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Abstract A major difficulty in bioinformatics is due to the size of the datasets, which contain

frequently large numbers of variables. In this study, we present a two-step procedure for

feature selection. In a first “filtering” stage, a relatively small subset of features is identified

on the basis of several criteria. In the second stage, the importance of the selected variables

is evaluated based on the frequency of their participation in relevant patterns and low impact

variables are eliminated. This step is applied iteratively, until arriving to a Pareto-optimal

“support set”, which balances the conflicting criteria of simplicity and accuracy.

Keywords Feature selection . Genomics . Proteomics . Logical analysis of data . LAD .

Patterns

Data mining proteomic and genomic datasets can generate significant difficulties from the

knowledge extraction prospective, and can challenge the available computational resources.

The area of bioinformatics can frequently face problems involving tens of thousands en-

tries. For instance, out of more than 15,000 peptides appearing in a recently studied ovar-

ian cancer dataset (Ovarian Dataset 8-7-02, http://clinicalproteomics. steem.com), we have

identified (Alexe et al., 2004) a subset of only 7 peptides which can distinguish with

100% accuracy the ovarian cancer cases from the controls. Similarly, in a breast cancer
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dataset (http://www.rii.com/publications/2002/vantveer.htm), reporting the expressions of

the intensity levels of more than 25,000 genes for each case, we have identified (Alexe et al.,

2006) a subset of only 17 genes which can distinguish with an accuracy of 93% the poor

prognostic cases from the good ones.

The presence of too many attributes in a dataset, as well as the presence of confounding

features, such as experimental noise, may lead—in the absence of adequate ways of selecting

small, relevant subsets—to the failure of any attempt to extract knowledge from the data.

The importance of feature selection is well known in statistics, and was recognized for a

long time as an important component of research in machine learning, knowledge discovery,

data mining, and other related areas. Comprehensive overviews of many existing methods

from the 1970’s to the present appear in the 1997 survey of Dash and Liu (1997), and the

1998 monographs (Liu and Motoda, 1998a,b) of Liu and Motoda. Some of the classical

techniques of statistics (e.g., principal component analysis) are highly pertinent to the area

of feature selection. Among the methods specifically designed for this purpose, we mention

the exhaustive search heuristics (e.g., sequential forward/backward selection, branch and

bound selection (Dash and Liu, 1997)), and those using artificial neural networks (e.g., Leray

and Gallinari, 1999; Setiono and Liu, 1997), support vector machines (e.g., Bradley and

Mangasarian, 1998), genetic algorithms (e.g., Chtioui, Bertrand and Barba, 1998).

One of the complicating factors in the extraction of a relevant subset of features, is the

fact that there is a marked difference between the relevance of individual features, and that

of subsets of features. As a typical example, we mention the fact that the highly relevant

subset of 7 features identified in the ovarian cancer study (Alexe et al., 2004), includes only

4 peptides whose levels are strongly correlated with the presence of ovarian cancer.

The purpose of this paper is to outline a method for identifying subsets of features, which,

taken collectively, can distinguish with high accuracy the positive observations from the

negative ones. The major concept used in this procedure is that of collective biomarkers, or

patterns, as defined in the Logical Analysis of Data (LAD).

LAD (Crama, Hammer and Ibaraki, 1988) is a combinatorics, optimization, and logic-

based non-parametric methodology for the analysis of data. Specific features of the LAD

approach include the exhaustive examination of the entire set of features (without the exclu-

sion of those having low statistical correlations with the outcome, or those having low values),

focusing on the classification power of the combinations of features (without confining at-

tention only to the individual ones), and on the possibility of extracting novel information on

the role of features and of combinations of features through the analysis of these exhaustive

lists. It is important to notice that the potentials offered by LAD for feature selection have

been fully confirmed by the empirical studies.

Initially, LAD was proposed for the analysis of datasets with binary features, i.e., features

taking only the value 0 and 1, and included a feature selection component based on the

solution of a set-covering problem—a well studied problem in Operations Research. Later, a

method was developed (Boros et al., 1997) for “binarizing” data with numerical values. The

binarization process replaces a feature with numerical values by several binary ones, and the

set-covering approach for feature selection can be applied in this case, too. The distinctive

feature of the proposed approach to feature selection is that it is not limited to the analysis

of the roles of individual features, but takes also into account the “collective effect” of sets

of features in distinguishing the positive and negative observations of a dataset.

While the set-covering based feature selection method turned out to be very useful in the

analysis of datasets coming from a variety of areas (economics, seismography, oil exploration,

cardiology, design of artificial tissues, etc.), its application for genomic and proteomic data

ran into two problems.
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First, the number of genes or proteins in a typical genomic or proteomic dataset is in the

thousands or tens of thousands. Since the number of binary variables to replace a numerical

one (corresponding to a gene or a protein) can be hundreds of times larger, it can expected that

these problems can lead to set-covering models with millions of binary variables. Further,

the constraints in the associated set-covering problems, correspond to the pairs formed by

a positive and a negative observation in a dataset. Therefore, the set-covering problem can

be expected to have tens of thousands of constraints and millions of variables. Although

excellent heuristics are available for the solution of set-covering problems, the size of the

problems appearing in the area under investigation is beyond their capacity.

Second, in contrast to the usual set-covering problem, there is a new type of require-

ments appearing in the binarized forms of data analysis problems coming from genomics or

proteomics. In the usual set-covering model, the main problem is to minimize the number

of variables (features) which take the value 1 (i.e., are selected) in an optimal solution. In

genomics and proteomics, the number of variables to be minimized is not that of the total

number of binary variables associated to each gene or protein, but the number of selected

genes or proteins. The combinatorial optimization model corresponding to this problem is

substantial more complicated than a simple set-covering problem, and no heuristic method

for its solution is available in the literature.

The main objective of this paper is to bypass the binarization step, as well as the formulation

and the solution of a set-covering problem, in extracting from genomic or proteomic dataset a

small, knowledge-preserving set of features, which allows the accurate distinction of positive

and negative observations.

The paper is organized in five sections as follows:

– Section 1 describes the procedure for selection of the feature pool,

– Section 2 provides a brief introduction to LAD,

– Section 3 presents a reduction technique for the feature pool, preserving the knowledge

embedded in the dataset, and the experimental results of the application of this techniques

to feature selection from proteomic and genomic datasets,

– Finally, some conclusions and references are presented.

1 Selection of feature pool

In the first phase of feature selection, we shall apply several criteria for evaluating each

one of the features in the dataset, with the aim of creating a pool of selected features to

be retained for further analysis. For each of the criteria applied we retain for further con-

sideration the k top ranked features; in the examples presented in this paper we have se-

lected k to be 50. The pool consists simply of the set of those features which are ranked

among the top k by at least one of the criteria applied. Naturally, many of the selected

features are ranked highly by several criteria.

We shall describe below five of the criteria applied in the current implementation of the

proposed method.

1.1 Separation measure

For a feature x , let us denote by x+ , respectively x−, the average value of x taken over the

set of all positive, respectively negative, points in the dataset, let x∗ be the average of x+

and x−, and let us assume that x+ ≥ x− (the other case being treated in a symmetric way).

Let the number of positive (respectively, negative) observations with x ≥ x∗(respectively,
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x < x∗) be n+
x (respectively, n−

x ). It is conceivable to replace the numerical variable x by

an associated binary variable ξ , which is equal to 1 for x ≥ x∗, and 0 otherwise. Therefore,

the number of those pairs consisting of a positive and a negative observation which can be

distinguished by the corresponding value of ξ , will exceed n+
x n−

x . The higher this separation
measure σx = n+

x n−
x , the more positive/negative pairs of observations can be separated based

on the values taken by x .

1.2 Envelope eccentricity

Let us denote by l+x and u+
x (respectively by l−x and u−

x ) the minimum and the maximum of

the values of feature x among the positive (respectively, negative) observations in the dataset.

The overlap of the intervals [l+x , u+
x ] and [l−x , u−

x ] in an indication of the separation of positive

and classes based on the values of feature x alone. We shall define the overlap index ωx of x
to be the (non-degenerate) ratio ωx = min(u−

x ,u+
x )−max(l−x ,l+x )

max(u−
x ,u+

x )−min(l−x ,l+x )
. Clearly, ωx takes values between

−1 and 1, and the smaller its absolute value the more relevant feature x is in the separation

of positive and negative observations.

1.3 System entropy

Information theory provides a valuable measure expressing the nonseparability of positive

and negative observations in the dataset based on the values of one of the features. Let m
be the number of observations in the dataset, and let t be an integer approximation of

√
m.

Let us order the observations in the dataset according to the values of the variable x , and let

us partition them into t + 1 approximately equally sized subsets of consecutive observations

S0, S1, . . . , St . Assuming that p j and q j are the numbers of positive, respectively negative,

observations in Sj , the frequency of positive observations in Sj will be
p j

p j +q j
, we define the

number εx as follows:

εx = − 1

t + 1

t∑
i=0

[(
pi

pi + qi

)
ln

(
pi

pi + qi

)
+

(
qi

pi + qi

)
ln

(
qi

pi + qi

)]
(εx = 0, if pi = 0 or qi = 0)

The number εx will be called the entropy (or information measure) of feature x , and it takes

values between 0 and ln2. Clearly, variables which “separate” well positive and negative

observations will have a low entropy.

1.4 Pearson correlation

The Pearson correlation coefficient πx between the vector of values of a feature x and the

outcome vector o(whose components are 1’s for positive observations, and 0’s for negative

ones) is indicative of the importance of that feature: the higher the absolute value of this

coefficient, the more important the feature is.

1.5 Signal-to-noise correlation

The common signal-to-noise correlation τx provides an additional measure of separation,

being defined in the following way: let x+ and x− be defined as in 2.1., and let σ+ and σ−
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be the corresponding standard deviations of the values of x on the positive and the negative

datasets, respectively. The ratio τx = x+−x−
σ++σ− is called the signal-to-noise correlation (Golub

et al., 1999) of feature x with the outcome.

Example. On the basis of each of the five measures described above, we have selected

the best 50 features appearing in the genomic DLBCL dataset long-term follow-up (Shipp

et al., 2002), http://llmpp.nih.gov/lymphoma) and the proteomic Ovarian Cancer Dataset 8-

7-02 ((Petricoin et al., 2002), http://clinicalproteomics.steem.com). Beside these five pools of

features, we have introduced a sixth pool consisting of the union of the first five. In the case of

the DLBCL dataset, the combined pool consisted of 190 (out of a total of 7,129) features, and

in the case of the Ovarian Cancer dataset it consisted of 157 (out of a total of 15,154) features.

The combined pools distinguish the positive observations from the negative ones more

accurately than any of the five pools selected on the basis of a single criterion. In order to

validate this statement, we have randomly partitioned each of the two datasets into a “training

set” containing about 50% of the positive and 50% of the negative observations, and a “test

set” containing the remaining observations. Using the training sets, we have developed on

each of the six pools a LAD “classifier” (to be defined and discussed in the next section)

and applied it to the observations in the test set. The accuracies of the six classifications are

presented in Table 1, and show clearly the superior performance of the classifications which

used the pool obtained by combining the five criteria.

2 Elements of LAD

The definition of a “support set” of features, i.e., a set which allows the construction of an

accurate model capable of distinguishing positive and negative observations, depends on the

particular type of model to be used. Since the proposed feature selection method uses concepts

and algorithms related to LAD, we shall aim our discussion to the creation of support sets

which can be used successfully in LAD, but shall illustrate on the two datasets—DLBCL and

Ovarian Dataset 8-7-02—that the support sets obtained in this way are also advantageous for

various other data analysis methods. In order to clarify our terminology we shall first present

some basic elements of LAD.

2.1 Basic concepts of LAD

One of the first steps of LAD is to associate some “cutpoints” and corresponding “binary

variables” to each of the original variables. If x is one of the original variables taking numerical

values, and c is a cutpoint of it, then the associated binary variable ξc is defined to be

equal to 1 when x ≥ c and 0 otherwise, i.e., it distinguishes “high” and “low” values of x .

Several cutpoints (and binary variables) can be associated to the same original variable. The

Table 1 Accuracies based on feature pools selected according to various criteria

Separation Envelope System Pearson Signal-to-noise

measure eccentricity entropy correlation correlation Combined

(σx ) (ωx ) (εx ) (πx ) (τx ) criteria

DLBCL 64.18% 81.49% 70.67% 70.67% 60.58% 89.18%

Ovarian Cancer 96.67% 100.00% 91.73% 97.16% 98.77% 99.38%
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minimization of the number of binary variables to be used in this process was shown in Boros

et al. (1997) to be NP hard. A conjunction, say C = ξcξ
′
c′ ξ̄

′′
c′′ , is a new binary variable, which

takes the value 1 if ξc = ξ ′
c′ = 1 and ξ ′′

c′′ = 0 (i.e., if the corresponding numerical variables

x, x ′, x ′′ satisfy the conditions x ≥ c, x ′ ≥ c′, x ′′ < c′′), and 0 otherwise.

A distinctive concept of LAD is that of collective biomarkers, or patterns. A conjunction

is said to be a positive pattern if it takes the value 0 on every negative observation, and if

it takes the value 1 on some positive observations. In LAD, attention is usually restricted

only to patterns which “cover” (i.e., take the value 1 on) a sufficiently large proportion of the

positive observations (whose “prevalence” exceeds some prescribed value). Negative patterns
and their prevalence are defined in a symmetric way. The two most important parameters of

patterns are their prevalences, and their degrees, i.e., the number of variables included in the

expression of the pattern (the degree of the conjunction C in the example above is 3).

Let us consider for illustration the ovarian proteomic dataset Ovarian Dataset 8-7-02, in

which the features are labeled by their M/Z values. The conjunction requiring the simulta-

neous fulfillment of the two conditions “The intensity level of the peptide having the M/Z
value 4004.826 is less than 29.899447” and “The intensity level of the peptide having the
M/Z value 435.46452 is more than 24.0603315” is fulfilled by 152 of the 162 positive cases

in the dataset, and by none of the negative ones. Clearly, the above conjunction describes a

positive pattern.

A reduct of a conjunction is a conjunction obtained by eliminating one of the variables

appearing in the original conjunction; for example C ′ = ξc ξ̄
′′
c′′ is one of the three possible

reducts of C . A positive pattern is called prime if none of its reducts is a pattern, i.e., if each

of its reducts covers some negative observation. Negative prime patterns are defined in a

symmetric way.

The (d , p)-positive pandect corresponding to a dataset, is the family of all positive prime

patterns having degrees of at most d , and prevalences of at least p. Negative pandects are

defined symmetrically. An efficient algorithm (Alexe and Hammer, 2006) for finding the

(d, p)-positive pandect will be described in Section 3.2.

As an illustration, we present in Table 2 the positive and negative (3, 0.5)-pandects of the

Ovarian Cancer dataset, built on a set of 9 peptides.

It should be remarked that the concept of patterns resembles closely that of rules, which

appears in expert systems and in various decision tree—based methods. It should be also

mentioned that the number of rules in a dataset is exponentially large, and therefore, the gen-

eration of every possible rule is not realistic. While most of the rule-based methods generate

a relatively small number of potentially significant rules, one of the major characteristics of

LAD is an attempt to first generate in a systematic way an extremely large collection of po-

tentially significant rules, and in a subsequent stage to “filter” this collection in order to retain

only reasonably sized collections which can jointly explain the positive or negative nature

of every case in the dataset. This approach does not only assure the possibility of selecting

those rules or patterns which taken individually carry the highest amount of information (e.g.,

have low degrees and high coverages), but also maximizes the collective inference power of

the selected family of patterns. In essence, the pattern generation system of LAD consists

in a systematic, exhaustive combinatorial enumeration process guided by clear optimization

criteria.

The availability of a large collection of high quality patterns allows LAD to analyze

and compare the importance of attributes or combinations of attributes in distinguishing

positive and negative cases. In particular it turns out that the frequency of participation of

attributes in a large collection of patterns is a useful indicator of their importance. Although

the use of patterns (or “rules”) is common to several methods, it is a specific characteristic of
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LAD to exhaustively generate complete collections of such rules and to integrate them into

comprehensive predictive models.

A second difference between LAD and other methods is that LAD retains a sufficiently

rich collection of patterns not only to be able to build classification systems, but also to

accomplish various other purposes (e.g., identification of contributors and blockers, detection

of new classes of cases, creation of decision support systems). Finally, a further specific of

the patterns used by LAD is that they have prescribed additional properties which are useful

in following the specific goals of a study (e.g., the patterns used in the present study are

prime, those used for the detection of inhibiting or promoting peptides in Alexe et al. (2004)

are “spanned”, those used for identifying outliers are “strong”).

2.2 Pandect generation

We shall briefly describe below the generation method (Alexe and Hammer, 2006) of the

positive (d , p)-pandect; the negative pandect is generated in a similar way. For the sake

of simplicity, we shall outline the method only for the special case of datasets with two

features X and Y , which we shall assume here to take the finite set of values {0, 1, . . . , h},
and {0, 1, . . . , q}, respectively.

The algorithm starts by building the matrix M = (mij)i=0,1,...,h; j=1,2,...,q , having as entries

the number mij of positive points with X = i and Y = j . Let us define now for i ≤ k and j ≤ l,
the interval [(i, j), (k, l)] as the set of the points (X , Y ) having i ≤ X ≤ k and j ≤ Y ≤ l. The

acceptable positive patterns correspond to those intervals which include at least p positive, and

no negative observations. For every pair of integers k ∈ [0, h] and l ∈ [0, q], the procedure

constructs recursively matrices R(k,l), the entries (i , j) of which represent the number of

positive observations in the interval [(i, j), (k, l)]. The recursive computation of R(k,l) is

based on the enumeration of the pairs (k, l), k ∈ [0, h] and l ∈ [0, q], by using a generalized

form of Gray codes (Koda and Ruskey, 1993). This procedure allows the enumeration to be

performed in such a way that: (a) every pair (k, l) between (0, 0) and (h, q) is generated

exactly once, and (b) two consecutive pairs differ in exactly one component, and by exactly

one unit. As soon as the matrix R(k,l) is computed, the recursion proceeds to the next pair (e.g.,

(k, l − 1) ) in the Gray sequence. The matrix R produced at the end of this procedure coincides

with the matrix R(k,l−1). The algorithm evaluates the (positive and negative) prevalence of all

possible intervals in the dataset, generating subsequently all the prime patterns in the (d, p)-

pandect.

It was shown in Alexe and Hammer (2006) that in the general case of a dataset with n
features, the number of operations (additions) necessary to generate all the prime patterns

is bounded by 2n N , where N is the number of all pairwise distinct intervals in the dataset.

Clearly, if the number n of attributes is small, the algorithm is almost linear in the size of the

output. For the case of prime patterns of limited degree, the algorithm runs in polynomial

time, since the number of intervals N is polynomial in the input size.

As an illustration, we mention that the numbers of positive, respectively negative, pat-

terns of degree at most 2, each covering at least 30% of the positive, respectively negative,

observations (i.e., the positive and negative (2, 0.3)-pandects) for the Ovarian Cancer dataset

build on the pool of 157 features identified in the example in Section 2, are respectively of

3970 and 2046. The computing time for their generation on a 1 GHz Pentium III processor

is of 52 sec. Similarly, the numbers of patterns in the positive and negative (2, 0.3)-pandects

of the DLBCL dataset, build on the pool of 190 features, are respectively of 2506 and 3963,

and the corresponding computing time is of 44 seconds.
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2.3 Accuracy of pandect-based classification

The pandect defines (Boros et al., 2000) a classifier, i.e., a function which predicts the

positive or negative nature of a new (i.e., yet unseen) observation. The classifier will pre-

dict an observation to be positive (negative) if it satisfies the defining conditions of some

positive (negative) patterns in the pandect, and does not satisfy any of the negative (pos-

itive) ones. If the observation satisfies both positive and negative patterns in the pandect

then the decision is based (Alexe et al., 2003a,b) on the sign of the difference between

the proportions of positive and negative patterns satisfied by it. More exactly, if the pan-

dect consists of the positive patterns P1, P2, . . . , Ph and negative patterns N1, N2, . . . , Nq

then C (x) = sgn( 1
h |{i |x ∈ Pi }| − 1

q |{ j |x ∈ N j }|), where x ∈ Pi or x ∈ N j mean that Pi ,

respectively N j , cover x . Finally, the classifier leaves “unclassified” the (extremely rare)

observations x , for which C(x) = 0.

The accuracy of a classifier built on a “training set” of observations is the average of

the proportion of correctly classified positive observations and the proportion of correctly

classified negative observations in a “test set” of observations. Usually, the test set is disjoint

from the training set, although sometimes the two sets are allowed to overlap, or even coincide.

3 Knowledge-preserving pool reduction

3.1 Pandect-based feature evaluation

The number of those patterns in the positive or the negative (d , p)-pandect which involve a

particular feature x can give a good indication of its importance. In order to illustrate this point

we have ranked on this basis the features appearing in the pools detected in Section 2 for the

DCBCL and Ovarian Cancer datasets. For each of the problems, we have constructed models

using the features with highest and with lowest frequencies of participation in the patterns

appearing in the positive and negative (2, 0.3)-pandects. For each of the selected feature sets

we have developed a model using as “training set” a stratified sample consisting of 50% of

the observations, and evaluated the accuracy of its classifications on the “test set” consisting

of the remaining 50% of the observations. The accuracy of the resulting classifications is

shown in Table 3.

The differences between the accuracies obtained by using the highest and the lowest ranked

α (= 30, 40, 50, 60) features are significantly different, and strongly support the underlying

hypothesis concerning the importance of features with high frequency of participation in

patterns. Although it is possible that using different pandect-defining values of d and p, the

accuracies reported in the above table may be slightly different, and in the special case of

increased values of p perhaps somewhat higher, the size of the gap between the accuracy of

classifications based on high and low ranked features outweights the possible influence of

using different d and p values.

The pandect-based evaluation of the role of features is the essential ingredient of the

proposed heuristics.

3.2 Iterative pool contraction

The pandect-based ranking of features by their importance serves as a guiding principle for

the iterative sequence of steps of the proposed algorithm. Starting from the pool defined in
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Table 3 Accuracies of pools including highest/lowest ranked features

Number of selected features

Dataset Features ranked 30 40 50 60

DLBCL Highest 89.18% 85.34% 85.34% 89.18%

Lowest 63.94% 63.82% 65.87% 64.66%

Ovarian Cancer Highest 98.89% 98.89% 98.89% 100.00%

Lowest 50.00% 50.00% 86.69% 93.58%

Section 2, we define at each step of the procedure a new pool consisting of approximately

half of the top ranked features of the current pool, according to the ranking based on the

pandect.

The accuracy of the classifier built on the new pool is evaluated on a test set.

� If it is found of acceptable quality, i.e., if the accuracy is approximately equal to that of the

parent pool, the new pool replaces the previous pool and the process continues.� If the accuracy falls substantially below that of the parent pool, the new pool is not rejected

automatically, but an attempt is made to find a better performing pandect on the same pool.

This can be achieved by varying (usually increasing) the parameters d and p which define

the pandect.

• If a pandect whose classifying power is of acceptable accuracy is found, then the new

pool is accepted and the process continues.

• If no better performing pandect is identified, then the new pool is “improved” by

enlarging it to include approximately 75% of the top ranked features appearing in the

parent pool, (and if this pool has still to be augmented, it will include approximately

87.5%, and then approximately 93.75% of the features in the parent pool).

� Finally, if this process does not produce a pool which defines a pandect of acceptable

quality, then the process stops with the parent pool as final output.

In some cases it is required that in order to assure robustness, the number of features in the

final pool should not fall below a prescribed threshold. In these cases, the process is stopped

before the number of features becomes too small.

We illustrate the method for the DLBCL and Ovarian Cancer datasets, specifying the

number of features selected at each step of the process, along with the corresponding accu-

racies:

The pool selected at the end of the process involves 15 features in the case of DLBCL

dataset, and 7 features in the Ovarian Cancer dataset, as illustrated in Tables 4 and 5.

Table 4 Pool contraction for the DLBCL dataset

Step 1 2 3 4 5 6

# of Features 190 100 50 25 15 10

Accuracy 89.18% 89.18% 89.18% 89.90% 93.30% 86.78%
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Table 5 Pool contraction for the Ovarian Cancer dataset

Step 1 2 3 4 5 6 7

# of Features 157 80 40 20 10 7 6

Accuracy 99.38% 98.27% 98.89% 99.38% 100.00% 100.00% 99.38%

Table 6 DLBCL: Accuracies of 5 classifiers on original and final pools

Feature pool # of Features LAD Logistic regression CART CNN LDA

Original 190 89.18% 65.50% 58.60% 89.70% 45.91%

Final 15 93.30% 65.50% 69.00% 69.00% 62.00%

Table 7 Ovarian Cancer: Accuracies of 5 classifiers on original and final pools

Feature Pool # of Features LAD Logistic regression CART CNN LDA

Original 157 99.38% 99.20% 81.70% 64.30% N/A

Final 7 100.00% 35.70% 95.20% 100.00% 100.00%

4 Feature selection for various data analysis methods

It is clear that the selection of a small knowledge-conserving set of features is heavily

influenced by the particular data analysis method for which the reduction is carried out.

Although the procedure described in Section 3 aims at finding a good (i.e., small + knowledge

conserving) set of features for LAD, the results of it are advantageous for other methods, too.

For illustration, we present below the accuracies (measured on test sets) of classifiers using

various data analysis methods, applied to the BLDCL and to the Ovarian Cancer datasets. In

each case, we present the accuracies on the original pool of 190, respectively 157, features as

well as on the final pool of 15, respectively 7, features. The 5 methods examined were LAD,

logistic regression (LR), classification trees (CART), classification neural networks (CNN),

and Fisher linear discriminant analysis (LDA). The software used for LR, CART, CNN is

Insightful Miner 2.0, 2002 (Insightful Corporation), while the one used for LAD and LDA

was developed by the authors.

5 Conclusions

The pattern-based feature selection method proposed in this paper was seen to lead to the

identification of small feature pools capable of accurately distinguishing positive observations

from negative ones in genomic and proteomic datasets. It should be remarked that besides

the usual correlation-based feature selection criterion, the proposed method includes several

other criteria, emphasizing the role of individually and/or collectively significant features.

While the method was developed specifically to serve model-building in the Logical Analysis
of Data, it is shown that its results provide useful bases on which various other methods can

be successfully applied.
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