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Abstract This paper studies symmetries between fixed and floating-strike Asian options and

exploits this symmetry to derive an upper bound for the price of a floating-strike Asian. This

bound only involves fixed-strike Asians and vanillas, and can be computed simply given one

of the many efficient methods for pricing fixed-strike Asian options. The bound coincides

with the true price until after the averaging has begun and again at maturity. The bound is

compared to benchmark prices obtained via Monte Carlo simulation in numerical examples.
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Change of numéraire

Asian options have a payoff which depends on the average price of the underlying asset

during some part of its life. The average is usually arithmetic, and if the asset price is

assumed to follow exponential Brownian motion, an explicit option price is not available as

the arithmetic average of a set of lognormal distributions is not known explicitly. Instead,

pricing of Asian options is usually done numerically.
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There are two types of Asian options: the fixed-strike option, where the average relates

to the underlying asset and the strike is fixed; and floating strike options where the average

relates to the strike price. The fixed-strike option is in some sense easier, and has received

most attention in the literature.

The starting point for this paper is a “symmetry” result in Henderson and Wojakowski

(2002) (see also Hoogland and Neumann (2000)) which proves an equivalence between the

price of a floating-strike Asian and the price of a related fixed-strike Asian, shown to be valid

at the start of the averaging period.

In this paper we extend this symmetry result to “forward starting” Asian options. In par-

ticular, for a forward starting floating Asian option, we provide a symmetry with a “starting”

fixed-strike Asian option. In the case where the floating option is “starting”, we recover the

special case given in Henderson and Wojakowski (2002). If the option is “in progress”, we

show that a floating-strike option can be re-expressed as a generalized “starting” option but

not as any type of fixed-strike option. Instead, we derive an approximate method to price “in

progress” floating-strike options. This approximation is actually an upper bound, and relates

the price of a floating-strike Asian option to the sum of the price of a fixed-strike Asian and

the price of a vanilla option.

Pricing of the fixed-strike Asian has been the subject of much research over the last ten

years and academic interest in these options has experienced a revival recently. One approach

is to re-characterize the average value of the underlying in terms of another stochastic process,

and to use this characterization to derive expressions for the price, perhaps in terms of special

functions (see Carr and Schröder (2000), Donati-Martin et al. (2001), Schröder (2002) and

Yor (2001), continuing the earlier work of Geman and Yor (1993) and Dufresne (1990)).

Alternatively numerical methods may be employed. The current state of the art methods for

fixed-strike Asians are numerical inversion of the Laplace transform (Shaw (2000), (2002)),

eigenfunction expansions of Linetsky (2004), the stable pde method of Vecer (2001) and the

analytical approximation of Vyncke et al. (2003).

The floating-strike Asian option has received far less attention in the literature, perhaps

because the problem is more difficult in that the joint law of the stock price and the average

stock price is needed. There are closed form approximations for the price based on the replac-

ing the average stock price with a simpler random variable with the same first two (or more)

moments (see Ritchken et al. (1993) and Chung et al. (2003)), but these approximations are

not very accurate. Ingersoll (1987) and Rogers and Shi (1995) make use of a scaling argument

(which is not valid for in-progress options) to develop a pde for the price of a floating-strike

Asian, but it is difficult to solve numerically. Marcozzi (2003) solves the general problem

(including in-progress options, and American style Asian options) using a finite element

method, but this involves solving a pde in two space dimensions plus time. Papers by Vecer

(2001), (2002) develop a new pde which reduces the problem to a single space variable, and

has better stability properties and hence is more easily solved numerically. However, despite

this literature, pricing methods for floating strike options are underdeveloped compared with

the more established methods for the fixed-strike option.

Recently, Henderson and Wojakowski (2002) observed that the problem of pricing a

starting floating-strike Asian option could be transformed via a symmetry into the problem

of pricing a starting fixed-strike option, see also Eberlein and Papapantoleon (2005) where

the result is extended to cover exponential Lévy models of the asset price. Hence, given a

favorite method of pricing a fixed-strike call, the problem of pricing a starting floating-strike

option is essentially solved, or to put it another way, the problems of pricing fixed and floating

options are equally difficult, at least as long as the averaging period has not yet started.
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Now consider “in progress” options. For fixed-strike options the fact that the option is in

progress makes no difference to the level of difficulty of the problem, since the average stock

price so far can be incorporated into the strike. For floating-strike options this is not the case;

as we show below an in progress option becomes a generalized starting option. Hence the

scaling methods of Ingersoll (1987) and Rogers and Shi (1995) are not applicable. In this

paper we capitalize on the fact that there are relatively simple methods for the pricing of a

fixed strike option to give a simple upper bound on the price of a floating-strike option.

Our upper bound coincides with the true price at times up to and including the time the

averaging begins and at maturity. Via symmetry, the bound may be expressed as a combination

of fixed-strike puts and vanilla call options, optimized over a weighting parameter. One of the

main advantages of the bound is that one can employ existing methods to price the fixed-strike

option. As such, the speed and accuracy of the method depend on the chosen algorithm to

price the fixed-strike component of the bound. We introduce an approximation to choose the

weighting parameter optimally, and demonstrate whilst this has little effect on the accuracy,

it reduces the computation time dramatically.

Our pricing bound is derived in the framework of the Black Scholes model and relies on

a model dependent symmetry result and a model independent decomposition of the floating-

strike Asian into a fixed-strike Asian and a vanilla option. However, given the symmetry

result for exponential Lévy models in Eberlein and Papapantoleon (2005), it is clear that

our general methodology can be applied for this model also. Given a method for pricing

fixed-strike options under a Lévy model, we can derive an upper bound on the price of an

in-progress floating-strike option.

Given the relative difficulty of pricing Asian options, various authors have suggested

approximations or bounds. One strand of the literature, initiated by Curran (1994), see also

Rogers and Shi (1995) and Nielsen and Sandmann (2003), uses conditioning to bound the

payoff E[( 1
T

∫ T
0

St dt − K )+] with

E

[(
E

[
1

T

∫ T

0

St dt

∣∣∣∣ �]
− K

)+]

for a suitable conditioning event �. In the fixed-strike Asian problem, good choices for �

include ST , and the geometric average of the stock price. Another approach, as described in

Vanmaele et al. (2005) and Vyncke et al. (2003) is to observe that the average 1
T

∫ T
0

St dt is

smaller in convex order sense (and hence gives lower call option prices) than 1
T

∫ T
0

F−1
t (U )dt ,

where Ft is the distribution function of St and U is a uniform random variable on [0,1]. In

this bound the joint distribution of (St )t≤T is replaced by one in which St and St ′ are co-

monotonic. This approximation makes no reference to the fact that the discounted price

process is a martingale, which is why it performs relatively poorly, but when combined with

conditioning it gives a much improved upper bound on the starting option price.

Vanmaele et al. (2005) apply their techniques to starting floating-strike Asian options,

essentially by using the symmetry result of Henderson and Wojakowski (2002) to convert the

problem into a fixed-strike option. They also make the claim (Section V) that ‘the in progress

case can be dealt with in a similar way’, but since the symmetry result does not apply in this

case it is not clear what they mean.

The main contribution of the paper is to provide an approximation to the price of a in

progress floating-strike Asian option which has some desirable properties: it is exact at the

time the averaging starts and at maturity; assuming users have an algorithm for pricing fixed-

strike Asian options it is very easy to code; and it gives reasonable accuracy in essentially
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the same time it takes to price a fixed-strike Asian. Further, the paper builds on symmetry

relationships for exotic options and provides an interesting application of such symmetries

to pricing. Our method is an illustration of a more general philosophy; when pricing new

and more sophisticated derivatives one should try to relate them to existing instruments. The

prices of these existing derivatives may provide bounds on the price of the new option and

may even form a component of a hedging strategy.

As we show this bound is fairly accurate for in progress floating-strike options, with worst

case errors of the order of 3% for reasonable parameter values. (Best case errors are zero, at

both ends of the time averaging period, when the bound is equal to the true price.) This bound,

perhaps based on evaluating special functions, may be preferable to calculating the price of

the floating-strike option via Monte-Carlo methods (generally slow, but with the benefit that

they give theoretical error bounds) or via a pde (Marcozzi’s (2003) implementation requires

solving a pde in three variables which will be computationally intensive).

The paper is structured as follows. The next section outlines the model and defines the

floating and fixed-strike Asian option. Section 2 gives some general symmetry results for

Asian options and recovers the symmetry found in Henderson and Wojakowski (2002) as a

special case. The following section derives the upper bound for the price of the floating-strike

Asian call. We concentrate in this paper on a bound for the call. Of course, the same method

gives a bound for the floating-strike Asian put, this is left to the interested reader. In Section

4 we give an approximate method to reduce the calculation time and report the results of our

numerical investigation in Section 5. The final section concludes the paper.

1 The model

We consider the standard Black Scholes economy with a risky asset (stock) and a money

market account. We take as given a complete probability space (�,F, P) with a filtration

(Ft )0≤t≤T∞ , which is right-continuous and such that F0 contains all the P-null sets of F . Here

T∞ is the termination date of our economy, which is certainly greater than the maturity date

of any option we might consider. We also assume the existence of a risk-neutral probability

measure Q (equivalent to P) under which discounted asset prices are martingales, implying

no arbitrage. We denote expectation under measure Q by E, and under Q, the stock price

follows

d St

St
= (r − q)dt + σdWt (1)

where r is the constant continuously compounded interest rate, q is a continuous dividend

yield, σ is the instantaneous volatility of asset return and W is a Q-Brownian motion.

We consider an Asian contract which is based on the value AT where (At )t≥t0 is the

arithmetic average

At = 1

t − t0

∫ t

t0

Sudu t > t0,

and by continuity, we define At0 = St0 . The contract is written at time 0 (with 0 ≤ t0) and

expires at T > t0. Of interest is to calculate the price of the option at the current time t , where

0 ≤ t ≤ T . The position of t compared to the start of the averaging, t0 may vary. If t ≤ t0 the

option is “forward starting”. We will call the special case t = t0 a “starting” option. If t > t0,

the option is termed “in progress” as the averaging has begun. In this paper we are mainly

concerned with in progress options.
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We consider a generalized Asian option with payoff (aST + bAT + c)+ at time T . The

important cases in financial options are� (a, b, c) = (0, 1, −K )—the fixed-strike Asian call option,� (a, b, c) = (0, −1, K )—the fixed-strike Asian put,� (a, b, c) = (1, −1, 0)—the floating-strike Asian call, and� (a, b, c) = (−1, 1, 0)—the floating-strike Asian put.

Note that vanilla European puts and calls can also be put in this form:� (a, b, c) = (1, 0, −K )—the European call option,� (a, b, c) = (−1, 0, K )—the European put option.

By standard arbitrage arguments the time-t price of this generalized option is the dis-

counted expected payoff under Q, and we write

Vt (a, b, c; r, q; St , At ; t0, T ) = e−r (T −t)E[(aST + bAT + c)+|Ft ].

We remind the reader of our notation: the averaging begins at t0, current time is t , and the

option expires at T . Note that for forward starting options At is not well defined and so we

write Vt (a, b, c; r, q; St , �; t0, T ).

2 Symmetry results for Asian options

In this section, we show that the pricing function for the generalized option satisfies certain

scaling and symmetry results.

Theorem 1. (i) V is homogeneous of degree 1 in the parameters a, b, c, so that for λ > 0,

Vt (λa, λb, λc; r, q; St , At ; t0, T ) = λVt (a, b, c; r, q; St , At ; t0, T ).

(ii) For an in-progress option (t > t0) we have the identity

Vt (a, b, c; r, q; St , At ; t0, T ) = Vt

(
a, b

T − t

T − t0
, c + b

t − t0
T − t0

At ; r, q; St , �; t, T

)
(2)

which allows us to write any generalized in-progress Asian option as a starting Asian
option.

(iii) For a starting option we have the symmetry

Vt0 (a, b, c; r, q; St0 , �; t0, T ) = Vt0

(
c

St0

, b, aSt0 ; q, r ; St0 , �; t0, T

)
(3)

This is an extension of the result of Henderson and Wojakowski (2002). Note that the
roles of r and q are reversed as well roles of a and c.

(iv) Combining (ii) and (iii) we get for in-progress options

Vt (a, b, c; r, q; St , At ; t0, T ) = Vt

(
c

St
+ b

t − t0
T − t0

At

St
, b

T − t

T − t0
, aSt ; q, r ; St , �; t, T

)
(4)
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Proof: The linearity of the option pricing function is inherited from the homogeneity of the

payoff function: (λx)+ = λx+ at least for positive λ. The second part is equally trivial and

is based on the identity

AT = t − t0
T − t0

At + T − t

T − t0

1

T − t

∫ T

t
Su du

where the first term is Ft measurable, and the second term is a constant multiplied by the

average stock price over the interval [t, T ]. The final part does indeed follow from earlier

parts as indicated, so the main result of this theorem is contained in (iii), the proof of which

is relegated to the appendix. This proof is an extension of an argument in Henderson and

Wojakowski (2002) and involves a change of measure and an identification of a time-reversal

of a Brownian motion. �

Note that it follows from the first part of the theorem that it is sufficient to consider the

cases b = ±1, together with b = 0 which corresponds to vanilla European options. If we

take a special case of (3), namely a floating-strike option (c = 0), we can derive a symmetry

between fixed and floating-strike options. This symmetry also holds whilst the option is

forward-starting, which is the content of the next theorem.

Theorem 2. For a forward-starting Asian option, t ≤ t0 we have

Vt (a, −1, 0; r, q; St , �; t0, T ) = Vt (0, −1, aSt e
−q(t0−t); q, r ; St e

−q(t0−t), �; t, T + t − t0)

In particular a forward starting floating-strike call has the same price as a starting fixed-
strike put with r and q reversing roles and modified maturity. An analogous result holds for
b = 1, which converts a floating-strike put into a fixed-strike Asian call.

Remark 3. The special case of this result for a “starting” option was proved in Henderson

and Wojakowski (2002) and is given as

Vt0 (a, −1, 0; r, q; St0 , �; t0, T ) = Vt0 (0, −1, aSt0 ; q, r ; St0 , �; t0, T )

Vanmaele et al. (2005) also obtain this symmetry result when the average is sampled dis-

cretely.

Proof of Theorem 2:

Vt (a, −1, 0, r, q, St , �, t0, T ) = e−r (T −t)Et

[
St0

(
aST − AT

St0

)+]

= e−r (T −t)(Et St0 )Et0

(
aST

St0

− 1

T − t0

∫ T

t0

Su

St0

du

)+

where we use the independence of St0 and increments after t0. Using a time translation

u → u − (t0 − t) in the second expectation this becomes

e−r (T −t0)St e
−q(t0−t)Et

(
aST +t−t0

St
− 1

T − t0

∫ T +t−t0

t

Su

St
du

)+
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which is

Vt (a, −1, 0; r, q; St e
−q(t0−t), �; t, T + t − t0)

a starting floating option (but at time t) with modified maturity. Now applying the symmetry

result of Theorem 1 (iii) for a starting option, we can write this as

Vt (0, −1, aSt e
−q(t0−t); q, r ; St e

−q(t0−t), �; t, T + t − t0)

�
Theorems 1 and 2 are useful as they give relationships between various Asian options.

The generalized symmetry of Theorem 1 (iii) can be used to transform starting floating-strike

Asians into starting fixed-strike Asians. In addition, a forward starting floating-strike Asian

is equivalent to a starting fixed-strike Asian with modified maturity and other parameters, as

given in Theorem 2. Any Asian which is in progress may be written as a generalized starting

option, as described in (ii).

However, (iv) clarifies that although we can write an in progress Asian (take a = 1, b =
−1, c = 0 for a call) as a generalized starting Asian, it cannot be reduced to a standard fixed

or floating-strike Asian.

Thus, to price a forward starting (and starting) floating-strike call (or put), we can use

symmetry and price the equivalent fixed-strike put (or call). If the floating Asian call is

in progress however, there is no such symmetry. Instead we derive an upper bound which

involves fixed-strike Asian puts and vanilla call options. Similarly we could derive an upper

bound for the floating-strike Asian put.

3 An upper bound for the floating-strike Asian option

Since the symmetry in Theorem 2 holds only up to and at the moment the averaging begins,

we develop an upper bound for the case when the option is in progress. The payoff of a

floating-strike Asian call option

(ST − AT )+ =
(

ST − 1

T − t0

∫ T

t0

Su du

)+

can be rewritten in terms of pre and post-t parts, for t0 < t

(
ST − 1

T − t0

∫ t

t0

Su du − 1

T − t0

∫ T

t
Su du

)+
. (5)

We can use this representation to obtain the following result.

Theorem 4. For t ≥ t0, an upper bound on the price Vt (1, −1, 0; r, q; St , At ; t0, T ) of an
in-progress floating-strike call is given by

inf
α

{
Vt

(
(1 − α), 0, − t − t0

T − t0
At ; r, q; St , �; t, T

)
+ Vt

(
0, − T − t

T − t0
, αSt ; q, r ; St , �; t, T

)}
(6)
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Note that we have bounded the floating in-progress option with the notionally simpler

fixed-strike Asian put with modified dynamics together with an ordinary European call

option.

Corollary 5. If t = t0 the infimum is attained at α = 1. Conversely, if t = T then the infimum
is attained at α = 0. Further, the bound in (6) gives the exact price for the floating-strike
option for times t at both ends of the averaging interval.

Proof of Theorem 4. Note (a + b + c) = [(1 − α)a + b] + (αa + c) and (x + y)+ ≤ x+ +
y+. Hence for any α, (a + b + c)+ ≤ ((1 − α)a + b)+ + (αa + c)+. Applying these to (5)

gives

(ST − AT )+ ≤ inf
α

{(
ST (1 − α) − 1

T − t0

∫ t

t0

Su du

)+

+
(

αST − 1

T − t0

∫ T

t
Su du

)+}

Taking discounted expectations will give an upper bound on the price of a floating-strike

Asian call

Vt (1, −1, 0; r, q; St , At ; t0, T ) = e−r (T −t)E
[

(ST − AT )+
∣∣Ft

]
≤ inf

α

{
e−r (T −t)E

[(
ST (1 − α) − 1

T − t0

∫ t

t0

Sudu

)+∣∣∣∣∣Ft

]

+ e−r (T −t)E

[(
αST − 1

T − t0

∫ T

t
Sudu

)+∣∣∣∣∣Ft

]}
. (7)

The first term is a call option and can be rewritten as

Vt

(
1 − α, 0, − t − t0

T − t0
At ; r, q; St , �; t, T

)
Further, by Theorem 1 (iv) the second term can be re-expressed as a fixed-strike Asian

put:

Vt

(
α, − T − t

T − t0
, 0; r, q; St , �; t, T

)
= Vt

(
0, − T − t

T − t0
, αSt ; q, r ; St , �; t, T

)
.

�
We have managed to construct a bound for floating-strike Asians which depends only on

vanilla options and fixed-strike Asians. The fixed-strike Asian option has been well stud-

ied. Competing methods include integral formulas of Linetsky (2004), inversion of Laplace

transform of Geman and Yor (1993) (implemented by Shaw (2000), (2002)), and the stable

pde method of Vecer (2001). Each of these methods was shown to give six digit precision
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by Vecer (2002) and Shaw (2002). Thus, given any of these (or another) method for pricing

fixed-strike Asian options, the bound can be calculated without any new algorithms. The

bound requires optimizing over the parameter α. This potentially means many calls to a

routine to price the fixed-strike put need to be made. It is therefore vital to choose a fast (and

accurate) method for pricing the fixed-strike put, as the speed and accuracy of the bound

depend on this.

However, if we could avoid this optimization over α by choosing an approximate value

which achieved very similar accuracy, this would speed up the computation, as only a single

call to the fixed-strike pricing routine would be needed. In the next section we give a method

for speeding up the calculation by deriving an approximation to the optimal choice of α for

the upper bound.

Note that in this section we have concentrated on the pricing of the “in progress” floating-

strike Asian and we have not mentioned hedging at all. However, implicit in the analysis is a

simple super-replicating hedge. At time t ∈ [t0, T ], choose the optimal α = α(t) (or indeed

any α) and decompose the floating-strike option into a combination of a vanilla and a fixed-

strike Asian option. The vanilla can be replicated in the standard fashion. If the fixed-strike

Asian is hedged appropriately, then we have a super-hedge for the floating-strike Asian

option.

4 Optimal choice of the parameter α for the upper bound

The purpose of this section is to find an efficient method to choose a value of the param-

eter α to give a good approximate upper bound in Theorem 4. Recall that if t = t0, so we

are in the case of a starting option, then the optimal α is given by α = 1. We consider

“in-progress” options, so that t0 < t < T , and we will make a series of approximations

and assumptions to derive a suitable choice of α. Our linearizing of exponential terms is

similar to that used in the pricing approximation in Chung et al. (2003) and Bouaziz et al.

(1994).

We begin by recalling

(ST − AT )+ ≤
(

(1 − α)ST − t − t0
T − t0

At

)+
+

(
αST − 1

T − t0

∫ T

t
Sudu

)+

Note that, for u ≥ v, Su = Sv exp{σ (Wu − Wv) + (r − q − σ 2/2)(u − v)}.

Assumption 6. r − q and σ 2 are small, or more precisely (r − q)(T − t0) and σ 2(T − t0)

are small.

Under this assumption, for u ≥ t , we can approximate Su by St (1 + σ (Wu − Wt )) =
St (1 + σ

∫ u
t dWv), and then, with ≈ denoting approximately equal

(1 − α)ST − t − t0
T − t0

At ≈ (1 − α)St − t − t0
T − t0

At + St (1 − α)σ

∫ T

t
dWv

∼ N

(
(1 − α)St − t − t0

T − t0
At ; S2

t (1 − α)2σ 2(T − t)

)
. (8)
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Also

1

T − t0

∫ T

t
Sudu ≈ (T − t)

T − t0
St + σ St

T − t0

∫ T

t
(Wu − Wt ) du.

and hence

αST − 1

T − t0

∫ T

t
Sudu

≈ αSt + αStσ

∫ T

t
dWt − (T − t)

T − t0
St − σ St

T − t0

∫ T

t
(T − u)dWu

=
(

α − T − t

T − t0

)
St + Stσ

∫ T

t

(
α − T − u

T − t0

)
dWu

∼ N

((
α − T − t

T − t0

)
St ;

T − t0
3

S2
t σ 2

[
α3 −

(
α − T − t

T − t0

)3
])

. (9)

Note that the covariance of the terms in (8) and (9) is

S2
t σ 2(1 − α)

∫ T

t

(
α − T − u

T − t0

)
du

= (T − t0)S2
t σ 2 (1 − α)

2

[
α2 −

(
α − T − t

T − t0

)2
]

(10)

Let G1 and G2 be normal random variables with distributions

G1 ∼ N

(
(1 − α)St − t − t0

T − t0
At ; S2

t (1 − α)2σ 2(T − t)

)

G2 ∼ N

((
α − T − t

T − t0

)
St ;

T − t0
3

S2
t σ 2

[
α3 −

(
α − T − t

T − t0

)3
])

and covariance as given in (10).

Our goal is to minimize G+
1 + G+

2 . Note that G1 + G2 has mean (St − At )(t − t0)/(T −
t0) which is independent of α. We can imagine choosing α to distribute this mean between the

two variables Gi . The proportion of this quantity that we assign to each normally distributed

random variable should depend on their respective variances.

In particular we consider α of the form

α = T − t

T − t0
+ γ

{
t − t0
T − t0

(
St − At

St

)}
.

Assumption 7. To leading order α = (T − t)/(T − t0). Further, when we substitute α in to
the expressions for the variances of G1 and G2 we can neglect higher order terms.
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For this α, and using the leading order expression for the variances we have

G1 ∼ N

(
(1 − γ )

t − t0
T − t0

(St − At ); S2
t σ 2(T − t)

(t − t0)2

(T − t0)2

)
G2 ∼ N

(
γ

t − t0
T − t0

(St − At ) ; S2
t σ 2 1

3

(T − t)3

(T − t0)2

)
Note that the ratio of the standard deviations is given by:√

Var(G1) :
√

Var(G2) =
√

3(t − t0) : (T − t)

We choose γ such that the ratio of the means is equal to the ratio of the standard deviations,

so

(1 − γ ) : γ =
√

3(t − t0) : (T − t)

and hence γ = (T − t)/(T − t + √
3(t − t0)). This choice can be justified rigorously if G1

and G2 are uncorrelated (whereas in fact they have correlation
√

3/2), and if the means are
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Fig. 1 Upper Bounds Cu (dashed lines with dots) vs optimized control variate Monte-Carlo estimates of the
arithmetic Asian option price C (solid lines with dots). Parameters are St = 100, σ = 0.5, r = 0.1, q = 0, t0 =
0, T = 1. The “highest” case is when At = 90 and either bounds or both prices reach the payoff (St − At )

+ =
10 for t = T = 1. The “middle” and “lowest” cases arise when At = 100 and At = 110 respectively: bounds
and prices reach (St − At )

+ = 0 then
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large in comparison with the standard deviations, but remains a plausible choice in many

circumstances.

In conclusion, the proposed choice of α is

α̂ = T − t

T − t0
+ t − t0

T − t0

(
T − t

T − t + √
3(t − t0)

) (
St − At

St

)
.

5 Implementation and results

We implement the upper bound using Laplace transform inversion methods for the fixed-

strike option. Shaw (2000) performs the Laplace transform inversion by direct numerical

integration along the truncated Bromwich contour. This contour is a vertical line to the right

of any finite singularities, and the truncation can be adjusted to obtain higher accuracy. He

has improved upon this implementation in Shaw (2002) by transforming the hypergeometric

function into a collection of geometric series using Mellin transforms. This improved the
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Fig. 2 Upper Bounds Cu (dashed lines with dots) vs optimized control variate Monte-Carlo estimates of the
arithmetic Asian option price C (solid lines with dots). Parameters are St = 100, σ = 0.3, r = 0.1, q = 0, t0 =
0, T = 1. The “highest” case is when At = 90 and either bounds or both prices reach the payoff (St − At )

+ =
10 for t = T = 1. The “middle” and “lowest” cases arise when At = 100 and At = 110 respectively: bounds
and prices reach (St − At )

+ = 0 then
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computation time dramatically, especially for low volatility examples. We have employed

this improved method in our calculation of the fixed-strike options.

The advantages of this choice are that it is accurate, reasonably fast, and it is relatively

easy to code: it can be done in fourteen lines in Mathematica. A further advantage from a

coding perspective is that we can then calculate the bound in Mathematica using its in-built

optimization routines. In this implementation, we also utilized put-call parity for floating-

strike Asians.

Table 1 Upper Bounds for St = 100, σ = 0.5, r = 0.1, q = 0, t0 = 0, T = 1. In the table,
At is the arithmetic average realized up to time t , Cg is the price at time t of an otherwise
identical geometric average option, C is an optimized control variate Monte-Carlo estimate of
the arithmetic Asian price, with N = 100000 simulated paths and m = 3000 sampling points,
δ is the standard deviation of the Monte-Carlo estimate, Cu is the upper bound computed by
numerically minimizing over α, Ĉu is the approximate upper bound for approximate α̂. Note
that the average At is unknown if t = t0 = 0 and that at this time point, as well as at t = T = 1,
both bounds Cu , Ĉu are “exact”

At t Cg C δ Cu α Ĉu α̂

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.

90 0.1 15.3068 14.0854 0.00449 14.2607 0.91211 14.2677 0.90839

0.2 15.6529 14.4306 0.00441 14.7292 0.81985 14.74 0.81396

0.3 15.8499 14.7114 0.00393 15.0582 0.724 15.0702 0.71722

0.4 15.8765 14.8765 0.00334 15.224 0.62525 15.2353 0.61856

0.5 15.7078 14.8806 0.00264 15.197 0.5242 15.2065 0.5183

0.6 15.3105 14.6794 0.00189 14.9375 0.42136 14.9447 0.41668

0.7 14.6338 14.205 0.00122 14.3875 0.31717 14.3922 0.31388

0.8 13.5896 13.3462 0.00062 13.4512 0.21201 13.4538 0.21009

0.9 12. 11.9074 0.0002 11.9435 0.1062 11.9445 0.10543

1 10 10 − 10 − 10 0

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.

100 0.1 14.7731 13.6521 0.00423 13.8452 0.90388 13.8525 0.9

0.2 14.5808 13.54 0.00396 13.8625 0.80577 13.8727 0.8

0.3 14.2363 13.3326 0.00337 13.7055 0.70625 13.7159 0.7

0.4 13.7166 12.976 0.00276 13.3502 0.60579 13.3591 0.6

0.5 12.9918 12.4235 0.0021 12.7643 0.50476 12.771 0.5

0.6 12.019 11.6225 0.00143 11.9019 0.40347 11.9063 0.4

0.7 10.7285 10.4886 0.00087 10.69 0.30217 10.6924 0.3

0.8 8.9891 8.8749 0.0004 8.9949 0.20105 8.9959 0.2

0.9 6.4745 6.4442 0.0001 6.49 0.10028 6.4902 0.1

1 0 0 − 0 − 0 0

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.

110 0.1 14.2977 13.2319 0.00402 13.4418 0.89589 13.4501 0.89161

0.2 13.6413 12.6993 0.00361 13.0442 0.79246 13.0565 0.78604

0.3 12.8466 12.0728 0.00295 12.4643 0.68984 12.4776 0.68278

0.4 11.8926 11.2887 0.00233 11.6814 0.58814 11.6937 0.58144

0.5 10.7517 10.3158 0.00171 10.6685 0.48742 10.6787 0.4817

0.6 9.3853 9.1014 0.00111 9.3872 0.38774 9.3947 0.38332

0.7 7.7337 7.577 0.00063 7.7793 0.28913 7.7842 0.28612

0.8 5.6952 5.6295 0.00027 5.7464 0.19163 5.7491 0.18991

0.9 3.0649 3.051 0.00006 3.0916 0.09525 3.0926 0.09457

1 0 0 − 0 − 0 0
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We will test our bound against a benchmark price for the floating-strike Asian option,

which we calculate by Monte Carlo simulation, with variance reduction techniques. Monte

Carlo and Quasi Monte Carlo simulation are used extensively in finance to obtain benchmark

prices (see Corwin et al. (1996) and Fu et al. (1999)). Our random numbers were generated

using a twisted GFSR (see Matsumoto and Nishimura (1998)). Fu et al. (1999) find that for

fixed-strike Asians, the continuous geometric average Asian served as a high quality control

variate. We take the same approach and follow Conze and Visvanathan (1991) to derive a

formula for the floating-strike geometric average call option and use this as a control variate.

Table 2 Upper Bounds for St = 100, σ = 0.3, r = 0.1, q = 0, t0 = 0, T = 1. In the table,
At is the arithmetic average realized up to time t , Cg is the price at time t of an otherwise
identical geometric average option, C is an optimized control variate Monte-Carlo estimate of
the arithmetic Asian price, with N = 100000 simulated paths and m = 3000 sampling points,
δ is the standard deviation of the Monte-Carlo estimate, Cu is the upper bound computed by
numerically minimizing over α, Ĉu is the approximate upper bound for approximate α̂. Note
that the average At is unknown if t = t0 = 0 and that at this time point, as well as at t = T = 1,
both bounds Cu , Ĉu are “exact”

At t Cg C δ Cu α Ĉu α̂

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.

90 0.1 10.4256 9.8614 0.00174 9.9666 0.91042 9.97 0.90839

0.2 10.8995 10.3054 0.00177 10.4776 0.81726 10.483 0.81396

0.3 11.2724 10.6948 0.00164 10.8925 0.72112 10.8988 0.71722

0.4 11.5293 11.0028 0.00144 11.1978 0.62253 11.2039 0.61856

0.5 11.655 11.2041 0.00116 11.3775 0.52193 11.383 0.5183

0.6 11.6326 11.2749 0.00085 11.4128 0.41968 11.4172 0.41668

0.7 11.4408 11.1851 0.00056 11.2793 0.31611 11.2825 0.31388

0.8 11.0517 10.8962 0.0003 10.9466 0.2115 10.9485 0.21009

0.9 10.4468 10.3797 0.0001 10.3915 0.1071 10.3968 0.10543

1 10 10 − 10 − 10 0

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.

100 0.1 9.8245 9.3457 0.00156 9.4627 0.90205 9.4659 0.9

0.2 9.686 9.2441 0.00146 9.4348 0.80304 9.4394 0.8

0.3 9.4384 9.0576 0.00125 9.2778 0.70329 9.2825 0.7

0.4 9.0662 8.7564 0.00103 8.9778 0.60304 8.9818 0.6

0.5 8.5501 8.3147 0.00078 8.5161 0.5025 8.5191 0.5

0.6 7.8629 7.7003 0.00054 7.8659 0.40182 7.8679 0.4

0.7 6.9617 6.8647 0.00032 6.9845 0.30114 6.9856 0.3

0.8 5.7668 5.7215 0.00015 5.793 0.20055 5.7935 0.2

0.9 4.0824 4.0707 0.00004 4.1165 0.10021 4.1167 0.1

1 0 0 − 0 − 0 0

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.

110 0.1 9.2954 8.8508 0.00143 8.979 0.89393 8.983 0.89161

0.2 8.6481 8.267 0.00124 8.4735 0.78961 8.4798 0.78604

0.3 7.9171 7.6121 0.00101 7.8495 0.68681 7.8567 0.68278

0.4 7.0922 6.8623 0.00078 7.0992 0.58537 7.1063 0.58144

0.5 6.1611 6.0006 0.00056 6.2128 0.48517 6.2191 0.4817

0.6 5.1084 5.0082 0.00036 5.1782 0.38612 5.1833 0.38332

0.7 3.9149 3.8619 0.0002 3.9802 0.28813 3.9838 0.28612

0.8 2.5583 2.537 0.00009 2.6021 0.19115 2.6043 0.18991

0.9 1.0412 1.0369 0.00002 1.0557 0.09408 1.0564 0.09457

1 0 0 − 0 − 0 0
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For each example following, our calculated simulation prices at time 0 agreed (up to reported

accuracy) with those in Chung et al. (2003).

Our first example uses parameters t = t0 = 0, T = 1, r = 0.1, q = 0, σ = 0.5, St = 100

and At is either 90, 100 or 110. The second example uses the same parameters but reduces

volatility to 0.3. Both are ‘starting’ options. All computations were performed on a 1300

Mhz PC running Windows 2000. With more computing power, the times we report at the

end of this section should be significantly reduced. Figures 1 and 2 plot the upper bound

(Cu calculated using Theorem 4 and optimizing over α by binary search) and the benchmark

prices (C) over the 1 year life of the option, for each value of At . It can be seen the bound

is exact at time 0 and at maturity. If we were to compute the value for a forward starting

option, the bound would simply be exact up to and including the time the averaging began.

More detail is given in Tables 1 and 2. Simulation benchmark values C with standard de-

viation δ and the upper bound Cu with optimized value of α are reported. The remaining

two columns contain the price bound Ĉu calculated using the approximation α̂ given in

Section 4.

Our first comparison is between C , the benchmark and Cu the upper bound. For t = 0,

the option is “starting” and the upper bound should be exact, at least theoretically. We see

that 3 or 4 digits of accuracy are obtained between the simulation and the bound, due to

errors inherent in the numerical estimation of each. This represents around a 0.02% error.

We can use this as a guide for evaluating the errors over the life of the option, since this is

a “base” error we are starting with. For volatility 0.5 (Table 1), the accuracy is reduced to 2

digits when t > 0 and 1 or 2 if the volatility is 0.3 (Table 2). As a percentage (when volatility

is 0.5), errors range from about 0.1% to 3.5%, for the worst out-of-the-money option with

t = 0.4. These are slightly better for the lower volatility case. If we compare these errors to

a 1% mis-specification in volatility, we find the bound in Table 2 is less than the simulated

price C with volatility 0.31.

These calculations are time consuming, however. For example, when volatility is 0.5, and

At = 90, it took between 63 and 90 seconds to compute Cu for various points in time, t ,
with the truncation parameter set to 10000 in Shaw’s implementation. These times can be

reduced dramatically with little loss of accuracy by using Ĉu and α̂, the approximation to

α. Under both volatilities, the difference in accuracy between Ĉu and Cu is insignificant,

although α̂ is closer to α when volatility is 0.3, as expected. Recall α̂ does not depend on

volatility. Using the approximation for α reduced the computation time for the At = 90, σ =
0.5 example to around a twelfth of the times reported earlier. For example, when t = 0.2,

the time reduces from 75.6 to 6.3 seconds. Thus the approximation method retains virtually

the same accuracy as the full optimized upper bound, but for a fraction of the computation

time.

6 Conclusion

This paper has explored symmetries in Asian option pricing and exploited such relationships

to derive a new approximation to the price of a floating-strike Asian. This approximation

takes the form of a one-sided bound on the true price. The bound depends only on fixed-strike

Asians and vanilla options. Given an efficient method for pricing a fixed-strike Asian option,

and our approximation for the optimal weights of the fixed-strike and vanilla, the bound can

be calculated immediately in one extra line of code. The accuracy and speed of computation

of the bound depends on the choice of algorithm for the fixed-strike option. Using Shaw’s

(2002) implementation, calculations took a few seconds to give prices to within a couple
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of percent of the Monte Carlo simulation. This approximation may serve as a simple and

fast estimate of the price of a floating-strike Asian option. It is particularly accurate near the

beginning and end of the averaging period.

Appendix

Proof of Theorem 1 (iii)

This proof is an extension of the argument used in Theorem 1 of Henderson and Wojakowski

(2002). Similar ideas have been used repeatedly by Yor (2001). Assume that S has the

dynamics given by (1) and that the option is “starting”, so t = t0. We begin by rewriting the

price of the generalized Asian option as:

Vt0 (a, b, c; r, q; St0 , �; t0, T ) = e−r (T −t0)E[(aST + bAT + c)+|Ft0 ]

= St0 e−q(T −t0)Et0

[
ST e−(r−q)(T −t0)

St0

(aST + bAT + c)+

ST

]

Define the measure Q̂ via

dQ̂
dQ

= ST e−(r−q)(T −t0)

St0

= exp

{
σ (WT − Wt0 ) − σ 2

2
(T − t0)

}
.

Under Q̂, Ŵu = Wu − σ (u − t0) is a Brownian motion (started at Ŵt0 = Wt0 ) and the price

becomes

Vt0 = St0 e−q(T −t0)Êt0

[(
a + b

AT

ST
+ c

ST

)+]
. (11)

Again under Q̂ we have d Su = Su{(r − q + σ 2)du + σdŴ } and for u ≥ t0,

Su

ST
= exp

{(
r − q + 1

2
σ 2

)
(u − T ) + σ (Ŵu − ŴT )

}
.

Now let (B̂u)t0≤u≤T be defined via B̂u = B̂t0 + ŴT +t0−u − ŴT for some constant B̂t0 . Then

B̂ is a time-reversal of a Brownian motion and therefore B̂ is again a Brownian motion under

Q̂. Also

c

ST
= c

St0

St0

ST
= c

St0

e(q−r )(T −t0) exp

{
σ (B̂T − B̂t0 ) − 1

2
σ 2(T − t0)

}
= c

St0

ŜT

Ŝt0

,

where Ŝ solves the stochastic differential equation

d Ŝu

Ŝu
= (q − r )du + σd B̂u u ≥ t0 (12)
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with Ŝt0 ≡ St0 . In particular we think of Ŝ as a stock paying constant rate of dividends r in a

market with interest rate δ. Further

(T − t0)
AT

ST
=

∫ T

t0

Su

ST
du =

∫ T

t0

du exp

{(
r − q + 1

2
σ 2

)
(u − T ) + σ (Ŵu − ŴT )

}

=
∫ T

t0

due(q−r )(T −u) exp

{
σ (B̂T +t0−u − B̂t0 ) − 1

2
σ 2(T − u)

}

=
∫ T

t0

dve(q−r )(v−t0) exp

{
σ (B̂v − B̂t0 ) − 1

2
σ 2(v − t0)

}

=
∫ T

t0

dv
Ŝv

Ŝt0

.

We have that

St0
(aST + bAT + c)+

ST
=

(
c

Ŝt0

ŜT + b
1

T − t0

∫ T

t0

dv Ŝv + aŜt0

)+

and under Q̂, this last term is the payoff of a generalized Asian option under the dynamics

(12). Finally, if we discount this expression at the interest rate δ we get from (11)

Vt0 (a, b, c; r, q; St0 , �; t0, T ) = Vt0

(
c

St0

, b, aSt0 ; q, r ; St0 , �; t0, T

)
as required. �

Acknowledgments The authors would like to thank Jean Luc Prigent and participants of AFFI Colloquium
(Paris, 2001), participants of RISK Quantitative Finance London 2002, and seminar participants at the Judge
Institute of Management Studies, Cambridge. We would also like to acknowledge the useful comments of six
referees.

References

Bouaziz, L., E. Briys, and M. Crouhy. (1994). “The Pricing of Forward-Starting Asian Options.” Journal of
Banking and Finance, 18, 823–839.
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