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Abstract. In this paper we seek to enhance the real options methodology developed by Copeland and
Antikarov (2001) with traditional decision analysis tools to propose a discrete time method that allows
the problem to be specified and solved with off the shelf decision analysis software. This method uses
dynamic programming with an innovative algorithm to model the project’s stochastic process and real
options with decision trees. The method is computationally intense, but simpler and more intuitive than
traditional methods, thus allowing for greater flexibility in the modeling of the problem.

Keywords: real options, lattice methods, decision trees

Introduction

Due to its importance for the creation of value for the shareholder, the investment decision
in the firm has always been a focus of academic and managerial interest. The use of the
discounted cash flow method (DCF), introduced in firms in the 1950’s, was initially
considered a sophisticated approach for the valuation of projects due to the need to
use present value tables. In spite of its obvious advantages over the obsolete payback
method, its widespread use occurred only after the development of portable calculators
and computers that automated the necessary financial calculations, and most practitioners
currently consider it the model of choice.

More recently, the pioneering work of Black and Scholes (1973) and Merton (1973)
for the evaluation of financial options provided the groundwork for the idea of incor-
porating option pricing methods into the problem of valuing real investments under
uncertainty. These methods add the value of managerial flexibility to the traditional DCF
approach, and have been called real options theory, to indicate the focus on options asso-
ciated with real assets rather than with financial assets. However, despite its theoretical
appeal, the mathematical complexity of real options valuation methods has limited the
use of this approach by a broader audience in the industry.

This additional complexity is due to several factors. The underlying assets for
financial options are usually market securities, commodities, or other financial assets
that possess characteristics facilitating the valuation of the option. These characteristics
include market price, historical data, divisibility and a reasonable knowledge of their
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probabilistic distributions, which allow one to model their future distributions with some
degree of confidence. Real options, on the other hand, are more complex because the
real assets that are their underlying assets usually do not have most of these traits. An-
other source of complexity is the high degree of mathematical sophistication necessary
for modeling in continuous time, generally beyond the skills of most practitioners. But,
as occurred with the DCF method, the continuing evolution of computational tools to
automate the more difficult parts of the process and some progress regarding the un-
derlying theory have tended to make the use of real options techniques more and more
widespread.

In this paper we seek to enhance the real options methodology developed by
Copeland and Antikarov (2001) with traditional decision analysis tools to propose a
method that addresses these issues while allowing the problem to be specified and solved
with off-the-shelf decision analysis software. We do this by first determining a set of
virtual cash flows (pseudo cash flows) and risk neutral probabilities that will give the
correct project values when discounted to each period and state. Project flexibilities, or
real options, can then be modeled easily as decisions that affect the pseudo cash flows.
The specification of the project values in time as a function of future cash flows also
allows the problem to be modeled as a decision tree, and allows the use of commercially
available decision tree software.

Previous work on the decision analysis perspective on real options has been limited.
Howard (1996) notes that even though real options are an integral part of many investment
projects, their value has frequently been overlooked when modeling the decision process,
and that decisions trees are a natural way to model project flexibility. The relationship
between option pricing and decision analysis has been studied by Smith and Nau (1995),
who show that options pricing and decision analysis methods give the same results when
applied correctly, and propose a method for valuing projects by distinguishing between
market risks, which can be hedged by trading securities, and private uncertainties which
are project specific risks uncorrelated with the market. Smith and McCardle (1999)
illustrate how both option pricing and decision analysis methods can be integrated in the
context of a real oil and gas project.

The approach we propose differs from the Smith and Nau approach in the following
way. As noted above, their approach relies on distinguishing between market risks and
project specific risks. In the context of oil and gas exploration projects, this distinction
is often a very natural one, since oil and gas prices are market risks, while the project
specific risks may be the probability of a dry hole, or the probability distribution regarding
the volume of reserves. In problem contexts such as these, the Smith and Nau approach
has a natural appeal. However, there are projects in other industries where the distinction
between market risks and project specific risks is either not so clear, or not a meaningful
concept. Copeland and Antikorov have suggested an approach to valuing options for
these projects, and our methodology provides a practical computational solution for this
approach based on the use of binomial decision trees.

The remainder of the paper is organized as follows: Section 1 reviews the tradi-
tional approaches to project valuation. Section 2 introduces a decision tree approach to
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real options modeling based on Copeland and Antikarov’s assumptions. In Section 3 we
apply the model to solve a sample problem and in Section 4 we conclude with a sum-
mary and discussion of further research issues regarding model formulation and solution
procedures.

1. Valuation

1.1. Discounted cash flow method (DCF)

With the DCF method the value of a project is determined by discounting the future
expected cash flows at a discount rate that takes into account the risk of the project. In
complete markets, this discount rate can be inferred by observing the market price of a
portfolio of securities that replicate these expected cash flows in all the states of nature
and in all future periods. In incomplete markets, there will always be a tracking error
due to the difference between the cash flows of the replicating portfolio and those of the
project, except in some special cases such as natural resources projects where project
cash flows can be perfectly replicated by a portfolio of futures contracts of the commodity
and an investment in risk free assets.

As a practical matter, most investment projects are valued using a DCF approach
based on the weighted average cost of capital for the firm, or WACC. The determination of
the WACC involves the use of the capital asset pricing model (CAPM) to estimate the rate
of return required by equity investors from market information regarding stock prices,
and this firm-specific information is typically applied to individual investment projects.
While the WACC may be an appropriate discount rate for projects that generally mimic
the risks associated with the firm as a whole, it may not be appropriate for unusual or
innovative investment projects. The practitioner must then use judgment when choosing
an appropriate discount rate for the project.

The main criticism of DCF is the implicit assumption that once the firm commits to
a project, the project’s outcome will be unaffected by future decisions of the firm, thereby
ignoring any managerial flexibility the project may have. This managerial flexibility has
value, and represents the real options associated with the project.

1.2. Real options valuation

Management flexibility is the ability to affect the uncertain future cash flows of a project
in a way that enhances its expected returns or reduces its expected losses. Typical project
flexibilities include the option to expand operations in response to positive market con-
ditions or to abandon a project that is performing poorly. Management may also have
the option to defer investment for a period of time, to temporarily suspend operations, to
switch inputs or outputs, to reduce the scale or to resume operations after a temporary
shutdown. All of these opportunities represent options on real assets that allow manage-
ment to enhance the value of the project; thus, they are called real options. The value
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of these options cannot be determined by the traditional DCF method, but only through
option pricing or decision analysis methods.

Option pricing methods were first developed to value financial options. Several
pioneering works made the transition from the concepts developed by Black and Scholes
(1973) and Merton (1973) for the valuation of financial options to the valuation of options
on real assets. Tourinho (1979) used the concept of an option to evaluate a non renewable
natural resources reserve under price uncertainty; Brenann and Schwartz (1985) analyzed
the optimal operational policy of a copper mine; McDonald and Siegel (1986) determined
the optimal timing for investing in a project with irreversible investments with uncertain
cost and benefits represented by a continuous time stochastic processes. Dixit and Pindyck
(1994) and Trigeorgis (1995) were among the first authors to synthesize several of these
ideas.

Traditional option pricing methods require that markets be complete, i.e., that there
is a marketed security or a portfolio of securities whose payoffs replicate the payoffs
of the project in all states and periods. This is the underlying assumption of much of
the work done in the field of continuous time real option valuation (Trigeorgis, 1995;
Brennan and Schwartz, 1985; MacDonald and Siegel, 1986) and allows the determi-
nation of the correct discount rate for the project. Although this may be a reasonable
assumption for options on financial assets, for most real asset projects no such replicating
portfolio of securities exists and markets are said to be incomplete. For this case Dixit
and Pindyck (1994) propose the use of dynamic programming using a subjectively de-
fined discount rate, but the result does not provide a market value for the project and its
options.

Copeland and Antikarov suggest an alternative discrete time method based on the
assumption that the present value of the project without options is the best unbiased
estimator of the market value of the project (the Marketed Asset Disclaimer, or MAD
assumption). With this assumption, the project itself becomes the underlying asset of
the replicating portfolio, thus making the markets complete for the project options. As a
result, these options can now be valued with traditional option pricing methods. Another
assumption they make is that the variations in the value of the project follow a random
walk. While these assumptions are also subject to a number of caveats, we will adopt
this point of view for the purpose of this discussion.

1.3. Decision tree analysis (DTA) and risk neutral probabilities

Some of the limitations of the DCF method can be overcome with the use of decision tree
analysis (DTA). With DTA, managerial flexibility is modeled in discrete time by means
of future decision instances that allow the manager to maximize the value of the project
conditioned on the information available at that point in time, after several uncertainties
may have been resolved.

A naı̈ve approach to valuing projects with real options would be simply to in-
clude decision nodes corresponding to project options into a decision tree model of the
project uncertainties, and to solve the problem using the same risk-adjusted discount
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Figure 1. The project with objective probabilities and a risk-adjusted discount rate.

rate appropriate for the project without options. Unfortunately, this naı̈ve approach is in-
correct because the optimization that occurs at the decision nodes changes the expected
future cash flows, and thus, the risk characteristics of the project. As a consequence, the
standard deviation of the project cash flows with flexibility is not the same as that of the
project without flexibility, and the risk-adjusted discount rate initially determined for the
project without options will not be the same for the project with real options. This fact
has caused some authors to wrongly conclude that is inappropriate to use DTA to value
real option problems.

However, real option problems can be solved by DTA with the use of risk neutral
probabilities. This implies that we can discount the project cash flows at the risk free rate
of return and make any necessary adjustments for risk in the probabilities of each state
of nature (Smith and Nau, 1995).

An example taken from Copeland and Antikarov illustrates this concept. Suppose
the risk free rate is 8%, and that there is a two state project with equal chances of cash
flows of $170 or $65 one year from now that has a risk-adjusted discount rate of 17.5%
that will cost $115 next year. For obvious reasons, these two states are commonly called
the “up state” and the “down state”, respectively. The expected present value of the
project is [0.5($170) + 0.5($65)]/1.175 = $100 and the net present value is −$6.48 as
shown in figure 1.1

Suppose now that the decision to commit to the project can be deferred until next
year, after the true state of nature is revealed, and that the risk free rate is 8%. The
original discount rate of 17.5% cannot be used because the risk of the project has now
changed due to the option to defer the investment decision. On the other hand, a set of
risk neutral probabilities for the original project (probabilities that would give the same
project value as before when discounting the cash flows at the risk free rate of return) can
be determined and used to value the project with the deferral option, since the expected
cash flows for both problems are the same ($170 and $65).

While the correct risk-adjusted discount rate of a project with options is difficult
to determine due to the effect these options have on the project risk, the risk free rate of



26 BRANDÃO AND DYER

Figure 2. Project with risk neutral probabilities and a risk free discount rate.

return can be readily observed in the market. By switching from objective probabilities
to risk neutral probabilities, the project NPV with options can then be estimated even
without knowing the correct risk-adjusted discount rate.

In this simple example this can be done by setting the expected present value of
the project determined with the objective probabilities and the risk-adjusted discount
rate equal to the expected present value of the project with the unknown risk neutral
probabilities and the risk free discount rate, and by solving for the risk neutral probability
pr . That is, we would let

$100 = pr ($170) + (1 − pr )($65)

1 + 0.08

and solve to determine pr = 0.41.
The project with the option to defer has net payoffs of $170−$115 = $55 in the up

state and zero in the down state as illustrated in figure 2, as there will be no investment if it
is known beforehand that the down state will prevail. The net present value of the project
with the option to defer is [0.41($55)+0.59($0)]/1.08 = $20.86, up from −$6.48. This
implies that the value of the option to defer is $27.34.

2. The discrete time model for real options analysis

Methods for the evaluation of real options in continuous time have some important
practical limitations. Markets are incomplete for the great majority of the projects, and
even when the ideal conditions associated with complete markets do occur it may be
extremely difficult to determine a market portfolio that has a perfect correlation with the
risk of the project. As a result, it may not be practical to find the appropriate discount
rate for an individual project.
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Suppose we do assume that the WACC is the appropriate discount rate for an
individual project without options. However, the existence of managerial flexibility
changes the risk of the project since the manager can choose to exercise these options
if they increase project value or decrease project losses, so the WACC would not be
the appropriate discount rate for the project with options, as illustrated in the previous
example.

The model proposed for real options analysis by Copeland and Antikarov (2001)
uses two key assumptions to overcome these limitations. The first one is the Marketed
Asset Disclaimer assumption already mentioned in Section 1. The second assumption is
that the variations in the project returns follow a random walk.

Let Vi and Vi+1 be the value of a non dividend paying project at time period i
and i + 1 respectively. Under the random walk assumption, the continuous time return
ln(Vi+1/Vi ) is normally distributed, and we define v and σ 2 as the mean and variance of
this normal distribution. When the time period length tends to zero, this stochastic model
can be expressed as an Arithmetic Brownian Motion (ABM) random walk process d
lnV = νdt + σdz where dz = ε

√
dt is the standard Wiener process.

The assumption that the distribution of the logarithm of the project returns at any
point in time is normal implies that the distribution of the project value at any point in
time is lognormal. Accordingly, changes in Vi will be lognormally distributed, and can
be modeled as a Geometric Brownian Motion (GBM) stochastic process in the form
dV = µV dt + σ V dz where µ = ν + 1

2σ
2. For a discussion of this random walk

assumption, see also Hull (1999) and Luenberger (1998).
The importance of this second assumption is the following. A project may involve

several uncertainties, which would complicate an effort to model its stochastic process.
This assumption allows any number of uncertainties in the model of the project to be
combined into one single representative uncertainty, the uncertainty associated with the
stochastic process of the project value V, and the parameters of this process can be
obtained from a Monte Carlo simulation of the project cash flows. And, as we shall
see, a discrete time model using a binary lattice or a binary tree can approximate this
continuous time stochastic process. We refer the readers to Copeland and Antikarov for
a more thorough discussion of these assumptions.

To illustrate this idea, we assume there is a project that will last m periods, that
requires an initial investment I to be implemented, and that generates an expected cash
flow Ci , i = l, 2, . . . , m in each of these periods. For simplicity we assume that the cash
flows are paid instantaneously at the end of each time period in a manner analogous to the
dividends of a stock. These cash flows represent the dividends distributed by the project
where δi = Ci/Vi is the dividend distribution rate and Vi is the pre-dividend value of the
project in period i. The project is subject to market uncertainties that will affect its future
cash flows, and also has sufficient managerial flexibility to allow an active management
to maximize its value during its operational life.

The risk-adjusted discount rate for the project without options is µ. For an internally
financed project, this rate may be equal to the firm’s WACC, and we assume that the
project cash flows will be reinvested in the firm or distributed as dividends after allowing
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for financing costs. For an externally financed project, where the project is structured as
an independent entity with one or more shareholders and non-recourse debt and the cash
flows are necessarily distributed as dividends, this rate is equal to the rate of return on
equity demanded by the shareholders.

The modeling of the problem will be done in three steps. First the project is analyzed
to determine its expected present value at time 0. Next a Monte Carlo simulation is
performed with the objective of combining all sources of uncertainties into one single
distribution and the stochastic process for the value of the project is defined. The third
and last step involves the creation of a binomial tree to model the dynamics of the
project value, and of a decision tree with the decision nodes that model the project’s real
options.

These first two steps are identical to those proposed by Copeland and Antikarov. For
the third step we provide an alternative solution methodology based on a binomial tree that
offers computational and logical advantages. For completeness, we briefly summarize
the first two steps below, and then discuss our proposed modifications of the third step
in more detail.

2.1. Modeling with expected cash flows

The present value of the project at time 0, V0, is determined with the traditional DCF
method using a spreadsheet to calculate the expected cash flows {Ci , i = 1, 2, . . . , m}
without including the impact of any real options that may exist due to managerial flexibil-
ities associated with the project. These cash flows are then discounted at the risk-adjusted
discount rate µ to obtain the present value of the project in each period.

Vi =
m∑

t=1

Ct

(1 + µ)t−i
(1)

The value of the project will decrease in each period due to the payment of dividends,
which are assumed to be equal to the cash flows in each period. The dynamics of the
evolution of the value of a four period project under conditions of certainty are illustrated
in figure 3.

2.2. Monte Carlo simulation

The lognormal distribution of the project’s value can be fully defined by the mean and
standard deviation of its returns. Note that under the MAD assumption, the present value
of the project without options is taken as its market price, as if the project were a traded
asset. Assuming that markets are efficient, purchasing the project at this price guarantees
a zero NPV and the expected return of the project will be exactly the same as its risk-
adjusted discount rate µ. As a result, the mean of the project’s returns µ is exogenously
defined. In practice, this risk-adjusted discount rate for the project without options is
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Figure 3. Project value dynamics.

typically set equal to the firm’s WACC, although the analyst may choose a different rate
appropriate for each specific project.

The standard deviation, or volatility of the project, can be determined from a Monte
Carlo simulation of the ABM process of the returns d ln V = νdt +σdz. The impacts of
uncertainties affecting the relevant variables of the project on the returns are determined
by simulating each of their stochastic processes, and as a result, the project cash flows
become stochastic. Each iteration of the Monte Carlo simulation provides a new set of
future cash flows from which a new project value V̂1 at the end of the first period is
computed using (1) with i = 1, and a sample of the random variable ṽ can be determined
from

v̂ = ln

(
V̂1

V0

)
(2)

where E(ṽ) = v.

A full run of the simulation provides a sample set of the random variable ṽ from
which the project volatility is then computed. The volatility σ is defined as the annualized
standard deviation of the returns and its computation is straightforward.

2.3. Binomial lattice

Given the initial project value V0, the risk-adjusted discount rate µ, and the volatility
σ , as previously determined, the value of the project can be modeled in time as a GBM
stochastic process by means of a discrete recombinant binomial lattice according to the
model of Cox, Ross, and Rubinstein (1979) as shown in figure 4. The pre-dividend value
of the project in each period and state is given by Vi, j = V0 ui− j d j , where u = eσ

√
�t
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Figure 4. Binomial lattice.

and d = e−σ
√

�t are the parameters governing the size of the up and down movements
in the lattice and i = period (i = 0, 1, 2, . . . , m) and j = state ( j = 0, 1, 2, . . . , i). As
Cox, Ross, and Rubinstein show, the objective probability of an up movement occurring
is pµ = eµt −d

u−d . Note that this objective probability is determined by the value of the
risk-adjusted discount rate µ as well as the values of µ and d.

The project pays out dividends in each period in the form of cash flows, and con-
sequently the project value suffers a discontinuity at the time of this distribution. The
dividend distribution rate is the fraction of the total project value the cash flows represent
in each period. Accordingly, a more accurate representation of the value of the project
in time is shown in figure 5.

Figure 5. Binomial lattice with dividends.
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The continuous time stochastic process associated with this dividend-paying project
is dV = (µ− δt )V dt +σ V dz, where δt is the instantaneous dividend distribution rate at
time t. In the discrete time binomial approximation the dividends are explicitly factored
into a binomial tree, and no further consideration of the dividends is required. To avoid
double counting, we use the risk-adjusted discount rate µ rather than µ − δt as the
parameter for the binomial model.

Under uncertainty, the pre-dividend value of the project Vi j in period i, state j, is
given by the following recursive equation

Vi, j = V0 ui− j d j
i−1∏

k=1

(1 − δk) (3)

The probability Pi, j that the value Vi j will occur is Pi, j = ( i
j )pi− j (1 − p) j , where

( i
j ) = i!

(i− j)! j! is the binomial coefficient.
These relationships provide the results used by Copeland and Antikorov in their

solution approach based on the use of a binomial lattice. However, the computational
requirements of this approach are cumbersome, due to the requirement of solving for a
replicating portfolio at each node in the lattice, and the logic of the binomial lattice when
options are included is not transparent.

2.4. Project decision tree

In the binomial lattice model, the pre-dividend value of the project in period i and state
j is a function of the value V0 of the project at time zero, of the discount rate µ, of the
volatility σ and of the dividend distribution rate δi . When the real options of the project
are incorporated into the analysis, the binomial lattice (a model of uncertainty) can be
transformed into a decision tree (uncertainty plus options).

Modeling the options by determining their impact on the project cash flows is sim-
pler than calculating their impact on the value of the project. An algebraic transformation
can be used to value the project as function of a series of artificial cash flows that have
the property of guaranteeing that the stochastic process followed by the project value
is the same Geometric Brownian Movement determined previously. These cash flows,
which we will call pseudo cash flows (Ci, j ), will themselves be a function of the expected
cash flows of the project Ci (i = 1, 2, . . . , m), of µ and of the parameters u and d of the
binomial model.

The Marketed Asset Disclaimer assumption assures that markets are complete for
the project, and that there exists a unique set of risk neutral probabilities that allow the
project to be discounted at the risk free rate of return, as seen in the example in Section 1.3.
The solution for the risk neutral probabilities is given by pr = er,t −d

u−d , which depends on
the risk free discount rate r rather than the risk-adjusted discount rate µ (Cox, Ross, and
Rubinstein, 1979).

The main advantage of this transformation is that it allows the project value function
to be expressed in terms of a more basic variable, the project cash flows, providing greater
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flexibility in the modeling of the real options of the project. We begin by establishing the
relation between V0 and V1 and the expected cash flow. From Eq. (1),

Vi − Ci = (1 − µ)i
m∑

t=i+1

Ct

(1 + µ)t
(4)

Setting i = i + 1 and substituting in (1), we obtain

Vi+1 = (1 + µ)(Vi − Ci ) (5)

There are no cash flows or dividend payments in the initial period (i = 0), since
the project has not yet been initiated, so C0 = 0. For i = 0 we then have

V1 = (1 + µ)V0 (6)

The divident distribution rate is assumed to be constant across states in each period
but variable in time, so the cash flows in each period are a fixed proportion of the value
of the project in that period and state, as experessed in

δi = Ci

Vi
= Ci, j

Vi, j
∀ j (7)

Using (3) and (7) we have Ci, j = δi Vi, j = δi [V0ui− j d j
∏i−1

k=1(1− δk)]. We can also
express Ci+1, j as function of the previous cash flow Ci, j .

Ci+1, j = δi+1Vi+1, j = δi+1

[
V0ui− j+1d j

i∏

k=1

(1 − δk)

]

Ci+1, j = δi+1u(1 − δi )

[
V0ui− j d j

i−1∏

k=1

(1 − δk)

]

︸ ︷︷ ︸
Vi, j

and we arrive at

Ci+1, j = δi+1(1 − δi )

δi
u · Ci, j (8)

and by analogy we have

Ci+1, j+1 = δi+1(1 − δi )

δi
d · Ci, j (9)
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For farther simplification, these formulas can also be expressed as functions of the
expected cash flows. Substituting δi = Ci

Vi
and δi+1 = Ci+1

Vi+1
in (8) and using (5) we obtain

Ci+1, j = Ci+1

Vi+1

Vi (1 − δi )

Ci
u · Ci, j

Ci+1, j = Ci+1

(1 + µ)(Vi − Ci )

Vi (1 − δi )

Ci
u · Ci, j

and finally





Ci+1, j = Ci+1

Ci (1 + µ)
· Ci, j u

Ci+1, j+1 = Ci+1

Ci (1 + µ)
· Ci, j d i = 1, 2 . . . , m j = 0, 1, 2, . . . , i

(10)

It can be shown that the value of the first period cash flows is given by

C1, j = C1

1 + µ
u1− j d j (11)

With (10) we can obtain the values of the pseudo cash flows in the subsequent periods
and states as a function of the pseudo cash flows immediately before, the discount rate
µ and the parameters u and d . In other words, (10) provides the branch values in each
chance node of the decision tree. Since we are using risk neutral probabilities, these cash
flows are discounted at the risk free rate to arrive at the present value of the project at
time t = 0.

Both the binomial lattice and the binomial tree representations of the stochastic
process associated with the project values or the pseudo cash flows can be created using
the risk-adjusted discount rate µ and the corresponding probability pµ = eµt −d

u−d of an up
state, or with the risk free interest rate r and the corresponding risk neutral probability
pr = ert −d

u−d . Both approaches will provide the same results for a project with no options,
but only the latter can be used for real option valuation.

The use of these pseudo cash flows, rather than the estimates of the project values,
allows the easy use of decision trees rather than binomial lattices to evaluate project
options. As a result, the evaluation of real options can be carried out conveniently using
“off-the-shelf” decision tree software, and allows options to be included in the models
using decision nodes that are a natural part of this problem representation. This advantage
can best be illustrated with a simple example.

3. Example

We will illustrate this approach to the evaluation of real options with a simple four-
period project using commercially available decision analysis software, DPLTM. The
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Table 1
Project spreadsheet.

0 1 2 3 4

Revenue 1000 1080 1166 1260
Variable cost (400) (432) (467) (504)
Fixed cost (240) (240) (240) (240)
Depreciation (300) (300) (300) (300)

EBIT 60 108 160 216
Tax 50% (30) (54) (80) (108)
Depreciation 300 300 300 300
Investment (1,200)

Cash flow (1,200) 330 354 380 408

PV0 = 1,157 WACC = 10%
Invest = (1,200)

NPV = (43)

decision tree representation is essentially a binary tree augmented by decision nodes,
and it is not recombining like a binary lattice. This results in a large tree due to the
unnecessary duplication of nodes, but provides a visual interface and a convenient and
flexible modeling tool.

The spreadsheet for the example project is shown in Table 1. The risk-adjusted
discount rate is assumed to be 10% and the risk free rate is 5%. The first step is simply
the computation of the expected value of the future cash flows and the present value of
the project at time zero, as illustrated in Table 1.

The present value of $1,157 of the project without options is assumed to be the best
estimate of its market value. Since the required investment is $1,200, the project has a
negative NPV, which indicates that it should not be implemented.

In this example we assume a single source of uncertainty, the future value of the
revenue stream, although other sources of uncertainty could be easily incorporated into
the model. Suppose the future project revenues R follow a GBM stochastic process with
a mean αR = 7.70% (which is equivalent to a discrete annual growth of 8.0%) and
volatility σR = 30%. Next we perform a Monte Carlo simulation on the project cash
flows where the future revenues are modeled with these parameters. After a number of
iterations we compute the standard deviation of ṽ = ln(Ṽ1/V0) to obtain an estimate of
the project volatility σ = 24.8%. Finally, we assume that the project rate of return is
normally distributed, so the project value will have a lognormal distribution at any point
in time that may be approximated by a binomial lattice or the corresponding binomial
tree.

Next we compute the values of u, d, and the risk neutral probability pr , according
to the formulas defined previously. The pseudo cash flows of the project are computed
using Eq. (10) and the value of the project is determined applying the usual procedures
of dynamic programming implemented in a binomial tree, and discounting the expected
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Figure 6. Project decision tree.

cash flows at the risk free rate of return. Risk neutral probabilities are used to arrive at
the project expected value. The present value obtained with this model is the same as the
one calculated with the spreadsheet, as illustrated in figure 6.

For example, using (11), the pseudo cash flow in the upper branch of period 1 is
C1,0 = 300

1+0.10 1.276 = $382.70. Discounting this value at the risk free rate r = 5% for
one period yields $364.50, as can be seen in figure 6. C2,0 is computed from (10) as
C2,0 = 354

330(1+0.10) (382.7)(1.276) = $476.1 which yields $431.9 when discounted at the
risk free rate for two periods. All other pseudo cash flows can be computed in a similar
way.

Note that the values for σ, µ, r and the project expected cash flows Ci can be
entered as parameters in a decision tree model, and all the necessary formulae can
be incorporated into the tree structure. In effect, tree building can be greatly simpli-
fied by developing a standard template for a binary tree for any given number of time
periods.

This binomial tree can now be used to evaluate real options. Suppose the project
can be abandoned in the third year of its life for a terminal value of $350. Given the
binary tree representation, this option can be evaluated by simply inserting a decision
node in time period 3 that models the managerial flexibility that exists in the third year
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Figure 7. Decision tree with option to abandon.

of the project. A new present value for the project is then computed using the same risk
neutral probabilities, as illustrated in figure 7. In some of the states the abandon option
will be exercised, and the value of the project with this real option is increased to $1,215.

Once the project’s stochastic parameters are determined and the decision tree is
structured, additional options can be added with ease. For example, suppose that the
option to abandon can also be exercised in year 2, and that there exists an option to
expand the project by 30% also in year 2 at a cost of $100. The decision tree model is
shown in figure 8. The project value increases to $1,280, and the expansion option will
be exercised in all states of year 2, except one, while the abandon option will continue to
be exercised only in year 3, as can be seen by the lines in bold. Additional options and
time periods can be added in a straightforward manner.

Even for a simple model such as this one, the decision tree becomes large very
quickly. In most practical problems the complexity of the decision tree will be such
that full visualization will be impossible. However, even large problems with literally
millions of endpoints for the tree can be solved using this approach. Brandao (2002)
provides an example of the application of this methodology to the evaluation of options
associated with a highway project in Brazil that includes 20 time periods and several
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Figure 8. Decision tree with option to expand and abandon.
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different options, resulting in a decision tree with 2 × 109 endpoints that is solved within
practical computational times.

4. Conclusions and recommendations

The method proposed represents a simple and straightforward way of implementing real
option valuation techniques using off the shelf decision analysis software. The solution
is implemented with decision tree tools that many practitioners currently use. Additional
computational efficiencies can be obtained by using specially coded algorithms, although
at the cost of having to forgo the simple user interface that decision tree programs such
as DPLTM offer, and the advantage of visual modeling and a logical representation.

Suggested extensions include the implementation of recombining lattice capability
in current decision tree generating software to cut down on processing time. While a
n period recombining binary lattice has a total of n(n + 1)/2 nodes, a similar binary
tree has 2n+1 − 1 nodes, which becomes a significant difference for large values of n.

On the other hand, the extension of this model to projects with non-constant volatility
(heteroscedasticity) can be easily implemented, whereas the effect of changes in volatility
cannot be modeled with a recombining lattice.

Perhaps the primary caveat regarding this methodology for the evaluation of projects
with real options relates to the assumptions underlying the Copeland and Antikarov
approach itself, since the use of decision trees is simply a computational enhancement
of their concepts. The use of the Market Asset Disclaimer as the basis for creating a
complete market for an asset that is not traded may lead to significant errors, since the
valuation is based on assumptions regarding the project value that cannot be tested in
the market place. For example, the appropriate choice of the project discount rate for the
project without options is left to the discretion of the analyst, and the use of WACC may
not be appropriate for all projects. Therefore, it is important to realize that this thorny
issue is not resolved by this methodology.

This approach is also based on the valuation of the project without options, which
may not be a meaningful concept in the context of some projects, such as those in the
pharmaceutical industry, where there are natural options associated with the development
of new drugs. It is simply not clear how one would value a project related to the devel-
opment of a new product in this industry without explicitly recognizing these options.
To the extent that such hypothetical projects without options are not representative of
typical projects in the industry, then the WACC may not be an appropriate risk-adjusted
discount rate for them. In such circumstances, there may be no useful guidelines for
choosing the risk-adjusted discount rate for the project without options.

Also, the notion that the project returns will vary according to a random walk is a
very strong assumption. In some cases this may be considered a reasonable assumption,
but other investment projects may include “lumpy” or discrete events that make this as-
sumption untenable, and at best, it may be considered only an approximation. Therefore,
we would suggest that this approach should be considered for the valuation of projects
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with real options only after a careful consideration of these assumptions in the context
of specific applications, as it may not be applicable to all situations.

Note

1. This assumes that there is no uncertainty over the project cost of $115.
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