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Abstract We present empirical results on computing optimal dominating sets in networks

by means of data reduction through efficient preprocessing rules. Thus, we demonstrate the

usefulness of so far only theoretically considered data reduction techniques for practically

solving one of the most important network problems in combinatorial optimization.

Keywords Experimental study . Domination . NP-complete problem . Preprocessing by

data reduction rules . Optimal solutions . Network optimization

1. Introduction

Domination in networks is one of the most important problems in combinatorial optimization.

The underlying NP-complete decision problem DOMINATING SET is defined as follows (Garey

and Johnson, 1979):
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Input: An undirected graph (network) G = (V, E) and a positive integer k.

Question: Does G have a dominating set of size at most k, i.e., a subset V ′ ⊆ V of vertices

such that every vertex in V \ V ′ is adjacent to some vertex in V ′?

The corresponding optimization problem is to determine a dominating set of minimum size.

According to a 1998 survey (Kratsch, 1998), there were already more than 200 research papers

published on the algorithmic complexity of domination and related network parameters and

this number continues to grow. A two-volume book has been published on domination in

graphs (Haynes, Hedetniemi, and Slater, 1998a, b). The interest in domination ranges from

more fundamental research (e.g., Alber et al., 2002; Fomin and Thilikos, 2003; Haynes

et al., 2002) to more applied work (e.g., Sanchis, 2002; Wan, Alzoubi, and Frieder, 2003;

Weihe, 1998). In many of the applications, variants of the above given problem are studied.

The basic application scenario for domination problems comes from facility location tasks.

Intuitively, one might think of the vertices of a minimum dominating set as the most central

or most important points of a given network. Besides communication and related networks,

other applications arise from voting situations and biological and social network analysis

(Roberts, 1979; Valente et al., 2003).

In this piece of work, we empirically investigate the power of data reduction towards

optimally1 solving the domination problem on various types of networks. To this end, we

take a closer look at and extend a recently introduced theoretical framework of data reduction

rules (Alber, Fellows, and Niedermeier, 2004). We implemented and further enriched these

rules and we applied them to several random network topologies and experimental data from

the literature and various web sites (Chen et al., 2002; Jin, Chen, and Jamin, 2001; Medina

et al., 2001; Sanchis, 2002). We show that our data reduction framework in many cases leads

efficiently to optimal solutions for realistic networks with up to ten thousands of vertices

and edges. As a general rule of thumb, one might say that our data reduction rules usually

perform well on sparse networks such as those modeling Internet connectivity. Mostly, the

original input instances were significantly reduced to small “hard problem kernels.” These

remaining networks, usually greatly reduced in size, then can be the starting point for any

other algorithmic approach, ranging from exact over approximation to heuristic algorithms.

Moreover, we show how our data reduction rules can also be adapted in order to work for

directed networks.

2. Algorithmic approach: Data reduction rules

In what follows, we describe various polynomial-time data reduction rules for the DOMINAT-

ING SET problem. The idea is to apply the reduction rules over and over again until no further

rule will apply. These reduction rules have in common that they explore the local structure

of a given network. Depending on this structure, we decide whether a rule is applicable and,

if so, the application of a reduction rule may have the following two effects:

1. Determine vertices that can be chosen for an optimal dominating set.

2. Reduce the network by removing edges or vertices.

1 We mention in passing that DOMINATING SET is hard to approximate. The best known approximation factor
achievable by a polynomial-time algorithm is �(log n) (Feige, 1998). Moreover, observe that in fact our
reduction rules to be presented are suitable for solving the optimization problem, not only the decision version
as stated above.
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It is important to note that whenever vertices or edges are removed from the current instance,

this will not affect the size of a minimum dominating set. Additionally, if we decide to choose

a vertex to belong to the optimal dominating set we seek for, we may as well remove this

vertex from the network and mark all neighbors as being already dominated. Hence, we

are left with an instance in which some vertices are already dominated (but still are possible

candidates for domination). This brings us to the following generalized problem ANNOTATED

DOMINATING SET.

Input: A black-and-white network G = (B ∪ W, E), i.e., a network with a set of black

vertices B and white vertices W , and a positive integer k.

Question: Is there a V ′ ⊆ B ∪ W with |V ′| ≤ k such that all black vertices are dominated?

We can use this more general model to express an instance in which some vertices (more

precisely: the white vertices) are assumed to be already dominated. Initially, the input instance

of DOMINATING SET delivers all vertices set black.

2.1. Basic data reduction rules

We revisit two basic reduction rules that were first used in Alber, Fellows, and Niedermeier

(2004) in order to show that DOMINATING SET restricted to planar networks admits a so-called

linear problem kernel.2

The presentation in Alber, Fellows, and Niedermeier (2004), however, purely focuses

on the theoretical aspect of problem kernel reduction. Here, in contrast, we will adapt the

reduction rules in order to make them applicable for practical purposes. In particular, we will

reformulate the rules such that we can deal with the more general ANNOTATED DOMINATING

SET problem. The correctness of the following reduction rules is not hard to prove (see Alber,

Fellows, and Niedermeier, 2004).

Neighborhood of a single vertex. Consider a vertex v ∈ B ∪ W of the given black-and-white

network G = (B ∪ W, E). We partition the vertices of the open neighborhood N (v) := { u ∈
B ∪ W | {u, v} ∈ E } of v into three different sets:

• the “exit vertices” Nexit(v), through which we can “leave” the closed neighborhood N [v] :=
N (v) ∪ {v},

• the “guard vertices” Nguard(v), which are neighbors of exit-vertices, and

• the “prisoner vertices” Nprison(v), which are not direct neighbors of an exit vertex.

More formally, using N [v] := N (v) ∪ {v}, we define

Nexit(v) := { u ∈ N (v) | N (u) \ N [v] 	= ∅ },3

Nguard(v) := { u ∈ N (v) \ Nexit(v) | N (u) ∩ Nexit(v) 	= ∅ },
Nprison(v) := N (v) \ (Nexit(v) ∪ Nguard(v)).

2 E.g., in Alber, Fellows, and Niedermeier (2004) it is shown with the help of these reduction rules that every
planar network G can be transformed in polynomial time into an instance G ′, such that G has a dominating
set of size k if and only if G ′ has a dominating set of size k and the size of G ′ is upper-bounded by c · ds(G ′),
where c is some constant, and ds(G ′) is the size of an optimal dominating set in G ′. Further enhancements
can be found in Chen et al. (2005).
3For two sets X , Y , where Y is not necessarily a subset of X , we use the convention that X \ Y := {x ∈ X :
x /∈ Y }.
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Fig. 1 The left-hand side shows the partitioning of the neighborhood of a single vertex v into the sets
Nexit(v), Nguard(v), Nprison(v). Note that the “coloring” in this figure does not refer to the colors black and
white of the given network. The right-hand side shows the partitioning of the common neighborhood of a pair
of vertices v, w into the sets Nexit(v, w), Nguard(v, w), Nperson(v)

An example which illustrates the partitioning of N (v) into the subsets Nexit(v), Nguard(v),

and Nprison(v) can be seen in the left-hand diagram of Fig. 1.

It is clear that a black vertex in Nprison(v) can only be dominated by vertices from {v} ∪
Nguard(v) ∪ Nprison(v). Since v will dominate at least as many vertices as any other vertex

from Nguard(v) ∪ Nprison(v), it is safe to place v into the optimal dominating set we seek

for.

Main Rule 1. If Nprison(v) ∩ B 	= ∅ for v ∈ B ∪ W , then it is optimal to choose v to belong
to the dominating set:

• remove v from G and color all neighbors of v white, and
• remove Nguard(v) and Nprison(v) from G.

Neighborhood of a pair of vertices. Similar to Rule 1, we explore the union of the neigh-

borhoods N (v, w) := N (v) ∪ N (w) of two vertices v, w ∈ V . Analogously, we now parti-

tion N (v, w) into three disjoint subsets Nexit(v, w), Nguard(v, w), and Nprison(v, w). Setting

N [v, w] := N [v] ∪ N [w], we define

Nexit(v, w) := { u ∈ N (v, w) | N (u) \ N [v, w] 	= ∅ },
Nguard(v, w) := { u ∈ N (v, w) \ Nexit(v, w) | N (u) ∩ Nexit(v, w) 	= ∅ },
Nprison(v, w) := N (v, w) \ (Nexit(v, w) ∪ Nguard(v, w)).

The right-hand diagram of Fig. 1 shows an example which illustrates the partitioning

of N (v, w) into the subsets Nexit (v, w), Nguard (v, w), and Nprison(v, w).

Our second reduction rule—compared to Rule 1—is slightly more complicated, but it is

based on the same principle: We try to detect an optimal domination of the black prisoner

vertices Nprison(v, w) ∩ B in our local structure N (v, w). It is clear that a black vertex in

Nprison(v, w) can only be dominated by vertices from {v, w} ∪ Nguard (v, w) ∪ Nprison(v, w).

The following rule determines cases in which it is safe to choose one of the vertices v or w (or

both) to belong to the optimal dominating set we seek for. The correctness of this reduction

rule is not hard to prove (see Alber, Fellows, and Niedermeier, 2004).
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Main Rule 2. Consider v, w ∈ V (v 	= w) and suppose that Nprison(v, w) ∩ B 	= ∅. Sup-
pose that Nprison(v, w) ∩ B cannot be dominated by a single vertex from Nguard(v, w) ∪
Nprison(v, w).

Case 1. If Nprison(v, w) ∩ B can be dominated by a single vertex from {v, w}:
(1.1) If Nprison(v, w) ∩ B ⊆ N (v) as well as Nprison(v, w) ∩ B ⊆ N (w), then it is opti-

mal to choose v or w (or both), but the decision for one of these choices cannot yet be
made, hence:� as a gadget we add three new black vertices z, z′, z′′ and six new edges {v, z}, {w, z},

{v, z′}, {w, z′}, {v, z′′}, {w, z′′} to G and� remove Nprison(v, w) and Nguard (v, w) ∩ N (v) ∩ N (w) from G.

(1.2) If Nprison(v, w) ∩ B ⊆ N (v), but not Nprison(v, w) ∩ B ⊆ N (w), then it is optimal
to choose v:� remove v from G and color all neighbors of v white and� remove Nprison(v, w) and Nguard (v, w) ∩ N (v) from G.

(1.3) If Nprison(v, w) ∩ B ⊆ N (w), but not Nprison(v, w) ⊆ N (v), then it is optimal to
choose w: proceed as in (1.2) with roles of v and w interchanged.

Case 2. If Nprison(v, w) cannot be dominated by a single vertex from {v, w}, then it is optimal
to chose both v and w:� remove v and w from G and color all their neighbors white and� remove Nprison(v, w) and Nguard (v, w) from G.

It is not hard to see that Reduction Rules 1 and 2 lead to an optimal dominating set and they

can be carried out in polynomial time; more precisely, it can be shown that the application

of Rule 1 and 2 takes O(|V |3) and O(|V |4) time in the worst case, respectively (see Alber,

Fellows, and Niedermeier, 2004).4 Our basic reduction then processes the graph by choosing

all possible (pairs of) vertices until no rule is applicable any more. Observe that for efficiency

reasons, one prefers to apply Rule 1 as long as possible and afterwards continues with Rule 2.

It may happen, then, that after Rule 2 again Rule 1 applies due to the new graph structure

caused by Rule 2.

2.2. Further data reduction rules

The original versions of the above two data reduction rules turned out to be sufficient for

theoretical purposes, i.e., they were sufficient for proving a linear problem kernel on planar

networks (Alber, Fellows, and Niedermeier, 2004). Note that, so far, a network which consists

of white vertices only will not be reduced any further. The following rules, which were

basically introduced in Alber et al. (2005) as a tool in the theoretical analysis of a search

tree algorithm for DOMINATING SET on planar networks, will also cover some further, easy

cases. Notably, they lead to significant further improvements in our experimental analysis to

follow.

4We remark that these running times are pure worst-case estimates and turn out to be much better on average
in our experimental studies. In particular, for practical purposes it is important to see that Rule 2 can only
be applied for vertex pairs that are at distance at most three. Also, using elaborate algorithmic techniques an
improvement of the worst-case complexity of the rules seems possible.
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Fig. 2 Illustration of the settings in which Simple Rules 1, 2, 3, and 4 apply. Grey vertices may be either
black or white

Simple Rule 1. Delete edges between white vertices.

Simple Rule 2. Let u be a white vertex of degree at most 1. Then, delete u.

Simple Rule 3. Let u be a white vertex of degree 2, with two black neighbors u1 and u2.

(3.1) If u1 and u2 are connected by an edge, then delete u.

(3.2) If u1 and u2 are connected via a third (black or white) vertex u3, then delete u.

Simple Rule 4. Let u be a white vertex of degree 3, with three black neighbors u1, u2, and

u3. If the edges {u1, u2} and {u2, u3} are present in G (and possibly also {u1, u3}), then

delete u.

Figure 2 illustrates the various settings where these rules apply. It is not hard to verify that

all four reduction rules are correct.

2.3. Dealing with DIRECTED DOMINATING SET

In several applications we have to deal with directed networks. Here, a vertex v is dominated

iff it is in the dominating set or if there is an arc (u, v) (i.e., v is an outgoing neighbor of u) and u
is in the dominating set. In order to cope with such settings, we here describe a transformation

from DIRECTED DOMINATING SET to (UNDIRECTED) ANNOTATED DOMINATING SET.

Let G = (V, A) be an instance of DIRECTED DOMINATING SET. Then we construct an

undirected black-and-white network G ′ = (B ∪ W, E) as follows:

B := {u′ | u ∈ V }, W := {u′′ | u ∈ V }, and

E := {{u′, u′′} | u ∈ V } ∪ {{u′′, v′}, {u′′, v′′} | (u, v) ∈ A}.

In other words, every vertex u in G is duplicated with a black copy u′ (which enforces

that u needs to be dominated) and a white copy u′′ (which simulates the choice of u to belong

to a dominating set). We add (undirected) edges connecting u′′ with u′ and with all outgoing

neighbors of u in the directed network.

It is easy to see that G admits an optimal directed dominating set of size k if and only

if G ′ admits an optimal annotated dominating set of size k: Suppose that D is an optimal

dominating set in G, then D′′ := {u′′ | u ∈ V } is an optimal dominating set in G ′. Conversely,

suppose that D′ is an optimal dominating set in G ′. Since D′ is assumed to be optimal and

since in G ′ we have N [u′] ⊆ N [u′′], we may assume that D′ ∩ {u′ | u ∈ V } = ∅ for all u ∈ V
(otherwise we might interchange u′ with u′′). But then D′ induces a directed dominating set

D := {u | u′ ∈ D′} for G.
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Clearly, in order to find an optimal dominating set for a directed graph G, we can use

the above transformation5 and then apply our undirected reduction rules to the transformed

instance G ′.

3. Experimental results

We tested our data reduction framework on random planar networks and various network data

provided in the literature and publically available on the web. Among the publically available

networks, we firstly investigate networks obtained from (Internet) topology generators (Inet,

BRITE) (Jin, Chen, and Jamin, 2001; Medina et al., 2001) and networks of autonomous

systems (Chen et al., 2002). Besides many others, one possible interest in computing small

dominating sets in Internet networks might be the placement of time servers (for NTP protocol

synchronization). Note that a dominating set in the Internet topology denotes a minimum

number of locations from which the whole network can be reached quickly by a single

link (for instance, to supply each node with the current time signal). Secondly, we turn our

attention to a network generated from the field of biochemistry: We consider a protein-protein

interaction network generated by using the database BIND (Bader et al., 2001). And thirdly,

we will have a look at three examples of directed networks (an HTML network and two food

web networks from biology). All our experiments have been run on a 2.4 GHz Linux AMD

Athlon 64 3400+ PC with 1 GB main memory. The code has been implemented in C++
using the algorithm library LEDA (Mehlhorn and Näher, 1999).

Random planar networks. We start our experimental analysis with combinatorial random

planar networks. These networks have been generated with the standard function provided

by the algorithm library LEDA (Mehlhorn and Näher, 1999).6 More precisely, we created

three sample sets of 100 random planar networks each, containing instances with 500, 1500,

and 4000 vertices. The main reason for restricting ourselves to planar networks (which might

be of less “real” practical interest than the other investigations to follow) is that the original

reduction rules were defined and analyzed for planar networks (Alber et al., 2005; Alber,

Fellows, and Niedermeier, 2004). Observe that the afterwards considered network instances

as provided by Internet topology generators etc. clearly are non-planar. Our main goal here

is to give a first impression of the strength of the data reduction rules. We also demonstrate

that adding the Simple Rules from Section 2.2 to the Main Rules from Section 2.1 really pays

off—from a purely theoretical point of view the Simple Rules are superfluous. In addition,

here we study the effects of each single rule and their interplay which—by “cascading

effects”—greatly improves the obtained results.

The potential of the aforementioned reduction rules was tested individually. We ran a

series of tests using Rule 1 only, using Rule 2 only, using a combination of Rule 1 and Rule

2, and, finally, using Rules 1 and Rule 2 together with the four Simple Rules.

For each test run, we measured the following figures:� # vertices removed: the number of vertices removed by the data reduction;

5We remark, however, that the given transformation is not planarity-preserving.
6For each instance with n vertices, first a “maximal planar network” with 3n − 6 edges is randomly generated,
then a number m between n − 1 and 3n − 6 is randomly chosen and all but m edges are removed from
the network. We remark that this method does not generate graphs according to the uniform distribution
(see Mehlhorn and Näher, 1999 for details).
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Table 1 Summary of
experimental results for
combinatorial random planar
network instances. The numbers
in the various rows are taken as
the average over networks in
PGn of the corresponding
column, where PGn stands for
combinatorially random planar
networks (created with the
standard LEDA function) with
n vertices

Sample set PG500 PG1500 PG4000

# total vertices ‡ 479.1 1433.4 3840.9

# total edges 1005.1 2875.1 8075.2

Size of optimal ds 99.7 311.5 791.8

Rule 1:

# vertices removed 336.4 998.0 2722.0

(percentage) 70.2 69.6 70.9

# edges removed 801.3 2281.9 6523.9

(percentage) 79.7 79.3 80.8

# vertices for DS found 77.6 243.7 620.0

(percentage)† 77.9 78.2 78.3

time (sec) 0.052 0.42 2.04

Rule 2:

# vertices removed 351.8 1019.5 2750.0

(percentage) 73.4 71.1 72.7

# edges removed 880.4 2483.0 7050.0

(percentage) 87.6 86.3 87.3

# vertices for DS found 70.2 212.6 547.8

(percentage)† 70.4 68.3 69.2

time (sec) 0.129 1.07 5.26

Rule 1 + 2:

# vertices removed 377.8 1107.7 3015.9

(percentage) 78.9 77.3 78.5

# edges removed 892.1 2521.6 7169.1

(percentage) 88.8 87.7 88.8

# vertices for DS found 85.9 266.0 678.7

(percentage)† 86.2 85.4 85.7

time (sec) 0.12 1.83 6.74

Rule 1 + 2 + Simple Rules 1, 2, 3, 4:

# vertices removed 475.6 1424.6 3814.3

(percentage) 99.2 99.4 99.3

# edges removed 999.7 2863.25 8035.8

(percentage) 99.5 99.6 99.5

# vertices for DS found 98.8 309.1 785.3

(percentage)† 99.1 99.2 99.2

time (sec) 0.05 0.32 1.69

† percentage with respect to an
optimal dominating set.
‡ number of vertices without
degree 0.

� # edges removed: the number of edges removed by the data reduction;� # vertices for DS found: the number of vertices that could be determined to be in an optimal

dominating set;� the time in seconds needed in order to reduce the network with respect to the given set of

rules.

The results of the tests are summarized in Table 1. Using the combination of Rules 1 and

2, as they were used to prove the linear problem kernel, we may say that, in average over

100 networks each time,
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Ann Oper Res (2006) 146:105–117 113� more than 77% of the vertices and� more than 87% of the edges

were removed from the network. Both rules together determined a very high percentage (in

average, more than 85%) of the vertices of an optimal dominating set—seemingly indepen-

dent of the size of the input networks. The overall running time for the reduction ranged from

less than one second (for small network instances with 500 vertices) to around 7 seconds

(for larger network instances with 4000 vertices). Surprisingly, using Rule 1 or Rule 2 alone
already resulted in a very powerful data reduction. In both cases, in average, more than 70%

of the vertices could be removed from the network. Clearly, reducing a network with respect

to Rule 1 is less time-consuming than reducing a network with respect to the more complex

Rule 2. Moreover, Rule 1 seemed to be stronger than Rule 2 in the detection of vertices of

an optimal dominating (in average, 78% compared to 69%). Conversely, we noticed a subtle

tendency that Rule 2 removes more edges compared to Rule 1 (in average, 87% compared

to 80%).

Finally, enriching Rules 1 and 2 with the four Simple Rules led to an extremely powerful

data reduction on our set of random instances. Most interestingly, the combination of these

rules removed, on average,� more than 99.2% of the vertices and� more than 99.5% of the edges

of the original network. More than 99.1% of the vertices that belong to an optimal dominating

set have been detected. These percentages again seem to be independent of the size of the

input network. We observed that in this extended setting, in average the running times for

the data reduction went down to less than 0.05 seconds (for networks of 500 vertices) and

less than two seconds (for networks of 4000 vertices). This is also due to the fact that we

applied simple reduction rules first before more complicated rules (such as Rule 2) were

applied. Thus, the time-consuming sophisticated steps usually had to be carried out on small

networks only.

Autonomous systems networks. Chen et al. (2002) provided network data concerning Internet

connectivity at the level of autonomous systems (AS). They report on “AS connectivity maps”

obtained from routing tables collected by the Oregon route server on many different dates and

they argue why these may provide an incomplete picture of the physical connectivity that ex-

ists in the actual Internet. They finally present a network model and refined connectivity maps

that are supposed to provide a more complete picture of the Internet connectivity (see Chen

et al., 2002 for any details). Thus, one arrives at two sets of network data supposed to model

the (time) varying Internet structure, the “Oregon data” and the more refined data proposed

in Chen et al. (2002). We took both data sets and applied our data reduction techniques to

compute minimum size dominating sets in these networks of more than 10000 vertices and

around 20000 (old model) and 30000 (new model) edges. For both cases, we either could

already compute an optimal dominating set or, in few cases, were left with a tremendously

reduced network where one could easily compute the remaining optimal domination vertices

by brute-force methods. Table 2 lists the results for the old model (here the computation per

network took about two seconds) and the new model (here the computation per network took

between three and four seconds ). Interestingly, the sizes of the optimal dominating sets seem

to be rather stable slightly below 1000 in all networks (old and new). The new model (with

almost 50% more edges) seems to yield only slightly smaller domination numbers.
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Table 2 Autonomous Systems Networks: Experimental results for the AS networks as obtained
from routing tables collected by the Oregon route server at different dates, using both models—the
standard model (“Oregon”) and the enriched model (“Oregon+”) from Chen et al. (2002)

AS model: Oregon Enriched AS model: Oregon+

Date Vertices Edges % reduced DS Vertices Edges % reduced DS

03/31/01 10670 22002 100 956 10900 31180 100.00 933

04/07/01 10729 21999 100 968 10981 30855 100.00 933

04/14/01 10790 22469 100 977 11019 31761 >99.99 946

04/21/01 10895 22747 100 981 11080 31538 >99.99 954

04/28/01 10886 22493 100 990 11113 31434 100.00 962

05/05/01 10943 22607 100 988 11157 30943 >99.99 959

05/12/01 11011 22677 100 988 11260 31303 >99.99 959

05/19/01 11051 22724 100 978 11375 32287 >99.99 965

05/26/01 11174 23409 100 992 11461 32730 >99.99 960

The columns show the size of the different networks (i.e., number of vertices and number of
edges), and the amount by which our reduction rules reduced the given network. In addition, the
last column reports on the size of the minimum dominating set (DS) as computed by our method.

Networks from topology generators. Here we report on results using network data produced

by the Internet topology generators Inet (Jin, Chen, and Jamin, 2001) and BRITE (Medina

et al., 2001). We refer to the given papers for any details concerning the data generation

process.

Table 3 gives our results and the parameter settings we used for generating the corre-

sponding networks from Inet 2.0. We only emphasize few of our experimental findings. It is

striking that except for one all networks could be completely resolved for up to 10000 vertices

and usually more than twice as many edges.7 The dominating set sizes were inbetween 801

and 2129. We observed a decrease in the size of the optimal dominating set when consider-

ing networks of higher density. Besides, for fixed density, the size of an optimal dominating

set behaved almost proportional to the number of vertices in the networks produced by the

topology generators.

In contrast to the results for the Inet and AS networks, applied to BRITE networks our

data reduction rules in most cases had only little or no effect at all. We created five sample

sets using the BRITE generator with different combinations of the settings Node Placement

Strategy (NPS), Growth Type (GT), and Preference Connectivity (PC). Each set consists of

5 networks with 1000 vertices and 1997 edges. Only two of all instances could be reduced to

a size of less than 100 vertices by applying our reduction rules. In all other cases the number

of remaining vertices ranged between 765 and 1000. The running times were even higher

than for the Inet networks as the more sophisticated rules had to be applied more often to the

full network. Note that one of the instances that was largely reduced was created by settings

which are considered to model the Internet in a particularly realistic way.

Protein-protein interaction networks. As a typical example for a biochemical relevant net-

work, we consider the protein-protein interaction network of yeast, which was generated

7The running times grow with the number of vertices and the density of the networks from less than half a
second up to 2 seconds for the largest network. The exceptionally high running time of more than 8 seconds
for the instance with 5000 vertices and density parameter d = 0.001 is due to the fact that here the more
complicated data reduction rules had to be applied more often than for the other networks.
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Table 3 Inet 2.0 Topology Generator: The table summarizes the performance of the data reduction on
various networks generated with the Inet topology generator (Jin, Chen, and Jamin, 2001). We constructed
networks of 5000, 7500, and 10000 vertices using the default configuration and varying over the parameter d
(expressing the fraction of low-degree vertices, see Jin, Chen, and Jamin (2001) for details) in order to obtain
networks with various numbers of edges. The columns show the performance of our data reduction, reporting
on the time needed, the amount by which the networks were reduced, and the size of an optimal dominating
set (DS) as computed by our method

Inet: 5000 vertices Inet: 7500 vertices Inet: 10000 vertices

Parameter Edges Time Reduced % DS Edges Time Reduced % DS Edges Time Reduced % DS

d: 0.5 9121 0.35 100 1085 13811 0.56 100 1650 18532 0.74 100 2129

d: 0.3 10434 0.43 100 1062 15765 0.69 100 1584 21145 0.93 100 2101

d: 0.2 11084 0.65 100 993 16758 0.97 100 1483 22451 2.05 100 1955

d: 0.1 11470 1.17 100 900 17733 1.57 100 1356 23764 3.44 100 1802

d: 0.05 12066 1.48 100 847 18225 1.94 100 1265 24416 5.68 100 1699

d: 0.001 12383 8.26 99.9 801 18712 5.22 100 1183 25045 7.00 100 1541

by the data from the database BIND (Bader et al., 2001). The network consists of 4919

vertices corresponding to the proteins and 17152 edges for the protein-protein interactions.

In less than three seconds we could determine an optimal dominating set consisting of 860

proteins. Finding a dominating set in a protein-protein interaction network could be useful

to infer its functionality. The proteins belonging to a dominating set can be considered as

important vertices as they are able to interact with all proteins of the network. Therefore,

it is likely that the dominating set comprises proteins that perform important regulatory

functions.

Some directed networks (HTML networks and food webs). Finally, to gain first insights for

directed networks, we also tested our rules on the proposed translation (see Section 2.3) of

directed networks into undirected ones. We describe results for three particular networks.

Firstly, we considered an HTML network which contained 739 vertices and 3447 arcs. This

network was created by taking the HTML document SELFHTML, Version 7.0 (an HTML

tutorial) available from http://selfaktuell.teamone.de. Pages have been translated

into vertices and links have been translated into arcs. Within 0.15 seconds our reduction

rules computed an optimal dominating set of size 137. Thus, this dominating set contains

the minimum amount of pages from which each other page of the HTML document can be

reached following only one link (i.e., by one click).

Secondly, we considered two food web networks from biology (from

http://www.cosin.org/ network data sets), where an arc points from prey to

predator. We considered the Silwood Park food web with 308 vertices and 884 arcs. In less

than a second an optimal dominating set of only 24 preys was determined. The second food

web we tested is from the Ythan Estuary consisting of 270 vertices and 1286 arcs. In this

case, after about 0.3 seconds we obtained 13 preys that are part of an optimal dominating

set. We were left with a reduced network of 25 vertices and 51 arcs where no more reduction

rule applied. Within few more seconds, using a tree decomposition based algorithm (Alber

et al., 2002) we determined the remaining vertices of an optimal dominating set such that

the optimal dominating set of the whole food web consisted of 17 preys. Interestingly, both

food webs have fairly small domination numbers. Here, for instance, an optimal dominating

set can be interpreted as a minimum size set of preys whose disappearance would affect the

menu of all predators.
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Further investigations on various directed networks (e.g., also on social networks as dis-

cussed in Valente et al. (2003)) remain to be conducted in future work.

4. Conclusion and Outlook

In this piece of work, we demonstrated the impressive potential of comparatively simple and

easy to efficiently implement data reduction rules in order to compute optimal dominating

sets in realistic networks up to sizes of ten thousands of vertices and edges. In many cases,

the problem was completely solved, yielding dominating sets of minimum size. Otherwise,

usually a significant reduction of the size of the input data was achieved. Our main conclusion

is that data reduction should become a tool for everyone dealing with domination in networks.

A more comprehensive picture of the whole scenario (also showing irreducible graphs) can

be found in Alber (2003). Data reduction rules can be easily be combined also with purely

heuristic or approximation approaches towards computing small dominating sets in networks.

On the “negative” side, our data reduction rules seem to behave poorly when applied to

dense networks with many edges. Sanchis (2002) generates these sorts of data and proposes

heuristic algorithms to compute not necessarily optimal dominating sets in these settings.

However, for many “real-world” sparse networks our data reduction scenario performed

extremely well.

Since our data reduction rules evolved out of purely theoretical research (Alber et al.,

2005; Alber, Fellows, and Niedermeier, 2004), our work also provides an excellent example

for a fruitful link between theoretical and practical computer science.

As to future work, we would like to further extend the range of networks which are

amenable to the data reduction rules. To this end, one needs to investigate network structures

that so far seem to be resistant to the given rules. For instance, whereas most sparse networks

seem to be no problem for our data reduction framework, grid-like networks still remain hard

where little data reduction seems achievable by the use of the presented rules. In addition, it

remains to establish and investigate similar reduction rules for practically relevant variants of

DOMINATING SET such as CONNECTED DOMINATING SET (Wan, Alzoubi, and Frieder, 2003;

Demaine and Hajiaghayi, 2005) or POWER DOMINATING SET (Haynes et al., 2002; Guo,

Niedermeier, and Raible, 2005). Although these problems are computationally hard from a

theoretical point of view (concerning exact as well as approximation solutions), data reduction

rules seem to indicate a fruitful and theoretically well-founded way towards attacking these

important network optimization problems.
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