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1. Introduction

In many situations in which agents interact, they do so in groups. Cooperative game
theory studies such situations by taking into account what each particular coalition of
players can achieve on its own. These values of the coalitions are subsequently taken
into account in determining a fair division of the value of the grand coalition between all
players. Often, however, some coalitions play a special role, in that they arise in a natural
way from the underlying situation. If these naturally arising groups form a partition of
the grand coalition, they are usually referred to as a priori unions.

One interesting class of problems in which the role of a priori unions has been
studied is the class of bankruptcy problems. In a bankruptcy problem, there is an estate
to be divided among a number of claimants, whose total claim exceeds the estate available.
In many situations, these claimants can be divided in a priori unions, based on the nature
or cause of their claims. E.g., when a firm goes bankrupt, the creditors can usually be
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grouped in a natural way by distinguishing between claims on the basis of outstanding
bonds, equity or commercial transactions. The main focus of the bankruptcy literature
is on finding rules assigning to each bankruptcy situation an allocation of the estate,
which satisfies some appealing properties. This branch of cooperative game theory was
initiated by O’Neill (1982) and has gained in popularity over the years. A recent survey
about this topic can be found in Thomson (2003). One natural way to analyse the class of
bankruptcy situations with a priori unions is to extend well-known standard bankruptcy
rules to this class. E.g., Casas-Méndez et al. (2003) extend the adjusted proportional
rule by considering a two-stage procedure in which the estate is first divided among
the unions, and subsequently the amount that each union receives is divided among its
members.

In this paper, we present two extensions of the constrained equal awards (CEA)
rule. The first extension involves a similar two-stage procedure as in Casas-Méndez et al.
(2003). We relate this extension to the CEA solution of a corresponding TU game with
a priori unions, which is inspired by Owen (1977). We provide two characterisations
of this two-stage extension, inspired by previous results by Dagan (1996) and Herrero
and Villar (2002). The second extension of the CEA rule is based on the random arrival
rule introduced in O’ Neill (1982) and it is characterised by a consistency property.
We illustrate and compare our two extensions of the CEA rule by applying them to the
bankruptcy case of the Pacific Gas and Electric Company.

The outline of the paper is as follows. In Section 2, we formally define the class
of bankruptcy situations with a priori unions and some related concepts that are used
throughout the paper. In Section 3, the problem of extending standard bankruptcy rules
is addressed and the first extension is presented. In Section 4, we provide the two char-
acterisations of the two-stage extension of the CEA rule. Section 5 contains the second
extension and deals with the concept of consistency. Finally, in Section 6 we present the
application.

2. Bankruptcy with a priori unions

A bankruptcy problem arises when there is an estate to be divided and this estate is not
enough to satisfy all the claims on it. In this kind of problems the question is how to
divide the available estate among all the claimants.

We model a bankruptcy situation by a triple (N , E, c), where N = {1, . . . , n} is
the set of players (creditors), E ∈ R+ represents the estate (the available resources of the
debtor) and c = (c1, . . . , cn) ∈ R

N
+ is the vector of claims of the creditors. We assume∑

i∈N ci ≥ E , so the estate is insufficient to meet all the claims.
By B N we denote the set of all bankruptcy problems with creditor set N . A

bankruptcy rule is a function f : B N → R
N that allocates to every bankruptcy problem

(N , E, c) a vector f (N , E, c) ∈ R
N such that for all i ∈ N , 0 ≤ fi (N , E, c) ≤ ci ( f is

reasonable) and
∑

i∈N fi (N , E, c) = E ( f is efficient). In this paper, our main focus is
the constrained equal awards (CEA) rule, which, for (N , E, c) ∈ B N , is defined for all
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i ∈ N by C E Ai (N , E, c) = min{λ, ci }, where λ is such that
∑

i∈N min{λ, ci } = E . This
rule awards the same amount to all claimants with the restriction that no player can get
more than his claim. The constrained equal awards is used by different authors, among
others Dagan (1996) and Herrero and Villar (2002), who provide different axiomatic
characterisations.

A cooperative game with transferable utility (or TU game) is a pair (N , v), where
N = {1, · · · , n} is the set of players, and v : 2N → R is the characteristic function
that assigns to each coalition S ⊂ N its worth v(S). By convention, v(∅) = 0. We
denote the class of TU games with player set N by T U N . A solution concept is a
function f : T U N → R

N that assigns to every TU game (N , v) ∈ T U N an allocation
f (N , v) ∈ R

N such that
∑

i∈N fi (N , v) = v(N ). The core of a game (N , v) is given by
C(v) = {x ∈ R

N | ∑
i∈N xi = v(N ), ∀S ⊂ N :

∑
i∈S xi ≥ v(S)} and a game (N , v)

is called exact (cf. Driessen and Tijs (1985)) if for each S ⊂ N , S 	= ∅, there exists an
x S ∈ C(v) such that

∑
i∈S x S

i = v(S).
A cooperative game with transferable utility with a priori unions is a triple (N , v,P)

where (N , v) is a standard TU game and P = {Pk}k∈R is a partition of the set of
players, R being the set of unions. For (N , v,P), we define the corresponding TU
game among the unions (R, vP ), the quotient game, where vP (L) = v(∪k∈L Pk) for all
L ⊂ R.

For every bankruptcy problem (N , E, c), O’ Neill (1982) defines an associated
bankruptcy game (N , vE,c). In this game, the value of a coalition S is the part of the
estate that remains after paying the creditors in N\S all their claims, that is, vE,c(S) =
max{E − ∑

i∈N\S ci , 0} for all S ⊂ N .
Curiel, Maschler, and Tijs (1987) study this class of games. They call a bankruptcy

rule game-theoretic if the solution of a situation only depends on the game. So, for a
game-theoretic f : B N → R

N , we can find a function F : T U N → R
N such that

f (N , E, c) = F(N , vE,c) for all bankruptcy problems (N , E, c) ∈ B N . In this paper,
we only consider game-theoretic bankruptcy rules. It is known that the CEA rule is a
game-theoretic rule.

We represent a bankruptcy problem with a priori unions by (N , E, c,P) where
(N , E, c) is a standard bankruptcy problem and P = {Pk}k∈R is a partition of the set of
players. We denote by BU N the set of all bankruptcy problems with a priori unions and
player set N .

Our aim is to define bankruptcy with a priori unions rules, that is, functions ϕ :
BU N → R

N that assign to each bankruptcy problem with a priori unions (N , E, c,P)
a vector ϕ(N , E, c,P) ∈ R

N such that for all i ∈ N , 0 ≤ ϕi (N , E, c,P) ≤ ci and∑
i∈N ϕi (N , E, c,P) = E .

If (N , E, c,P) ∈ BU N is a bankruptcy problem with unions, we can define the
corresponding bankruptcy problem among the unions (R, E, cP ), the so-called quotient
problem, where cP = (cPk )k∈R is the vector of total claims of the unions, so cPk =∑

i∈Pk
ci for each union Pk of creditors. Note that (R, E, cP ) is a well defined bankruptcy

problem.
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Multi-issue allocation situations are introduced in Calleja, Borm, and Hendrickx
(2005). The basic idea behind this class of problems is that the agents do not simply have
just a single claim on the estate, as in the standard bankruptcy model, but a number of
claims, each of which results from a particular issue. The basic assumption is that these
issues are dealt with in turn: as soon as money is distributed according to one particular
issue, this issue must first be completed before the next one is considered.

A multi-issue allocation situation is a triple (N , E, C), where N = {1, . . . , n} is
the set of players, E ∈ R+ is the estate and C ∈ R

R×N
+ is the matrix of claims. Every row

in C represents an issue and the set of issues is denoted by R = {1, . . . , r}. An element
cki ≥ 0 represents the amount that player i ∈ N claims according to issue k ∈ R. If a
player is not involved in a particular issue, his claim corresponding to that issue equals
zero.

The claim matrix C is assumed to satisfy the following properties:

• Every issue gives rise to a claim:
∑

i∈N cki > 0 for all k ∈ R.

• Every player is involved in at least one issue:
∑

k∈R cki > 0 for all i ∈ N .

• The allocation problem is nontrivial:
∑

k∈R

∑
i∈N cki ≥ E .

We can easily reinterpret a bankruptcy situation with a priori unions (N , E, c,P) as a
multi-issue allocation situation (N , E, C), where the issues correspond to the unions and
every player is involved in exactly one issue.

An ordering of the players in N is a bijection σ : {1, . . . , n} → N , where σ (i)
denotes which player in N is at position i . The set of all n! permutations of N is denoted
by �(N ). Similarly, the set of permutations of the set of issues R is denoted by �(R).

In order to analyse multi-issue allocation situations, Calleja, Borm, and Hendrickx
(2005) define two corresponding games, the proportional game and the queue game. In
this paper, we consider a variation on the former: instead of dividing the estate propor-
tional to the claims within the final issue to be handled, we apply an arbitrary bankruptcy
rule f to this problem. Note that for all f , the resulting game is exact, but not necessarily
convex. This procedure is illustrated in the following example.

Example 2.1. Consider the 4-creditor bankruptcy problem (N , E, c) with E = 10 and
c = (6, 2, 8, 5). Suppose that creditors 1 and 2 form a union and creditors 3 and 4 another
one, that is, P = {{1, 2}, {3, 4}}.

This situation gives rise to the 4-player multi-issue allocation problem (N , E, C)
with E = 10 and the following claim matrix:

C =
[

6 2 0 0

0 0 8 5

]
.

Take S = {1, 3}. In order to determine vCEA(S), we first compute, for both τ ∈ �(R),
gCEA

S (τ ), the quantity that S receives if the issues are handled in order τ and the final
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issue is resolved using CEA:

τ gCEA
S (τ )

1, 2 6 + C E A3({3, 4}, 2, (8, 5)) = 7

2, 1 C E A3({3, 4}, 10, (8, 5)) = 5

So, vCEA(S) = minτ∈�(R) gCEA
S (τ ) = 5. Similarly, taking T = {1, 4}, we obtain vCEA(T )

= 5, vCEA(S ∪ T ) = 8 and vCEA(S ∩ T ) = 0. Hence, vCEA(S) + vCEA(T ) > vCEA(S ∪
T ) + vCEA(S ∩ T ). So, although vCEA is exact, it is not convex.

3. Extending bankruptcy rules: A two-step procedure

In this section, we consider a way to extend a bankruptcy rule to a rule for bankruptcy
situations with a priori unions. We use the CEA rule to illustrate this extension. We
also connect our CEA solution for a bankruptcy situation with a priori unions to the
corresponding TU game with a priori unions.

If we want to divide the total estate among the creditors, one approach is to di-
vide the estate among the unions first and second to divide the allocation of each union
among the creditors of this union. Let f : B N → R

N . We define the two-stage extension
f̄ : BU N → R

N as follows. Let (N , E, c,P) ∈ BU N be a bankruptcy problem with a
priori unions. First, define E f

k = fk(R, E, cP ) for all k ∈ R and secondly, for i ∈ Pk ,
f̄i (N , E, c,P) = fi (Pk, E f

k , (c j ) j∈Pk ).

The CEA rule for bankruptcy situations with a priori unions generalises the stan-
dard CEA rule for bankruptcy situations, in the sense that both CEA(N , E, c,PN )
and CEA(N , E, c,Pn) coincide with CEA(N, E, c), where Pn is the discrete partition
Pn = {{1}, . . . , {n}} and PN is the trivial partition PN = {N }. Also note that by con-
struction, CEAk(R, E, cP ,P R) = Ek for all k ∈ R.

The CEA solution of a bankruptcy situation with a priori unions coincides with the
CEA solution for a corresponding TU game with a priori unions, which we are going to
define next.

First, recall that the utopia vector of a TU game (N , v), M(v), is defined by Mi (v) =
v(N )−v(N\{i}) for all i ∈ N . This vector is used to define the CEA solution of the game,
which, for (N , v) ∈ T U N , is defined for all i ∈ N by CEAi (N , v) = min{λ, Mi (v)},
where λ is such that

∑
i∈N min{λ, Mi (v)} = v(N ).1 This solution divides the worth of

the total coalition, v(N ), among the players in such a way that all of them obtain the
same amount with the restriction that no player can get more than his utopia payoff.

Now, let (N , v,P) be a TU-game with a priori unions. The constrained equal awards
solution of this game, CEA(N , v,P) is defined in two steps. First, the payoff to each union
Pk ∈ P equals CEA(R, vP ), ie, the constrained equal awards solution of the quotient
game.
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In the second step, the payoff to each union is divided among its players. To do
this, we consider for every player i ∈ N his cooperation possibilities with the players
outside i’s union. We should note that a similar idea is used in Owen (1977), where a
modification of the Shapley value for TU games with a priori unions is defined.

Let Pk ∈ P and let i ∈ Pk . The “claim” of player i is defined as his contribution to
the coalition ∪�∈R\{k} P� ∪ {i}, that is, Mi (v,P) = v(∪�∈R\{k} P� ∪ {i}) − v(∪�∈R\{k} P�).
The constrained equal awards solution of the game (N , v,P) for player i ∈ Pk is then
defined by

CEAi (N , v,P) = CEAi (Pk, CEAk(R, vP ), (M j (v,P)) j∈Pk ).

The CEA rule coincides with the CEA of the game (N , vCEA,P), as is shown in the fol-
lowing proposition, where vCEA is the multi-issue allocation game obtained by applying
the CEA rule in the last issue.

Proposition 3.1. For every bankruptcy problem with a priori unions (N , E, c,P) we
have that CEA(N , E, c,P) = C E A(N , vCEA,P).

Proof. Let (N , E, c,P) be a bankruptcy problem with a priori unions. First, it follows
of the definition of the game vCEA that

vCEA(∪k∈L Pk) = max

{
E −

∑
i∈N\∪k∈L Pk

ci , 0

}

for all L ⊂ R and hence, the games (R, (vCEA)P ) and (R, vE,cP ) coincide. So,

C E Ak(R, (vCEA)P ) = C E Ak(R, vE,cP ) = ECEA
k = C E Ak(R, E, cP )

for all k ∈ R.
Next, for i ∈ Pk , taking into account the definition of the game vCEA,

Mi (v
CEA,P) =

{
CEAi (Pk, E, (c j ) j∈Pk ) if E ≤ cPk ,

ci if E > cPk .

From this, we obtain that

CEAi (N , E, c,P) = CEAi (Pk, ECEA
k , (c j ) j∈Pk ) = CEAi (Pk, ECEA

k , (M j (vCEA,P)) j∈Pk )
= CEAi (Pk, CEAk(R, (vC E A)P ), (M j (vCEA,P)) j∈Pk ) = CEAi (N , vCEA,P)

for all i ∈ Pk and the proof is concluded.

Nevertheless, in general, CEA(N , E, c,P) 	= CEA(N , vE,c,P). This fact is illustrated
in the following example.

Example 3.2. Consider the 3-creditor bankruptcy problem (N , E, c) with E = 400
and c = (100, 100, 400). Suppose that creditor 1 forms a union and creditors 2 and
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3 another one, that is, P = {P1, P2} with P1 = {1} and P2 = {2, 3}. To find the
CEA solution of the bankruptcy problem with unions (N , E, c,P), we first consider the
bankruptcy problem (R, E, cP ) among the unions. We obtain that CEA(R, E, cP ) =
(100, 300) and then CEA(N , E, c,P) = (100, 100, 200). By proposition 3.1. we have
that CEA(N , vCEA,P) = (100, 100, 200). To find the CEA solution of the game (N , vE,c,

P) we first should consider the corresponding game among the unions (R, vP
E,c). It is

then easily seen that CEA(R, vP
E,c) = (100, 300) and then CEA1(N , vE,c,P) = 100.

To determine the allocation of CEA23(R, vP
E,c) among players 2 and 3, we compute the

utopia payoffs M2(vE,c,P) = 0 and M3(vE,c,P) = 300. Hence CEA(N , vE,c,P) =
(100, 0, 300).

4. Characterisations of the two-step constrained equal awards rule

In this section we use the axiomatic method to support the two-stage procedure consid-
ered in previous section. We provide two different combinations of axioms to characterize
the CEA rule as defined in Section 3, extending two previous characterizations of the
CEA rule for simple bankruptcy problems. Consider the following properties for a rule
ϕ : BU N → R

N .

Composition (COMP): For each bankruptcy problem with unions (N , E, c,P),
ϕ(N , E, c,P) = ϕ(N , E ′, c,P) + ϕ(N , E − E ′, c − ϕ(N , E ′, c,P),P) for all 0 ≤
E ′ ≤ E .

This property considers the situation in which after the estate (E ′) has been divided
among the agents, this estate is reevaluated and turns out to be a bigger amount (E).
In these cases, we have two options. We can cancel the initial division and apply the
rule to the new problem, or we can preserve the initial division and apply the rule to the
increment of the estate by considering a new vector of claims, taking into account the
quantities already received. The composition property says that both options should lead
to the same result.

Path independence (PI): For each bankruptcy problem with unions (N , E, c,P),
ϕ(N , E, c,P) = ϕ(N , E, ϕ(N , E ′, c,P),P) for all E ′ ≥ E .

Here, the opposite situation is considered, one where the estate (E) is actually
smaller than the one initially considered (E ′). Then, we can apply the rule to the new
problem or divide the new value by taking the initial divisions as claim vector. Path
independence states that both ways of proceeding should result in the same vector of
allocations.

Equal treatment within the unions (ET): For each bankruptcy problem with unions
(N , E, c,P) and for each two agents i, j of a union Pk ∈ P such that ci = c j ,
ϕi (N , E, c,P) = ϕ j (N , E, c,P).
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This property requires that agents of the same union with equal claims obtain equal
payoffs.

Quotient problem property (QPP): For each bankruptcy problem with unions
(N , E, c,P) and for each union Pk ∈ P ,

∑
i∈Pk

ϕi (N , E, c,P) = ϕk(R, E, cP ,P R).

In a bankruptcy problem with unions we can consider the associated quotient prob-
lem where the unions negotiate about the division of the estate. After this, a negotiation
within every union takes place. The quotient problem property states that the total gains
of the agents of a union in the initial problem equal the gains of this union in the quo-
tient problem. Note that if ϕ is the two-step extension f̄ of a bankruptcy rule f , then
ϕk(R, E, cP ,P R) = E f

k . (Recall that E f
k = fk(R, E, cP ) is the amount that union k ∈ R

gets in the quotient problem according to f .)

Invariance under claims truncation within the unions (ICT): For each bankruptcy
problem with unions (N , E, c,P) and for every player i of a union Pk ∈ P such that
ci >

∑
j∈Pk

ϕ j (N , E, c,P), we have ϕ(N , E, c,P) = ϕ(N , E, c′,P), where c′
j = c j

for all j ∈ N \ {i} and c′
i = ∑

j∈Pk
ϕ j (N , E, c,P).

Suppose that the claim of an agent is greater than the total quantity that his union
gets. Then ICT states that the awards of the agents are not affected if we replace the claim
of this agent by the total payoff of his union.

Sustainability of creditors within the unions (SUS): For each bankruptcy problem
with unions (N , E, c,P) and for every player i who is sustainable within his union
Pk ∈ P , ie,

∑
j∈Pk

min{ci , c j } ≤ ϕk(R, E, cP ,P R), we have ϕi (N , E, c,P) = ci .

This property establishes a protective criterion within the unions in the sense that
small claims should be completely satisfied. The claim of agent i is considered sustainable
within his union if the worth of this union in the quotient problem is enough to pay each
agent in this union his claim, truncated by the claim of agent i .

Composition and path independence are in essence identical to the corresponding
properties for bankruptcy rules. Equal treatment within the unions is a weak version of
equal treatment of bankruptcy rules. Invariance under claims truncation within the unions
and sustainability of creditors within the unions are natural extensions of other properties
for bankruptcy rules to this context of a priori unions. Note that the quotient problem
property implies that the rule involves some two-step procedure to obtain the solution.

In the following theorem we present the first characterisation of the CEA rule. This
theorem is inspired by a similar result for the CEA rule for bankruptcy situations in Dagan
(1996).
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Theorem 4.1. The CEA rule is the unique rule for bankruptcy problems with a priori
unions that satisfies equal treatment within the unions, composition, the quotient problem
property and invariance under claims truncation within the unions.

Proof. Existence: Equal treatment within the unions and the quotient problem property
are straightforward to show. We only prove composition. The proof of invariance under
claims truncation within the unions follows similar lines.

Let Pk ∈ P and let i ∈ Pk . By definition of CEA we have that

CEAi (N , E, c,P) = CEAi
(
Pk, ECEA

k , (c j ) j∈Pk

)
.

Consider now 0 ≤ E ′ ≤ E . Then

CEAi (N , E ′, c,P) = CEAi
(
Pk, EC E A′

k , (c j ) j∈Pk

)
,

with EC E A′
k = CEAk(R, E ′, cP ). Define c′ = c − CEA(N , E ′, c,P). Then we have

CEAi (N , E − E ′, c′,P) = CEAi
(
Pk, CEAk(R, E − E ′, (c′)P ), (c′

j ) j∈Pk

)
.

Because the constrained equal awards rule for bankruptcy problems satisfies composition
(Dagan, 1996), we have that

ECEA
k − EC E A′

k = CEAk(R, E, cP ) − CEAk(R, E ′, cP )

= CEAk(R, E − E ′, cP − C E A(R, E ′, cP ))

= CEAk(R, E − E ′, (c′)P ).

From the previous, it follows that

CEAi (N , E, c,P) = CEAi
(
Pk, ECEA

k , (c j ) j∈Pk

)
= CEAi

(
Pk, EC E A′

k , (c j ) j∈Pk

) + CEAi
(
Pk, ECEA

k − EC E A′
k , (c′

j ) j∈Pk

)
= CEAi (N , E ′, c,P) + CEAi

(
Pk, CEAk(R, E − E ′, (c′)P ), (c′

j ) j∈Pk

)
= CEAi (N , E ′, c,P) + CEAi (N , E − E ′, c′,P).

Hence, we have that CEA satisfies composition.

Uniqueness: Let ϕ be a rule for BU N satisfying ET, QPP, COMP and ICT. Let
(N , E, c,P) be a bankruptcy problem with unions and consider the quotient problem
(R, E, cP ,P R). Without loss of generality, suppose that 0 ≤ cP1 ≤ · · · ≤ cPr . In Proposi-
tion 1 of Dagan (1996) it is established that the constrained equal awards rule is the only
rule for bankruptcy problems that satisfies the bankruptcy equivalents of ET, COMP and
ICT. Since the quotient problem with P R is basically a bankruptcy problem, it follows
that ϕk(R, E, cP ,P R) = ECEA

k for all k ∈ R.
Now, we consider the first union P1 ∈ P . Suppose without loss of generality that

P1 = {1, . . . , n1} and that c11 ≤ · · · ≤ c1n1 .
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Step 1. If 0 ≤ E ≤ rc11, then ECEA
1 ≤ c11 and because of ICT, QPP and ET,

ϕi (N , E, c,P)
= CEAi (N , E, c,P) for all i ∈ P1.

If rc11 < E ≤ rc11 + rc11(1 − 1
n1

), then equality is established using COMP.

Repeating the same construction, ϕi (N , E, c,P) = CEAi (N , E, c,P) for all i ∈ P1

if 0 ≤ E ≤ rn1c11.
Step 2. If rn1c11 < E ≤ rn1c11 + r (c12 − c11), by COMP and Step 1 we have

ϕ(N , E, c,P) = x + ϕ(N , E − rn1c11, c − x,P), where xi = ϕi (N , rn1c11, c,P) =
CEAi (N , rn1c11, c,P) = c11 for all i ∈ P1. Furthermore, E − rn1c11 ≤ r (c12 − c11).
So because of ICT and ET we have ϕi (N , E − rn1c11, c − x,P) = CEAi (N , E −
rn1c11, c − x,P) for all i ∈ P1 and hence, ϕi (N , E, c,P) = CEAi (N , E, c,P) for
all i ∈ P1.

Repeating the same argument one can prove that ϕi (N , E, c,P) = CEAi (N , E, c,
P) for all i ∈ P1 if 0 ≤ E ≤ rn1c11 + r (n1 − 1)(c12 − c11).

Using the same arguments, we obtain that ϕi (N , E, c,P) = CEAi (N , E, c,P) for
all i ∈ P1 if 0 ≤ E ≤ rn1c11 + r (n1 − 1)(c12 − c11) + · · · + r (c1n1 − c1,n1−1) =
r (c11 + c12 + · · · + c1n1 ) = rcP1 .

Now, we consider the second union. We distinguish between two cases. If E ≤ rcP1 ,
we can use the same arguments as in the first union to obtain ϕi (N , E, c,P) = CEAi

(N , E, c,P) for all i ∈ P2.
So, suppose that E > rcP1 . Because ϕ satisfies COMP, we have that

ϕ(N , E, c,P) = ϕ
(
N , rcP1 , c,P

) + ϕ
(
N , E − rcP1 , c − x,P

)
,

where x = ϕ(N , rcP1 , c,P). By the previous case, ϕi (N , rcP1 , c,P) = CEAi

(N , rcP1 , c,P) for all i ∈ P2. With the second term, ϕ(N , E − rcP1 , c − x,P), we
proceed as with the first union with estate E − rcP1 and claims c − x and we obtain
ϕi (N , E − rcP1 , c − x,P) = CEAi (N , E − rcP1 , c − x,P) for all i ∈ P2. Note that in
the problem (N , E − rcP1 , c − x,P) all the members of P1 obtain zero. Because CEA
satisfies COMP, we have ϕi (N , E, c,P) = CEAi (N , E, c,P) for all i ∈ P2.

Repeating the same arguments with all the unions, we conclude the statement.

Our second characterisation is based on Herrero and Villar (2002). In order to give this
result, we first present some lemmas.

Lemma 4.2. If ϕ is a rule for bankruptcy problems with unions that satisfies path in-
dependence and sustainability of creditors within the unions then for every bankruptcy
problem with unions (N , E, c,P) we have that ϕk(R, E, cP ,P R) = ECEA

k for all
k ∈ R.

Proof. Let ϕ : BU N → R
N be a rule satisfying PI and SUS and let (N , E, c,P) ∈

BU N . Consider the associated quotient problem (R, E, cP ,P R). Theorem 1 of Herrero
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and Villar (2002) states that the constrained equal awards rule is the only rule for
bankruptcy problems that satisfies the bankruptcy equivalents of path independence and
sustainability. From this, the statement readily follows.

Lemma 1 of Herrero and Villar (2002) states that if a bankruptcy rule satisfies path
independence and sustainability, then it satisfies equal treatment of equals. In a similar
way we can establish the next result for a rule for bankruptcy problems with a priori
unions.

Lemma 4.3. If a rule for bankruptcy problems with a priori unions satisfies the quotient
problem property, path independence and sustainability within the unions then it satisfies
equal treatment within the unions.

Now we can give our second axiomatic characterisation of the CEA rule.

Theorem 4.4. The CEA rule is the unique rule for bankruptcy problems with a priori
unions that satisfies path independence, sustainability of creditors within the unions and
the quotient problem property.

Proof. Existence: Sustainability of creditors within the unions and the quotient problem
property are straightforward to show. The proof of path independence follows similar
lines to the proof of composition and we omit it.

Uniqueness: Let ϕ be a rule for BU N satisfying QPP, PI and SUS and let
(N , E, c,P) ∈ BU N . Let Pk ∈ P . We have to show that ϕi (N , E, c,P) = CEAi

(N , E, c,P) for all i ∈ Pk . We use the following notation: nk
1 = maxi∈Pk ci , N k

1 = {i ∈
Pk | ci = nk

1}, nk
2 = maxi∈Pk\N k

1
ci , N k

2 = {i ∈ Pk | ci = nk
2}.

Step 1. Suppose that, in the union Pk , the claims of the agents in Pk\N k
1 are sustainable.

Then ϕi (N , E, c,P) = ci for all i ∈ Pk\N k
1 because ϕ satisfies SUS. Now, we have

that ϕi (N , E, c,P) = CEAi (N , E, c,P) for all i ∈ Pk because ϕ satisfies ET (by
Lemma 4.3 and by QPP and Lemma 4.3,

∑
i∈Pk

ϕi (N , E, c,P) = ECEA
k .

Step 2. Suppose now that, in the union Pk , the claims of the agents in Pk\(N k
1 ∪ N k

2 ) are
sustainable. Let E ′ > E be such that ϕk(R, E ′, cP ,P R) is the minimum quantity that
sustains the claims of Pk\N k

1 within union Pk , which is possible because of Lemma 4.3
and the basic properties of CEA. Let c′ = ϕ(N , E ′, c,P). By step 1, c′

i = ci for all
i ∈ Pk\N k

1 and c′
i = c′

j for all i, j ∈ N k
1 ∪ N k

2 . Because ϕ and CEA satisfy PI, we have
that ϕi (N , E, c,P) = ϕi (N , E, c′,P) and CEAi (N , E, c,P) = CEAi (N , E, c′,P)
for all i ∈ N . By step 1, ϕi (N , E, c′,P) = CEAi (N , E, c′,P) for all i ∈ Pk and
hence, ϕi (N , E, c,P) = CEAi (N , E, c,P) for all i ∈ Pk .

Repeating this procedure, we obtain ϕi (N , E, c,P) = CEAi (N , E, c,P) for all i ∈ Pk .
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5. Consistent two-step rules

In this section we define the second two-step extension of bankruptcy rules to bankruptcy
situations with a priori unions. As in Section 3, we use the CEA rule to illustrate this
new extension and hence we obtain a second extension of the CEA rule for bankruptcy
problems to bankruptcy problems with a priori unions, that we will call R ACEA. We
also introduce a property of consistency that we subsequently use to characterise this
extension. We should mention that the rule and property in this section are clearly inspired
by concepts that appear in O’Neill (1982). These concepts are the random arrival rule
(which we denote by RA) and the property of consistency.

Let f be a bankruptcy rule and let (N , E, c,P) be a bankruptcy problem with a
priori unions. Then we define the f -random arrival rule in the following way:

R A f
i (N , E, c,P) = 1

r !

[ ∑
σ∈�(R)

fi (Pk, Eσ , (c j ) j∈Pk )

]

for all i ∈ Pk , where Eσ = max{0, E − ∑
�∈R,σ−1(�)<σ−1(k) cP� }.

The interpretation of this rule is similar to that of other solutions inspired by ideas
of random arrival. Here, we suppose that the claims of the different unions are satisfied
following a fixed order. If at the moment to allocate money to a particular union, the
remaining estate is not enough to satisfy its total claim, we use the rule f to distribute
within this union. So, the f -random arrival rule allocates to an agent the average of the
amounts he obtains according to the previous procedure over all the possible orders on
the unions.

Note that if P = Pn we have R A f (N , E, c,Pn) = R A(N , E, c), that is, in this
boundary case, R A f coincides with the random arrival rule for bankruptcy problems for
every bankruptcy rule f . If P = PN , the f -random arrival rule coincides with the rule
f .

In the next example, we illustrate the CEA-random arrival rule.

Example 5.1. We compute R ACEA in the bankruptcy situation with a priori unions of
Example 3.2. If the claims of the union P1 are satisfied first, then the creditors obtain
(100, 100, 200), whereas if the claims of the union P2 are satisfied first the creditors
obtain (0, 100, 300). If we compute the average of the previous amounts we obtain that
R ACEA(N , E, c,P) = (50, 100, 250). Note that R ACEA(N , E, c,P) differs from both
CEA(N , E, c,P) and CEA(N , vE,c,P).

Now, we define the property of consistency for bankruptcy with a priori unions rules
which is based on the consistency property in O’Neill (1982). A bankruptcy with a priori
unions rule ϕ is consistent if for every (N , E, c,P), for each union Pk ∈ P and for each
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agent i ∈ Pk we have

ϕi (N , E, c,P) = 1

r

[
ϕi (Pk, E ′, (c j ) j∈Pk ,P Pk ) +

∑
�∈R,� 	=k

ϕi (N\P�, E−�, c−�,P−�)

]
,

where E ′ = min{E, cPk }, c−� = (c j ) j∈N\P�
, E−� = max{E − cP� , 0} and P−� is the

partition of the set N\P� induced by P .
So, a rule is consistent if in a bankruptcy problem with a priori unions it allocates

to an agent the average of what he gets when the rule is applied to the problem restricted
to his own union and the solutions of the r − 1 bankruptcy situations in which the
estate is the amount that remains when each of the other unions gets its maximum. Note
that if P = Pn , this definition of consistency corresponds to O’Neill consistency. We
should note that the property of consistency we introduce here is a different consistency
assumption to the traditional one in the literature, that involves different sets of agents.
Our consistency property is involving different sets of a priori unions.

Let f be a bankruptcy rule. We say that a consistent rule ϕ for bankruptcy problems
with a priori unions is f -consistent if for every bankruptcy problem (N , E, c) we have
that ϕ(N , E, c,PN ) = f (N , E, c). That is, ϕ is f -consistent if ϕ is consistent and it
coincides with f when the a priori unions structure P is the boundary system PN .

The next theorem establishes, for a fixed bankruptcy rule f , the existence and
uniqueness of an f -consistent rule. This result extends the O’Neill result of existence
and uniqueness of a bankruptcy consistent rule; this unique rule is the random arrival
rule.

Theorem 5.2. The f -random arrival rule R A f is the unique f -consistent rule for
bankruptcy problems with a priori unions.

Proof. Let f be a bankruptcy rule.
Existence: First we show that the f -random arrival rule, R A f , is f -consistent. We
know that for every bankruptcy problem (N , E, c), R A f (N , E, c,PN ) = f (N , E, c).
So, it remains to be shown that R A f is consistent. Let (N , E, c,P) a bankruptcy situation
with a priori unions. Let i ∈ Pk . Define Eσ , E ′ and E−� as before define and E−�,σ =
max{E−� − ∑

t∈R\{�}:σ−1(t)<σ−1(k) cPt , 0} for all σ ∈ �(R), � ∈ R. Then,

R A f
i (N , E, c,P) = 1

r !

∑
σ∈�(R)

fi
(
Pk, Eσ , (c j ) j∈Pk

)

= 1

r !

[
(r − 1)! fi

(
Pk, E ′, (c j ) j∈Pk

)

+
∑

�∈R,� 	=k

∑
σ∈�(R\{�})

fi
(
Pk, E−�,σ , (c j ) j∈Pk

)]
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= 1

r

[
fi
(
Pk, E ′, (c j ) j∈Pk

) +
∑

�∈R,� 	=k

1

(r − 1)!

×
∑

σ∈�(R\{�})
fi
(
Pk, E−�,σ , (c j ) j∈Pk

)]

= 1

r

[
R A f

i

(
Pk, E ′, (c j ) j∈Pk ,P Pk

)

+
∑

�∈R, �	=k

R A f
i

(
N\P�, max

{
E − cP� , 0

}
, c−�,P−�

)]
.

Hence, R A f is consistent and therefore f -consistent.
Uniqueness: Now we show that if ϕ is an f - consistent rule for bankruptcy problems
with a priori unions then ϕ coincides with the f -random arrival rule R A f . We show this
by induction on the number of unions. If r = 1 then ϕ(N , E, c,PN ) = f (N , E, c) =
R A f (N , E, c) by the definition of f -consistency. Suppose that this holds for r = m −1.
For r = m, f -consistency implies that ϕ(N\P�, max{E −cP� , 0}, c−�,P−�) is completely
determined and hence we conclude that there is a unique f -consistent rule, which is the
f -random arrival rule.

O’Neill (1982) shows that the random arrival rule of a bankruptcy problem coincides
with the Shapley value of the bankruptcy game associated. The next theorem extends this
result by O’Neill to our context, in the sense that the R A-random arrival rule coincides
with the Owen value (cf. Owen, 1977) of the corresponding bankruptcy game with a
priori unions. We omit the proof that follows a similar line to the proof of the preceding
theorem.

Theorem 5.3. If (N , E, c,P) is a bankruptcy problem with a priori unions, then its RA-
random arrival rule coincides with the Owen value of the associated bankruptcy game
with a priori unions, that is,

R AR A(N , E, c,P) = Ow(N , vE,c,P).

Now, from the previous two theorems, we immediately obtain the next result.

Theorem 5.4. The only rule for bankruptcy problems with a priori unions satisfying
random arrival-consistency is the Owen value of the associated bankruptcy games with
a priori unions.

In Winter (1992) and Hamiache (1999), the Owen value is axiomatically characterised
on the class of cooperative games with a priori unions by using two different properties
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of consistency. Note that in the current paper, we characterise the Owen value on the
class of bankruptcy situations with a priori unions, using another consistency property
that extends the O’Neill consistency property for bankruptcy problems.

6. An application

In this section we apply the two extensions of the CEA rule to one particular bankruptcy
situation, the Pacific Gas and Electric Company, a fully owned subsidiary of PG&E
Corporation and one of the largest combined natural gas and electricity utilities in the
United States. Due to negative stocktaking they filed for reorganisation under Chapter
11 of the US Bankruptcy Code in a San Francisco bankruptcy court in 2001.

The debtor’s 20 largest unsecured creditors are listed in the Table 1, which is taken
from www.bankruptcydata.com

According to Table 1, the creditors claim money on the basis of three issues (nature
of claims). So we can analyse this as a bankruptcy situation with three unions of creditors:
P1 = {1, 3, 5, 6} related to bank bonds, P2 = {2, 4, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20}
related to power purchases and P3 = {14, 15, 16, 17} related to gas purchases. The total
estate (E) to be allocated to unsecured creditors equals $1,060,000,000.

Table 1
The debtor’s 20 largest unsecured creditors.

# Nature of claim Claim ($)

1 Bank bonds 2,207,250,000
2 Power purchases 1,966,000,000
3 Bank bonds 1,302,100,000
4 Power purchases 1,228,800,000
5 Bank bonds 938,461,000
6 Bank bonds 310,000,000
7 Power purchases 57,928,385
8 Power purchases 49,452,611
9 Power purchases 48,400,572

10 Power purchases 45,706,378
11 Power purchases 40,147,245
12 Power purchases 40,122,073
13 Power purchases 32,867,878
14 Gas purchases 29,523,530
15 Gas purchases 28,210,551
16 Gas purchases 24,718,334
17 Gas purchases 23,849,455
18 Power purchases 22,576,506
19 Power purchases 21,506,087
20 Power purchases 19,800,248
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Table 2
The results of the three constrained equal awards rules.

# CEA CEA R ACEA Union

1 95,865,025 119,212,266 128,070,755 P1

2 95,865,025 52,089,822 161,514,515 P2

3 95,865,025 119,212,266 128,070,755 P1

4 95,865,025 52,089,822 161,514,515 P2

5 95,865,025 119,212,266 128,070,755 P1

6 95,865,025 119,212,266 128,070,755 P1

7 57,928,385 52,089,822 28,964,193 P2

8 49,452,611 49,452,611 24,726,306 P2

9 48,400,572 48,400,572 24,200,286 P2

10 45,706,378 45,706,378 22,853,189 P2

11 40,147,245 40,147,245 20,073,623 P2

12 40,122,073 40,122,073 20,061,037 P2

13 32,867,878 32,867,878 16,433,939 P2

14 29,523,530 29,523,530 9,841,177 P3

15 28,210,551 28,210,551 9,403,517 P3

16 24,718,334 24,718,334 8,239,445 P3

17 23,849,455 23,849,455 7,949,818 P3

18 22,576,506 22,576,506 11,288,253 P2

19 21,506,087 21,506,087 10,753,044 P2

20 19,800,248 19,800,248 9,900,124 P2

We compute the CEA and R ACEA solutions -by using the definitions and a computer
application- for the bankruptcy situation with the three unions and compare them with
the solution obtained by applying the CEA rule to the same situation without the unions.
The Table 2 shows the results, where all amounts have been rounded to the nearest
integer.

The first conclusion of these results is that all two rules that take the unions into
account are more favourable for P1 and less favourable for P2 than the CEA rule without
unions. Since the idea behind constrained equal awards is that the smaller creditors
are protected, it is better for the (smaller) claimants in P2 to be considered as separate
creditors than as one big group. Nevertheless, the larger claimants in P2 are better off
when the R ACEA rule is applied, at the expense of the smaller claimants in the same
union. Moreover, it is better for the (bigger) claimants in P1 to be considered as a one
group than as separate creditors.

The R ACEA is worst for P3, which contains only small claimants. The protective
aspect of constrained equal awards is partly neutralised by taking averages over a number
of extreme outcomes.

The R ACEA solution is an average over more extreme outcomes than CEA and
CEA solutions, and hence, the smaller creditors are again less protected and also bigger
creditors are less damaged.
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Note

1. The CEA rule for TU games is only well-defined for a subclass of such games. If the game is exact, then
the CEA rule is well-defined. The same holds for the CEA rule for games with a priori unions, which we
define later on, where exactness of the underlying game is sufficient.
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