

3.1 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross model is used mainly because of the closed form expression of

the transition probability density, making it a suitable benchmark model. We have used a

time series of N = 100 000 observations to evaluate the first benchmark. The parameters

used were specified as α = 0.5, β = 0.06 and σ = 0.15 and  = 1/12. These parameters

are close to calibrated parameters for the monthly U.S. treasury bill rate, see e.g. Durham

and Gallant (2002) and Aı̈t-Sahalia (2002). The series was simulated using exact simulation

starting from the stationary distribution.

The MAE of the log-likelihood for the simulated data series is presented in Fig. 1. The

Durham-Gallant estimator is the simulation-based estimator presented in Durham and Gal-

lant (2002), the Poulsen estimator is a Crank-Nicholson-based estimator using an Euler ap-

proximation as initial condition while the Order2-Padé(1,1) estimator is a Crank-Nicholson

scheme using a Milstein approximation as initial condition. Finally, the Order4-Padé(2,2)

is a O(h4) finite difference scheme using a Milstein approximation as initial condition. It

can be seen that the higher order finite difference approximation is significantly better at

10
2

10
3

10

10

10

10

10

M
A

E

time

Poulsen

Fig. 1 MAE of the log-likelihood versus time for simulated data from the Cox-Ingersoll-Ross model. The
rate of convergence of the Fokker-Planck-based approximations is faster than the convergence rate for the
simulation-based approximation
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Table 1 Mean absolute error of the log-likelihood, calculated using parameters similar to parameters esti-
mated using the US 3-month Treasury bill

Approximation errors of the log-likelihood

Estimator M K Hstep Nstep Order Padé MAE time

Euler 0.0780 4.7

Milstein 0.0207 11.7

Durham & Gallant 4 4 0.031356 107.0172

Durham & Gallant 8 8 0.020737 154.1856

Durham & Gallant 16 16 0.013459 250.1704

Durham & Gallant 32 32 0.009002 507.8327

Durham & Gallant 32 64 0.0064544 764.3522

Poulsen 2 2 2 (1,1) 0.014391 53.1654

Poulsen 3 3 2 (1,1) 0.006296 64.5757

Poulsen 4 4 2 (1,1) 0.0036436 80.1255

Poulsen 5 5 2 (1,1) 0.0024 108.5382

Poulsen 6 6 2 (1,1) 0.0017632 162.2198

Poulsen 7 7 2 (1,1) 0.00138 222.8214

Poulsen 8 8 2 (1,1) 0.0011307 302.3388

Poulsen 9 9 2 (1,1) 0.00095702 427.9107

Poulsen 10 10 2 (1,1) 0.00082857 573.8564

Poulsen 11 11 2 (1,1) 0.00073033 743.9218

Poulsen 12 12 2 (1,1) 0.00065297 1000.4605

Milstein-Order2-Padé(1,1) 2 2 2 (1,1) 0.014131 63.2776

Milstein-Order2-Padé(1,1) 3 3 2 (1,1) 0.0060665 75.54

Milstein-Order2-Padé(1,1) 4 4 2 (1,1) 0.0035273 94.6593

Milstein-Order2-Padé(1,1) 5 5 2 (1,1) 0.0022319 120.3769

Milstein-Order2-Padé(1,1) 6 6 2 (1,1) 0.001527 180.085

Milstein-Order2-Padé(1,1) 7 7 2 (1,1) 0.0011131 244.4255

Milstein-Order2-Padé(1,1) 8 8 2 (1,1) 0.00084503 320.9568

Milstein-Order2-Padé(1,1) 9 9 2 (1,1) 0.00066839 452.2627

Milstein-Order2-Padé(1,1) 10 10 2 (1,1) 0.00054272 602.0248

Milstein-Order2-Padé(1,1) 11 11 2 (1,1) 0.00045083 780.6822

Milstein-Order2-Padé(1,1) 12 12 2 (1,1) 0.00038096 1036.4098

Milstein-Order4-Padé(2,2) 2 2 4 (2,2) 0.010692 88.1356

Milstein-Order4-Padé(2,2) 3 3 4 (2,2) 0.0019766 120.1704

Milstein-Order4-Padé(2,2) 4 4 4 (2,2) 0.00064452 160.478

Milstein-Order4-Padé(2,2) 5 5 4 (2,2) 0.00027783 232.1686

Milstein-Order4-Padé(2,2) 6 6 4 (2,2) 0.00014225 330.6465

Milstein-Order4-Padé(2,2) 7 7 4 (2,2) 8.1583e-05 459.3695

Milstein-Order4-Padé(2,2) 8 8 4 (2,2) 5.2168e-05 600.3513

Milstein-Order4-Padé(2,2) 9 9 4 (2,2) 3.5735e-05 799.7702

Milstein-Order4-Padé(2,2) 10 10 4 (2,2) 2.5068e-05 1041.5521

approximating the log-likelihood and that the rate of convergence is faster than lower order

finite difference approximations, which in turn are better at approximating the log-likelihood

than the simulation-based estimators.

The results are also presented in Table 1. Note that the Milstein initial condition is superior

to the Euler initial condition as the overall accuracy improves, while not much is gained when

the grid is coarse.
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Table 2 The three different sets
of parameters used to evaluate the
algorithms

Parameters for the Cox-Ingersoll-Ross models

Model α β σ 

A 0.5 0.06 0.15 1/12

B 5.0 0.06 0.15 1/12

C 0.5 0.06 0.22 1/12

A consequence of the higher rate of convergence obtained, using the higher order finite

difference schemes is that the “curse of dimensionality” of deterministic numerical tech-

niques can be reduced. This indicates that the higher order finite difference technique might

be competitive for (low dimensional) multivariate diffusions as well, although additional

research is needed to verify this indication.

The numerical techniques were also evaluated in terms of parameter estimates using

simulated data from different Cox-Ingersoll-Ross models. The parameters and sampling

distance between the observations for the models are given in Table 2.

Model A is using the same parameters as the previous test. The second model (B) is

designed to test the numerical properties of estimators when the drift term is large, as large

drift terms are usually troublesome for discrete time approximations. Finally, model (C) is

designed to test the estimators when 2αβ/σ 2 is close to unity. This parameter setting will

stress the numerical approximations as the transition probability density is almost singular

at the origin. The estimators were evaluated using 500 independent time series, each series

consisting of 1000 observations for the three different models.

The performance of the estimators is evaluated by comparing an Euler approximation,

a Milstein approximation, the Durham-Gallant simulation-based estimator using M = 16

and K = 16, the Poulsen estimator and finally a finite difference O(h4), Padé(2,2) scheme

using the Milstein initial condition. The Crank-Nicholson-based estimator used Nstep =
5 and Hstep = 5, while the higher order finite difference scheme used Nstep = 4 and

Hstep = 4.

The estimates from model A are summarized in Table 3. The Durham-Gallant estimator

is a magnitude better than the discretized approximation. The Fokker-Planck-based estima-

tors are performing at least as well as the Durham-Gallant estimator and the higher order

finite difference scheme is almost a magnitude better than the Durham-Gallant estimator,

as expected from Fig. 1. Of importance is that the error generated by any of the advanced

numerical techniques is much smaller than the sample variation.

Similar results are obtained for the second model (B), see Table 4. The Euler and Milstein

estimates are biased while the simulation-based and Fokker-Planck-based estimators are far

better off, having an error much smaller than the sample variation. The higher order finite

difference scheme is performing well once again.

Model C is more complicated to estimate for the Fokker-Planck-based estimators. The

problem is caused by the fact that the process is approaching the origin, which causes some

difficulties as the finite difference approximation “needs a few grid lines” on each side of

the observation to reduce errors caused by the boundaries. Similarly, the trajectories gener-

ated in simulation-based technique might choose points outside of the domain of the true

process, although it did not happen frequently in our simulation study. The difficulty encoun-

tered for the Fokker-Planck-based estimators was approached by transforming the process

using a logarithmic transformation Y = log X and solving the Fokker-Planck equation for

Y instead of X . This transformation was also used in Elerian, Chib, and Shephard (2001)
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Table 3 Data A. Parameter estimates of the Cox-Ingersoll-Ross process using 500 series of 1000
observations each

Approximation errors for parameter estimates

α β σ

True-MLE Mean 0.0550 −0.0002 0.0003

True-MLE Std dev. 0.1207 0.0082 0.0035

True-MLE RMSE 0.1327 0.0082 0.0035

MLE-Euler Mean 0.013772 −1.2068e-06 0.0024639

MLE-Euler Std dev. 0.023918 6.6018e-05 0.0010001

MLE-Euler RMSE 0.027599 6.6029e-05 0.0026591

MLE-Milstein Mean 0.019924 −7.9294e-05 0.0028864

MLE-Milstein Std dev. 0.027828 0.0005338 0.0008221

MLE-Milstein RMSE 0.034225 0.0005397 0.0030012

MLE-Durham&Gallant Mean −0.0005841 0.0001058 0.0002172

MLE-Durham&Gallant Std dev. 0.0042021 3.3036e-05 7.6156e-05

MLE-Durham&Gallant RMSE 0.0042425 0.0001109 0.0002301

MLE-Poulsen Mean −0.0009426 7.181e-08 −0.0001226

MLE-Poulsen Std dev. 0.0014637 2.7703e-05 0.0001606

MLE-Poulsen RMSE 0.001741 2.7703e-05 0.0002020

MLE-Milstein-o4p4 Mean −4.2562e-05 −7.872e-08 2.4287e-05

MLE-Milstein-o4p4 Std dev. 0.00097889 3.1255e-06 1.7733e-05

MLE-Milstein-o4p4 RMSE 0.00097981 3.1265e-06 3.0072e-05

Table 4 Data B. Parameter estimates of the Cox-Ingersoll-Ross process using 500 series of 1000 obser-
vations each

Approximation errors for parameter estimates

α β σ

True-MLE Mean 0.0326 −0.0001 −0.0003

True-MLE Std dev. 0.4322 0.0008 0.0040

True-MLE RMSE 0.4334 0.0008 0.0040

MLE-Euler Mean 0.92758 −1.0475e-07 0.026055

MLE-Euler Std dev. 0.15171 8.2478e-07 0.0024026

MLE-Euler RMSE 0.93991 8.314e-07 0.026165

MLE-Milstein Mean 0.96832 −3.2509e-06 0.026341

MLE-Milstein Std dev. 0.1554 1.1482e-05 0.0023772

MLE-Milstein RMSE 0.98071 1.1933e-05 0.026448

MLE-Durham&Gallant Mean 0.058365 −1.0361e-07 0.0019015

MLE-Durham&Gallant Std dev. 0.015325 3.2651e-06 0.0002069

MLE-Durham&Gallant RMSE 0.060343 3.2668e-06 0.0019127

MLE-Poulsen Mean 0.014664 6.0541e-08 −0.0008903

MLE-Poulsen Std dev. 0.014292 1.0316e-05 0.00016686

MLE-Poulsen RMSE 0.020476 1.0317e-05 0.00090581

MLE-Milstein-o4p4 Mean 0.011159 −6.0457e-09 0.00027036

MLE-Milstein-o4p4 Std dev. 0.0025044 1.3372e-06 2.8816e-05

MLE-Milstein-o4p4 RMSE 0.011436 1.3372e-06 0.00027189
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Table 5 Data C. Parameter estimates of the Cox-Ingersoll-Ross process using 500 series of 1000 obser-
vations each

Approximation errors for parameter estimates

α β σ

True-MLE Mean 0.0462 −0.0005 −0.0000

True-MLE Std dev. 0.1279 0.0113 0.0053

True-MLE RMSE 0.1360 0.0113 0.0053

MLE-Euler Mean 0.015674 2.7577e-06 −0.0021681

MLE-Euler Std dev. 0.10593 0.0003723 0.004705

MLE-Euler RMSE 0.10709 0.00037231 0.0051805

MLE-Milstein Mean −0.079539 −0.0010445 0.0050127

MLE-Milstein Std dev. 0.097955 0.0030055 0.0024278

MLE-Milstein RMSE 0.12618 0.0031819 0.0055697

MLE-Durham&Gallant Mean 0.0062517 −0.0023201 0.0003192

MLE-Durham&Gallant Std dev. 0.039425 0.0033177 0.0019566

MLE-Durham&Gallant RMSE 0.039918 0.0040485 0.0019824

MLE-Poulsen Mean 0.0091496 0.0001223 0.0007945

MLE-Poulsen Std dev. 0.018645 0.0001144 0.0008521

MLE-Poulsen RMSE 0.020769 0.0001675 0.001165

MLE-Milstein-o4p4 Mean −0.008879 −0.0002351 0.000561

MLE-Milstein-o4p4 Std dev. 0.015284 0.0012609 0.0005237

MLE-Milstein-o4p4 RMSE 0.017676 0.0012826 0.0007675

to transform the state space into R. The calculated density pY (t, yt ; s, ys) was transformed

back to pX (t, xt ; s, xs), which was used for forming the estimator. The results are presented

in Table 5.

The Fokker-Planck-based estimators are once again competitive although the difference

between the Poulsen and the higher order finite difference scheme is relatively small, expect

for β where the Poulsen estimator outperforms all other estimators.

3.2 Non-linear CKLS

A substantial generalization of the CKLS model was introduced in Aı̈t-Sahalia (1996)

d Xt =
(

a0 + a1 Xt + a2 X2
t + a3

Xt

)
dt +

√
θ1 + θ2 Xt + θ3 X θ4

t dWt . (34)

Later studies, see e.g. Durham (2004) has found this model too general, but it is a minor

problem when using simulated data. 100 series has been simulated, each series consisting

of 3000 observations using the Milstein scheme. The bias in the simulation was reduced

by taking 100 intermediate steps between the observations and discarding the first 1000

observations as burn-in. The sampling distance was  = 1/52 implying that each series is

equivalent to approximately 40 years of weekly data. This set-up is similar to Durham (2004),

and we have used the parameters estimated for GEN4 in Durham (2004) applied to weekly

observations of the 3-month US Treasury bill rate to generate the data, although a different
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Table 6 RMSE for the parameter estimates for the non-linear CKLS model. The RMSE between
the advanced approximations is small compared to RMSETrue−AMLE and the RMSE of the Euler
estimator

Root Mean Squared Errors

α0 α1 α2 α3

True-O(h4) 0.7907 0.5109 0.1084 15.9805

True-Poulsen 0.7907 0.5109 0.1080 15.9805

True-Durham & Gallant 0.7911 0.5105 0.1104 15.9804

True-Euler 1.3648 66.1792 2.7729 114.7802

O(h4)-Poulsen 0.0013 0.0012 0.0038 0.0001

O(h4)-Durham & Gallant 0.0021 0.0029 0.0049 0.0005

Poulsen-Durham & Gallant 0.0020 0.0026 0.0043 0.0005

O(h4)-Euler 1.3760 66.1538 2.7627 111.7918

θ1 θ2 θ3 θ4

True-O(h4) 0.2638 0.0950 0.0031 0.4634

True-Poulsen 0.2637 0.0950 0.0031 0.4643

True-Durham & Gallant 0.2565 0.0883 0.0014 0.4543

True-Euler 0.2593 0.0898 0.0014 0.4686

O(h4)-Poulsen 0.0069 0.0033 0.0001 0.0243

O(h4)-Durham & Gallant 0.0371 0.0194 0.0020 0.0770

Poulsen-Durham & Gallant 0.0361 0.0191 0.0020 0.0739

O(h4)-Euler 0.0420 0.0219 0.0020 0.1000

parameterization was used

d Xt = α0

(
α1 − Xt + α2 X2

t + α3

Xt

)
dt +

√
θ1 + θ2 Xt + θ3 X θ4

t dWt . (35)

We used an Euler approximation, the Durham & Gallant estimator, the Poulsen estimator

and the O(h4), Padé(2,2) finite difference estimator to estimate the parameters using the same

options for the numerical estimators as before. The results can be found in Table 6.

All advanced approximate Maximum Likelihood estimators obtain good estimates, having

lower RMSE than the Euler estimates. The approximate Maximum Likelihood estimates are

also similar indicating that any of the advanced methods can be used to obtain estimates

similar to the true Maximum Likelihood estimates.

4 Conclusions

An Approximate Maximum Likelihood method based on numerical solution of the Fokker-

Planck equation using higher order finite differences and Padé approximations have been

proposed.

It was shown that the approximate likelihood function converges to the true likelihood

function as the discretization approaches the continuous model implying that the estimates

converge in probability to the true Maximum Likelihood estimates.

The Fokker-Planck-based estimators have also nice practical properties and are compet-

itive compared to the Poulsen and Durham & Gallant estimators. An interesting extension
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is the possible use of the higher order finite difference schemes for multivariate models as it

might be able to beat the “curse of dimensionality.”
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