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Abstract. The cross-entropy method is a relatively new method for combinatorial optimization. The idea
of this method came from the simulation field and then was successfully applied to different combinatorial
optimization problems. The method consists of an iterative stochastic procedure that makes use of the
importance sampling technique. In this paper we prove the asymptotical convergence of some modifications
of the cross-entropy method.

Keywords: combinatorial optimization, convergence, cross-entropy

The cross-entropy (CE) method was developed in Rubinstein (1999) for solving both
continuous multi-extremal and various discrete combinatorial optimization problems.
The method was successfully examined on a wide range of problems such as the traveling
salesman problem (Rubinstein, 1999), the bipartition problem (Rubinstein, 1999), the
maximal cut problem (Rubinstein, 2002), the image matching (Dubin, 2002), the image
segmentation (Dubin, 2002), etc. This method is an iterative stochastic procedure making
use of the importance sampling technique. The stochastic mechanism changes from
iteration to iteration according to the Kullback-Leibler cross-entropy approach.

While most of the stochastic algorithms for combinatorial optimization are based
on local search (they employ local neighborhood structures), the cross-entropy method
is a global random search procedure.

The CE method arises from the rare-event estimation framework (see Rubinstein,
1997) and uses similar techniques. The main idea of the CE method can be stated as
follows.

First, we randomize our deterministic problem (by defining a probability distribu-
tion on the set of the all possible solutions). Next, we define the following event: “the
optimal solution appears within sample of certain size (which is very small in compari-
son with the number of the all feasible solutions)”. For the vast majority of the problems
this event is rare, and to estimate its probability is not trivial. For this purpose we make
adaptive changes of the probability distribution according to the Kullback-Leibler cross-
entropy approach. This procedure significantly increases the chances of the optimal
solution (or an almost optimal) to appear within our sample.

In this paper we prove the asymptotical convergence for some modifications of
the method. The idea and technique of the proof are similar to the ones from Gutjahr
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(2002), where the convergence of two ant algorithms is proved. More precisely, in this
paper we derive two cross-entropy algorithms, which are very close to the ant algorithms
considered by Gutjahr. Due to this similarity, Gutjahr’s proof can be readily modified and
adopted to our case. For an alternative convergence prove of CE (see Homem-de-Mello
and Rubinstein, 2002).

The rest of the work is organized as follows. In the second section the general cross-
entropy method is described. In the third section two modifications of the CE method
are introduced and their convergence is proved.

1. The general cross-entropy method

As mentioned above, the initial version of the CE method was presented in Rubinstein
(1999). Then, in order to speed up the method and/or improve convergence, several
additional modifications were introduced (see Rubinstein, 2001a, 2001b; Margolin, 2002;
Rubinstein and Kroese, 2004): for instance, the conservative (smoothed) modification,
the CE method with lower bound on probabilities, the CE method with varying sample
size, the CE method with memory, etc. In this section, which is based on (Margolin, 2002),
we describe the general CE method. For easier understanding, we illustrate the terms
and technique with an emphasis on the well-known traveling salesman problem (TSP).

We consider the following combinatorial optimization problem:

min
x∈X

L(x), (1)

where X ⊂ Rn is a finite set, L(·) is a real function from X to R.
Assume that x∗ = (x∗

1, . . . , x∗
n) is the unique optimal solution of (1).

Additionally, assume that each feasible solution of the problem can be defined
by the array X with components X I , where I belongs to some set of indices I (that
is, |I| numbers define some feasible solution). Note that I can be one-dimensional,
two-dimensional, etc.

The general cross-entropy method consists of three main steps:

1. Choosing a probability family. Initializing of the distribution parameters and the
method parameters. Generating feasible solutions according to the chosen distribution.

2. Updating the distribution parameters, based on the Kullback-Leibler cross-entropy.

3. Checking the stopping rule. Updating the method parameters in the case the stopping
rule fails.

At the first step we should choose a “suitable” representation. Finding such “suit-
able” representation, that is well fitted to the structure of the problem, is of great impor-
tance. However, there is no general rule to do so, and our decision is mainly based on
intuition.

For example, consider the TSP with n cities on a fully connected graph. As men-
tioned above, each feasible solution is assumed to be described by the array X with
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components X I , where I belongs to some set of indices I. We would like to give two
different representations for this problem.

For instance, we can define feasible solutions using the two-dimensional array X
with the following components:

X (r,s) =
{

1, the transition from r to s occurred,

0, otherwise.

Obviously, X (r,r ) ≡ 0. In this case I = {(r, s) ∈ {1, . . . , n} × {1, . . . , n} : r �= s}.
With this representation we can generate feasible solutions randomly, using the

following algorithm.

Algorithm 1.1. Solution Generation for the TSP (for the First Representation):

1. Define the probability array P:

P =




0 p(1,2) . . . p(1,n)

p(2,1) 0 . . . p(2,n)

...
...

...
...

p(n,1) p(n,2) . . . 0


 (2)

where the probability p(r,s) corresponds to the transition from the node r to the node s.
Assume that for r �= s: p(r,s) �= 0.

2. Set counter = 1, U = {1}, r = 1.
3. Generate a next node S from the following distribution:

Prob{S = s} = p(r,s), ∀s ∈ {1, . . . , n}
Assume, that S received value s∗. Define

X (r,s) =
{

1, s = s∗,
0, s �= s∗.

4. Set U = U ∪ {s∗}, counter = counter + 1, r = s∗.
5. If (counter < n − 1)

Update the r -th row of the array:
nullify the probabilities p(r,s) corresponding to the already visited nodes s;
re-normalize the remaining in this row probabilities.
Go to Step 3.

else

Go to Step 6.
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end If

6. Set {s∗} = V \ U (at this step U contains exactly n − 1 nodes), X (r,s∗) = 1.

Remark 1.1. To accelerate solution generation we can use so-called alias method (see
Walker, 1977), which is a very effective method for generation random numbers from an
arbitrary n-point distribution. More detailed information on using the alias method for
the CE algorithms can be found in Margolin (2002).

An alternative representation can be stated as follows. Any feasible solution can be
defined by the array X with the following components:

X (r,s) =
{

1, the node r is arranged to the place s,

0, otherwise.

In this case I = {(r, s) ∈ {1, . . . , n} × {1, . . . , n}}.
The solution generation algorithm corresponding to this representation is similar

to the one above (with some minor changes) and can be found in Margolin (2002).
Usually for a specific problem more than one representation can be found. Note

that the choice of representation is of great importance for the method convergence.
To proceed with the general CE method, recall that we generate solutions that can

be defined by the random array X with components X I , where I belongs to some set
of indices I. For each I ∈ I assume that X I can take values from the following set:
{a1(I ), . . . , aR(I )(I )}.

Let Nt be the number of the solutions to be considered in the t-th iteration. Generally,
Nt may vary from iteration to iteration. Assume, that Kt of the above solutions are the best
solutions obtained in the all previous iterations, and the remaining Nt − Kt solutions are
the solutions generated in the t-th iteration (clearly, Kt ∈ {0, . . . , Nt − 1}). We will call
Kt the “memory size” of the method at the iteration t . Let X1, . . . , XNt denote solutions
participating in the t-th iteration (for simplicity we drop the index t).

Let �t be the set of the all solutions generated during the iterations 1, . . . , t .
Let pt,I (k) be the current probability (after the first t iterations) corresponding to

the event {X I = ak(I )}, where I ∈ I, k ∈ {1, . . . , R(I )}.
Let φ(L(X), �t , ν t ) be a real positive function, non-increasing in the first argument,

where ν t = ν(�t ) is a vector of parameters of the function φ(·) that may be dependent
on the previous history (on �t ).

For all k satisfying pt,I (k) > 0 define the cross-entropy component:

Ct+1,I (k) =
∑

j :X j,I =ak (I ) φ(L(X j ), �t , ν t )∑
j φ(L(X j ), �t , ν t )

, (3)

where X j,I denotes the I -th component of X j .
It should be mentioned that the above formula is based on the Kullback-Leibler

cross-entropy approach (see Rubinstein, 2001a, 2001b; Margolin, 2002; Rubinstein and
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Kroese, 2004). Derivation of the formula using the cross-entropy approach is out of scope
of this paper. Instead, we will give some intuitive explanation. The value φ(L(X j ), �t , ν t )
can be viewed as some quality coefficient of the solution X j . Then

∑
j

φ(L(X j ), �t , ν t )

is the sum of the quality coefficients of the all solutions participating in the iteration t .
Similarly, ∑

j :X j,I =ak (I )

φ(L(X j ), �t , ν t )

is the sum of the quality coefficients of those solutions where the component I equals to
the k-th possible value. Therefore, Ct+1,I (k) can be viewed as the relative contribution
of the such solutions to the sum of the quality coefficients of the all solutions. It can be
considered as some measure of suitability of the k-th possible value of X I .

Remark 1.2. When dealing with a maximization problem, φ(L(X), �t , ν t ) must be a
real positive function, non-decreasing in the first argument.

The general rule for the probability update can be stated as follows. For every k
satisfying pt,I (k) > 0:

pt+1,I (k) = F(Ct+1,I (k), p0,I (k), p1,I (k), . . . , pt,I (k), µt ), (4)

where F is a real function taking values from [0, 1] and non-decreasing in the first
argument, µt = µ(�t ) is a vector of parameters of the method that may be dependent
on the previous history. Since F is non-decreasing in the first argument, the formula (4)
can be considered as some measure of suitability as well.

For example, the following probability updating rule is widely used in the CE
literature.

Example 1.1 (Conservative (Smoothed) Modification of the CE Method). In this mod-
ification the probabilities are updated according to the following rule:

pt+1,I (k) = αtCt+1,I (k) + (1 − αt )pt,I (k),

where αt ∈ (0, 1] is the weight of the cross-entropy component. Obviously, for this
modification µt = (αt ). Generally, αt can be dependent on the previous history.

Below we present the general cross-entropy algorithm. Before implementation of
the algorithm a suitable representation of the problem should be chosen. As before, we
assume that I denotes a set of indices of the random array in this representation. Let
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I ∈ I, and assume that the I -th component of the array can take values from the following
set: {a1(I ), . . . , aR(I )(I )}.

Algorithm 1.2. General CE Algorithm:

Step 1

(a) Initialize p0,I (k) (∀I ∈ I, ∀k ∈ {1, . . . , R(I )}).
(b) Set t = 0, �−1 = ∅.

Step 2

(a) Let X1, . . . , XKt be the best solutions obtained during the previous iterations. Gen-
erate solutions XKt +1, . . . , XNt according to the probabilities {pt,I (k)}.
Set �t = �t−1 ∪ {XKt +1, . . . , XNt }.
Set µt = µ(�t ), ν t = ν(�t ).

(b) For all k satisfying pt,I (k) > 0 obtain Ct+1,I (k) from (3), and calculate pt+1,I (k)
according to (4).

Step 3

Set t = t + 1. Repeat Step 2 until Stopping Rule is satisfied.

2. Convergence

In this section we prove the asymptotical convergence of a certain class of CE algorithms.
As mentioned above, the idea and technique of the proof were taken from Gutjahr (2002).

Firstly, we give a definition of so-called construction graph according to Gutjahr
(2002).

Definition 2.1. Let an instance of a combinatorial optimization problem be given. By a
construction graph for this instance, we understand a directed graph C = (V, E) together
with a function � with the following properties:

1. In C , a unique node is marked as start node.

2. Let W be the set of directed paths w in C satisfying the following conditions:

(i) w starts at the start node of C ;

(ii) w contains each node of C at most once;

(iii) the last node on w has no successor node in C that is not contained in w (i.e., w

cannot be prolonged without violating (ii)).
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Then function � maps a subset W̄ of the set W onto the set of feasible solutions of
the given problem instance. In other words: to each path w in W̄, there corresponds
(via �) a feasible solution, and to each feasible solution, there corresponds (via �−1)
at least one path in W̄.

The path generation on the construction graph is managed by the following rule.
Assuming the current node is r , we generate a successor node according to the probabil-
ities

Prob{S = s} =



pt,(r,s)∑
(r,u) is feasible pt,(r,u)

, if (r, s) is feasible,

0, otherwise.
(5)

Consider the general CE-based algorithm on the construction graph and define the
following special case of it (assume we deal with a minimization problem).

Let n denote the number of vertices on the construction graph. For each path w ∈ W̄
we build solution X according to the following rule:

X (r,s) =
{

1, the edge (r, s) belongs to the path w,

0, otherwise.
(6)

Add the following artificial components

X (r, f ) =
{

1, the node r doesn’t belong to the path w,

0, otherwise,
(7)

where f does not correspond to any node. (Actually, the last two equations define the
function �).

Obviously, in our case I = {1, . . . , n} × {1, . . . , n + 1} (the (n + 1)-th column
corresponds to the artificial node f ).

Let the number of solutions participating in any iteration be constant Nt ≡ N , and
the memory size be Kt ≡ 1 (we store only the best solution obtained in the all previous
iterations).

Define the parameter of the function φ(·) by ν(�t ) = (ρ). Here the notation ρ

comes from the initial versions of the CE method (for example, see Rubinstein (1999))
and denotes the share of the solutions to be used for probability updating. Let L (m) be
the m-th order statistic of the following values: L(X1), . . . , L(XN ). Additionally, define

φ(L(X), �t , ν(�t )) = I{L(X)≤γt },

where

γt = L (
ρN�).
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Therefore,

φ(L(X), �t , ν(�t )) =
{

1, X is not worse than the 
ρN�-th current best solution,

0, otherwise.

Particularly, for ρ = 1/N we have:

φ(L(X), �t , ν(�t )) =
{

1, X is one of the current best solutions,

0, otherwise.

Obviously,

Ct+1,(r,s) = Ct+1,(r,s)(1) =
∑N

j=1 I{L(X j )≤γt , X j,(r,s)=1}∑N
j=1 I{L(X j )≤γt }

=
{

N ∗
(r,s)

/
N ∗, (r, s) belongs to at least one of the current best solutions,

0, otherwise,
(8)

where N ∗ is the number of solutions within {X1, . . . , XN } having the best obtained value,
N ∗

(r,s) is the number of solutions having the best obtained value and containing the edge
(r, s).

Define the parameter of the method µt = αt and let

{
p0,(r,s) = 1/|Ẽ(r )|,
pt+1,(r,s) = (1 − αt )pt,(r,s) + αtCt+1,(r,s),

where Ẽ(r ) is the number of arcs outgoing from the vertex r (the artificial arc (r, f ) is
included).

Formally, we can write the considered algorithm (we will denote this algorithm by
the Graph-Based CE Algorithm/Conservative Modification - GBCE/CM) in the following
way.

Algorithm 2.1. GBCE/CM:

Step 1
For each (r, s), edge of the construction graph or artificial edge, set pt+1,(r,s) =

1/|Ẽ(r )|. Set t = 0. Generate an arbitrary path X1 using the rule (5), and use it as the
current best found path.

Step 2
Generate N − 1 solutions by generation corresponding arrays X j ( j = 2, . . . , N )

according to the rule (5). Add X1, which is the best solution found in the previous
iterations.
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For each (r, s) update the corresponding probability using the following rule:

pt+1,(r,s) = (1 − αt )pt,(r,s) + αtCt+1,(r,s), (9)

where

Ct+1,(r,s) =
{

N ∗
(r,s)/N ∗, (r, s) belongs to at least one of the current best solutions,

0, otherwise.
(10)

Step 3
Set t = t + 1. Choose αt . Repeat Step 2 until Stopping Rule is satisfied.

In this step we must note that the above algorithm is very close to the algorithm
GBAS/tdev given at Gutjahr (2002). Therefore, we can analyze it using the same tech-
nique.

Similarly to Gutjahr, we consider a stochastic process with states (P t , X̂t−1) (t =
1, 2, . . .), where P t is the array of probabilities at the beginning of the iteration t , X̂t−1

is the best found solution at the end of the iteration t − 1. The proof that this process is
an inhomogeneous Markov process is analogous to Gutjahr’s one.

Theorem 2.1. Consider an optimization (minimization) problem on the construction
graph and assume that the optimal solution is unique.

Let, in the algorithm GBCE/CM,

αt ≤ 1 − log(t + 1)

log(t + 2)
(t ≥ T ) (11)

for some T ≥ 0, and

∞∑
t=0

αt = ∞. (12)

Then, with probability one, the states (P t , X̂t−1) of the assigned Markov process converge
as t → ∞ to the state (P∗, X∗), where X∗ is the optimal solution, and P∗ is defined as

P∗
(r,s) =

{
1, if (r, s) ∈ X∗,
0, otherwise.

(13)

For a fixed repetition, its probability to obtain X∗ at the iteration t tends to 1, as t → ∞.

Proof. The proof is similar to the one given at Gutjahr (2002) with some minor changes.
We have

P{X∗ is never obtained} =
∞∏

t=0

P

{
X∗ isn’t obtained

at the iteration t

∣∣∣∣ X∗ wasn’t obtained
before the iteration t

}
. (14)
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For each fixed arc (r, s), we can calculate the following lower bound on the corre-
sponding probability at the beginning of the iteration t (t ≥ T ). Without lost of generality,
let T ≥ 1. Noting that the lower bound corresponds to the case when the arc (r, s) does
not belong to any current best solution until the t-th iteration, we have:

pt,(r,s) ≥
[ t−1∏

i=0

(1 − αi )

]
p0,(r,s) ≥

[ T −1∏
i=0

(1 − αi )

][ t−1∏
i=T

log(i + 1)

log(i + 2)

]
p0,(r,s)

=
[ T −1∏

i=0

(1 − αi )

]
p0,(r,s)

log(T + 1)

log(t + 1)
= const

log(t + 1)
(15)

(the second inequality follows from the condition (11)).
Hence, the probability to obtain X∗ at a fixed repetition of the iteration t ≥ T is

greater than (
const

log(t + 1)

)|X∗|
,

where |X∗| is the number of edges in the path corresponding to X∗. Notice that this bound
is valid for all scenarios of what can happen before the iteration t , so we can use it for
conditional probabilities as well. Consequently,

P

{
X∗ isn’t obtained

at the iteration t

∣∣∣∣ X∗ wasn’t obtained
before the iteration t

}

=
N∏

n=1

P

{
X∗ isn’t obtained

at the repetition n of the iteration t

∣∣∣∣ X∗ wasn’t obtained
before the iteration t

}

≤
[

1 −
(

const

log(t + 1)

)|X∗|]N

. (16)

Hence, the upper bound on (14) can be written as

T −1∏
t=0

1 ·
∞∏

t=T

[
1 −

(
const

log(t + 1)

)|X∗|]N

=
∞∏

t=T

[
1 −

(
const

log(t + 1)

)|X∗|]N

. (17)

Calculating the logarithm of (17), and noting that
∑

t (log(t + 1))−a = ∞ for each
positive integer a, we obtain

N
∞∑

t=T

log

[
1 −

(
const

log(t + 1)

)|X∗|]
≤ −N

∞∑
t=T

(
const

log(t + 1)

)|X∗|
= −∞.

Therefore, expression (17) equals to zero, and, consequently,

P{X∗ is never obtained} = 0.
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Hence, the event that in some iteration the optimal solution is reached has probability
one.

We have proved that with probability one the considered Markov process (P t , X̂t−1)
enters in some iteration into the set � × {X∗}, where � is a set of all matrices P of
dimension n × (n + 1) with the following properties:

0 ≤ p(r,s) ≤ 1,
(18)∑

s

p(r,s) = 1.

(It is not difficult to verify that the last property is valid in the all iterations).
Now we are going to show that the process converges to the state (P∗, X∗).
Notice that when the optimal solution X∗ is attained for the first time, formula (10)

can be rewritten in the following way:

Ct+1,(r,s) =
{

1, (r, s) belongs to the optimal solution,

0, otherwise.
(19)

Let t∗ is the iteration where the optimal solution was obtained for the first time and
consider an edge (r, s), which doesn’t belong to the path corresponding to the optimal
solution. The probability corresponding to this edge at the beginning of iteration t∗ +�t
is equal to

pt∗+�t,(r,s) =
[

t∗+�t−1∏
t=t∗

(1 − αt )

]
pt∗,(r,s). (20)

Using (12) it is not difficult to see that

∞∏
t=0

(1 − αt ) = 0

(to prove it, take the logarithm of the left-hand side).
Hence,

lim
�t→∞

pt∗+�t,(r,s) =
[ ∞∏

t=t∗
(1 − αt )

]
pt∗,(r,s) = 0 (21)

(for the edges (r, s) that don’t belong to the path corresponding to the optimal solution).
Since the normalization property (18) holds and the optimal solution is unique, we

have

lim
�t→∞

pt∗+�t,(r,s) = 1 (22)

(for the edges (r, s) that belong to the path corresponding to the optimal solution).
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This proves that the process (P t , X̂t−1) converges to the state (P∗, X∗).
The last assertion of the theorem (for a fixed repetition, its probability to obtain X∗

in the iteration t tends to 1, as t → ∞) follows immediately from the formulae (21) and
(22).

Corollary 2.1. Let, in the algorithm GBCE/CM,

αt = ct

(t + 1) log(t + 2)
(t ≥ 0) with 0 < lim

t→∞ ct < 1.

Then the assertions of Theorem 2.1 hold.

The proof can be found in Gutjahr (2002).

Remark 2.1. The condition 0 < limt→∞ ct < 1 can be replaced by a less restrictive one:

lim inf
t→∞ ct > 0 and lim sup

t→∞
ct < 1.

It involves some minor changes in the proof.

Now consider another version of the CE method, namely, consider an algorithm,
which is similar to Algorithm 2.1, but has one difference: instead of (9) the probability
updating rule is as follows. Calculate the temporary non-normalized values

ptemp
t+1,(r,s) = max

(
(1 − α)pt,(r,s) + αCt+1,(r,s), pmin

t+1

)
,

where 0 < α < 1 is a constant value, and after that, normalize them:

pt+1,(r,s) = ptemp
t+1,(r,s)∑

(r,u)is feasible ptemp
t+1,(r,u)

.

This algorithm will be called the Graph-Based CE Algorithm/Conservative Mod-
ification with Lower Bound - GBCE/CMLB. (We have to notice that, due to the above
normalization, the actual lower bound on the probabilities at the iteration t is less than
pmin

t ). This algorithm is analogous to GBAS/tdlb from Gutjahr (2002).

Theorem 2.2. Let, in the algorithm GBCE/CMLB,

pmin
t = ct

log(t + 1)
(t ≥ 1) with lim

t→∞ ct > 0.

Then the assertions of Theorem 2.1 hold.

Proof. The proof is similar to the one of Theorem 2.1. There are two differences only.
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In the part proving that with probability one at some iteration the optimal solution
is reached, the lower bound for the probabilities at the iteration t is

pt,(r,s) ≥ pmin
t

|Ẽ(r )| = ct

|Ẽ(r )| log(t + 1)
≥ c

2|Ẽ(r )| log(t + 1)
= const

log(t + 1)

for sufficiently large t , where c = limt→∞ ct . This is the same lower bound as in (15).
The proof of convergence of the probability arrays to the optimal one P∗ (13) is

based on the following argument. Assume the optimal solution was obtained for the first
time at the iteration t∗. Consider the edge (r, s) not belonging to the optimal solution. It
is not difficult to show that for sufficiently large �t

pt+�t,(r,s) ≤ pmin
t+�t .

Noting that limt→∞ pmin
t = 0, we obtain

lim
�t→∞

pt+�t,(r,s) = 0.

The remaining part of the proof is analogous to that of Theorem 2.1.

Remark 2.2. The condition limt→∞ ct > 0 can be replaced by a less restrictive one:

lim inf
t→∞ ct > 0.

The proof remains almost the same.

3. Conclusion

We have proved the asymptotical convergence of two cross-entropy algorithms to the
optimal solution. This result is analogous to the ones proved for the ant colony optimiza-
tion and simulated annealing. However, it should be noted that the presented result, as
well as the results for the two mentioned above methods, is rather theoretical, because
we cannot say anything about convergence rate, as well as about error in each iteration.
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