
Ann Oper Res (2006) 144: 83–97

DOI 10.1007/s10479-006-0014-y

Solving the asymmetric traveling purchaser problem∗

Jorge Riera-Ledesma · Juan-José Salazar-González
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Abstract The Asymmetric Traveling Purchaser Problem (ATPP) is a generalization of the

Asymmetric Traveling Salesman Problem with several applications in the routing and the

scheduling contexts. This problem is defined as follows. Let us consider a set of products

and a set of markets. Each market is provided with a limited amount of each product at a

known price. The ATPP consists in selecting a subset of markets such that a given demand

of each product can be purchased, minimizing the routing cost and the purchasing cost. The

aim of this article is to evaluate the effectiveness of a branch-and-cut algorithm based on new

valid inequalities. It also proposes a transformation of the ATPP into its symmetric version,

so a second exact method is also presented. An extensive computational analysis on several

classes of instances from literature evaluates the proposed approaches. A previous work ()

solves instances with up to 25 markets and 100 products, while the here-presented approaches

prove optimality on instances with up to 200 markets and 200 products.

Keywords Traveling purchaser problem . Traveling salesman problem . Branch-and-cut .

Heuristics

This article concerns a generalization of the well-known Asymmetric Traveling Salesman
Problem (ATSP). See, e.g., Fischetti, Lodi and Toth (2002) for recent references on the

ATSP. The generalization is known as Asymmetric Traveling Purchaser Problem (ATPP) and

is defined as follows. Let us consider a depot v0, a set of markets M := {v1, . . . , vn}, and

a set of products K := {p1, . . . , pm}. We will assume n ≥ 4 and m ≥ 2 for simplicity. Let

G = (V, A) be a directed graph where V := {v0} ∪ M is the vertex set and A := {(vi , v j ) :

vi , v j ∈ V } is the arc set. A purchaser originally in v0 must select and visit a subset of markets

to buy a given amount of each product in K . Each product pk can be purchased at a subset
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Mk of markets. Let dk be the units of the product pk that must be purchased, and let qki be the

units of the product pk that are available at market vi ∈ Mk . We assume that qki and dk satisfy

0 < qki ≤ dk and
∑

v j ∈Mk
qk j ≥ dk for all pk ∈ K and vi ∈ Mk . Let us denote the price of a

unit of product pk at market vi by bki , and the travel cost of the arc a = (vi , v j ) (i.e., the cost

of traveling from market vi to market v j ) by ca . The ATPP consists in determining a simple

directed cycle (circuit) in G passing through the depot and a subset of markets so that all

products are purchased at a minimum total cost obtained by adding the routing cost and the

purchasing price.

This definition of the ATPP generalizes the standard version where the supplies are as-

sumed to be unlimited, i.e., qki = dk for all i, k. This particular case, in which there is no

restricted offer of a product at each market, is called unrestricted ATPP. It is based on the

assumption that each product pk can be totally purchased in each market vi ∈ Mk , and can

be seen as the ATPP with one-unit demand for each product.

The ATPP was introduced by Burstall (1966) and by Buzacott and Dutta (1971) in the

scheduling context. Indeed, each product corresponds to a task to be performed by a flexible

machine, and each market corresponds to a potential state of the machine. The offer qki is

the resource available to perform task pk when the machine is in state vi , the cost bki is the

time consumed to perform a unit of task pk using state vi , and ca with a = (vi , v j ) is the

changeover time from state vi to state v j . State v0 is the initial and final state of the machine.

The unrestricted ATPP isNP-hard in the strong sense since it is the TSP when each product

can be purchased in exactly one market. Most of the previous works assume that the cost of

traveling from a market vi to a market v j coincides with the cost of traveling from market v j

to market vi , for all i and j . This version is known as Symmetric Traveling Purchaser Problem
(STPP). Ramesh (1981) described an exact method based on a lexicographical search capable

of handling symmetric instances with n ≤ 12 and m ≤ 10. Singh and van Oudheusden (1997)

presented a branch-and-bound algorithm solving ATPP instances with n ∈ {10, 15, 20, 25}
and m ∈ {10, 30, 50, 100}, and STPP instances with n ∈ {10, 15, 20} and m ∈ {15, 30, 50}.
The bound in Singh and van Oudheusden (1997) is based on the Uncapacitated Facility
Location Problem (UFLP), arising when the sequence requirement is relaxed. Indeed, the

UFLP is also a particular case of the unrestricted ATPP by associating plants to markets,

customers to products, and by setting ca = ( fi + f j )/2 for a being the arc from vi to v j

and fi being the cost of opening plant vi . Laporte, Riera-Ledesma and Salazar-González

(2003) deals with the STPP and presents a branch-and-cut algorithm for the exact solution

of instances involving up to 200 markets and 200 products.

The literature is mostly directed toward the development of heuristic or near optimal

methods for solving the STPP. One of these heuristic procedures was introduced by Golden,

Levy and Dahl (1981) and named the Generalized Saving Heuristic (GSH). Their heuristic

was, later on, modified by Ong (1982) who proposed the Tour Reduction Heuristic. Pearn

and Chien (1998) suggested some improvements to the two previous works of Golden, Levy

and Dahl (1981) and Ong (1982). Two of these improvements were related to the GSH of

Golden, Levy and Dahl (1981). Another heuristic proposed by Pearn and Chien (1998) is

called Commodity Adding Heuristic. The first metaheuristic approaches for the STPP based

on dynamic tabu search and simulated annealing are presented in Voß (1996). That article

proposes two dynamic strategies for the managing of the tabu list (the Reverse Elimination
Method and the Cancelation Sequence Method), and their impact on the STPP is also studied.

Other metaheuristic approaches for the symmetric version have been recently presented by

Boctor, Laporte and Renaud (2003) and by Riera-Ledesma and Salazar-González (2005).

The benchmark STPP instances have been created for both the unrestricted and the general

versions, and for the particular case in which the markets are locations in the Euclidean plane.
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These algorithms are tested on instances up to m ≤ 200 and n ≤ 200. To our knowledge, a

similar extensive analysis of algorithms has not been conducted on asymmetric instances,

even if they were the original motivation to study the problem (see Burstall, 1966).

This article is organized as follows. Section 1 presents an Integer Linear Programming

(ILP) model to formulate the ATPP, and introduces new valid inequalities to strengthen its lin-

ear relaxation. Section 2 describes a branch-and-cut approach for the exact solution of ATPP

instances, empathizing some procedures to find violated valid inequalities when required.

Section 3 shows an alternative approach to find optimal solutions of ATPP instances using

an available exact algorithm for solving the symmetrical version. Extensive computational

experiments are analysed in Section 4 to compare the two approaches. In our experiments,

both approaches were able to prove optimality solving unrestricted ATPP instances with up

to 200 markets and 200 products, and restricted ATPP instances with up to 100 markets and

200 products.

1. Mathematical model

We present in this section an Integer Linear Programming (ILP) formulation for the ATPP,

and some valid inequalities strengthening the continuous linear programming relaxation. All

the elements are used in the exact algorithm describe in Section 2.

1.1. ILP formulation for the ATPP

To formulate the problem, we first need some notation. For S ⊂ V , let us de-

note A(S) := {(vi , v j ) ∈ A : vi , v j ∈ S}, δ+(S) := {(vi , v j ) ∈ A : vi ∈ S, v j ∈ V \ S} and

δ−(S) := {(vi , v j ) ∈ A : vi ∈ V \ S, v j ∈ S}. Also let us define

M∗ := {v0} ∪
{

vi ∈ M : there exists pk ∈ K such that
∑

v j ∈Mk\{vi }
qkj < dk

}
,

the set of vertices that must necessarily be part of any feasible ATPP circuit, and

K ∗ :=
{

pk ∈ K :
∑

vi ∈Mk

qki = dk

}
,

the set of products without market decision options.

For a mathematical formulation we use three types of decision variables:

xa :=
{

1 if arc a belongs to the solution

0 otherwise
for all a ∈ A;

yi :=
{

1 if vertex vi belongs to the solution

0 otherwise
for all vi ∈ V ;
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zki := the amount of product pk purchased at market vi ,

for all pk ∈ K and all vi ∈ Mk .

The ATPP formulation is now the following:

wO PT := min
∑
a∈A

ca xa +
∑
pk∈K

∑
vi ∈Mk

bki zki (1)

subject to ∑
a∈δ+({vi })

xa = yi for all vi ∈ V (2)

∑
a∈δ−({vi })

xa = yi for all vi ∈ V (3)

∑
a∈δ+(S)

xa ≥ yi for all S ⊂ M and all vi ∈ S (4)

∑
vi ∈Mk

zki = dk for all pk ∈ K (5)

zki ≤ qki yi for all pk ∈ K and all vi ∈ Mk (6)

xa ∈ {0, 1} for all a ∈ A (7)

yi ∈ {0, 1} for all vi ∈ M \ M∗ (8)

yi = 1 for all vi ∈ M∗ (9)

zki ≥ 0 for all pk ∈ K and all vi ∈ Mk . (10)

Constraints (2) and (3) are the assignment equations, and impose that the in-degree and

out-degree, respectively, of each visited vertex must be equal to one. Constraints (4), called

YSEC+, impose the strong connectivity on the route. Because of (2) and (3), inequalities (4)

can be equivalently re-written as∑
a∈A(S)

xa ≤
∑

v j ∈S\{vi }
y j for all S ⊂ M and all vi ∈ S.

These constraints ensure that a visited market in a subset S ⊆ M must be connected to the

depot through a path. By also using Eqs. (2) and (3), these constrains are also equivalent to:∑
a∈δ−(S)

xa ≥ yi for all S ⊂ M and all vi ∈ S.

Inequalities (5) guarantee that the exact amount of product pk is purchased. Inequalities (6)

mean that it is not possible to purchase a product pk in a market vi if it is not visited, and

that it is not possible to purchase more than its offer qki if it is visited. Constraints (7)–(10)

impose bounds and integrality conditions on the variables.
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1.2. Strengthening the linear relaxation

When using model (1)–(10) in a cutting-plane approach for the exact solution of the ATPP,

it is observed that the basic linear relaxation needs additional valid inequalities to close the

integrability gap. To this end this section shows some considerations leading to a tighter

linear relaxation.

A first observation is based on the fact that constraints (4) can be trivially strengthened if

there is a product pk that cannot be totally purchased outside markets in S. More precisely, if S
is a subset of markets such that

∑
vi ∈Mk\S qki < dk for a product pk ∈ K , then the inequality:

∑
a∈δ+(S)

xa ≥ 1 (11)

is valid for all ATTP solutions. This inequality imposes the requirement that the purchaser

must necessarily visit a market in S.

A second observation is that each solution of the ATPP is a simple circuit in a directed

graph, hence all valid inequalities presented in Balas and Oosten (2000) are also valid in-

equalities for ATPP solutions. To illustrate the idea, we restrict our attention adapting to the

so-called D+
k inequalities.

Let us consider an ordered subset S = {vi1
, . . . , vil } ⊂ M (3 ≤ l ≤ n). Then

xil i1
+

l−1∑
h=1

xih ih+1
+ 2

l∑
h=3

xi1ih +
l∑

j=4

j−1∑
h=3

xi j ih ≤
l∑

h=1

yih − yi2
(12)

is a valid inequality for ATPP solutions. See Balas and Oosten (2000) and observe that

v0 
∈ S, thus a feasible ATPP circuit could be totally outside S but not totally inside S. These

inequalities were proposed by Grötschel and Padberg (1985) for the Asymmetric TSP, and a

separation algorithm for the ATSP was proposed by Fischetti and Toth (1997).

In the particular case that there is a product pk that cannot be totally purchased outside

markets in S, then constraints (12) can be trivially strengthened. More precisely, if S is a

subset of markets such that
∑

vi ∈Mk\S qki < dk for a product pk ∈ K , then the inequality:

xil i1
+

l−1∑
h=1

xih ih+1
+ 2

l∑
h=3

xi1ih +
l∑

j=4

j−1∑
h=3

xi j ih ≤
l∑

h=1

yih − 1 (13)

is a valid inequality for ATPP solutions.

As observed by Singh and van Oudheusden (1997), the subproblem defined by (5), (6),

(8) and (10) corresponds to a generalization of the UFLP with upper bounds on the customer-

facility variables. Valid inequalities for this subproblem when qki = dk can be obtained from

the Set Covering Problem polytope (see e.g., Balas and Ng, 1989). To illustrate the idea, let us

consider a subset of products L ⊆ K with 3 ≤ |L| ≤ |K | − 1. Define M ′(L) := ∩pk∈L Mk the

set of markets each one selling all products in L and M ′′(L) := ∪pk∈L Mk the set of markets

each one selling at least one products in L . We can then impose the cover inequality

2
∑

vi ∈M ′(L)

yi +
∑

vi ∈M ′′(L)\M ′(L)

yi ≥ 2 (14)
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which stipulates that at least two markets in M ′′(L) must be visited if no market in M ′(L)

is visited. On our computational experiment we did not find any advantage of considering

these inequalities.

The previous ideas have exploited in a separated way two relaxations of the ATPP: on

one side, the routing part; on another side, the set covering part. It is also possible to derive

additional valid inequalities by combining both relaxations. Indeed, the constraints

∑
(i, j)∈δ+(S)

xi j ≥ 1

dk

∑
vi ∈S∩Mk

zki for all S ⊆ M and pk ∈ K (15)

state that at least two edges must be incident to a subset S whenever some amount of any

product pk is purchased in a market of S ∩ Mk . Clearly, if
∑

vi ∈Mk\S qki < dk for some product

pk , then constraints (15) are dominated by constraints (11). Again, constraints (15) can be

strengthened by

∑
(i, j)∈δ+(S)

xi j ≥
∑

vi ∈S∩Mk
zki

min
{
dk,

∑
vi ∈S∩Mk

qki
} for all S ⊆ M and pk ∈ K . (16)

These constraints are named ZSEC+. Constraints (16) coincide with inequalities (6) when

S = {vi }.
Another procedure to generate additional valid inequalities is inspired by the concept

of symmetric inequalities for the ATSP (see Fischetti and Toth, 1997; Fischetti, Lodi and

Toth, 2002). An inequality αx + βy + γ z ≤ α0 is called symmetric when αi j = α j i for all

(vi , v j ) ∈ A. Symmetric inequalities valid for the ATPP can be easily derived from valid

inequalities for the STPP. To this end, let us consider an undirected graph Ḡ = (V, E) where

there is an edge e = [vi , v j ] ∈ E if (vi , v j ) ∈ A or (v j , vi ) ∈ A, and let us associate each

edge e = [vi , v j ] ∈ E with a variable x̄e by setting

x̄[vi ,v j ] := x(vi ,v j ) + x(v j ,vi ).

Then, a symmetric valid inequality for ATPP can be trivially derived from each inequal-

ity
∑

[vi ,v j ]∈E αi j x i j + βy + γ z ≤ α0 valid for the STPP (see Laporte, Riera-Ledesma and

Salazar-González, 2003) by replacing the x variables. In some cases the obtained symmetric

inequality is dominated by another ATPP inequality but, as it is shown in Section 4, the

general idea of considering this procedure is helpful to strengthen the linear relaxation in

practice.

Some of the presented inequalities define facets of the ATPP polytope under certain

conditions. The basic idea for the proofs are based on the fact that the ATPP polytope is a

face of the ATSP polytope, and the results can be obtained by using the classical sequential

lifting introduced by Padberg (1975) in a similar way done in Laporte, Riera-Ledesma and

Salazar-González (2003) for the STPP. See Riera-Ledesma (2002) for details.

2. Algorithm

The ILP model and the valid inequalities presented in the previous section can be used

to derive a branch-and-bound algorithm to find optimal ATPP solutions, where the lower

bound is obtained by solving the linear relaxation iteratively strengthened with the additional
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constraints. The whole procedure is known as branch-and-cut, and it is based on an effective

management of the constraints (see, e.g., Jünger, Reinelt and Rinaldi, 1995 for details). This

section describes how some inequalities can be generated at each iteration to strengthen the

linear relaxation. The idea is to find violated constraints by the optimal solution (x∗, y∗, z∗) of

the current linear relaxation, and it is known as separation problem. Other classical ingredients

(such as initial and primal heuristics, branching phase, pricing scheme, etc.) must be also

implemented to produce an effective branch-and-cut code. In our implementation, these

ingredients are trivial adaptations of the proposals of previous authors for similar routing

problems, thus we do not give here details. For example, the primal heuristic builds a feasible

ATPP circuit by iteratively selecting arcs a with the larger values of x∗
a ; the circuit is completed

by using a nearest neighborhood rule, and enlarged with the maximum-saving criterion

markets to guarantee feasibility; a cleaning procedure tries to remove each market at a time

to reduce the total cost; the heuristic ends with a 3-optimality scheme on the arcs in the

circuit.

2.1. Separating the YSEC+ inequalities (4) and (11)

The separation problem of inequalities (11) appears when solving the classical ATSP, and the

separation of inequalities (4) when solving the Circuit Problem. Hence an efficient algorithm

for separating these inequalities is already known in literature (see, e.g., Fischetti, Lodi

and Toth, 2002). The idea consists in considering a network G∗ = (V, A) where each arc

a ∈ A is associated with a capacity x∗
a . Then, for each vi ∈ M with y∗

i > 0, a most violated

YSEC+ constraint (4) corresponds to a minimum-capacity directed cut (S, V ∗ \ S) with

vi ∈ S and v0 
∈ S. Therefore, the separation problem can be solved by applying several

max-flow computations. Whenever
∑

vi ∈Mk\S qki < dk for a product pk ∈ K then the stronger

inequality (11) is generated instead of the dominated inequality (4). Since the separation

procedure tends to produce different subsets S, we shrink each subset S so the final family

of subsets is a nested family. This idea has several practical advantages also notice on other

routing problems (see, e.g., Fischetti, Salazar and Toth, 1997).

2.2. Separating the D+
k inequalities (12) and (13)

A heuristic procedure to solve the separation problem of the D+
k inequalities can be done by

performing partial enumeration search on the support graph induced by the current fractional

solution. This idea, in a clever way, has been successfully implemented by Fischetti, Lodi

and Toth (2002) for the ATSP. The basic idea is to develop a greedy mechanism to select and

sequence a subset of markets vi1
, . . . , vil , 3 ≤ l ≤ n maximizing

x∗
il i1

+
l−1∑
h=1

x∗
ih ih+1

+ 2
l∑

h=3

x∗
i1ih

+
l∑

j=4

j−1∑
h=3

x∗
i j ih

−
l∑

h=1

y∗
ih
.

Indeed, on the network G∗ previously defined, we start by selecting the arcs with biggest

capacity, and whenever a circuit is created among the selected arcs, an enumerative search

looks for a violated constraint in (12) and (13). As it is shown in Section 4, this simple

approach did not required a high computational effort but was successful in generating some

violated constraints in our computational experiments.
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2.3. Separating the ZSEC+ inequalities (15) and (16)

The separation problem of constraints (15) can be also solved in a similar way to the separation

problem of the YSEC+ constraints. Indeed, observe that by using Eqs. (5) finding a set S
defining a most violated inequality in (15) corresponds to finding a set S with minimum value

of:

∑
a∈δ+(S)

x∗
a +

∑
vi ∈Mk\S

z∗
ki

dk
.

Therefore, the separation problem of (15) for each product pk ∈ K is equivalent to compute

a max-flow on a network G ′ = (V ′, A′) defined as follows. The vertex set V ′ contains the

depot v0, the market set M and a dummy vertex vn+1. The arc set A′ contains all the arcs

a ∈ A with capacity x∗
a , and all arcs (vi , vn+1) with capacity z∗

ki/dk . Then, the max-flow must

go from the source v0 to the destination vn+1. If the capacity of the max-flow is bigger than

or equal to 1, then all inequalities in (15) hold; otherwise, the minimum-capacity cut defines

a most violated inequality in (15). Whenever
∑

vi ∈S∩Mk
qki < dk for a product pk ∈ K then

the stronger inequality (16) is generated instead of the dominated inequality (15).

This procedure solves exactly the separation problem of inequalities (15) and is a heuristic

approach for the separation problem of inequalities (16). Indeed, the procedure can end with

the proof that no inequality in (15) exits, but still a violated constraint in (16) could exits. To

improve this basic heuristic idea we have also implemented a procedure to check for violation

subsets S′ generated by inserting and removing a market from a previous generated subset S.

2.4. Separating symmetric constraints for the ATPP

If no one of the above separation procedures generate a violated inequality, then we remove the

orientation of each arc in the current solution and construct an undirected fractional solution.

This fractional solution is given as input to the separation procedures described in Laporte,

Riera-Ledesma and Salazar-González (2003). If a violated inequality is generated, then a

violated symmetric constraint is constructed and considered to strengthen the current linear

relaxation. Among the several inequalities we consider the following 2-matching constraints:∑
e∈T

xe −
∑

e∈δ(H )\T

xe ≤ |T | − 1 (17)

for all H ⊂ V and T being an odd set of disjoint edges in δ(H ), |T | ≥ 3.

3. Transformation of the ATPP into the STPP

The previous section proposed a direct approach to solve the ATPP. We now introduce an

alternative proposal to find an optimal solution of an ATPP instance when an exact algorithm

for solving STPP instances is available. The aim is to transform the asymmetric instance into a

symmetric one in the spirit of similar works done for similar routing problems. In particular,

inspired by the 3-node transformation of Karp (1972) and the 2-node transformation of

Jonker and Volgenant (1983), both for the ATSP, we next propose a transformation for the

ATPP into the STPP.
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If the original ATPP instance is given on the directed graph G = (V, A), we built a new

STPP instance on the following undirected graph G ′′′ = (V ′′′, E ′′′). The vertex set V ′′′ con-

tains three copies of each vertex in V . We denote by v′
i , v

′′
i , v′′′

i the three vertices in V ′′′

associated to each vi in V . Let N a large enough number. For each vertex vi ∈ V , we

consider the edge [v′
i , v

′′
i ] in E ′′′ with cost equal to −N , and the edge [v′′

i , v′′′
i ] in E ′′′

with cost equal to 0. Associated to each arc a = (vi , v j ) ∈ A, we consider the edge in

[v′′′
i , v′

j ] ∈ E ′′′ with cost ca + N . The remaining edges in E ′′′ have cost equal to ∞. For

each vertex vi ∈ V , the vertex v′′
i ∈ V ′′′ represents the market selling the same products of

vi at the same prices, while v′
i and v′′

i do not sell any product. Then, a minimum-cost cycle

in G ′′′ solving the STPP corresponds to a minimum-cost circuit in G solving the ATPP, and

viceversa. Indeed, an optimal cycle cannot use two consecutive edges with negative cost

and it will alternate positive and negative costs, so the value of N will not affect the total

cost. This alternation guarantees that the arcs associated to the used edges define a circuit

in G. Trivially, each pair of vertices {v′′
i , v′′′

i } can be shrunk into a single vertex, so the

previous transformation involves to solve a STPP in a graph with only a double number of

markets.

4. Computational results

The here-proposed approaches have been implemented in C++ on a PC AMD 1333 MHz.

ABACUS 2.2 linked with CPLEX 6.0 has been used as a framework (see Jünger and Thienel

(1998) for details on this software). A time limit of two hours has been established for the

running time of our algorithms.

To test the performances of our code, we have considered ATPP instances obtained by

using the random generator described in Singh and van Oudheusden (1997), since this is

the only today’s article in which algorithms for the ATPP are tested. It is a generator of

unrestricted ATPP instances in which the routing costs ca are randomly generated in [1, τ ],

where τ is generated in [15,140]. Each market sells a number of products randomly generated

in [1, m], where m = |K | is the number of products. Purchasing costs are randomly generated

in [0, ω] where ω is generated in [5,75] for each market. We have defined instances with |V | ∈
{50, 100, 150, 200} and |K | ∈ {50, 100, 150, 200}. For each type we have generated five

instances by considering different seeds, thus our benchmark library contains 80 unrestricted

ATPP instances.

In order to consider ATPP instances with restricted offers, the generator of Singh and van

Oudheusden has been extended in the following way. For each product pk and each market vi ,

qki has been randomly generated in [1,15] and dk := �λ maxvi ∈Mk qki + (1 − λ)
∑

vi ∈Mk
qki�

for λ ∈ {0.5, 0.8, 0.9, 0.95, 0.99}. Observe that parameter λ controls the demand of each

product, and therefore it affects the number of visited markets in an optimal ATPP circuit:

the smaller λ is, the bigger is the number of visited markets.

Tables 1–3 show statistical results from our computational experiments testing the branch-

and-cut algorithm for the ATPP. The heading columns have the following meaning:

|V |: number of vertices (i.e., n + 1);

|K |: number of products (i.e., m);

λ: value of the parameter λ in the generation (only for restricted ATPP instances);

Solved: number of instances solved before the time limit (over 5 trials);

#: average number of vertices in the optimal solutions;

2sec: average number of constraints (11) separated;
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Table 1 Solving unrestricted ATPP instances with the branch-and-cut algorithm

|V | |K | # Solved 2sec ysec zsec 2mat D+
k Nodes %UB %LB Root-t Total-t

50 50 9.2 5 506.8 60.6 848.4 8.0 8.6 13.8 0.47 0.33 1.0 5.6

100 12.4 5 586.8 110.0 1357.2 6.4 2.8 17.0 0.58 0.20 1.6 8.8

150 14.0 5 827.8 152.8 2345.2 5.4 4.0 19.4 0.38 0.12 1.8 15.8

200 16.0 5 1329.4 220.4 3925.0 6.6 4.4 25.8 0.33 0.15 1.8 25.6

100 50 6.0 5 223.8 44.0 1062.0 5.2 2.8 7.8 0.12 0.17 17.0 36.8

100 12.0 5 9378.2 1124.2 12619.4 32.8 18.6 76.2 0.79 0.47 21.2 411.0

150 14.8 5 31966.6 4024.8 55081.8 124.2 43.2 265.0 0.76 0.48 25.4 1646.4

200 17.2 5 44964.0 6431.6 97084.0 246.0 62.4 329.4 0.50 0.38 24.2 2237.6

150 50 7.6 5 5343.2 598.6 6544.2 20.8 28.2 49.4 0.90 0.66 87.2 812.2

100 10.6 5 17261.4 1958.4 26797.4 34.4 17.8 93.4 0.77 0.57 99.0 2302.8

150 14.4 5 13148.4 2301.2 31251.8 77.2 22.0 147.4 0.74 0.44 69.0 2247.4

200 15.8 1 32748.6 4261.0 78140.4 132.0 31.4 300.2 0.68 0.68 100.4 1428.0

200 50 7.8 5 4186.6 326.8 6694.2 19.0 16.8 32.2 0.57 0.59 277.8 1484.8

100 10.2 3 15039.2 2374.4 30172.0 64.2 25.8 117.4 0.51 0.61 172.6 3037.7

150 13.2 1 25074.2 2315.8 41014.2 86.8 20.8 126.6 0.64 0.65 241.0 1605.0

200 16.8 0 32170.0 2351.6 45997.8 48.4 7.6 119.8 0.65 0.78 307.8 −

Table 2 Solving ATPP instances with |V | = 50 with the branch-and-cut algorithm

|K | λ Solved # 2sec ysec zsec 2mat D+
k Nodes %UB %LB Root-t Total-t

50 0.50 5 50.0 636.2 1.8 35.0 90.2 133.4 2.2 0.01 0.00 0.0 0.6

0.80 5 40.2 294.4 3.2 32.4 132.4 175.6 14.0 0.04 0.01 0.0 1.6

0.90 5 27.4 390.8 22.4 179.0 712.8 857.6 41.2 0.07 0.08 0.0 15.2

0.95 5 18.0 664.8 62.4 718.8 1017.4 2723.0 72.6 0.24 0.19 0.0 31.4

0.99 5 10.0 484.0 20.0 370.2 115.2 1070.2 5.0 0.62 0.30 0.6 6.2

100 0.50 5 50.0 1325.2 2.4 84.2 166.6 525.2 7.4 0.00 0.00 0.2 3.0

0.80 5 50.0 594.4 2.8 64.0 88.2 253.2 40.2 0.01 0.00 0.0 3.0

0.90 5 42.8 668.8 19.4 257.0 739.8 1032.4 45.6 0.09 0.04 0.0 27.8

0.95 5 28.6 12748.2 635.4 10177.4 15147.2 37812.2 543.8 0.21 0.18 0.2 800.8

0.99 5 15.8 1436.8 40.0 1840.6 590.4 5039.8 17.4 0.34 0.24 1.6 31.6

150 0.50 5 50.0 1979.6 2.4 101.0 134.2 678.6 8.6 0.00 0.00 0.0 2.8

0.80 5 50.0 909.8 3.4 133.6 176.2 650.0 8.0 0.01 0.00 0.8 3.2

0.90 5 46.2 617.0 4.6 148.8 229.4 764.0 22.8 0.02 0.01 0.0 8.0

0.95 5 34.2 5457.2 209.4 3176.8 5070.2 15189.8 212.8 0.12 0.10 0.2 424.4

0.99 5 18.4 2669.4 70.8 2464.2 626.0 6527.4 28.8 0.42 0.18 2.4 71.4

200 0.50 5 50.0 2704.2 2.0 94.0 61.4 542.8 12.8 0.00 0.00 0.0 1.8

0.80 5 48.8 1254.8 2.2 154.6 184.2 917.6 6.4 0.00 0.00 0.8 5.2

0.90 5 48.8 779.6 3.8 154.2 145.8 692.2 8.0 0.02 0.01 0.8 6.4

0.95 5 40.0 3652.8 124.4 2639.2 3538.4 11679.8 102.6 0.08 0.07 1.0 344.8

0.99 5 21.4 7344.0 180.0 5862.6 1434.6 16103.6 67.0 0.29 0.20 2.6 221.6
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Table 3 Solving ATPP instances with |V | = 100 with the branch-and-cut algorithm

|K | λ Solved # 2sec ysec zsec 2mat D+
k Nodes %UB %LB Root-t Total-t

50 0.50 5 100.0 1546.8 122.2 136.2 1095.2 502.2 576.4 0.01 0.00 2.4 265.0

0.80 5 91.2 714.2 28.8 78.2 752.8 292.0 269.4 0.02 0.00 2.2 83.0

0.90 5 60.8 4998.4 272.0 2834.0 16540.6 8709.6 393.6 0.06 0.04 1.8 1311.6

0.95 1 35.0 19694.2 1189.8 13954.4 65805.4 57756.2 1440.8 0.26 0.16 1.8 6767.8

0.99 5 13.6 6407.6 262.4 8251.0 3857.8 17495.6 100.0 0.13 0.56 5.6 2029.6

100 0.50 5 100.0 2856.0 13.0 101.4 433.6 534.4 270.0 0.00 0.00 4.4 114.2

0.80 5 90.4 1325.0 6.0 81.0 476.4 460.6 87.8 0.01 0.00 3.2 33.0

0.90 5 71.6 1271.6 25.6 343.2 1320.4 1390.2 76.2 0.03 0.01 3.0 190.2

0.95 0 − − − − − − − 0.14 0.13 4.0 −
0.99 3 20.0 111815.4 3087.8 89527.4 31175.0 189650.4 988.4 0.74 0.33 10.8 5854.4

150 0.50 5 100.0 4542.6 23.4 108.4 388.2 670.6 347.8 0.00 0.00 2.6 185.4

0.80 5 100.0 22563.2 1763.4 46.8 901.2 585.6 5.4 0.00 0.00 16.2 16.2

0.90 5 90.4 3122.6 1120.8 152.8 2632.0 1672.0 96.2 0.02 0.01 8.8 8.8

0.95 0 − − − − − − − 0.07 0.10 5.0 −
0.99 5 18.4 108864.2 1837.0 25643.2 20542.6 174276.0 694.2 0.30 0.26 12.2 5623.6

200 0.50 5 100.0 5866.4 15.0 215.8 625.8 1181.0 203.4 0.00 0.00 5.0 97.6

0.80 5 100.0 3338.4 77.4 347.0 676.6 1089.4 495.0 0.00 0.00 46.4 294.6

0.90 5 95.0 2355.8 119.6 656.0 999.8 1580.8 617.8 0.01 0.01 9.4 7.2

0.95 0 − − − − − − − 0.06 0.09 8.6 −
0.99 2 22.0 103687.6 1666.8 46234.8 13034.6 146714.6 438.0 0.31 0.23 17.6 6675.6

ysec: average number of constraints (4) separated;

zsec: average number of constraints (15)–(16) separated;

2mat: average number of constraints (17) separated;

D+
k : average number of constraints (12)–(13) separated;

Nodes: average number of nodes explored during the branch-and-cut execution;

%UB: average gap between the heuristic and the optimal solutions at the end of the root

node, over the optimal solution value;

%LB: average gap between the fractional and the optimal solutions at the end of the root

node, over the optimal solution value;

Root-t: average computational time in seconds at the end of the root node;

Total-t: average computational time in seconds for the whole branch-and-cut execution.

According to Table 1, the branch-and-cut algorithm above described was able to solve

most of the 80 unrestricted ATPP instances. Only 15 instances have not been solved before

the time limit. Only those instances solved before the time limit of two hours have been taken

into account in the average computations. The difficulty of the problem grows clearly with

the number of available markets and required products. The number of visited markets in

an optimal solution tends to remain small, even when |K | = 200. This is mainly due to the

ratio between the routing cost and the pricing cost in an optimal solution. In other words,

the higher the pricing costs are, the bigger the number of markets in the optimal solution

is.
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Table 4 Branch-and-cut vs transformation for unrestricted ATPP instances

Branch-and-cut Transformation

|V | |K | # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

50 50 9.2 5 0.80 1.0 5.6 5 1.42 3.0 13.2

100 12.4 5 0.78 1.6 8.8 5 1.01 2.8 20.0

150 14.0 5 0.51 1.8 15.8 5 0.50 3.6 40.8

200 16.0 5 0.49 1.8 25.6 5 0.45 3.6 61.0

100 50 6.0 5 0.29 17.0 36.8 5 0.55 30.2 57.6

100 12.0 5 1.26 21.2 411.0 5 1.37 44.4 956.0

150 14.8 5 1.23 25.4 1646.4 4 1.72 38.0 2137.0

200 17.2 5 0.88 24.2 2237.6 4 1.05 28.2 1157.0

150 50 7.6 5 1.56 87.2 812.2 5 2.31 148.6 1371.4

100 10.6 5 1.34 99.0 2302.8 5 1.69 204.4 3256.0

150 14.4 5 1.19 69.0 2247.4 5 1.50 111.4 3880.0

200 15.8 1 1.35 100.4 1428.0 1 1.58 131.0 2609.0

200 50 7.8 5 1.17 277.8 1484.8 5 1.23 290.6 1663.2

100 10.2 3 1.13 172.6 3037.7 3 1.55 189.6 3511.7

150 13.2 1 1.29 241.0 1605.0 1 1.47 279.2 2162.0

200 16.8 0 1.43 307.8 − 0 1.74 418.0 −

All the separation procedures described in Section 2 succeeded in finding some vio-

lated constraints. Our computational experience shows that constraints (11), (4) and (15)

are quite relevant, since the average computational time grows when their separation pro-

cedures are not available. This behaviour cannot be extended to constraints (17), (12)

and (13): the computational time does not show an important increase when those con-

straints are not considered. Activating all the separated constraints, the lower bound at

the end of root node has never been bigger than 1% with respect to the cost of an opti-

mal solution. A similar result applies also to the upper bound obtained by using the ini-

tial and primal heuristics. Because of the gap between the lower and the upper bounds at

the end of the root node, the exact algorithm requires a branching phase but despite of

this, our approach has obtained the optimality proof before the time limit in most of the

instances.

Tables 2 and 3 show the statistical results when the branch-and-cut code is used to solve

the restricted ATTP instances. Columns represented by # show how sensitive is the number

of markets in an optimal circuit with respect to λ, which also has a strong impact in the

algorithm performance.

The hardness of solving the restricted instances with the branch-and-cut code is observed

in Tables 2 and 3. The total computational time grows with the parameter λ (which is also

related to the length of an optimal circuit). The computational time attains its maximum at

λ = 0.95, and immediately the hardness begins to decrease. As it has also been observed in

the unrestricted ATPP instances, the most relevant constraints are (11), (4) and (15), and the

upper and lower bounds at the end of the root node are very close to the optimal solution

value.

All instances of Table 2 (100 ATPP instances with |V | = 50) have been solved up to

optimality before the time limit. However, 25 over 100 instances with |V | = 100 remain
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Table 5 Branch-and-cut vs transformation for ATPP instances with |V | = 50

Branch-and-cut Transformation

|K | λ # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

50 0.50 49.0 5 0.01 0.0 0.6 5 0.03 0.2 6.0

0.80 40.6 5 0.05 0.0 1.6 5 0.05 0.2 5.4

0.90 27.4 5 0.15 0.0 15.2 5 0.20 0.0 37.6

0.95 18.0 5 0.43 0.0 31.4 5 0.41 0.0 62.0

0.99 10.0 5 0.93 0.6 6.2 5 1.35 1.4 18.6

100 0.50 50.0 5 0.00 0.2 3.0 5 0.01 1.0 2.8

0.80 50.0 5 0.01 0.0 3.0 5 0.01 0.8 2.0

0.90 42.8 5 0.14 0.0 27.8 5 0.12 0.4 74.0

0.95 27.3 5 0.38 0.2 800.8 5 0.32 0.3 921.3

0.99 15.8 5 0.58 1.6 31.6 5 0.79 2.0 82.0

150 0.50 50.0 5 0.00 0.0 2.8 5 0.01 1.2 5.4

0.80 50.0 5 0.01 0.8 3.2 5 0.00 0.8 6.6

0.90 46.4 5 0.04 0.0 8.0 5 0.03 0.8 17.4

0.95 34.0 5 0.22 0.2 424.4 5 0.18 1.0 443.3

0.99 18.2 5 0.61 2.4 71.4 5 0.52 3.0 222.8

200 0.50 49.8 5 0.00 0.0 1.8 5 0.00 2.2 6.8

0.80 48.8 5 0.01 0.8 5.2 5 0.01 1.6 3.2

0.90 49.0 5 0.03 0.8 6.4 5 0.03 1.2 9.2

0.95 40.0 5 0.15 1.0 344.8 5 0.14 1.0 561.8

0.99 21.4 5 0.48 2.6 221.6 5 0.50 2.0 520.2

unsolved with our time limit, as observed in Table 3. Notice that, only one over 20 instances

with λ = 0.95 has been solved before the time limit in this table.

The transformation from the ATPP into the STPP presented in Section 3 has been also

computationally tested on the two previous families of instances. Notice that a transformation

of an ATPP instance with |V | vertices produces a new STPP instance with 2|V | vertices and

with a minor increment of the number of edges. Therefore, the size of the STPP instance is

still reasonable for available exact algorithms.

Tables 4, 5 and 6 show a comparative study between the specific branch-and-cut algo-

rithm for the ATPP and the above mentioned transformation. As in the previous tables,

the three first columns show the cardinality of the instance and the number of markets

involved in the optimal circuit generated. The next four columns, both for the specific

branch-and-cut and for the transformation respectively, show the number of instances solved

before the time limit (Solved), the percentage of the gap between the upper and lower

bound over the upper bound at the root node (%gap), the computational time consumed

at the root node (Root-t), and the total computational time taken by the optimal algorithm

(Total-t).
Table 4 compares the original branch-and-cut algorithm against the transformation ap-

proach in the unrestricted ATPP instances. The specific branch-and-cut seems to be more

efficient not only with respect to the running time but also with respect to the gap between

the upper and lower bound. However, as long as the number of markets is increased, the

different between these two approaches is reduced.
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Table 6 Branch-and-cut vs transformation for ATPP instances with |V | = 100

Branch-and-cut Transformation
|K | λ # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

50 0.50 99.0 5 0.01 2.4 265.0 5 0.02 6.6 35.4

0.80 90.8 5 0.03 2.2 83.0 5 0.03 7.0 92.8

0.90 64.0 5 0.10 1.8 1311.6 1 0.03 2.0 129.0

0.95 35.0 1 0.42 1.8 6767.8 0 − − −
0.99 13.5 5 0.69 5.6 2029.6 4 0.70 9.8 1947.0

100 0.50 97.2 5 0.00 4.4 114.2 5 0.01 8.6 101.6

0.80 90.2 5 0.01 3.2 33.0 5 0.01 9.6 34.8

0.90 69.0 5 0.05 3.0 190.2 4 0.05 3.3 535.8

0.95 − 0 − − − 0 − − −
0.99 19.0 3 1.07 10.8 5854.4 2 1.06 12.0 5736.5

0.00

150 0.50 100.0 5 0.00 2.6 185.4 5 0.00 21.4 21.4

0.80 99.8 5 0.00 16.2 16.2 5 0.01 9.0 9.0

0.90 90.2 5 0.03 8.8 8.8 5 0.03 7.8 7.8

0.95 − 0 − − − 0 − − −
0.99 19.0 5 0.56 12.2 5623.6 1 0.88 11.0 4729.0

0.00

200 0.50 100.0 5 0.00 5.0 97.6 5 0.00 30.4 122.2

0.80 100.0 5 0.00 46.4 294.6 5 0.00 10.8 46.8

0.90 95.4 5 0.02 9.4 7.2 5 0.02 6.0 7.2

0.95 − 0 − − − 0 − − −
0.99 22.0 2 0.54 17.6 6675.6 2 0.56 17.5 5584.0

Tables 5 and 6 are related to restricted TPP instances. Also on these harder instances,

the branch-and-cut code shows better performance than the transformation approach, even if

there are several exceptions when |V | = 100. The smaller gap of the direct approach is due

to the new ad hoc inequalities and the heuristic approaches.

5. Conclusions

We have formulated and solved the Asymmetric Traveling Purchaser Problem (ATPP), a gen-

eralization of the well-known Asymmetric Traveling Salesman Problem. Two approaches

have been proposed to find optimal solutions. A first one is based on a new Integer Lin-

ear Programming model, strengthened through several families of valid inequalities. It is a

branch-and-cut algorithm using some separation procedures to manage the huge number of

constraints. The second approach is based on a transformation of the asymmetric instances

into a symmetric instances, to be solved with an exact method from literature. The two ap-

proaches have been implemented and tested on instances from literature, proving that both

are able to find optimal solutions of instances with up to 200 markets and 200 products

within reasonable computing time. When restricted offer are also considered, the two new

exact approaches were able to solve some ATPP instances involving 100 markets and 200

products. From our experiments even if the proposed transformation was observed to be quite

effective, the ad hoc branch-and-cut algorithm provided a better average performance.
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