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Abstract In this paper we address the Sensor Location Problem, that is the location of the

minimum number of counting sensors, on the nodes of a network, in order to determine the

arc flow volume of all the network. Despite the relevance of the problem from a practical

point of view, there are very few contributions in the literature and no combinatorial analysis

is performed to take into account particular structure of the network. We prove the problem

is NP-complete in different cases. We analyze special classes of graphs that are particularly

interesting from an application point of view, for which we give low order polynomial solution

algorithms.

Keywords Traffic problems . Combinatorial optimization . Complexity analysis . Graph

theoretical approach

1. Introduction

The continuous growth in the demand for private transportation in large urban areas is the

cause of severe congestion, pollution, time loss in traffic jams and a deterioration in the

quality of life.
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Monitoring flows on the network allows traffic managers to control and manage these

problematic situations. Even though communication technologies for monitoring traffic net-

works in real time, via sensors and video cameras, are currently available, in most cases

we have a very large network which is monitored only in small part. In the case of large

traffic volumes, traffic flows tend to be spread out from monitored major boulevards to non-

monitored minor roads due to route diversions and, hence, new flow patterns are created.

Thus, a relevant problem for traffic manager and planners is how to monitor and predict flow

propagation in these cases. Indeed, since the installation of traffic sensors on every arc of the

net is not affordable, it is necessary to design optimal strategies to determine sensor locations,

to better predict traffic flows on the whole network at minimum cost.

Sensor can be located either on the arcs or on the nodes of a network, and, following

the differentiation introduced in Gentili and Mirchandani (2005) and Gentili (2002), we can

distinguish between passive and active sensors. Active sensors is the class of sensors that de-

code active transmission provided by vehicles, for example, freight information from trucks

or path/schedule information from buses. Counting and video image sensors belong to the

class of passive sensors since the vehicle is being detected and observed without it providing

any other signal. In particular, counting sensors are the most commonly used (see Chandnani

and Mirchandani (2002) for a detailed description). A counting sensor located on an arc (a

node) of the network counts the number of vehicles on the arc (on the arcs incident to the

node) in the unit time interval.

Despite the relevance of the problem from an application point of view, there are few

contributions in the literature addressing the problem of locating sensors on traffic network.

In particular, in Lam and Lo (1990), some heuristic procedures to decide where to locate

counting sensors on the arc in order to obtain a better estimate of the O/D matrix are proposed.

Yang, Iida, and Sasaki (1991) defined the O/D covering rule to locate counting sensors on

arcs and obtain the O/D estimation error to be bounded. Yang and Zhou (1998) defined three

additional rules that an optimal location of counting sensors on arcs should respect to obtain

a better estimate of the O/D matrix and proposed some heuristic procedures. Gentili and

Mirchandani (2005) addressed the problem of locating active sensors (path-ID sensors) on

the arcs of a network to determine route flow volumes. The same problem has been addressed

in Gentili and Mirchandani (2006) when video image sensors are located on the nodes of a

network.

In this paper, we address the specific problem of locating the minimum number of count-

ing sensors on the nodes of a network in order to determine the arc flow volume on all the

network. This problem has been addressed in Bianco, Confessore, and Reverberi (2001).

A combinatorial optimization problem (the Sensor Location Problem) was defined and two

heuristics giving lower and upper bounds to the solution value were presented. Finally,

Bianco, Confessore, and Reverberi (2001) defined a combinatorial optimization problem

(the Sensor Location Problem (SLP)) to locate counting sensors on nodes and get informa-

tion about the arc flow volumes on the non-monitored portion of the network. Despite the

strict dependence of the solution to the underlying graph structure, the complexity of the

problem was not assessed in the general case and no investigation on specific graph classes

was developed. In this paper we (i) formally assess the complexity of the problem in dif-

ferent cases, and (ii) find graph classes for which is polynomially solvable. Therefore, we

define a new optimization problem on graphs, the Dominating Paths Problem (DPP), that

is proved to be equivalent to SLP and that better captures the graph theoretic aspect of the

problem. We formally prove DPP is N P-complete on general graph and we analyze some sub-

classes of triangle free graphs. We defined linear time exact algorithms for paths, cycles and

combs.
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The paper is organized as follows. Section 2, introduces the problem and recalls the

existing results. Section 3 defines the Dominating Paths Problem and proves the equivalence

with SLP. N P-completeness results are presented in Section 4. The analysis of DPP for the

class of paths and combs is developed in Sections 5 and 6. Conclusions and further research

are the object of Section 7.

2. Location of counting sensors on nodes

Conventional inductive loop sensors installed on a lane(s) of a road count vehicles, thereby

measuring flow volume (vehicle per unit time) on that lane(s). When flow on all the outgoing

lanes from a node is monitored then, through the knowledge of split ratios at the node, we are

able to calculate the flows on incoming arcs to the node. The split ratios (Nobe 2002), which

specify the fraction 0 < pv,w ≤ 1 of the incoming flow F(v) that leaves the node v on each of

the outgoing arcs (v, w), are assumed known, either from historical data or from a calibrated

network loading model that has assigned traffic demand from origins to destinations (see for

example Berman, Krass, and Xu (1995)). Therefore, in general, when we state that a counting
sensor is located on a node it will be assumed that a configuration of loop detectors (or any

detectors that count vehicles, based on technologies such as video, sonar, microwave, etc.)

are located at the node which give flow volumes on all arcs incident to the node.

If counting sensors are located on all the nodes of the network, then all the arc flow

volumes of the network can be directly known. Obviously, it is unrealistic to locate sensors

on all the nodes of a traffic network. In this problem, we seek the smallest subset of nodes

that, if monitored, would allow us to obtain the flow on all the arcs of the network.

2.1. Split ratios and counting sensors on nodes

Given a network � = (N , A), flow on arcs contains subflows that are generated and/or ab-

sorbed from different origin/destination pairs. In the sequel we say a node to be a transfer
node, if no flow is generated or absorbed by it, otherwise it is a centroid. Let T ⊆ N be the

set of transfer nodes of the network and B ⊆ N the set of centroids of the network, obviously,

we have T ∪ B = N and T ∩ B = ∅.

For each v ∈ T , the flow conservation constraints hold:

∑
(v,w)∈A−

v

fv,w −
∑

(w,v)∈A+
v

fw,v = 0 (1)

where A−
v and A+

v are the outgoing and incoming arcs of node v, respectively.

For each centroid v ∈ B, we have the following flow conservation constraint:

∑
(v,w)∈A−

v

fv,w −
∑

(w,v)∈A+
v

fw,v = Sv (2)

where Sv is the balancing flow at v, that is, a source or a sink flow so that (2) holds. For

example, see the network in Fig. 1, where the label on each arc represents the unit of flow in
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Fig. 1 A network with three
centroids 1, 3 and 5. The
balancing flows are S1 = −4,
S3 = −3 and S5 = 7

the time interval unit. Nodes 1, 3, 5 are centroids with balancing flows S1 = −4, S3 = −3

and S5 = 7.

Let the split ratios associated with node 2 be: p2,1 = 10
12

, p2,4 = 1
12

, p2,6 = 1
12

.

Formally, for each v ∈ N and each outgoing arc (v, w), by using these split ratios, we have:

fv,w = F(v) · pv,w (3)

From (3) and considering any other outgoing arc of v, say (v, z), we obtain:

fv,z = fv,w

pv,w

· pv,z (4)

Indeed, by using split ratios, we can express the total incoming flow F(v) as a function of

the flow volume of any outgoing arc.

Therefore, assuming known split ratios at nodes, if at least one outgoing flow of node

v is known, it is possible to determine the total incoming flow F(v) (by Eq. (3)), and,

consequently, flow volumes on all the outgoing arcs of v (by Eq. (4)). Conversely, knowing

the flow volume of an incoming arc of v does not imply we can determine the other incoming

flows, because split ratios relate to the relationship among the outgoing arcs. However, if

we know, somehow, the total ingoing flow F(v), we can determine all the outgoing flows of

v. Note that, if v ∈ T , then knowing F(v) means we know all the incoming flows, while if

v ∈ B, it means we know also the balancing flow Sv .

Consider again the network in Fig. 1 and we locate a counting sensor on node 1. We obtain

the following flow volumes directly monitored:

f1,2 = 4

f2,1 = 10

f1,3 = 8

f3,1 = 6
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Fig. 2 A transportation network

and, also the balancing flow S1 = −4. Moreover, when we know split ratios, we can determine

the following non-monitored flow volumes:

f2,4 = f2,1

p2,1

· p2,4

f2,6 = f2,1

p2,1

· p2,6

f3,5 = f3,1

p3,1

· p3,5

Summarizing, assuming split ratios to be known, by locating a counting sensor on a node v

we determine (i) the flow volume of all the arcs incident to v and (ii) the flow volumes of all

the outgoing arcs of the nodes adjacent to v; and, if node v ∈ B, we know also the value Sv

of the balancing flow.

Considering also flow conservation constraints at nodes, we can derive additional arc

flow volumes, as explained next. For the network of Fig. 2 suppose that nodes 4 and 5 are

centroids and that a counting sensor is located on each of them. We directly monitor the

following flows: f4,2, f2,4, f4,5, f5,4, f5,6, f6,5, f5,3 and f3,5. Moreover, by using the split

ratios we derive flows: f2,6, f2,1, f6,2 and f3,1. Suppose, nodes 1, 2, 3 are transfer nodes.

Then, since flow conservation constraints (1) hold for each of them and, in particular for

node 1, we have F(1) = f2,1 + f3,1 and we can derive also flows f1,2 and f1,3 by using (3).

On the other hand, if node 1 is a centroid and node 2 and 3 are transfer nodes, by using

flow conservation constraints, we can obtain f1,2, f1,3 and S1 as follows:

f1,2 = f2,1 + f2,6 + f2,4 − f4,2 − f6,2

f1,3 = f3,1 + f3,5 − f5,3

S1 = f1,2 + f1,3 − f2,1 − f3,1

In general, with a set of measured nodes we can associate a system of linear equations (in the

sequel referred to as Flow Conservation System) where the unknown variables are arc flow

volumes and centroid balancing flows. As an example, suppose on the network of Fig. 2, nodes

4 and 5 are centroids and we locate a sensor on node 1. It is possible to define a linear system

where (i) a single unknown variable, representing an outgoing arc flow, is associated with

every node, except the monitored node and its adjacent nodes, and, (ii) equations correspond

to flow conservation constraints relative to every node of the network. Additional variables

Sv , denoting the centroid balancing flows, are also included in the linear system. Note that,
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the flow conservation equation corresponding to the measured node 1, does not contain any

unknown flow, and thus can be omitted from the system. We obtain the following system

corresponding to the flow conservation constraints of the network when node 1 is monitored:

node 2 ( f2,1 + f2,6 + f2,4) −
(

f1,2 + x6,5 · p6,2

p6,5

+ x4,2

)
= 0

node 3 ( f3,1 + f3,5) −
(

f1,3 + x5,4 · p5,3

p5,4

)
= 0

node 4

(
x4,2 + x4,2 · p4,5

p4,2

)
− (x5,4 + f2,4) = S4

node 5

(
x5,4 + x5,4 · p5,3

p5,4

+ x5,4 · p5,6

p5,4

)
−

(
f3,5 + x4,2 · p4,5

p4,2

+ x6,5

)
= S5

node 6

(
x6,5 · p6,2

p6,5

+ x6,5

)
−

(
f2,6 + x5,4 · p5,6

p5,4

)
= 0

(5)

where: the unknown variables are x4,2, x5,4, x6,5, S4 and S5, flows f1,2, f2,1 , f1,3, f3,1 are

directly monitored, and flows f2,4, f2,6 and f3,5 are obtained using split ratios. The remaining

unknown flows are obtained using equation (4). Note that, in this system, the number of

variables is equal to the number of equations and thus, we obtain a unique solution.

Let us assume now, node 2 and 6 are centroid too. Because the number of variables is

increased, the system does not have a unique solution anymore. Hence, additional monitored

nodes are needed. Note that, a trivial solution can be obtained by locating a counting sensor

on all the centroids. However, it is enough to locate a single counting sensor on node 5 to

obtain all flow volumes. Indeed, the corresponding system would be:

node 1

(
x1,3 · p1,2

p1,3

+ x1,3

)
− (x2,1 + f3,1) = 0

node 2

(
x2,1 + x2,1 · p2,4

p2,1

+ x2,1 · p2,6

p2,1

)
−

(
x1,3 · p1,2

p1,3

+ f6,2 + f4,2

)
= S2

node 3 ( f3,1 + f3,5) − (x1,3 + f5,3) = 0

node 4 ( f4,2 + f4,5) −
(

x2,1 · p2,4

p2,1

+ f5,4

)
= S4

node 6 ( f6,2 + f6,5) −
(

x2,1 · p2,6

p2,1

+ f5,6

)
= S6

(6)

with variables x1,3, x2,1, S2, S4 and S6.

It should be clear now, the question we want to answer is:

Question 1 What is the minimum number of counting sensors to locate on the nodes and

where to place them such that the corresponding Flow Conservation System has a unique

solution?
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Fig. 3 The combined cut CM associated with the subset of vertices M = {1, 5}

This problem has been addressed in Bianco, Confessore, and Reverberi (2001) on symmetric

transportation networks. The main result is recalled in the next section.

2.2. The sensor location problem

To answer Question 1, we need to explore the conditions under which the Flow Conservation

System, associated with a set M of measured nodes, admits a unique solution. In order to do

that, let us introduce the concept of combined cut associated with a subset M . For clarity of

presentation, the traffic network will be referred in terms of nodes and arcs, whereas the graph

representing the network in terms of vertices and edges. We recall that a cut in a graph G is a

set of edges joining vertices in the subset S and in the complementary set V \S. A combined
cut in G is a cut with some additional edges among vertices in the same subset. More formally,

given an undirected graph G = (V, E) and M ⊆ V , the combined cut CM is the set of edges

of the subgraph G M∪A(M), induced by both M and its adjacent vertices A(M) = {v ∈ V \M :

∃(v, w) ∈ E with w ∈ M}, that is the set of vertices that are adjacent to at least one element

of M . Let qM be the number of connected components of G M = (V \M, E\CM ).

In Fig. 3, the set M = {1, 5} and the set A(M) = {2, 6, 7, 8}. Dotted lines are the combined

cut CM . Let us denote by Gi = (Vi , Ei ), i = 1, 2, . . . qM the connected components induced

by CM . There are qM = 3 connected components induced by the combined cut CM : G1 =
({6}; ·), G2 = ({8}, ·), G3 = ({2, 3, 4, 7}; (2, 3), (3, 4), (4, 7)). The following theorem holds.

Theorem 1. (Bianco, Confessore, and Reverberi (2001)) The Flow Conservation System
associated with M admits a unique solution if and only if for each connected component Gi

the following relation is satisfied:

|A(M) ∩ Vi | ≥ |(B\M) ∩ Vi |
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Fig. 4 The connected components associated with (a) M = {1} and (b) with M = {5} for the graph of Fig. 2

That is, locating sensors on M , allows us to determine all the flow volumes if and only if the

number of centroids, in each connected component induced by CM , in not greater that the

number of nodes, adjacent to M , and contained in the component.

Figure 4(a) shows the connected components induced by M = {1} and Fig. 4(b) the

components induced by M = {5}. If nodes 4 and 5 are centroids then all the flows are

determined by locating a sensor on node 1 (this corresponds to system (5)). Indeed, the

single connected component G1 = {2, 3, 4, 5, 6} contains the two adjacent nodes 2 and 3,

and the two centroids 4 and 5. Observe that, in this case, by locating a sensor on node 5

we can also determine all the flow volumes: the connected component G1 = {1, 2, 3, 4, 6}
contains the three adjacent nodes 3, 4 and 6 and the single centroid 4.

If we assume nodes 2, 4, 5, 6 are centroids, then, locating a sensor on node 1 is not enough

to determine all the flow volumes, while by locating a sensor on node 5 the condition of

Theorem 1 is satisfied and we determine all arc flow volumes (see the corresponding flow

system (6)).

Therefore, by Theorem 1, the answer to Question 1 is obtained by solving the following

optimization problem stated in its decision version:

Sensor Location Problem (SLP)

INSTANCE: An undirected graph G = (V, E), a subset B ⊆ V , a positive integer K ≤ |B|.
QUESTION: Is there a sensor set M ⊆ V with |M | ≤ K , such that each of the qM

connected components Gi = (Vi , Ei ), i = 1, 2, . . . , qM induced by CM has a number of

vertices belonging to B\M not greater than the number of vertices belonging to A(M), i.e.

|A(M) ∩ Vi | ≥ |(B\M) ∩ Vi |, i = 1, 2, . . . , qM ?.

In the rest of the paper, we refer to such a set M as a sensor set for SLP. Moreover, we

refer to the set B as the set of bound vertices, (that is, the set of vertices corresponding to the

centroids of the network).

Before concluding this section, we recall a simple lower bound to the solution value of

SLP, that will be useful in the next sections. Let δ(v) be the number of edges incident to v

(the degree of v), and, �(G) be the maximum degree among vertices of G (the degree of G).

Property 1. (Bianco, Confessore, and Reverberi (2001)) Let m be the optimal solution
value of the SLP on G and b = |B|, we have that: � b

�(G)+1
� ≤ m.
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From the definition of the problem, the strict dependence of the feasible solutions on the

structure of the graph can be noticed. Indeed, the combined cut CM associated with a given

set M , for particular graph classes may define a set of connected components having simple

structures that may be known in advance. In Bianco, Confessore, and Reverberi (2001), the

problem has been studied from an algorithmic point of view on general graphs and two

heuristics giving lower and upper bounds to the solution value are given. The authors do not

take into account the structure of the graph.

However, from an application point of view, the network that needs to be monitored

may range from a single intersection, to a major arterial road, to a major arterial road with

its main entrances and exits, and, eventually, to the whole city network. Practically, the

deep knowledge of subnetworks of the entire traffic network is of great interest for traffic

planners and managers. For example, for the city of Rome’s network, actually, most of the

city managers’ interest is mainly concentrated on one of the main arterial (i.e. Muro Torto

road) and on the Grande Raccordo Anulare that is a road that makes a ring all around the

city. These portions of the network can be modelled using graph structures as paths, cycles

or combs.

In order to analyze the SLP on particular graph structures, we introduce, in the next section,

an equivalent problem allowing us to derive some properties which will be useful in designing

solution algorithms.

3. Dominating paths problem

Before introducing the new problem, we resume the notation that will be used in the sequel

and introduce some definitions.

Let G = (V, E) be an undirected graph (representing a symmetric transportation network),

where V is the set of vertices and E is the set of edges. Given M ⊆ V , we denote by

A(M) the set of all vertices of G not in M that are adjacent to at least one vertex of M ,

i.e. A(M) = {v ∈ V \M : ∃(v, w) ∈ E with w ∈ M}. The degree δ(v) of a vertex v is the

number of edges incident to it, and the degree �(G) of the graph G is the maximum degree

of its vertices. The subgraph GU = (U, EU ) is the graph induced by a set U ⊆ V where

EU = {(v, w) ∈ E : v, w ∈ U }. We denote Pv1,vh = (v1, v2, . . . , vh) as a path from vertex v1

to vertex vh of length h where all the vertices are distinct, and we call it a Ph path. We define

a P1 path as a path Pv,v consisting of the single vertex v. Given a path Pv1,vh , the distance

between two vertices vi and v j , h ≥ j ≥ i ≥ 1 of the path is the length of the subpath Pvi ,v j .

The Dominating Paths Problem is based on the notion of MB-feasible paths.

Definition 1. Let M ⊆ V , and B ⊆ V , be two subsets of vertices of G not necessarily disjoint.

A path Pv1,vh = {v1, v2, . . . , vh} is MB-feasible for M and B if it satisfies the following

conditions:

Condition 1 v1 ∈ B\M and vh ∈ A(M);

Condition 2 Pv1,vh ∩ M = ∅;

Condition 3 If h ≥ 2, ∀{vi , vi+1} ∈ Pv1,vh , i = 1, 2, . . . , h − 1, |{vi , vi+1} ∩ A(M)| ≤ 1.

These conditions define paths that avoid vertices of the set M and that assure a connection

between a vertex of B and a vertex of A(M). Indeed, Condition 1 states that an MB-feasible

path has to begin from a vertex of B that is not in M and to end “near” a vertex of M .

Condition 2 assures that the path does not contain vertices of M . The last condition is to
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Fig. 5 The MB-feasible paths (shown as arrows) associated with the subsets M = {1, 5} and B = {4, 6}

avoid two consecutive vertices of A(M) in a path. Given the MB-feasible path Pvi ,vh we say

the adjacent vertex vh covers (dominates) the bound vertex vi .

Observation 1. Observe that if h = 1 then Pv,v is MB-feasible if v ∈ B ∩ A(M), that is when

v is a bound vertex and is adjacent to an element of M .

Definition 2. Let B ⊆ V be a subset of bound vertices of G. A set M ⊆ V dominates by

paths the bound vertices in B if there exists a set PM of |B\M | MB-feasible paths that differ

in the origin and the destination vertex, i.e., {Pu1,v1
, . . . , Pu|B\M |,v|B\M | } with ui �= u j , vi �= v j

for each i, j = 1, 2, . . . , |B\M |, i �= j .

In the sequel, we will refer to the subset M satisfying Definition 2 as an MB-set for (G, B)

and the pair (M,PM ) as an MB-couple for (G, B).

We can see an example of an MB-couple in Fig. 5. The bound vertices are B = {4, 6}. The

set M = {1, 5} dominates by paths the set B. Indeed, we may consider the two MB-feasible

paths P4,2 = {4, 3, 2} and P6,6 = {6} (in bold line in the figure). Note that there exists for

vertex 4 also the MB-feasible path P4,7 = {4, 7}, but for vertex 6 the paths P6,8 = {6, 8} and

P6,7 = {6, 7} are not MB-feasible because they do not satisfy Condition 3 in Definition 1.

Now we are ready to define the decision version of DPP and subsequently prove the

equivalence between it and the SLP.

Dominating Paths Problem (DPP)

INSTANCE: An undirected graph G = (V, E), a subset B ⊆ V , a positive integer K ≤ |B|.
QUESTION: Is there an MB-couple (M,PM ), M ⊆ V with |M | ≤ K for (G, B), i.e. a

subset |M | ≤ K such that there exist |B\M | MB-feasible paths that are distinct for the

origin vertex and the end vertex?

An MB-couple is said to be an optimal solution for DPP on (G, B) if the MB-set M has

minimum size. We note, as for SLP, that a feasible solution to the DPP on (G, B) is given
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by M = B where |B\M | = 0 and, thus, there is no MB-feasible path to find, i.e. PM = ∅.

Therefore, an implicit upper bound to the optimal solution value is |B|.
Let us prove the equivalence between the SLP and DPP by the following theorem.

Theorem 2. The Sensor Location Problem and the Dominating Paths Problem are polyno-
mially equivalent.

Proof: Given a graph G = (V, E), a subset B ⊆ V , and an integer K ≤ |B| we have to show

that G has a sensor set if and only if G has an MB-couple.

First suppose that M , with |M | ≤ K is a sensor set for G, now we prove that we can

define a set of MB-feasible paths PM such that (M,PM ) is an MB-couple for (G, B). Let

consider the set of connected components of G associated with M : {G1 = (V1, E1), G2 =
(V2, E2), . . . , Gq = (Vq , Eq )}. Denote by b1, b2, . . . bq , with

∑q
i=1 bi = |B\M |, the number

of bound vertices that do not belong to M contained in each connected component, and

by a1, a2, . . . aq , with
∑q

i=1 ai = |A(M)|, the number of adjacent vertices to M contained

in each connected component. Since the sensor set M is feasible, we have bi ≤ ai , ∀i =
1, 2, . . . q . Without loss of generality, we can analyze the existence of the MB-feasible paths

within a single component, say G1 = (V1, E1). For the connectivity, there exists in G1 a path

connecting any couple of vertices, in particular there exists a path for each couple (v, w) with

v ∈ B ∩ V1 and w ∈ A(M) ∩ V1. Consider all the b1 vertices v ∈ B ∩ V1 and an equal number

of vertices w ∈ A(M) ∩ V1. Let P1 be the set of the b1 paths connecting each distinct couple

(v, w). These paths are MB-feasible. Indeed, the connected component, by the definition of

combined cut, does not contain vertices of M and does not contain edges connecting two

vertices of A(M). Denoting PM = ⋃q
i=1 P i , we have that the couple (M,PM ) is a feasible

solution for DPP on (G, B).

Conversely, suppose that on G there is an MB-couple (M,PM ), with |M | ≤ K . We have

to show that M is a sensor set for G. Let us consider the combined cut associated with M . This

defines a set of q connected components. Each path P ∈ PM , by definition of MB-feasible

path, belongs entirely to exactly one connected component. Thus, in each component, the

number of vertices belonging to the set B is not greater than the number of vertices belonging

to the set A(M). �

4. Complexity

The aim of this section is to analyze the complexity of DPP. For the SLP (and thus DPP) no

proof of N P-hardness exists in the literature.

Clearly, DPP is in N P , a non-deterministic algorithm needs to guess an MB-couple

(M,PM ) and verifies whether (i) |PM | = |B\M |, (ii) all the paths in PM are MB-feasible

and (iii) have different origin and destination vertices. We prove that the decision version of

the problem is N P-complete, when we assume B = V , on general graphs by reduction from

the Dominating Set Problem (Theorem 3).

Even though this proof could suffice from a theoretical point of view to assess the com-

plexity of the problem, the instances that we can have in practice are much different from this

particular case. Indeed, very often the bound vertices are not adjacent, and, a more interesting

case is when they form a set of mutually non adjacent nodes (stable set).

We give a second proof of the N P-completeness of the problem when the set of bound

vertices B is a stable set of the graph (Theorem 4).
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Fig. 6 The reduction from DSP

For the sake of completeness, we recall the decision version of the Dominating Set
Problem.

Dominating Set problem (DSP)

INSTANCE: An undirected graph G = (V, E), a positive integer K ≤ |V |.
QUESTION: Is there a Dominating set D of size K or less for G, i.e. a subset D ⊆ V with

|D| ≤ K such that for all u ∈ V \D there is a v ∈ D for which {u, v} ∈ E?

Now, we prove DPP is N P-complete.

Theorem 3. DPP is polynomially equivalent to DS P when B = V .

Proof: First, suppose M , with |M | ≤ K , is a dominating set for G; we prove there exists

a set PM of size |B\M | of MB-feasible paths that have all the origin and the end vertices

distinct. By definition of a dominating set, each vertex v ∈ B\M is in A(M), thus we can

consider the set of MB-feasible paths of type P1 consisting of such vertices.

Conversely, suppose there is in G an MB-couple (M,PM ) for (G, B) with |M | ≤ K . We

have to show that M is a dominating set for G. The setPM has size |B\M |. Since B = V , then

there are |V \M | distinct MB-feasible paths which differ for the initial and the end vertices.

Each path contains a bound vertex and a vertex adjacent to an element of M , thus, there are

|V \M | bound vertices and at least |V \M | vertices adjacent to element of M . Therefore, all

the paths are of type P1, and M is a dominating set of G. �

Theorem 4. The DPP is N P-complete also when the bound vertices form a stable set.

Proof: Let G = (V, E) and K ≤ |V | be any instance of the DS P . We must construct a graph

G ′ = (V ′, E ′) associated with G with a stable set B ⊆ V ′ and a positive integer K ′ ≤ |B|
such that G has a dominating set D with |D| ≤ K if and only if G ′ has an MB-couple

(M,PM ) with |M | ≤ K ′.
For each edge e = (vi , v j ) in G, add in G ′ a vertex ae and the two edges (vi , ae) and

(ae, v j ). The set B = {v1, v2, . . . , vn} = V is a stable set and each a-vertex has exactly two

adjacent vertices in B (Fig. 6). This construction is made in polynomial time. We have to show

that G has a dominating set D of size K or less if and only if G ′ has an MB-couple (M,PM )

with |M | ≤ K ′. First suppose that D ⊆ V is a dominating set for G with |D| ≤ K . We set

in G ′: M = D and K = K ′. In this way, the set A(M) is entirely composed of a-vertices.

Keep in mind that B = V . By construction, we know that a vertex v of G ′ may be such
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that: either v ∈ M ∩ B or v ∈ B. Each path from a vertex v ∈ B\M to a vertex w ∈ A(M)

satisfies conditions 1 and 3 of MB-feasibility by construction of G ′. Moreover, for each vertex

v ∈ B there exists at least one vertex ae ∈ A(M), otherwise v would not be dominated by

D. Thus, we may consider the MB-feasible path Pv,ae = {v, ae}. It remains to be shown that

each ae ∈ A(M) belongs to exactly one MB-feasible path. Indeed, by construction, for each

ae there exist just the two edges (vi , ae) and (ae, v j ) in G ′. If ae ∈ A(M) then at most one

vertex among vi and v j does not belong to M , and so at most one between the two edges

incident to ae may be chosen as an MB-feasible path. Hence, defining PM = ⋃
Pv,ae , the

couple (M,PM ) is a feasible solution for DPP on (G ′, B).

Conversely, let M ⊆ V ′ be an MB-set for G ′ with |M | ≤ K ′. We obtain a dominating set

D for G by the following procedure:

FOR EACH v ∈ M DO:

Step 1. IF v ∈ B THEN insert v in D;

Step 2. IF v /∈ B, let w and z be its adjacent bound vertices, THEN

IF w /∈ M THEN insert w in D;

ELSE IF z /∈ M THEN insert z in D.

Setting K = K ′, we have to show that all the vertices in V \D are covered by vertices in D
and that |D| ≤ K . Indeed, the size of the so-obtained set D is at most K ′. The procedure

adds vertices to the set D = M ∩ V . Let us consider this set. It does not cover all the vertices

of V \D, then, Step 2 adds to D for each vertex a-vertex ae ∈ M one of its adjacent vertex

when necessary. Let ae be such a vertex and let w and z be its adjacent vertices, Step 2, if

both w and z do not belong to M (and thus are not inserted in D by Step 1), adds one of

them into D. In this way, since w and z are adjacent in G, the so-obtained set D covers all

the vertices in V \D. �

In the next section we explore the DPP on particular graph classes.

First, we notice that the DPP remains N P-complete for the graph classes where the DSP
also is. For an extensive survey of domination problems and a comprehensive bibliography,

see for example Hedetniemi and Laskar (1991). We would point out that in Cockaine, Good-

man, and Hedetniemi (1975) a polynomial algorithm solving the DS P on trees is presented.

Actually, that algorithm solves a slightly more general problem (the Mixed Dominating Set)
that is more similar to DPP. Let the vertices V of a graph G be partitioned into three subsets

V1, V2, V3, where V1 consists of free vertices, V2 consists of bound vertices and V3 consists

of required vertices. A mixed dominating set in G is a set M of vertices which contains all the

required vertices, i.e. V3 ⊆ M , and which dominates (by adjacency) all the bound vertices,

i.e. every vertex v ∈ V2 is either in M or is adjacent to at least one vertex in M . Free vertices

need not be dominated by M , but may be included in M in order to dominate bound vertices.

A mixed dominating set of minimum size solves the Mixed Dominating Set (MDS). MDS
was defined in Cockaine, Goodman, and Hedetniemi (1975) as a generalization of the DSP.

Indeed, when V2 = V and V1 = V3 = ∅ MDS is the Dominating Set Problem. The similarity

between the MDS and DPP is evident. However, the dominance relation for the DPP appears

more complex. Indeed, while for the MDS each vertex v ∈ V , if selected, dominates only

its adjacent bound vertices, for the DPP it can dominate bound vertices connected to v by a

path. This makes more difficult to capture the combined dominance of selecting two vertices

v, w simultaneously (or a set of vertices): for the MDS we have to look just at the adjacent

bound vertices of both v and w, for the DPP we have to look at all the possible MB-feasible
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paths. Hence, despite the MDS is polynomially solvable on trees, the DPP seems to be more

difficult on these structures. Therefore, we analyzed the DPP on simpler structures first.

More in particular, we show in this section two polynomial algorithms solving DPP on paths

and combs where the MB-feasible paths can be handled, as can be seen in the following

paragraphs.

5. A linear algorithm on paths and cycles

Given a path P = (V, E) = Pv1,vn = {v1, v2, . . . , vn} and a subset B ⊆ {v1, v2, . . . , vn} of

bound vertices with |B| = b, let (M,PM ) be an optimal solution for DPP on (Pv1,vn , B) with

|M | = m.

The first property we prove is that on paths there exists an optimal solution of DPP entirely

composed of bound vertices.

Theorem 5. There exists an optimal solution (M,PM ) of DPP such that M ⊆ B.

Proof: Let M contain, by contradiction, a vertex vi /∈ B. We want to show that there exists

another MB-set M ′ such that |M ′| = |M | and M ′ ⊆ B with which we can associate a set

PM ′ of MB-feasible paths.

Since M is optimal, there exist at most two MB-feasible paths Pvh ,vi−1
, Pvk ,vi+1

∈ PM ,

h ≤ i − 1, i + 1 ≤ k, connecting the bound vertices vh and vk respectively to the adja-

cent vertices vi−1 and vi+1. We can assume vh (vk) is the nearest bound vertex to vi−1

(vi+1) among {v1, . . . vi−1} ({vi−1, . . . vn}). Otherwise, let vs be the bound vertex in the

analyzed MB-feasible path and let Pvs ,vi−1
∈ PM and Pvh ,vl ∈ PM be two MB-feasible

paths with l ≤ s < h ≤ i − 1, such that vh is the nearest bound vertex to vi−1 among

{v1, . . . vi−1}. Instead of PM we could associate with M the set P ′
M = PM\{Pvs ,vi−1

, Pvh ,vl }
∪{Pvh ,vi−1

, Pvs ,vl }. The same reasoning holds for Pvk ,vi+1
. Now, let us consider the subpath

Pvh ,vk = {vh, . . . , vi−1, vi , vi+1, . . . , vk}, such that Pvh ,vk ∩ B = {vh, vk} and Pvh ,vk ∩ M =
{vi }. Finally, examine the set M ′ = M\{vi } ∪ {vi+k}, that has the same size of M and

is such that M ′ ⊆ B. M ′ is also optimum because we can associate with it the set

PM ′ = PM\{Pvh ,vi−1
, Pvk ,vi+1

} ∪ {Pvh ,vk−1
} of MB-feasible paths for M ′ and B. �

We show next how we can find such a solution.

By the proof of Theorem 5 we can observe that if vi ∈ M we may simply define two

MB-feasible paths connecting vi−1 with the nearest bound vertex among {v1, . . . vi−1} and

vi+1 with the nearest bound vertex among {vi+1, . . . vn}.
Moreover, since we want to construct |B\M | MB-feasible paths distinct in the origin and

destination, it is also more desirable, when possible, to select vertices at a distance of at least

4.

The above mentioned observation may be stated in the following two rules:

1. Select, if possible, vertices v ∈ B which are between two not selected bound vertices;

2. Select, if possible, vertices at a distance on the path of at least 4.

As we show next, the first rule assures that a subpath between an adjacent vertex and the

nearest bound vertex is MB-feasible; the second rule assures that the total number of these

paths is exactly |B\M |.
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We present now the Path-algorithm that finds the optimal solution of DPP on paths, then

we prove it is exact.

Path-Algorithm

Input: a path Pv1,vn of n vertices; a set B ⊆ {v1, v2, . . . , vn}.
Output: an optimum MB-set M for DPP.

Step 1. (INITIALIZATION)

M = ∅; count:=0; position:=0;

Step 2. FOR EACH vertex vi , i = 1, 2, . . . , n DO

IF vi is a bound vertex THEN

begin
count:= count +1;

IF count = 1 THEN

position := i;

ELSE IF count = 2 THEN

M = M ∪ {vi };
ELSE IF count = 3 THEN

count:= 0;

end;
Step 3. IF count = 1 THEN

M = M ∪ {vposition}.

Example. In the example (Fig. 7), there are five bound vertices B = {2, 3, 5, 7, 8}. The

double rounded vertices are the adjacent vertices A(M), the MB-set is M = {3, 8} and the

MB-feasible paths are: P2,2, P5,4 = {5, 4} and P7,7.

In order to prove the exactness of the algorithm we restate for paths the lower bound stated

in Property 1 by the following relation:

⌈
b

3

⌉
≤ m.

We prove the Path-Algorithm is exact showing that the number of selected vertices defines a

feasible MB-set whose size is equal to the lower bound.

Theorem 6. The Path-Algorithm finds an optimal solution of DPP on (Pv1,vn , B).

Proof: Without loss of generality, let us start to consider b = 3. We can order the set B =
{vi , v j , vk} such that i < j < k. Then the algorithm finds the optimum solution |M | = 1

selecting the vertex v j for which the MB-feasible paths are the subpaths Pvi ,v j−1
and Pvk ,v j+1

.

Now let b > 3. First, suppose that b mod 3 = 0. In this case the algorithm enters in the IF

statement of Step 2 (count = 2) exactly b
3

times, then |M | = b
3

and for each selected vertex

vi ∈ M we have two MB-feasible paths Pvi−h ,vi−1
, Pvi+k ,vi+1

with Pvi−h ,vi−1
∩ B = {vi−h} and

Pvi+k ,vi+1
∩ B = {vi+k}.

On the other hand, if b mod 3 = 1, we have that for � b
3
� − 1 times the algorithm enters

in the IF statement of Step 2 (count = 2) and 1 time in the IF statement of Step 3 (count = 1).

In this case we have � b
3
� selected vertices with the same MB-feasible paths as before, since

the last selected vertex is the last non-dominated bound vertex.
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Fig. 7 Application of the Path-Algorithm

Finally, if b mod 3 = 2, we have that the algorithm enters for � b
3
� times in the IF statement

of Step 2 (count = 2), where the last selected bound vertex vi induce only one MB-feasible

path Pvi−h ,vi−1
, with Pvi−h ,vi−1

∩ B = {vi−h}. �

Remark 1. The Path-Algorithm solves DPP also when applied on cycles, starting from any

vertex.

As for time complexity, note that the Path-Algorithm operates in linear time with respect to

the number of vertices V of the path Pv1,vn .

6. A linear algorithm on combs

In this section the Comb-Algorithm solving DPP on combs is presented. Despite the simplicity

of solving DPP on paths, proving the exactness of Comb-Algorithm came out to be more

complex. Therefore, to make this section readable, we give here the proofs of the main

properties that are useful to design the algorithm and in the Appendix the additional proofs

we refer to.

We start by giving the needed notations (see, for example, Gionfriddo, Harary, and Tuza

(1997)). A comb C = (V, E) is a tree obtained by adding at most one pending edge to each

vertex of a path. We call the vertices of the path spinal vertices of C , and the remaining pending

vertices the leaves of C . Hereafter, we consider complete combs, where each spinal vertex

has exactly one pending vertex. Formally, C = (V, E), with V = {v1, v
′
1, v2, v

′
2, . . . , vn, v

′
n},

where, V ′ = {v′
1, v

′
2, . . . , v

′
n} are the leaves and V \V ′ are the spinal vertices. We define brick

as the couple of vertices (vi , v
′
i ). Ci,h , where i < h, denotes the subcomb C{vi ,v

′
i ,...,vh ,v′

h }
induced by the subset of vertices Vi,h = {vi , v

′
i , . . . , vh, v

′
h} ⊆ V .
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6.1. Basic properties

Let C = (V, E) be a complete comb, B ⊆ V be the set of bound vertices and (M,PM ) be

the optimal solution of DPP on (C, B). We denote by Bi,h the set of bound vertices in Ci,h .

Next three properties state that:

1. an optimum MB-set does not contains both the vertices of a brick (Proposition 1);

2. the set PM of MB-feasible paths contains P1 paths when they exist (Proposition 2);

3. we can focus on combs where the vertices of a brick are either (i) both bound vertices, or,

(ii) there is a single bound vertex that is the spinal one (Proposition 3).

Proposition 1. M does not contain both vertices vi , v
′
i of a brick (vi , v

′
i ).

Proof: Let us suppose vi , v
′
i ∈ M . First observe that there is no MB-feasible paths induced

by v′
i . Now consider the set M̂ = M\{v′

i }. If v′
i /∈ B, then we can associate with M̂ the set

P M̂ = PM of MB-feasible paths. If v′
i ∈ B, then we can associate with M̂ the set P M̂ = PM

∪ {Pv′
i ,v

′
i
}. Thus M̂ is feasible for DPP on (C, B) and is |M̂ | < |M |, which is a contradiction

because M is minimum. �

Proposition 2. If u ∈ B is such that u ∈ A(M)\M, then it is possible to associate with M a
set PM such that Pu,u ∈ PM .

Proof: If u ∈ V ′ then the only MB-feasible path covering u is the P1 path. Suppose u is

spinal and Pu,u /∈ PM . For the optimality of M , there exists an MB-feasible path covering

u, say Pu,v , v �= u, v ∈ A(M)\M . Let Pz,u be the MB-feasible path connecting the bound

vertex z ∈ B\M and the adjacent vertex u (Fig. 8). The new set P= (PM\ {Pu,v, Pz,u}) ∪
{Pu,u, Pz,v} is also a set of MB-feasible paths that can be associated with the optimal set M
and contains the P1 path Pu,u . �

Proposition 3. Given a set B ⊆ V of bound vertices such that there exists a brick (vi , v
′
i ),

vi ∈ B and v′
i /∈ B. The optimal MB-couple (M,PM ) for (C, B) is optimal also for the set

B∗ = (B\{vi }) ∪ {v′
i } on C.

Proof. By Proposition 1, vi , v
′
i cannot both belong to M . If vi ∈ M then setting P∗

M =
PM ∪ {Pv′

i ,v
′
i
} the thesis follows. If v′

i ∈ M then, by Proposition 2, Pvi ,vi ∈ PM and setting

P∗
M = PM\{Pvi ,vi } the thesis follows. Finally, if both vi , v

′
i /∈ M then let Pvi ,z the MB-

feasible path covering vertex vi . The new path Pv′
i ,z = {v′

i } ∪ Pvi ,z is MB-feasible, and the

couple (M,P∗
M ) where P∗

M = (PM\{Pvi ,z}) ∪ {Pv′
i ,z} is an optimum MB-couple for (C, B∗).

6.2. The main result

The following Lemma 1 states that an optimal MB-couple for a comb can be decomposed

(under certain conditions) into two optimal solutions for two sub-combs. Theorem 7, to

follow, states that there exists an optimum MB-set entirely composed of spinal vertices. Both

the proofs are given in the Appendix.

Lemma 1. Let (M,PM ) be an optimal solution of DPP on (C, B). Let C1 = C1,h and C2 =
Ch+1,n be a partition of C into two components. If it is possible to define the set PM such
that all the bound vertices in Ci are covered by adjacent vertices of the set M ∩ V i , i = 1, 2,
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Fig. 8 Example of Proposition 2. Given an optimum MB-set M it is possible to define a setPM of MB-feasible
paths containing P1 paths if they exist

then there exists a partition of M and of PM into two subsets such that: M = M1 ∪ M2,
PM = PM1 ∪ PM2 where (Mi ,PMi ) is optimal for (Ci , V i ∩ B), i = 1, 2.

Theorem 7. There exists an optimal solution (M,PM ) of DPP on (C, B) such that
M ⊆ V \V ′.

If all the vertices of the optimal MB-set are spinal vertices of the comb C then simple

properties follow immediately. Such properties are useful to design Comb-Algorithm and are

given in the sequel. Let M ⊆ V \V ′ be an optimal spinal MB-set.

Corollary 1. Let xi = vh ∈ M and xi+1 = vk ∈ M, h < k, be two consecutive vertices of
M. Then |Bh+1,k−1| ≤ 2.

Proof: The number of adjacent vertices in Ch+1,k−1 is at most two. Since vh and vk are

spinal vertices, then all the bound vertices in Ch+1,k−1 must be covered by adjacent vertices

in Ch+1,k−1. Since M is optimum, the bound vertices in Ch+1,k−1 cannot be more than the

number of adjacent vertices, and thus we have the thesis. �

With the same reasoning we derive:

Corollary 2. Let x1 = vh ∈ M be the first element of M, then |B1,h−1| ≤ 1.

Remark 2. Note that the position of the unique bound vertex in C1,h−1 does not influence the

optimality of the MB-set M .

Springer



Ann Oper Res (2006) 144:201–234 219

Fig. 9 Illustration to prove Corollary 3. If one of these cases occurs then the MB-feasible path with the
adjacent vertex vh+1 does not exist

Remark 3. Considering the first brick, the first spinal element of M must be chosen in the

following way:

1. If v1 ∈ B and v′
1 ∈ B then v1 ∈ M ;

2. If v1 ∈ B and v′
1 /∈ B, let k = min{i : Bi,n �= ∅}, if |B| > 2, then vk ∈ M otherwise either

v1 ∈ M or vk ∈ M .

Corollary 3. Let the i-th element of M be xi = vh ∈ M. If one of the following cases occurs:

1. vh+1 ∈ B and v′
h+1 ∈ B and vh+2 ∈ B;

2. vh+1 ∈ B and v′
h+1 ∈ B and vh+2 /∈ B and vh+3 ∈ B;

3. vh+1 /∈ B, vh+2 ∈ B and v′
h+2 ∈ B and vh+3 ∈ B;

then, for cases 1 and 2, the vertex vh+1 must belong to M, and, for case 3, vh+2 must belong
to M.

Proof: See Fig. 9. For case 1, if vertex vh+1 /∈ M then , by Corollary 1, the vertex vh+2

should be in M . In this way, the bound vertex v′
h+1 is not covered by an MB-feasible path

and then M would not be optimal. For case 2 (case 3) if vertex vh+1 /∈ M (vh+2 /∈ M), then

by Corollary 1 the vertex vh+3 (vh+2) should be in M . However, the only path covering the

vertex v′
h+1 (v′

h+2) is not MB-feasible because contains the two consecutive adjacent vertices

vh+1 and vh+2 and then M would not be optimal. �

Remark 4. Observe that if one of the cases of Corollary 3 occurs then vh+1 does not

dominate any bound vertex u, that is there is no MB-feasible paths Pu,vh+1
for each u ∈ B.

Moreover, they are the only cases for which such a path does not exist.
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Fig. 10 Illustration for Proposition 4 (Case 1) and Proposition 5 (Case 5)

Lemma 1 above states an optimal MB-couple for a comb can be decomposed (under certain

conditions) into two optimal solutions for two sub-combs. In the propositions to follow, we

state the conditions for the converse of this lemma when we look for a spinal MB-set. These

conditions are useful to build iteratively an optimum MB-set. In particular, they state, after

a vertex of an optimum MB-set is chosen, how to choose optimally the next one. Indeed,

after choosing the first spinal vertex x1 of M (see Remark 3), the comb is divided into two

subcombs C1 and C2 according to the ten possibilities that are summarized in Fig. 11. The

second spinal vertex x2 ∈ M is chosen according to Remark 3 on the subcomb C2 which is

divided again into two parts and so on. We give the proof for only two of the ten cases (Case

1 and Case 5) since the others are obtained easily by following the same reasoning and by

applying different cases of Remark 3 and Corollary 3.

Proposition 4. Given a comb C and a set B of bound vertices such that {v1, v
′
1, v2, v

′
2, v3} ⊆

B, an optimum spinal MB-set M for DPP on (C, B) is given by M = M1 ∪ M2, M1 ∩ M2 = ∅,
where M1 in an optimum spinal MB-set for (C1,1, B1,1) and M2 in an optimum spinal MB-set
for (C2,n, B2,n).

Proof: Refer to Fig. 10. Let M1 and M2 such optimum MB-sets. We have that, by Remark 3

(Case 1), M1 = {v1} and PM1
= Pv′

1,v
′
1
. Moreover, by Remark 3 (Case 1) and by Corollary 3

(Case 1), v2 ∈ M2 and PM2
⊇ {Pv′

2,v
′
2
, Pv3,v3

}. The couple M = M1 ∪ M2 and PM = PM1
∪

PM2
is a feasible MB-couple. It is also optimum. Otherwise, let (M∗,PM∗ ) be an optimum

MB-couple for (C, B). By Remark 3 (Case 1) and by Corollary 3 (Case 1), v1, v2 ∈ M∗.

Thus, it is possible to apply Lemma 1 to (C1,1, B1,1) and (C2,n, B2,n) obtaining two new

optimum MB-sets, |M∗
1 | and |M∗

2 |, for these two subcombs; this leads to a contradiction

because |M∗
1 ∪ M∗

2 | = |M∗| < |M | ⇔ |M∗
2 | < |M2|, and M2 is optimum. �

Proposition 5. Let C be a comb and B a set of bound vertices such that v1, v1 ∈ B vi , v
′
i ∈ B,

i ≥ 4 and there is no bound vertex in C2,i−1. An optimum spinal MB-set M on (C, B) is given
by M = M1 ∪ M2, M1 ∩ M2 = ∅, where M1 in an optimum spinal MB-set for (C1,i , B1,i\{v′

i })
and M2 in an optimum spinal MB-set for (Ci,n, Bi,n\{vi }).

Proof: Refer to Fig. 10. Let M1 and M2 be optimum spinal MB-sets as stated by hypothesis.

By Remark 3 (Case 1), v1 ∈ M1 and PM1
= {Pv′

1,v
′
1
, Pvi ,v2

}. Moreover, by Remark 3 (Case

2), we can assume vi /∈ M2 and there exists Pv′
i ,z ∈ PM2

for some vertex z.

We want to show M = M1 ∪ M2 and PM = PM1
∪ PM2

is an optimum couple for (C, B).

First observe that (M,PM ) is feasible for DPP on (C, B) and M is spinal. Let us suppose
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Fig. 11 Rules to choose the second element of an optimum spinal MB-set. An optimum spinal MB-set M for
a comb can be obtained by the union of optimum MB-sets M1 and M2 on sub-combs. The colored vertex is
the set M1, the dotted line divides the original comb into two sub-combs

there exists another feasible MB-couple (M∗,PM∗ ), M∗ spinal and |M∗| < |M |. By Remark

3, v1 ∈ M∗. Note also that:� vi /∈ M∗

If vi ∈ M∗, then, by Lemma 1, there exists M∗
1 optimum and spinal for (C1,i−1, B1,i−1) and

M∗
2 optimum and spinal for (Ci,n, Bi,n). However, |M∗

1 | = |M1| and M∗
2 is feasible also for

(Ci,n, Bi,n\{vi }). Since |M∗
1 ∪ M∗

2 | = |M∗| < |M |, then we would have |M∗
2 | < |M2| that

is a contradiction because M2 is optimum.� v j /∈ M∗, 2 ≤ j ≤ i
If such a vertex exists then the new set M∗\{v j } ∪ {vi } would be optimum too, and this is

not possible.

Hence, since vi /∈ M∗ then we can have the following two cases :� Pvi ,v2
∈ PM∗ and Pv′

i ,v2
/∈ PM∗ ;� Pvi ,v2

/∈ PM∗ and Pv′
i ,v2

∈ PM∗ ;

both the cases lead to a contradiction. We prove it for the first one, the second follows the

same reasoning. If Pvi ,v2
∈ PM∗ and Pv′

i ,v2
/∈ PM∗ , then there exists Pvi ,vk ∈ P∗

M , k > i . We
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can partition the set M∗ = M∗
1 ∪ M∗

2 , M∗
1 ∩ M∗

2 = ∅, and the set PM∗ = PM∗
1
∪ PM∗

2
such

that:� (M∗
1 ,PM∗

1
) is feasible for (C1,i , B1,i\{v′

i });� (M∗
2 ,PM∗

2
) is feasible for (Ci,n, Bi,n\{vi }).

Since |M∗
1 | = |M1|, then we have |M∗

2 | < |M2| that is a contradiction and then the thesis

holds. �

6.3. The comb-algorithm

From the analysis of the above cases, now the algorithm to solve the DPP on combs follows

directly. Given a comb C and a set B of bound vertices, choose the first spinal vertex to put

in M (according to Remark 3) and consider a sub-comb C2 as the new instance according

to the cases in Fig. 11. Choose the second spinal vertex x2 ∈ M , by applying Remark 3 to

C2 and define a new subcomb C3 as the new instance and so on. The main steps of the

Comb-Algorithm are summarized in the following Remark.

Remark 5. Given a comb C = (V, E) and a set of bound vertices B ⊆ V . Let x1 = vh be

the first spinal vertex in M . If we can build an MB-feasible path Pu,vh+1
(Fig. 11, Cases 4, 5,

9, 10) then, two cases may occur:� Case A

(Fig. 11, Cases 5 and 10)

u = vi ∈ B and v′
i ∈ B.

Then, we can define M1, M2, PM1 and PM2 such that:

M = M1 ∪ M2;

PM = PM1 ∪ PM2 ;

(M1,PM1 ) is optimal for DPP on (C1,i , B1,i\{v′
i });

(M2,PM2 ) is optimal for DPP on (Ci,n, Bi,n\{vi }).� Case B

(Fig. 11, Cases 4 and 9)

u = vi ∈ B and v′
i /∈ B.

Then, we can define M1, M2, PM1 and PM2 such that:

M = M1 ∪ M2;

PM = PM1 ∪ PM2 ;

(M1,PM1 ) is optimal for DPP on (C1,i , B1,i );

(M2,PM2 ) is optimal for DPP on (Ci+1,n, Bi+1,n).

On the other hand, if the M B-feasible path Pu,vh+1
/∈ PM , for any u ∈ Bh+1,n then:� Case C

(Fig. 11, Cases 1, 2, 3, 6, 7, 8)

we can define M1, M2, PM1 and PM2 such that:

M = M1 ∪ M2;

PM = PM1 ∪ PM2 ;

(M1,PM1 ) is optimal for DPP on (C1,h, B ∩ V1,h);

(M2,PM2 ) is optimal for DPP on (Ch+1,n, B ∩ Vh+1,n).

The Comb-Algorithm is given in the sequel.

Comb-Algorithm

Input: a comb C = (V, E), a subset B ⊆ V ;
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Output: an optimal spinal MB-set M for DPP on (C, B).

Step 1 {Initialization}

1.1 M = ∅, j = 0, i = 1;

1.2 C ( j) = C , B( j) = B;

1.3 {Proposition 3}
For each brick (vh, v

′
h) such that vh /∈ B( j) and v′

h ∈ B( j) do B( j) = (B( j)\{v′
h}) ∪

{vh};

Step 2 {First element}

If B( j) = ∅
then return M and STOP
else

2.1 k = min{i : C ( j)
i,n ∩ B( j) �= ∅}

2.2 If k < n then Select Case:

Case 1: {Remark 3: Case 1}
If vk ∈ B( j) and v′

k ∈ B( j) then
begin
M = M ∪ {vk};
B( j) = B( j)\{vk, v

′
k};

i = k;

end
Case 2: {Remark 3: Case 2}
If vk ∈ B( j) and v′

k /∈ B( j) and vk+1 ∈ B( j) then
begin
M = M ∪ {vk+1};
B( j) = B( j)\{vk, vk+1};
i = k + 1;

end
Case 3: {Remark 2}
If vk ∈ B( j) and v′

k /∈ B( j) and vk+1 /∈ B( j) then
begin
B( j) = (B( j)\{vk}) ∪ {vk+1};
k = k + 1;

Goto Step 2.2;

end
else M = M ∪ {vn}, return M and STOP

Step 3 { Building MB-feasible path }
If B( j) = ∅
then return M and STOP
else
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3.1 k = min{s > i : C ( j)
s,n ∩ B( j) �= ∅}

If k < n then
{

3.1.1 If the bound vertex vk is such that the MB-feasible path Pvk ,vi+1
can be built (see

Fig. 11, Cases 4, 5, 9, 10) then select case:

Case 4: {Remark 6: Case A}
If v′

k ∈ B( j) then begin

C ( j+1) = C ( j)
k,n ;

B( j+1) = B( j)\{v′
k};

j = j + 1;

Goto Step 2;

end
Case 5: {Remark 6: Case B}
If v′

k /∈ B( j) then begin

C ( j+1) = C ( j)
k+1,n ;

B( j+1) = B( j)\{vk};
j = j + 1;

Goto Step 2;

end

3.1.2 {Corollary 3}
If the bound vertex vk is such that the MB-feasible path Pvk ,vi+1

cannot be built (see

Fig. 11, Cases 1, 2, 3, 6, 7, 8) then
{Remark 6: Case C}

begin
C ( j+1) = C ( j)

k,n ;

B( j+1) = B( j);

j = j + 1;

Goto Step 2;

end
}
else (k = n)

{
If v′

n ∈ B( j) then M = M ∪ {vn}
return M and STOP

}

As for time complexity, note that the Comb-Algorithm operates in linear time with respect

to the number of vertices V of C . Note that, Comb-Algorithm finds an optimal solution of

DPP on C even if C is a path.

Example. Let us consider the complete comb of 10 spinal vertices, shown in Figs. 12 and 13.

The set of bound vertices is B = {v1, v
′
2, v4, v

′
4, v5, v

′
5, v7, v

′
10}. At first the algorithm changes

(Step 1.3) the set of bound vertices in a new set B(0) (Proposition 3). The new set of bound

vertices is: B(0) = {v1, v2, v4, v
′
4, v5, v

′
5, v7, v10}. The first bound vertex is v1, since v′

1 /∈ B
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Fig. 12 The Comb-Algorithm (1/2)

Fig. 13 The Comb-Algorithm (2/2)
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and v2 ∈ B then Case 2 of Step 2 holds and v2 is selected. Note now, that the MB-feasible

path covering vertex v1 is the P1 path Pv1,v1
. However, it is not possible to build an MB-

feasible path with the other adjacent vertex v3. Indeed, Case 3 of Corollary 3 holds and the

new instance of the problem is the subcomb C (1) = C4,10 with B(1) = {v4, v
′
4, v5, v

′
5, v7, v10}.

Since Case 1 of Step 2 occurs, then vertex v4 is selected and the MB-feasible path Pv′
4,v

′
4

covers the bound vertex v′
4. Now, it is not possible, again, to build an MB-feasible path with

the adjacent vertex v5 (Case 2 of Corollary 3) and then a new instance is defined: C (2) = C5,10

with B(2) = {v5, v
′
5, v7, v10}. The first bound vertex of C (2) is vertex v5 that is selected. It is

possible to build the two MB-feasible paths Pv′
5,v

′
5

and Pv7,v6
, covering respectively the bound

vertices v′
5 and v7. The new instance is: C (3) = C8,10 and B(3) = {v10}, since vertex v10 is

the only bound vertex, then, it is selected and the algorithm stops. The optimum couple for

(C, B(0)) is the MB-set M = {v2, v4, v5, v10} and the set PM = {Pv1,v1
, Pv′

4,v
′
4
, Pv′

5,v
′
5
, Pv7,v6

}.
The optimum couple for (C, B) is (M,PM ∪ {Pv2,v2

, Pv10,v10
}).

7. Conclusions

In this paper we considered the problem of locating the minimum number of counting sensors

on the nodes of a network in order to determine arc flow volumes of the entire network. To

characterize the problem from a graph theoretical point of view, we defined the Dominating
Paths Problem (DPP). We proved it is N P-complete on general graphs by reduction from the

Dominating Set Problem (DS P). We analyzed special structure of graphs that are particularly

interesting from an application point of view, and for which we gave low order polynomial

solution algorithms. In particular, we proved that the DPP is polynomially solvable on paths,

cycles and combs, and we designed algorithms that find the solution in linear time for these

structures.

It is also interesting to analyze DPP on other graph classes relevant from an application

point of view (such as caterpillars, grids, etc.) and to better understand the complexity of

the problem in relation with different distributions on the graph of the bound vertices. Such

analysis and an approximation algorithm for the general case are object of a future work.

8. Appendix

In this section we give the additional properties to formally prove there exists an optimum

MB-set on combs entirely composed of spinal vertices. The proofs of some propositions are

already given in the paper, here, for completeness of exposition, we recall their statements.

Basic properties

Let C = (V, E) be a complete comb, B ⊆ V be the set of bound vertices and (M,PM ) be

the optimal solution of DPP on (C, B). We denote by Bi,h the set of bound vertices in Ci,h .

Proposition 6. M does not contain both vertices vi , v
′
i of a brick (vi , v

′
i ).

Proposition 7. If the brick (v1, v
′
1) is such that v1, v

′
1 /∈ B, then the size of the optimal MB-set

M for DPP on (C, B) and the size of the optimal MB-set M̂ of DPP on (CV \{v1,v
′
1}, B) are

equal.
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Fig. 14 Example of Proposition
6. If the first brick (v1, v1) of a
comb C is composed of
non-bound vertices, then the
optimal solution value of DPP on
C is the same of the optimal
solution value of DPP on
CV \{v1,v1}

Proof: First suppose v1, v
′
1 /∈ M . In this case, since v1, v

′
1 /∈ B, no MB-feasible path exists

in PM that contains v1 or v′
1 and thus we have the thesis. Now suppose that at least one vertex

between v1, v
′
1 ∈ M (by Proposition 6, both v1, v

′
1 cannot belong to M). We show that there

exists an optimal solution (M,PM ) of DPP on (C, B) such that M contains neither v1 nor

v′
1. If v1 ∈ M , then there is the MB-feasible path Pu,v2, ∈ PM , u �= v1, v

′
1, covering a bound

node u. The set M̂ = (M\{v1}) ∪ {v2} has the same size of M and we can associate with it

the following set of MB-feasible paths:� if u = v2 then P M̂ = PM \{Pv2,v2
};� if u = v′

2 then P M̂ =(PM \{Pv′
2,v2

}) ∪ {Pv′
2,v

′
2
}.� if u �= v2, v

′
2 then P M̂ = (PM \{Pu,v2

}) ∪ {Pu,v3
};

A similar reasoning holds if v′
1 ∈ M considering M̂ = (M\{v′

1}) ∪ {v2}.
Figure 14 shows the case when u �= v2, v

′
2. �

Remark 6. By Proposition 7 we can restrict the analysis to comb C = (V, E) with ({v1, v
′
1} ∩

B) �= ∅.

The following two propositions state that the set PM of MB-feasible paths associated

with the MB-set M is not unique. Moreover, it is shown that, given two MB-feasible paths,

having nonempty intersection, it is possible to obtain from them other two MB-feasible paths.

Illustration of Proposition 8 is shown in Fig. 15.

Proposition 8. Given a solution (M,PM ) of DPP on (C, B) and two MB-feasible paths
Pb,a ∈ PM , Pb∗,a∗ ∈ PM such that Pb,a ∩ Pb∗,a∗ �= ∅, b, b∗ ∈ B and a, a∗ ∈ A(M) not adja-
cent, b �= a, b∗ �= a∗. The new paths Pb,a∗ and Pb∗,a are MB-feasible for both M and B.

Proof: Note that the adjacent vertices a, a∗ must be spinal vertices for the MB-feasibility of

the paths, that are not of type P1. First suppose that b, b∗ are spinal vertices (Fig. 15). By the

MB-feasibility of the paths and since a and a∗ are not adjacent, the path P = Pb,a ∪ Pb∗,a∗ is

such that (i) does not contain vertices of M and (ii) does not contain consecutive vertices of

A(M). This is true for any subpath of P , in particular for Pb,a∗ and Pb∗,a that are MB-feasible,

since b, b∗ ∈ B and a, a∗ ∈ A(M). Let us suppose now that b∗ is a leaf of C , and consider

the path P̃ composed of the spinal vertices of the subcomb Ĉ = Pb,a ∪ Pb∗,a∗ . P̃ satisfies
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Fig. 15 Example of Proposition
8. From two MB-feasible paths
having non-empty intersection, it
is possible to obtain two new
MB-feasible paths

conditions (i) and (ii), and thus any subpath of P̃ . Let us consider now the subpath PA({b∗}),a .

This path satisfies the two conditions (i) and (ii) and since, by hypothesis b∗ /∈ A(M), the

path Pb∗,a = {b∗} ∪ PA({b∗}),a is MB-feasible. The same reasoning holds for Pb,a∗ . �

Proposition 9. It is possible to associate with M a set PM such that Pu,u ∈ PM .

Proposition 10. Given a set B ⊆ V of bound vertices such that there exists a brick (vi , v
′
i ),

vi ∈ B and v′
i /∈ B. The optimal MB-couple (M,PM ) for (C, B) is optimal also for the set

B∗ = (B\{vi }) ∪ {v′
i } on C.

The main result

Remember that we denote by Ci,h = C{vi ,v
′
i ,...,vh ,v′

h } the subcomb induced by the subset of

vertices {vi , v
′
i . . . , vh, v

′
h}, i < h and by Bi,h the bound vertices in Ci,h .

The following Lemma 2 states that there exists an optimum MB-set with the first element

that is a spinal vertex. Theorem 8 to follow states that there exists an optimum MB-set entirely

composed of spinal vertices.

Lemma 2. There exists an optimal solution (M,PM ), M = {x1, . . . , xm}, of DPP on (C, B)

such that x1 is a spinal vertex.

Proof: Let us suppose x1 = v′
i ∈ M is not a spinal vertex. We want to show that it is possible

to obtain an optimal solution (M̂,P M̂ ) where M̂ = {x̂1, . . . , x̂m}, of DPP on (C, B) such that

x̂1 is spinal.

By Remark 6, at least one vertex between v1 and v′
1 belongs to B.

First consider the case x1 = v′
1 ∈ M . By Proposition 6, v1 /∈ M , and, by Propositions 10

and 2, we can suppose v1 ∈ B and Pv1,v1
∈ PM . Let us consider the set M̂ = (M\{v′

1}) ∪ {v1}.
If x2 �= v′

3 then we can associate with M̂ the set P M̂ = (PM\{Pv1,v1
}) ∪ {Pv′

1,v
′
1
}, where

the path Pv′
1,v

′
1

is added only if v′
1 ∈ B. Since |M̂ | = |M |, the couple (M̂,P M̂ ) is also
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Fig. 16 Example of Lemma 2 when when x1 = v′
1 and x2 = v′

3. There exists an optimum MB-set M such
that the first element is a spinal vertex

optimal for DPP on (C, B) and has the first element x1 that is spinal. On the other side,

if x2 = v′
3 the above defined set M̂ is such that the vertices v2 and v3 are adjacent and

then any MB-feasible path in PM covering a bound vertex z = v2 or z = v′
2 is no more

feasible for M̂ . However, since M is optimum, there exist two MB-feasible paths covering

the bound vertices v2 and v′
2, say Pv2,v j and Pv′

2,vh , j, h ≥ 3, v j , vh ∈ A(M) (Fig. 16). We

define in this case, M̂ = (M\{v′
1, v

′
3}) ∪ {v1, v2}. Associating with M̂ the set P M̂ = (PM\

{Pv1,v1
, Pv2,v j , Pv′

2,vh })∪ {Pv′
1,v

′
1
, Pv′

2,v
′
2
, Pv′

3,v j }, where the paths Pv′
1,v

′
1

and Pv′
3,v j are added

only if v′
1, v

′
3 ∈ B respectively, then the couple (M̂,P M̂ ) is also optimal for DPP on (C, B).

Figure 16 shows the case when all the vertices {v′
1, v

′
1, v2, v

′
2, v3, v

′
3} ⊆ B.

Suppose now, x1 = v′
i ∈ M , i > 1 . Consider the subcomb C1,i−1. We have, by Remark

6, that |B1,i−1| ≥ 1.

We prove the thesis for the case |B1,i−1| = 2 without loss of generality. By Proposition 10,

we can assume v1 ∈ B1,i−1 and let u ∈ V1,i−1 be the second bound vertex, u �= v1.

The set M̂ = (M\{v′
i }) ∪ {v1} has the same size of M . We will show that it is possible to

associate with it a set P M̂ of M B-feasible paths covering all the bound vertices not in M̂ ,

that is, (M̂,P M̂ ) is an optimal solution of DPP on (C, B) with the first vertex being spinal.

Since M is optimum for (C, B), there exist two M B-feasible paths in PM covering the

bound vertices v1 and u, say Pv1,vz and Pu,vh , i ≤ z < h, vz, vh ∈ A(M). We can have the

following cases:

Case 1: vi /∈ B and v′
i /∈ B;

Case 2: vi ∈ B and v′
i /∈ B;

Case 3: vi /∈ B and v′
i ∈ B;

Case 4: vi ∈ B and v′
i ∈ B.
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Fig. 17 Example of Lemma 2 when x1 = v′
i �= v′

1. There exists an optimum MB-set M such that the first
element is a spinal vertex

We define the set P M̂ to be associated with M̂ for Case 4, as the other cases are

trivially derived from it. Let vi ∈ B and v′
i ∈ B. By Proposition 2 we can suppose the

MB-feasible path Pvi ,vi ∈ PM (see Fig. 17). We can associate with M̂ the set P M̂ = (PM

\{Pvi ,vi , Pv1,vz , Pu,vh }) ∪{Pu,v2
, Pvi ,vh , Pv′

i ,vz } (if u = v′
1 we can consider instead of Pu,v2

the path Pu,u that is MB-feasible for M̂). All the paths in PM \{Pvi ,vi , Pv1,vz , Pu,vh } are

MB-feasible also for M̂ . It remains to be shown that Pu,v2
, Pvi ,vh and Pv′

i ,vz are MB-feasible.

Recall that a path Pb,a , b ∈ B, a ∈ A(M̂), is M B-feasible for M̂ if: (i) it does not contain

vertices of M̂ and (ii) it does not contain consecutive vertices of A(M̂). First observe

that all the subpaths of Pv1,vz ∈ PM satisfy these two conditions for the set M̂ . Then the

path Pu,v2
⊂ Pv1,vz is MB-feasible. The same consideration for the path Pvi ,vh ⊂ Pu,vh . Let

us consider now the path Pv′
i ,vz = {v′

i , vi , vi+1, . . . vz}. The subpath {vi+1, . . . vz} ⊂ Pv1,vz

satisfies conditions (i) and (ii). It remains to be shown that also the subpath {v′
i , vi , vi+1}

satisfies these two conditions. Since v′
i ∈ M , then, by Proposition 6, vi /∈ M and thus

vi /∈ M̂ by construction. It follows that v′
i /∈ A(M̂). Moreover, vi /∈ A(M̂) because v′

i /∈ M̂
by construction, vi−1 /∈ M̂ by hypothesis and vi+1 /∈ M̂ by the MB-feasibility of path Pv1,vz

for M . Then, it follows that the entire path Pv′
i ,vz is MB-feasible for M̂ and B, and thus the

couple (M̂,P M̂ ) is optimal for DPP on (C, B). �

Lemma 3. Let (M,PM ) be an optimal solution of DPP on (C, B). Let C1 = C1,h and C2 =
Ch+1,n be a partition of C into two components. If it is possible to define the set PM such
that all the bound vertices in Ci are covered by adjacent vertices of the set M ∩ V i , i = 1, 2,
then there exists a partition of M and of PM into two subsets such that: M = M1 ∪ M2,
PM = PM1 ∪ PM2 where (Mi ,PMi ) is optimal for (Ci , V i ∩ B), i = 1, 2.
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Proof: Let C1 = C1,h and C2 = Ch+1,n , h ≥ 1. By hypothesis all the bound vertices in

B1 = B ∩ V1,h are covered by adjacent vertices of C1,h . That is, the set M1 = M ∩ V1,h

covers by M B-feasible paths all the bound vertices in V1,h\M . Let us denote by PM1 the

set of these M B-feasible paths. The couple (M1,PM1 ) is thus a feasible solution for DPP
on B1\M1. In the same way the couple (M2,PM2 ) is feasible for DPP on (C2, B2), where

M2 = M\M1, B2 = B\B1 and the set PM2 is a set of MB-feasible paths covering all the

bound vertices of B2 by the adjacent vertices of M2. We show that these couples are also

optimum, respectively, for (C1, B1) and (C2, B2). Indeed, let (M3,PM3 ) , M3 ⊆ V1,h and

|M3| < |M1| be a feasible solution for DPP on (C1,h, B1). Thus, we could define the feasible

solution (M∗,PM∗ ) of DPP on (C, B) where M∗ = M3 ∪ M2, PM∗ = PM3 ∪ PM2 such

that |M∗| = |M3| + |M2| < |M1| + |M2| = |M |, which is a contradiction because M is

minimum. �

Finally, the following theorem states that there exists an optimum solution (M,PM ) of

DPP on (C, B) such that the MB-set M is entirely composed of spinal vertices.

Theorem 8. There exists an optimal solution (M,PM ) of DPP on (C, B) such that M ⊆
V \V ′.

Proof: The proof is by induction on the vertices of M = {x1, . . . , xm}.
By Lemma 2 the thesis is true for k = 1, that is x1 is spinal.

Let us suppose now that x1, . . . , xk−1 are spinal vertices of the optimal set M and xk ∈ M is

not spinal.

Without loss of generality we can assume x1 = vi1
, x2 = vi2

, . . . , xk−1 = vik−1
and xk =

v′
ik

, i1 < i2 < · · · < ik−1 < ik .

We show that we can define an optimal set M̂ = {x1, . . . , xk−1, x̂k, xk+1, . . . , xm} such

that x1, . . . , xk−1, x̂k are spinal.

Let xk−1 = vh ∈ M be the k − 1th spinal vertex of M , and, let xk = v′
j ∈ M , j > h, be

the kth vertex of M which is not spinal.

Since vh ∈ M , then vh+1 ∈ A(M). Since vh ∈ M is spinal, thus, by definition of MB-

feasibility of a path, there are not any MB-feasible paths connecting vertices of C1,h with

vertices of Ch+1,n .

If j = h + 1, let Pu,vh+1
be the MB-feasible path containing vertex vh+1 (if it exists).

The set M∗ = (M\{v′
h+1}) ∪ vh+1 has the same size of M . The set PM∗ = (PM\{Pu,vh+1

}) ∪
{Pu,vh+2

} ∪ {Pv′
h+1,v

′
h+1

} covers all the bound vertices by MB-feasible paths (note that Pu,vh+2

and Pv′
h+1,v

′
h+1

are added only if u �= vh+1 and v′
h+1 ∈ B respectively), therefore we have the

thesis.

Let j > h + 1 and PM be the set of M B-feasible paths associated with M and covering

all the bound vertices in B\M .

We can have the following two cases:� for each bound vertex u ∈ Bh+1,n , no M B-feasible path exists Pu,vh+1
∈ PM ;� there exists a bound vertex u ∈ Bh+1,n such that Pu,vh+1

∈ PM .

Case A: no M B-feasible path exists Pu,vh+1
∈ PM , where u ∈ Bh+1,n.

See Fig. 18. We can assume vh+1 /∈ B, because otherwise, by Proposition 9, we could

associate with M a set PM such that Pvh+1,vh+1
∈ PM and thus we would have Case B.
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Fig. 18 Example of Case A of Theorem 8

We can assume v′
h+1 /∈ B, because otherwise, the M B-feasible path Pv′

h+1,w
, w ∈ A(M) and

w �= vh+1 connecting the bound vertex v′
h+1 to the adjacent vertex w could be substituted,

by Proposition 8, with the MB-feasible path Pv′
h+1,vh+1

and then we would have Case B.

Therefore, there are no M B-feasible paths connecting vertices of C1,h+1 with vertices of

Ch+2,n . More in detail, all the bound vertices of C1,h+1 (respectively Ch+2,n) are covered

by adjacent vertices of M ∩ V1,h+1 (respectively M ∩ Vh+2,n). By Lemma 3 we can define

the sets M1 = {x1, . . . , xk−1} and M2 = {xk, . . . , xm} such that (M1,PM1 ) is optimal for

DPP on (C1,h+1, B1,h+1) and (M2,PM2 ) is optimal for DPP on (Ch+2,n, Bh+2,n).

Applying Lemma 2 to (M2,PM2 ) we can define the new optimal solution (M2∗,PM2∗ )

on (Ch+2,n, Bh+2,n), M2∗ = {x̂k, . . . , xm}, where x̂k is spinal. Thus, the couple (M̂,P M̂ ),

M̂ = M1 ∪ M2∗ and P M̂ = PM1 ∪ PM2∗ is an optimal solution of DPP on (C, B) and it

is such that the set M̂ contains k spinal vertices.

Case B: there exists an M B-feasible path Pu,vh+1
∈ PM for a bound vertex u ∈ Vh+1,n, ∩B.

By Proposition 8, we can suppose that |Pu,vh+1
∩ B| = 1, that is, we suppose the adjacent

vertex vh+1 covers the nearest bound vertex in {vh+1, . . . , vn}. Let u ∈ {vi , v
′
i }, i ≥ h + 1.

The partitionPM = PM1 ∪{Pu,vh+1
} ∪PM2 , is such thatPM1 is the set of MB-feasible paths

connecting bound vertices and adjacent vertices of the set V1,h , and PM2 is the set of MB-

feasible paths connecting bound vertices and adjacent vertices of the set Vh+1,n\{u, vh+1}.

If h + 1 ≤ i ≤ j (Fig. 19), then defining M2 = {xk, . . . , xm} the couple (M2,PM2 ) is

optimal for DPP on (Ci,n, Bi,n\{u}). Otherwise, there exist a set |M3| < |M2| and a set

PM3 of MB-feasible paths that is optimum for (Ci,n, Bi,n\{u}); this implies that M1 ∪ M3

and the set PM1 ∪ {Pu,vh+1} ∪ PM3 is feasible for (C, B), leading to a contradiction since

|M1 ∪ M3| < |M1 ∪ M2| = |M |. Thus, applying Lemma 2 to (M2,PM2 ), we can obtain, as

for Case A, a new couple (M̂,P M̂ ) which is optimal for (C, B) and that contains exactly k
spinal vertices.

If i > j (Fig. 20) then consider the bound vertex z ∈ {vl , v
′
l}, l > i , covered by the adjacent

vertex v j , i.e. consider the MB-feasible path Pz,v j . Let us define M2∗ = ({xk, . . . , xm}\{xk}) ∪
{v′

l} and the set PM2∗ = (PM2\{Pz,v j }) ∪{Pz,z}, where Pz,z is added only if z = vl . Thus, the

couple (M2∗,PM2∗ ) is optimal for (Ci,n, B2). Applying Lemma 2 to (M2∗,PM2∗ ), we obtain,
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Fig. 19 Example of Case B of Theorem 8 when h + 1 ≤ i ≤ j .

Fig. 20 Example of Case B of Theorem 8 when i > j .

as for Case A a new couple (M̂,P M̂ ) which is optimal for DPP on (C, B) and that contains

k spinal vertices. �
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