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Abstract. In this paper, a linear bilevel programming problem (LBP) is considered. Local optimality con-
ditions are derived. They are based on the notion of equilibrium point of an exact penalization for LBP.
It is described how an equilibrium point can be obtained with the simplex method. It is shown that the
information in the simplex tableaux can be used to get necessary and sufficient local optimality conditions
for LBP. Based on these conditions, a simplex type algorithm is proposed, which attains a local solution
of LBP by moving in equilibrium points. A numerical example illustrates how the algorithm works. Some
computational results are reported.
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We consider the following linear bilevel program:

(LBP) max
x,y

f1(x, y) = cT
1 x + cT

2 y

s.t. x ≥ 0, y solves:

max
y

f2(x, y) = dT y

s.t. A1x + A2 y ≤ a,

y ≥ 0,

where c1, x ∈ Rn1, c2, d, y ∈ Rn2, a ∈ Rm, A1 ∈ Rm×n1 and A2 ∈ Rm×n2 .
This formulation has been extensively studied in the literature. Basic properties

and solution methods are presented by Bialas and Karwan (1984), Hansen, Jaumard, and
Savard (1992), Júdice and Faustino (1992), White and Anandalingam (1993), Amouzegar
and Moshirvaziri (1998) and Campêlo and Scheimberg (2001), for instance. Also, we
refer to Luo et al. (1996) for an approach in the framework of mathematical programs with
equilibrium constraints (MPEC). In terms of applications, bilevel programming has been
used in many domains, e.g. network design, transportation, game theory, engineering and
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economics. Some examples can be found in Vicente and Calamai (1994) and Migdalas,
Pardalos, and Värbrand (1989).

Problem LBP is a strongly NP-hard problem (Hansen, Jaumard, and Savard, 1992).
The main difficulties are due to the nonconvexity of its feasible region, which is a
connected set comprising faces of the polyhedron {(x, y) ≥ 0 : A1x + A2 y ≤ a}
(Benson, 1989). This makes LBP a nonconvex optimization program possibly having
many local optimal solutions.

In a previous work, we derive local optimality conditions for LBP based on the
notion of equilibrium points of an exact penalization (Campêlo and Scheimberg, 2005).
The equilibrium requirement is shown to be a necessary optimality condition that is
not difficult to attain. It suffices to solve two linear programs. On the other hand, it is
generally harder to evaluate extra conditions to ensure that an equilibrium point yields a
local optimal solution of LBP.

Now, we derive other necessary and/or sufficient conditions, besides of those pre-
sented by Campêlo and Scheimberg (2005), based on the same notion of equilibrium.
We use the information available in the optimal simplex tableaux related to the two linear
programs solved. Usual nondegeneracy assumptions are considered to obtain conditions
which are more attractive from a computational point of view.

The paper is organized as follows. In Section 2, we present some basic tools to be
used in our development. In Section 2.1, we define the penalized problem related to LBP.
Also, we present the notation and obtain preliminary local properties. In Section 2.2, we
recapitulate some results about equilibrium points. In Section 3, we derive optimality
conditions. In Section 4, we propose an algorithm for finding a local optimal solution
and present an illustrative example. Finally, we have a concluding remarks section where
we comment about computational aspects of the local algorithm.

1. Basic results

1.1. Preliminaries

Here, we consider an exact penalization for LBP that is used to derive optimality condi-
tions. Also, we describe the adopted notation and obtain basic local results.

The penalized problem is obtained by replacing the inner linear problem of LBP by
its KKT conditions and by penalizing the complementarity constraints into the objective
function with a parameter M ≥ 0. Thus, we have the following parametric bilinear
program:

P(M) max cT
1 x + cT

2 y − M(uT w + vT y)

s.t. A1x + A2 y + w = a,

x ≥ 0, y ≥ 0, w ≥ 0,

AT
2 u − v = d,

u ≥ 0, v ≥ 0,
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where w ∈ Rm is the primal slack vector and u ∈ Rm and v ∈ Rn2 are dual variable
vectors. It is worth noting that other ways of penalizing the complementarity constraints
have been considered in the literature (see Luo et al. (1996), for instance).

Program P(M) is an exact penalization for LBP. Actually, it can be shown that
LBP and P(M) are both infeasible or unbounded for all M ≥ 0 or else there is a
correspondence between the global optimal solutions of the problems for all M ≥ M0,
for some finite value M0 ≥ 0 (Campêlo and Scheimberg, 2001). This equivalence has
supported some methods for finding global optimal solutions of LBP (see, for example,
Bard (1984), White and Anandalingam (1993), Amouzegar and Moshirvaziri (1998) and
Campêlo and Scheimberg (2001)).

More recently, this penalized problem has also been used to characterize local
optimal solutions of LBP (Campêlo and Scheimberg, 2005). The optimality conditions
are based on the concept of equilibrium point of P(M), which was introduced by Campêlo
(1999).

In this work, we further study the relations between equilibrium points of P(M) and
local optimal solutions of LBP. We derive optimality conditions which are more attractive
from a computational point of view than those presented by Campêlo and Scheimberg
(2005).

We adopt the following notation. We consider the block matrices A = [A1 A2 Im] ∈
Rm×n, D = [0 − In2 AT

2 ] ∈ Rn2×n, cT = (cT
1 , cT

2 , 0) ∈ Rn, zT = (xT , yT , wT ) ∈ Rn

and sT = (0, vT , uT ) ∈ Rn , where n = n1 + n2 + m, Ip is the (p × p)-identity
matrix and 0 is a null matrix of appropriate dimension for each case. We define the sets
Z = {z ∈ Rn : Az = a, z ≥ 0} and S = {s ∈ Rn : Ds = d, s ≥ 0}. Thus, the penalized
problem is rewritten as:

P(M) max FM (z, s) = cT z − MsT z s.t. z ∈ Z , s ∈ S

We denote by Xv the vertex set of a polyhedron X . Given a matrix Q ∈ Rp×q and
a subset K ⊂ {1, 2, . . . , q}, we denote by QK the submatrix that comprises the columns
of Q indexed by K . The columns of QK are referred to by the original indices used in
Q.

To develop the local analysis, we consider neighborhoods given by the infinity
norm. Let us recall that the infinity norm of ν = (ν1, ν2, . . . , νp) is ‖ν‖∞ = max{|νi | :
1 ≤ i ≤ p} and Bε(ν̄) = {ν ∈ Rp : ‖ν − ν̄‖∞ ≤ ε} is an ε-neighborhood of ν̄ ∈ Rp.
Observe that Bε(ν, ω) = Bε(ν) × Bε(ω) for any (ν, ω) ∈ Rp × Rq .

Finally, we use the following point-to-set functions:

S(z) = {s ∈ S : zT s = 0} and Z (s) = {z ∈ Z : sT z = 0},
which map a point z ∈ Z ⊂ Rn (resp. s ∈ S ⊂ Rn) into a polyhedron S(z) ⊂ S
(resp. Z (s) ⊂ Z ). The vertex sets of polyhedra S(z) and Z (s) are Sv(z) = S(z) ∩ Sv and
Zv(s) = Z (s) ∩ Zv, respectively.

These functions were introduced by Campêlo (1999) and are closely related to our
problem. Note that the feasible set of LBP is the domain of S(·), {z ∈ Z : S(z) 	= ∅}, or
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equivalently, the image of Z (·), {z ∈ Z : z ∈ Z (s) for some s ∈ S}. Moreover, the next
useful local property is obtained by Campêlo and Scheimberg (2005).

Lemma 1. The following assertions hold: (1) If z̄ ∈ Z then there is ε > 0 such that
S(z) ⊆ S(z̄) and Sv(z) ⊆ Sv(z̄) for all z ∈ Z ∩ Bε(z̄). (2) If s̄ ∈ S then there is ε > 0
such that Z (s) ⊆ Z (s̄) and Zv(s) ⊆ Zv(s̄) for all s ∈ S ∩ Bε(s̄). (3) If (z̄, s̄) ∈ Z × S then
there is ε > 0 such that S(z) ⊆ S(z̄), Sv(z) ⊆ Sv(z̄), Z (s) ⊆ Z (s̄) and Zv(s) ⊆ Zv(s̄) for
all (z, s) ∈ (Z × S) ∩ Bε(z̄, s̄).

A direct consequence of the above lemma is the following characterization of
polyhedra S(z̄) and Z (s̄) and their vertex sets, for each z̄ ∈ Z and s̄ ∈ S.

Corollary 2. The following assertions hold: (1) If z̄ ∈ Z (z̄ ∈ Zv) then there is ε > 0
such that S(z̄) = ⋃

z∈Z∩Bε(z̄) S(z) (Sv(z̄) = ⋃
z∈Z∩Bε(z̄) Sv(z)). (2) If s̄ ∈ S(s̄ ∈ Sv) then

there is ε > 0 such that Z (s̄) = ⋃
s∈S∩Bε(s̄) Z (s) (Zv(s̄) = ⋃

s∈S
⋃

Bε(s̄) Zv(s)).

1.2. Equilibrium points

Now, we present the notion of equilibrium point of P(M) and its relation to local optimal
solutions of LBP.

Definition 3. A point (z̄, s̄) is an equilibrium point of the penalized problem P(M) if
there is M̄ ≥ 0 such that, for each M ≥ M̄ , it holds

max{FM (z̄, s) : s ∈ S} = FM (z̄, s̄) = max{FM (z, s̄) : z ∈ Z}. (1)
An equilibrium point eliminates the penalty term thus giving a feasible solution of

LBP, as stated in the next result (Campêlo and Scheimberg, 2005).

Lemma 4. If (z̄, s̄) is an equilibrium point of the penalized problem P(M), then min{z̄T s :
s ∈ S} = min{s̄T z : z ∈ Z} = s̄T z̄ = 0.

Furthermore, the equilibrium equation (1) is a necessary condition for optimality
in LBP. Actually, local optimal solutions of LBP are characterized by Campêlo and
Scheimberg (2005) as follows:

Theorem 5. A point z̄ is a local optimal solution of LBP if, and only if, Sv(z̄) 	= ∅ and
(z̄, s) is an equilibrium point of the penalized problem P(M) for all vertex s ∈ Sv(z̄).

In the next section, we are going to specialize the above theorem. We aim to find
local optimality conditions which are more easily checked.

Remark 6. Let us consider the MPEC(P) given by max{cT z : z ∈ Z , s ∈ S, sT z = 0}.
It holds that (P) and P(M) have the same global optimal solution set for all M ≥ M0,
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for some M0 ≥ 0 (Campêlo and Scheimberg, 2001). Additionally, an equilibrium point
of P(M) is a local optimal solution of (P) and vice-versa (Campêlo and Scheimberg,
2005). Hence, (P) and LBP have the same global optimal solution set but the local
optimal solution set of LBP may be strictly included in the local optimal solution set of
(P).

To conclude this subsection, we present an algorithm to find an equilibrium point
by solving two linear programs. Regarding Definition 3, let us define the following
parametric linear problems:

P(M, s̄) max FM (z, s̄) = cT z − Ms̄T z

s.t. z ∈ Z = {z ≥ 0 : Az = a}
P(M, z̄) max FM (z̄, s) = cT z̄ − Mz̄T s

s.t. s ∈ S = {s ≥ 0 : Ds = d}
Thus, (z̄, s̄) is an equilibrium point if, and only if, z̄ and s̄, respectively, are solutions of
P(M, s̄) and P(M, z̄) for all M ≥ M̄ .

Let us note that these problems can be solved by the simplex method. In fact,
problem P(M, s̄) can be solved by implicitly considering parameter M . Note that its
linear parametric objective function FM (z, s̄) = cT z − Ms̄T z can be maximized as in
the big-M simplex method, assuming that M is a dominating value (Bazaraa, Jarvis, and
Sherali, 1990). On the other hand, the solution point of problem P(M, z̄) does not depend
on parameter M , since the first term of its objective funtion FM (z̄, s) = cT z̄ − Mz̄T s is
a constant.

The following algorithm, given by Campêlo (1999), finds an equilibrium point of
P(M).

Algorithm 1. Basic Equilibrium Point Algorithm

0. If Z × S = ∅ then LBP is infeasible. Otherwise, let z0 ∈ Z .
1. Solve problem P(M, z0), to obtain a solution s̄;
2. Attempt to solve problem P(M, s̄). If this parametric problem is unbounded, then

P(M) is unbounded for all M ≥ 0 and so is LBP. Otherwise, obtain a solution z̄. The
point (z̄, s̄) is an equilibrium point.

Proposition 1 given by Campêlo and Scheimberg (2001) and Lemma 4 ensure that
Algorithm 1 is well-defined. Additionally, we can design a similar algorithm that starts
with a point s0 ∈ S (see Campêlo (1999) for details). These procedures have been
successfully used to improve performance of branch-and-bound algorithms for LBP
(Sabóia, Campêlo, and Scheimberg, 2004).

Let us note the Basic Equilibrium Point Algorithm corresponds to one iteration
of the Mountain Climbing Algorithm, that was proposed by Konno (1976) to find a
KKT point of a bilinear problem. Such an iterative procedure has also been used by



148 CAMPÊLO AND SCHEIMBERG

Audet et al. (1999) to calculate lower bounds in a branch-and-bound method for bilinear
programming.

2. Local optimality conditions

Local optimal solutions of LBP are associated with equilibrium points of P(M) according
to Theorem 5. In this section, we study other local optimality conditions for LBP in terms
of equilibrium points. We derive properties which are computationally simpler to check.

From now on, we treat (z̄, s̄) as an equilibrium point of P(M). Thus, z̄ and s̄,
respectively, are solutions of the parametric linear problems P(M, s̄) and P(M, z̄). As
solutions of these problems are attained at vertices, we will assume that (z̄, s̄) ∈ Zv × Sv.
We denote by J the set of indices {1, 2, . . . , n}.

Let us consider below the initial and the optimal simplex tableaux of P(M, s̄),
where B ⊂ J and N ⊂ J , respectively, are the index sets of basic and nonbasic variables
at z̄.

zT
B zT

N

AB AN a

M −s̄T
B −s̄T

N 0

cT
B cT

N 0

→

zT
B zT

N

I ÃN = A−1
B AN z̄B = A−1

B a

M 0 −s̃T
N = −s̄T

N + s̄T
B ÃN 0 = s̄T

B z̄B

0 c̃T
N = cT

N − cT
B ÃN −cT

B z̄B

In the above tableaux, the objective function FM (z, s̄) = cT z−Ms̄T z is represented
in two rows. The first one corresponds to the complementarity term s̄T z. The second one
expresses the linear term cT z. As observed before, it is possible to implicitly consider
the parameter M by optimizing with priority the first row, as does the big-M simplex
method.

Now, let us consider the initial and the optimal simplex tableaux of P(M, z̄), where
E ⊂ J and R ⊂ J , respectively, are the index sets of basic and nonbasic variables at s̄.

sT
E sT

R

DE DR d

M −z̄T
E −z̄T

R 0

−→
sT

E sT
R

I D̃R = D−1
E DR s̄E = D−1

E d

M 0 −z̃T
R = −z̄T

R + z̄T
E D̃R 0 = z̄T

E s̄E

In problem P(M, z̄), the function to be maximized is FM (z̄, s) = cT z̄ − Mz̄T s. As
the first term is a constant, we represent only the second term in the tableaux. In this
case, the solution does not depend on parameter M .

Since (z̄, s̄) is an equilibrium point and AB and DE are optimal bases, we have the
results below:

Property 7. The following assertions hold: (1) s̃N ≥ 0 and z̃ R ≥ 0. (2) Given i ∈ N , if
c̃i > 0 then s̃i > 0.
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Proof. (1) follows by Lemma 4. (2) holds since z̄ is a solution of P(M, s̄). This means
that c̃i − Ms̃i ≤ 0 for all i ∈ N and all M ≥ M̄ ≥ 0, implying that s̃i > 0 if c̃i > 0.

Let us define the following sets:

N+ = {i ∈ N : c̃i > 0} and R0 = { j ∈ R : z̃ j = 0},
that, respectively, refer to the improving directions of Z at z̄ related to the objective
function cT z and to the directions of S at s̄ which are feasible to the constraint z̄T s = 0.

Sufficient optimality conditions for LBP are readily derived as follows:

Property 8. The following assertions hold: (1) If N+ = ∅ then z̄ is a global optimal
solution of LBP. (2) If R0 = ∅ then z̄ is a local optimal solution of LBP.

Proof. (1) holds because z̄ is a global optimal solution for the leader’s relaxation
max{cT z : z ∈ Z}, if N+ = ∅. (2) follows by Theorem 5 because s̄ is the unique
point in S which is complementary to z̄, i.e. S(z̄) = {s̄}, when R0 = ∅.

To study other optimality conditions, we consider below the extreme directions of
Z and S at z̄ and s̄, respectively. These directions can be obtained in the optimal tableaux
and are given by the columns of the following matrices:

G N =
[− ÃN

In−m

]

∈ Rn×(n−m) and HR =
[−D̃R

In−n2

]

∈ Rn×(n−n2),

where Ip is a p × p identity matrix. For i ∈ N and j ∈ R, column Gi of G and column
Hj of H are:

Gi =
[− Ãi

ei

]

∈ Rn and Hj =
[−D̃ j

e j

]

∈ Rn.

Hence, the components of these directions are given by

Gki =






− Ãki , if k ∈ B,

0, if k ∈ N\{i},
1, if k = i,

and Hkj =






−D̃k j , if k ∈ E,

0, if k ∈ R\{ j},
1, if k = j.

(2)

Notice that the components of the reduced cost vectors are:

c̃i = cT Gi , s̃i = s̄T Gi ≥ 0 and z̃ j = z̄T Hj ≥ 0, (3)

for i ∈ N and j ∈ R, where the inequalities hold by Property 7(1). So, sets N+ and R0

can be redefined accordingly. It will also be useful to define the subsets:

N+0 = {i ∈ N+ : sT Gi = 0 for some s ∈ S(z̄)} and R00 = { j ∈ R0 : z̄ j = 0}.
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Next we show that the points of Z can be expressed in terms of z̄ and the directions
Gi . A similar development is then applied to S, s̄ and the directions Hj .

Lemma 9. If z = (z1, z2, . . . , zn) ∈ Z then z = z̄ + ∑
i∈N zi Gi .

Proof. Let z = (zT
B, zT

N )T ∈ Z . Then, AB zB + AN zN = a, and so zB = z̄B − ÃN zN .

Since z̄N = 0, it follows that [
zB

zN
] = [

z̄B

z̄N
]+ [

− ÃN

In−m
]zN . Therefore, z = z̄ +∑

i∈N zi Gi .

Lemma 10. If s = (s1, s2, . . . , sn) ∈ S, then s = s̄ +∑
j∈R s j Hj . Moreover, if s ∈ S(z̄)

then s = s̄ + ∑
j∈R00 s j Hj .

Proof. Like in Lemma 9, we find that s = s̄ + ∑
j∈R s j Hj . Now assume that s ∈

S(z̄), that is, z̄T s = z̄T s̄ = 0. Then, s j = 0 if z̄ j > 0. In addition, we have that∑
j∈R s j z̄T Hj = 0. Thus, the last inequality in (3) implies that s j = 0 whenever z̃ j =

z̄T Hj > 0. Therefore, the expression giving s can be reduced to s = s̄ + ∑
j∈R00 s j Hj .

In order to obtain optimality conditions for LBP, from now on we consider the
following assumption:

[D] If s ∈ S(z̄), then sT G N ≥ 0, i.e. sT Gi ≥ 0 for all i ∈ N .

This assumption trivially holds when z̄ is a nondegenerate vertex. In this case AB is the
unique basis given z̄. Then, since z̄ is a solution of min{sT z : z ∈ Z}, the optimal reduced
cost sT G N = sT

N − sT
B A−1

B AN is nonnegative.
Now we derive a sufficient condition for local optimality of the equilibrium point.

Theorem 11. If N+0 = ∅ then z̄ is a local optimal solution of LBP.

Proof. Suppose, by contradiction, that z̄ is not a local optimal solution of LBP. Let ε be
given by Lemma 1. Then, there is z ∈ Z ∩ Bε(z̄), with ∅ 	= S(z) ⊆ S(z̄) and cT z > cT z̄.
By Lemma 9, z = z̄ + ∑

i∈N zi Gi . Thus, 0 < cT (z − z̄) = ∑
i∈N zi cT Gi . Hence, there

exists k ∈ N with zk > 0 and cT Gk > 0. Therefore, k ∈ N+. On the other hand,
let ŝ ∈ S(z) ⊆ S(z̄). Then, 0 = ŝT (z − z̄) = ∑

i∈N zi ŝT Gi . By assumption [D], we
conclude that zi ŝT Gi = 0 for all i ∈ N . In particular, ŝT Gk = 0. Therefore, we have that
k ∈ N+0.

Actually, the sufficient condition presented in Theorem 11 is also necessary under
an assumption of nondegeneracy, as shown in the next theorem. First, we introduce the
following definition.

Definition 12. For i ∈ N , the direction Gi is degenerate if infk∈B{z̄k/ Ãki : Ãki > 0} = 0.
Additionally, the set N+0 is said to be totally degenerate (with respect to the basis AB)
if N+0 	= ∅ and Gi is degenerate for all i ∈ N+0.
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Theorem 13. If z̄ is a local optimal solution of LBP then N+0 = ∅ or N+0 is totally
degenerate.

Proof. Suppose, by contradiction, that N+0 is nonempty and not totally degenerate.
Then, there are i ∈ N+0 and s ∈ S(z̄) such that GT

i s = 0 and z̄ + αGi ∈ Z for all
0 < α ≤ infk∈B{z̄k/ Ãki : Ãki > 0}. Let ε > 0 arbitrary. Thus, there is z = z̄ + zi Gi ∈
Z ∩ Bε(z̄) with zi > 0. Since zT s = z̄T s + zi GT

i s = 0, we have that z ∈ Bε(z̄) is feasible
to LBP. Moreover, cT (z − z̄) = zi cT Gi > 0 because i ∈ N+. Hence, z̄ is not a local
optimal solution of LBP.

According to Theorem 5, if z̄ is not a local optimal solution of LBP, then (z̄, s) is
not an equilibrium point for some s ∈ S(z̄), s 	= s̄. Corollary 14 gives more information
about such points s as follows.

Corollary 14. Assume that set N+0 is not totally degenerate. If z̄ is not a local optimal
solution of LBP then, for all i ∈ N+0 such that Gi is not degenerate and all ŝ ∈
argmin{GT

i s : s ∈ S(z̄)}, it holds that (z̄, ŝ) is not an equilibrium point.

Proof. Assume that z̄ is not a local optimal solution of LBP. Let i ∈ N+0 such that
Gi is not degenerate. There is always such an i , due to Theorem 11 and the fact that
N+0 is not totally degenerate. Then, there is zi > 0 such that z = z̄ + zi Gi ∈ Z .
Let ŝ ∈ arg min{GT

i s : s ∈ S(z̄)} 	= ∅. As i ∈ N+0, it holds that GT
i ŝ = 0. Thus,

(c − Mŝ)T (z − z̄) = zi cT Gi > 0 for all M . Hence, (z̄, ŝ) is not an equilibrium point.

Corollary 14 assures that if the equilibrium point (z̄, s̄) does not give a local optimal
solution of LBP, an alternative solution ŝ 	= s̄ of P(M, z̄) must result in an improved
equilibrium point.

Let us note that we could redefine N+0 = {i ∈ N+ : min{GT
i s : s ∈ S(z̄)} = 0}.

Thus, to check the condition established in Theorem 11 it may be necessary to solve many
linear programs. In some cases, this computational effort can be reduced according to
the following result.

Lemma 15. Let i ∈ N+. If R00 = ∅ or GT
i Hj ≥ 0 for all j ∈ R00 then i /∈ N+0.

Proof. Let i ∈ N+. Suppose, by contradiction, that i ∈ N+0. Then, there is s ∈ S(z̄)
such that GT

i s = 0. Moreover, Property 7(2) implies that GT
i s̄ = s̃i > 0 = GT

i s.
By Lemma 10, it follows that

∑
j∈R00 s j GT

i Hj < 0. Therefore, GT
i Hj < 0 for some

j ∈ R00.

The above lemma together with Theorem 11 yield the following result:

Corollary 16. If the set {(i, j) ∈ N+ × R00 : GT
i Hj < 0} is empty, then z̄ is a local

optimal solution of LBP.
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Remark 17. It is not hard to compute the scalar product GT
i Hj , for i ∈ N+ and j ∈

R00. Indeed, by expression (2), we have that GT
i Hj = ∑

k∈B∩E Ãki D̃k j + �i j , where
�i j = 1(if i = j) or �i j = Hi j + G ji (if i 	= j). Moreover, few elements are expected
in B ∩ E , since z̄T s̄ = 0.

We can still obtain optimality conditions for LBP which are easier to verify if we
consider conventional nondegenerate assumptions. We study these cases below.

Lemma 18. The following assertions hold: (1) If z̄ is nondegenerate then sT G N = sN ,

for all s ∈ S(z̄), N+ ⊂ N ∩E, R00 ⊂ N ∩ R0 and N+∩ R00 = ∅. (2) If s̄ is nondegenerate
then zT HR = zR, for all z ∈ Z (s̄), and R00 = R0. (3) If z̄ and s̄ are nondegenerate then
B ∩ E = ∅.

Proof.

(1) Assume that z̄ is a nondegenerate vertex, i.e. z̄B > 0. Let s ∈ S(z̄). Since z̄T s = 0,
it must be sB = 0. It follows that sT G N = sN − sT

B ÃN = sN . In particular, s̃N =
s̄T G N = s̄N . Thus, by Property 7(2), s̄i = s̃i > 0 if i ∈ N+. This yields that N+ ⊂ E
and so N+ ⊂ N ∩ E . The inclusion R00 ⊂ N ∩ R0 comes from the definition of R00

and the fact that z̄B > 0. In addition, we have that N+ ∩ R00 ⊂ E ∩ R0 = ∅.

(2) Given that s̄ is nondegenerate, an argumentation similar to the first part of (1) shows
that zT HR = zR , for all z ∈ Z (s̄). In particular, z̃ R = z̄T HR = z̄ R implying that
R00 = R0.

(3) Since z̄B > 0, s̄E > 0 and z̄T s̄ = 0, it follows that B ∩ E = ∅.

By Lemma 18(1), we conclude that N+0 = {i ∈ N+ : min{si : s ∈ S(z̄)} = 0}
when z̄ is nondegenerate. Therefore, Theorems 11 and 13 result in the following charac-
terization given by Campêlo and Scheimberg (2005).

Corollary 19. Assume that z̄ is nondegenerate. Then z̄ is a local optimal solution of
LBP if, and only if, N+0 = ∅, that is, the set {i ∈ N+ : min{si : s ∈ S(z̄)} = 0} is empty.

Remark 20. If z̄ is nondegenerate and (i, j) ∈ N+ × R00, then GT
i Hj =∑

k∈B∩E ′ Ãki D̃k j − D̃i j , where E ′ = {k ∈ E : s̄k = 0} is the index set of the basic
degenerate variables at s̄. Indeed, let us consider the expression given at Remark 17.
First, since z̄T s̄ = 0 and z̄B > 0, it must be E\E ′ ⊂ N and so B ∩ E = B ∩ E ′. In
addition, by Lemma 18(1), N+ ∩ R00 = ∅ and (i, j) ∈ E × N , which respectively imply
i 	= j and Hi j + G ji = −D̃i j .

When both z̄ and s̄ are nondegenerate, necessary conditions for local optimality are
much simpler. In fact, we can state simpler versions of Lemma 15 and Corollary 16 as
follows.
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Lemma 21. Assume that z̄ and s̄ are nondegenerate and let i ∈ N+. If R0 = ∅ or
D̃i j ≤ 0 for all j ∈ R0 then i /∈ N+0.

Proof. By Remark 20 and Lemma 18, GT
i Hj = −D̃i j for any i ∈ N+ and j ∈ R00 =

R0. The result then follows by Lemma 15.

Corollary 22. Assume that z̄ and s̄ are nondegenerate. If the set {(i, j) ∈ N+ × R0 :
D̃i j > 0} is empty, then z̄ is a local optimal solution of LBP.

3. A local algorithm

In this section, we propose an algorithm for finding a local optimal solution of LBP. It
uses the results obtained in the previous sections.

Algorithm 2.

0. If Z × S = ∅ then LBP is infeasible. Otherwise, let z0 ∈ Z . Set k = 1.
1. Solve P(M, z0) by the simplex method to obtain a solution s̄k ∈ Sv.
2. Attempt to solve P(M, s̄k) by the simplex method. If it is unbounded, then LBP is

unbounded. Otherwise, let z̄k ∈ Zv be a solution. Then, (z̄k, s̄k) is an equilibrium
point.

3. Rergarding Lemmas 15 and 21, and Remarks 17 and 20, determine N+0.
3.1. If N+0 = ∅ then stop returning z̄k as a local optimal solution of LBP.
3.2. If N+0 	= ∅ and is totally degenerate then stop with a failure, that is, there is no

guarantee that the equilibrium point gives a local optimal solution of LBP.
3.3. If N+0 	= ∅ and is not totally degenerate, let i ∈ N+0 such that Gi is not

degenerate.
4. Take s̄k+1 ∈ arg min{GT

i s : s ∈ S(z̄k)}, which is another solution of P(M, z̄k). Set
k = k + 1 and go to step 2.

Let us note that we can apply the first phase of the simplex method to verify whether
or not Z and S are both nonempty. If so, the initial point z0 can be taken as the point in Z
achieved by the method. However, a good choice for z0 may be given by the solution of
the leader’s relaxation max{cT z : z ∈ Z}, if it exists. Many algorithms proposed in the
literature start from this point (Hansen, Jaumard, and Savard, 1992; Júdice and Faustino,
1992; Tuy and Ghannadan, 1998).

The proof of the correctness of Algorithm 2 essentially follows the results stated
in Section 2. Let us note that Algorithm 2 generates a sequence {(z̄k, s̄k)} of equilibrium
points such that cT zk+1 > cT zk . The initial one (k = 1) is clearly obtained by Steps 1
and 2. The iterated ones (k > 1) are determined by Steps 4 and 2, which also comprise
an equilibrium point procedure starting with z̄k . In fact, s̄k+1 is a solution of P(M, z̄k)
because (z̄k)T s̄k+1 = 0. Moreover, the next equilibrium point improves the objective
function, provided that i ∈ N+.
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Two final remarks about Step 3 are worthwhile. First, once we have found the
optimal tableau of P(M, z̄k), we can use it to verify if i ∈ N+0, that is, if there exists
s ∈ S(z̄k) such that GT

i s = 0. Instead of solving the problem min{GT
i s : s ∈ S(z̄k)},

we can solve the parametric problem min{GT
i s + M(z̄k)T s : s ∈ S} from the optimal

tableau of P(M, z̄k). Indeed, we can apply the big-M simplex method from this tableau
with the row related to the objective function properly including the coefficients given
by Gi . Second, when N+0 is totally degenerate, we consider that the algorithm fails
because there is no guarantee whether z̄k is a local optimal solution of LBP or not. Even
so, the equilibrium condition ensures that (z̄k, s̄k) is a local optimum of the MPEC (P),
according to Remark 6.

3.1. Numerical example

In order to demonstrate the algorithm, we consider the following example:

max f1(x, y) = −x + 2y1 − 20y2

s.t. x ≥ 0, y = (y1, y2) solves:

max f2(x, y) = −y1 + 10y2

s.t. x + y1 + y2 ≤ 3, x + y1 − y2 ≥ 1, −x + y1 + y2 ≤ 1, x − y1 + y2 ≤ 1,

16x − 6y1 + 60y2 ≤ 37, 6x − 16y1 + 60y2 ≤ 17, 6x − 6y1 + 60y2 ≤ 27,

16x − 16y1 + 60y2 ≤ 27, y ≥ 0.

In figure 1, its feasible set is described by edges AE and GC and the triangules
EFI and FGI. We have that point A is the global optimal solution and point C is a local
optimal solution. Also, note that point B is the optimum of the leader’s relaxation and
that the points in edge FI have the same value of the second level function.

Figure 1. Illustration of the numerical example.
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After introducing the slack variables, we obtain the sets:

Z = {z ≥ 0 : z1 + z2 + z3 + z4 = 3, z1 + z2 − z3 − z5 = 1,

− z1 + z2 + z3 + z6 = 1, z1 − z2 + z3 + z7 = 1,

16z1 − 6z2 + 60z3 + z8 = 37, 6z1 − 16z2 + 60z3 + z9 = 17,

6z1 − 6z2 + 60z3 + z10 = 27, 16z1 − 16z2 + 60z3 + z11 = 27},
S = {s ≥ 0 : s2 − s4 + s5 − s6 + s7 + 6s8 + 16s9 + 6s10 + 16s11 = 1,

− s3 + s4 + s5 + s6 + s7 + 60s8 + 60s9 + 60s10 + 60s11 = 10}.

Let us start the algorithm at z0 = (1, 2, 0, 0, 2, 0, 2, 33, 43, 33, 43)T , which cor-
responds to point B in figure 1. A basic solution s̄1 of P(M, z0) is such that s̄1

E =
(0, 1/6)T , for E = {9, 10}. Then, the solution set of P(M, s̄1) is the edge FI. Let
us consider z̄1 as the degenerate vertex I , given by B = {1, 2, 3, 4, 5, 6, 7, 9}. Thus,
z̄1

B = (1, 1, 0.45, 0.55, 0.55, 0.55, 0.55, 0)T . We have that (z̄1, s̄1) is an equilibrium
point, with f1(z̄1, s̄1) = −8. By searching the optimal tableau, we get that N+ = {10}
and GT

10 = 1
150 (15, 0, −4, −11, 19, 19, −11, 0, 150, 150, 0). Moreover, GT

10s̄2 = 0, for
a basic solution s̄2 of P(M, z̄1), where E = {8, 9} and s̄2

E = (1/6, 0)T . This means that
N+0 = {10}.

Returning to Step 2, the solution z̄2 of P(M, s̄2) is attained at the degenerate point
G. We have that z̄2

B = (1.75, 1, 0.25, 1.5, 1.5, 7.5, 7.5, 0)T , for B = {1, 2, 3, 5, 6, 9, 10,

11}. Thus, we achieve a new equilibrium point (z̄2, s̄2), with f1(z̄2, s̄2) = −4.75. Again,
we have one improving direction, which is indexed by N+ = {8}. The tableau provides
us with GT

8 = 1
44 (1, 0, −1, 0, 2, 2, 0, 44, 54, 54, 44). Since a vertex s̄3 ∈ S(z̄2) such that

GT
8 s̄3 = 0 can be found, it holds that N+0 = {8}. Actually, s̄3 is a nondegenerate basic

solution of P(M, z̄2) that is given by E = {4, 7} and s̄3
E = (4.5, 5.5)T .

Once more we return to Step 2 to solve P(M, s̄3). A nondegenerate basic solu-
tion z̄3 is attained at point C . Thus, we have that z̄3

B = (2, 1, 2, 2, 11, 21, 21, 11)T , for
B = {1, 2, 5, 6, 8, 9, 10, 11}. The third equilibrium point (z̄3, s̄3) is then found, with
f1(z̄3, s̄3) = 0. It follows that N+ = {7} and GT

7 = 1
2 (−1, 1, 0, 0, 0, −2, 2, 22, 22, 12,

32). This time, we can use Lemma 21 to ensure that N+0 = ∅. In fact, R0 = {3} and the
corresponding entry in the tableau is D̃73 = −0.5. Hence, z̄3 is a local optimal solution.

Some final observations can be made in connection with the choices of the points
or the bases along the execution of the algorithm. First, note that s̄2 is another solution
of P(M, z0). Thus, if we had chosen this solution at the first iteration, we would have
achieved point G right away. Second, another basic solution for P(M, s̄1) would be
vertex F. With this alternative choice, the sequence of points generated would be the
same as before (except for F instead of I ). Finally, different basis could have been chosen
for representing point I at the first iteration. Some of them may not be convenient. For
instance, if we had obtained the tableau for B = {1, 2, 3, 4, 5, 6, 7, 11}, we would have
got the case where N+0 = {10} would be totally degenerate.
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4. Concluding remarks

We have developed a simplex framework for determining a local optimal solution of LBP.
After finding an equilibrium point by the simplex method, we have used the information
contained in the tableaux to get local optimality conditions for LBP. Based on these
conditions, we have proposed a local algorithm which essentially comprises simplex
pivot steps and thus can be implemented by using a simplex code.

One can easily see that the computational effort of the algortihm mostly depends
on the number of linear programs min{GT

i s + M(z̄k)T s : s ∈ S} that are solved at Step 3
and the number of pivot steps demanded to find their solutions. The number of problems
solved, which is at most |N+|, can be reduced by first considering the directions Gi

which are not degenerate. Thus, as soon as an i ∈ N+0 is found, the right decision of
Step 3 can be accomplished. Of course, the use of Lemmas 15 and 21 also allows the
reduction of the number of problems to be solved. Additionally, solving each problem
from the optimal tableau of P(M, s̄k) will take fewer pivot steps.

We have implemented the algorithm in C and run it with all the 384 test problems
described by Sabóia, Campêlo, and Scheimberg (2004), which were randomly generated
with a method based in Calamai and Vicente (1993). The number of variables n1 + n2

varies from 50 up to 200, and the number of constraints m is about 30% the number
of variables. The percentage of variables attributed to the first level is 25% for half of
the instances and 75% for the other half. The computational times spent on a AMD
XP 1.7 GHz, with 512 Kb of RAM, were negligible. For each problem, a local optimal
solution was achieved in less than 1 millisecond. Let us note that all test problems have a
nondegenerate set Z whereas degenerate vertices of set S were generally reached before
finding a local optimum.

Although the theoretical features and the preliminary computational results speak
in favor of the algorithm and indicate that it can handle large LBPs, more computational
experiments are needed to confirm the predicted performance. Specially, a careful compu-
tational experiment envolving primal degenerate test problems deserves to be carried out.
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