@ Annals of Operations Research 136, 285-302, 2005
(© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Looking Ahead with the Pilot Method

STEFAN VOB stefan.voss @uni-hamburg.de
ANDREAS FINK fink @econ.uni-hamburg.de
Universitdt Hamburg, Institut fiir Wirtschaftsinformatik, Von-Melle-Park 5, D-20146 Hamburg, Germany

CEES DUIN c.w.duin@uva.nl
Universiteit van Amsterdam, Faculteit der Economische Wetenschappen en Econometrie, Roeterstraat 11,
NL-1018 WB Amsterdam, The Netherlands

Abstract. The pilot method as a meta-heuristic is a tempered greedy method aimed at obtaining better
solutions while avoiding the greedy trap by looking ahead for each possible choice. Repeatedly a master
solution is modified; each time in a minimal fashion to account for best choices, where choices are judged
by means of a separate heuristic result, the pilot solution.

The pilot method may be seen as a meta-heuristic enhancing the quality of (any) heuristic in a system
for heuristic repetition. Experiments show that the pilot method as well as similar methods can behave quite
competitively in comparison with well-known and accepted meta-heuristics. In this paper we review some
less known results. As a higher time complexity is usually associated with repetition, we investigate a simple
short-cut policy to reduce the running times, while retaining an enhanced solution quality. Furthermore,
we report successful experiments that incorporate a distinguishing feature of the pilot method, which is the
extension of neighborhoods into “local” search, creating tabu search hybrids.
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1. Introduction

Combinatorial optimization problems are challenging in terms of finding efficient algo-
rithms. Often these problems turn out to be N'P-hard (Garey and Johnson, 1979) and
one resorts to heuristics.

Greedy construction algorithms are frequently the first choice for hard combinato-
rial optimization problems. Such algorithms may accept myopic choices when bringing
a partial solution towards feasibility. Once feasibility is obtained, a second phase may be
employed which performs certain changes, for the most part maintaining feasibility and
hopefully leading to better objective function values. In this respect local search mecha-
nisms come into play, however, again behaving greedily in a steepest descent or steepest
ascent manner (whatever problem, minimization or maximization is considered). Re-
cently, local search concepts have been married with superordinate mechanisms leading
to meta-heuristics.

Meta-heuristics are iterative master processes guiding and modifying the opera-
tions of subordinate heuristics to efficiently produce high-quality solutions. Usually,
meta-heuristics iteratively operate on a complete (or incomplete) single solution or a
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collection of solutions, while the subordinate heuristics may be high (or low) level pro-
cedures such as a simple local search procedure or even a construction method. Even
in meta-heuristics greedy choices are performed and usually measured by means of an
immediate gain possibly leading to suboptimal choices. Therefore, we need a so-called
heuristic measure to evaluate this gain as well as a mechanism to guide the choices. For a
definition of meta-heuristics see Vo3 et al. (1999), p. ix, the concept of heuristic measure
is given by, e.g., Rayward-Smith and Clare (1986) and Vof3 (1990).

Usually, the heuristic measure is performed rather shortsighted. Therefore, espe-
cially in the artificial intelligence community, researchers have thought about look ahead
features (see, e.g., Pearl, 1984). In that sense a heuristic measure may incorporate in-
telligent mechanisms to evaluate certain decisions or moves not based on an immediate
gain but on the outcome after, say, a few iterations. Related approaches have applied this
concept as meta-heuristics for combinatorial optimization problems (Bertsekas, Tsitsik-
lis, and Wu, 1997; Duin and Vo8, 1999). In this paper we review and further investigate
the pilot method of Duin and Vo3 (1994, 1999).

The pilot method is a tempered greedy algorithm based on look ahead results, pilots,
obtained by heuristic repetition for each possible choice. (Note that the pilot method as
our “Preferred Iterative LOok ahead Technique” is motivated by the idea to ‘“Perform
Improved Look ahead with Objective-value Tests”.) Once a heuristic approach is known,
one may produce with it enhanced solutions, by adopting the heuristic as the so-called
pilot heuristic into the pilot method. A couple of independently developed approaches
from the literature may be re-interpreted — by means of the concept of heuristic measure —
as applying the key ideas of the pilot method.

Of course, as a repetitive system of extensive heuristic repetition, the pilot method
entails considerable running times. However, one may apply policies to reduce these
times. In this paper we examine the evaluation depth, i.e., a parameter controlling the
number of times that the extensive heuristic repetition restarts.

As pointed out already in Duin and Vof (1999), the pilot procedure need not be
a constructive heuristic (for finding feasible solutions). It may also be a procedure for
improving solutions like steepest descent. In this paper we integrate this idea into a local
search method, designing a hybrid algorithm in combination with tabu search.

In the following we revisit the concept of heuristic measure and describe the pilot
method in more detail (Section 2). In Duin and Vo8 (1999) we primarily focused on
solving the Steiner tree problem in graphs, a problem with a wide variety of applications
in network design and location theory. This paper’s tests of the pilot method are given
on different combinatorial optimization problems. We include a survey of some results
from the literature as well as new results (see Sections 3—6). Some conclusions are given
in Section 7.

2.  The pilot method

Using a known algorithm such as a greedy construction heuristic as a building block or
application process, the pilot method (Duin and Vo83, 1994, 1999) is a meta-heuristic with
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the primary idea of performing repetition using the application process as a look ahead
mechanism. In each iteration (of the pilot method) one tentatively computes for every
possible choice (or move) a so-called “pilot” solution, recording the best results in order
to extend at the end of the iteration a so-called “master” solution with the corresponding
move. One may apply this strategy by successively performing, e.g., a cheapest insertion
heuristic for all possible local choices (i.e., starting anew from each incomplete solution
that can result from the inclusion of any not yet included element at some position in the
current incomplete solution).

In the following we explain the pilot method in more detail following Duin and Vof3
(1999). Consider a combinatorial optimization problem defined on a finite set of elements
E weighted by a cost function ¢ : E — R. The problem is to select at minimum cost
a subset (or solution) S* C E, satisfying some feasibility properties. As an example
consider the traveling salesman problem (TSP), i.e., the problem of finding a least cost
tour in a given graph—a minimum cost subset of the edges forming a cycle through
all nodes of the graph; see, e.g., Lawler et al. (1985). We assume the availability of a
known heuristic H for the problem, such as the nearest neighbor or the cheapest insertion
heuristic for the TSP.

Imperatives for almost any heuristic are: be greedy, perform trial and error, fix
variables, look ahead. The pilot method combines all these elements. By looking ahead
with H as a so-called pilot heuristic, one cautiously builds up a partial solution M,
the master solution. Separately for each element e ¢ M, the pilot method is to extend
tentatively a copy of M to a (fully grown) solution in such a way that e is included.
Let p(e) denote the objective function value of the solution obtained by pilot H for
e € E — M, and let ¢y be a most promising such element, i.e., p(eg) < p(e) for all
e € E — M. Element ¢ is included in M by changing it in a minimal fashion. On the
basis of the changed master solution M, new pilot calculations are started foreache ¢ M,
providing a new solution element e, and so on. This process could proceed, e.g., until
further pilot calculations do not lead to improvements.

To give an example, let us consider as a pilot heuristic the nearest neighbor algorithm
for solving the TSP: Starting with a vertex i; = 1, one chooses greedily the edge that
leads to a nearest node i, of i{;. In the next iteration, from i, one adds to the partial
solution {(1, i)}, the edge to a vertex i3 € V — {i}, i»} that is nearest to i, and so on until
(i,_1, i,) enters the solution. Then (i,, i) concludes the tour.

Heuristics often use functions or measures to guide their choices. The nearest
neighbor algorithm applies the distance function to a not yet included node. It is a normal
constructive heuristic (construction method), where the next choice is the greedy choice
as evaluated by the heuristic measure. (Note that by a construction method we mean a
method that starts from some initial state (feasible or infeasible) and iteratively performs
steps towards feasibility, generating a solution, e.g., by adding suitable elements of E.)
Similarly, as in the greedy heuristic H that it exploits, the pilot method evaluates which
next node to include, but by a new function, derived from H. Again, a node e is evaluated
by means of a heuristic measure p(e), but this time p(e) provides an objective test, by
looking fully ahead (performing a look ahead with objective-value tests).
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As the pilot method is generic with respect to the type of problem and defines an
iterative master process that guides and modifies the operations of some subordinate
heuristic, it may be regarded as a meta-heuristic. Moreover, we may also distinguish
between a guiding process and an application process. The guiding process decides upon
possible (local) moves and forwards its decision to the application process which then
executes the chosen move. In addition, it provides information for the guiding process
(depending on the requirements of the respective meta-heuristic).

Alternatively, in Duin and Vol (1999) we characterized the pilot method for com-
binatorial optimization by drawing a parallel with branch and bound. Imagine a branch
and bound algorithm for a minimization problem, that fully branches a (sub)problem to
all possible values of a solution variable to be fixed. Algorithmically, the pilot method
applies the same rules — visiting unexplored subproblems in order of best bounds and
fathoming a subproblem if the bound is worse than an incumbent solution —with only
one essential difference: the heuristic pilot method bounds each (sub)problem with
an upper bounding procedure, whereas the exact branch and bound algorithm would
calculate a lower bound. As a better upper bound is of lower objective value, the al-
gorithm persistently chooses as the next subproblem to be branched the subproblem
of the new incumbent solution. One returns the incumbent as final solution when it
does not move further down, to a child problem with a better upper bound. (At this
point all open subproblems are “fathomed” with a bound equal or worse than the
incumbent.)

Imagine a branch and bound algorithm for the TSP that successively fixes edge
variables x1, x2, ..., x, of the tour; for edge x; starting with vertex 1, we must fix the
other incident vertex, then in a child problem the other vertex of edge x, adjacent to
x1 is to be fixed and so on. With the nearest neighbor heuristic as an upper bounding
procedure, we first produce the ordinary heuristic result on the main problem, say of
objective value p(1). Then the nearest neighbor heuristic is separately performed on
n — 1 subproblems, each time with a different first edge x; = (1, i) being fixed; thus
producing pilot results p(i) fori = 2,3, ..., n. The subproblem with the best bound,
say x; = (1, ip) has pilot result p(ip) = min;cy_q1y p(i), is chosen for further branching,
i.e., edge (1, ip) is permanently accepted as the first edge of the partial solution, and so
on.

The quickest stopping rule would be to stop as soon as none of the child nodes has
a better pilot result than the parent node. We favor a more comprehensive but slower
stopping rule that continues the branching when the best pilot result matches the for-
mer incumbent result. The reason is that branching in a later part of the algorithm can
still lead to a better solution. This may also be true for other non-chosen subproblems
having a bound equal to the incumbent (or almost equal); so why not branch them also
(or allow for hill climbing, i.e., intermediate deterioration with respect to the objec-
tive function value)? The answer is simply that we cannot do this in the context of a
heuristic of polynomial time complexity. On the other hand, the strength of the method
is that it already applies much trial and error and hill climbing. When in a subprob-
lem the next edge is fixed we do perform hill climbing if this edge is unattractive. The
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pilot heuristic is there to check whether a mature solution with this edge can still be
most attractive; if so, it will be chosen. Thus the pilot method is a tempered greedy
method.

Finally, let us note that if infeasible solutions must be taken into account, this can be
dealt with by penalizing infeasibility in the objective function. While in the extreme case
p(e) can be set to infinity for infeasible solutions, more subtly differentiated approaches
may be appropriate depending on the application (see Section 35).

2.1. Related research

The pilot method was first invented in the early 1990s for the Steiner tree problem in
graphs (see Duin and Vo83, 1994 for a survey). Later, similar ideas were developed under
different names. The most famous one is the rollout method by Bertsekas, Tsitsiklis, and
Wu (1997). While we have motivated the pilot method as a “branch and bound using
opposite bounds”, the look ahead mechanism of the rollout method is based on dynamic
programming exploiting the same concept of repetition as the pilot method. Applications
are given in Bertsekas, Tsitsiklis, and Wu (1997), Bertsekas and Castanon (1999), and
Meloni, Pacciarelli, and Pranzo (2004). The latter paper shows how elementary rollout
methods (i.e. pilot methods) perform very well in the difficult area of scheduling prob-
lems. Two other successful applications are presented by Sourd (2001) and Sourd and
Chrétienne (1999), who apply a meta-heuristic named “Branch and Greed”; this method
is identical to the pilot method.

Additional concepts that are related to the pilot method are the manifold search
of Gavish (1991), the fan approach of Glover, Taillard, and de Werra (1993), iterative
greedy heuristics of Amberg et al. (1999) as well as some other ideas e.g., (Balas and
Vazacopoulos, 1998; Belvaux et al., 1998).

As an example, the basic construction of the fan approach (Glover, Taillard, and
de Werra, 1993; Glover, 1998) underlies the use of a candidate list strategy within a
local search algorithm based on discovering promising moves by applying evaluations in
successive levels of a neighborhood tree, where the moves that pass the evaluation criteria
at one level are subjected to additional evaluation criteria at the next. The neighborhood
tree is explored level by level in a breadth search strategy.

Guided local search (Balas and Vazacopoulos, 1998; Voudouris and Tsang, 2003)
is a penalty-based meta-heuristic that is used in connection with local search algorithms
with the aim of improving them by penalizing certain features. That is, whenever the
local search algorithm settles in a local optimum, the objective function of the prob-
lem under consideration is augmented to favor certain features or to avoid them. For
instance, for the TSP the inclusion of certain edges could be avoided by modifying their
length.

In the limited discrepancy search (see, e.g., Harvey and Ginsberg, 1995, Caseau,
Laburthe, and Silverstein, 1999) a greedy heuristic is transformed into a search algorithm
by branching in a limited number of cases when the choice criterion of the heuristic
observes some borderline case or where the choice is not compelling, respectively.
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2.2. Speeding up a pilot method

In each iteration of a pilot method a considerable computational effort is necessary,
leading to a rather high time complexity. Suppose that one run of the subordinate, the
pilot heuristic, has time complexity O( f(¢)), where ¢ represents the size of the problem
instance. Since one chooses in the pilot method the elements of the final master solution
M one by one from E, each time when computing a pilot solution foralle € E — M,
one can expect for the pilot method the worst case running time not to exceed O(|M || E |
f@).

To diminish the time requirements one can resort to parallel processing, obtaining
different pilot solutions simultaneously (diminishing time factor |E|). However, there
are also other prospects to speed up a pilot method. For instance, with a different imple-
mentation than the straightforward one it may be possible to reduce the time complexity
of the subordinate heuristic. One can also limit the number of iterations by modifying
the master solution each time to a greater extent (diminishing |M ). A filtering approach
diminishes time factor | E|. It executes the pilot evaluations p(e) only for e within a lim-
ited set of candidates. For example, the candidate list could be obtained by computing
with short-cuts approximate pilot values. Finally, as we investigate in this paper, it can be
reasonable to restrict the pilot process to a given evaluation depth, say D << |E|. That
is, the pilot method is performed up to an incomplete solution (e.g., partial assignment)
with k elements and then completed by continuing with a conventional greedy heuristic.
We will see, in shortened pilot methods for different problems, how much smaller than
| E| the value of D can be, without seriously influencing the solution quality. The other
options of speeding up were tested successfully in Duin and VoB (1999) with respect to
the Steiner problem in graphs.

2.3. Improvement methods

The basic idea of (greedy) local search is to successively perform at each step a move (a
most promising one, according to some measure) within a given neighborhood structure.
As such steepest descent methods may lead to local optima of non-satisfying solution
quality, the application of modern heuristic search methods like simulated annealing and
various tabu search approaches is more appropriate.

The core of the pilot method is heuristic repetition; a consequent characteristic —in
terms of local search—is neighborhood extension. The look ahead mechanism of the
pilot method relates to an increased neighborhood depth. By exploiting the evaluation of
neighbors at larger depths the pilot method can guide the neighbor selection at depth one.
We may strive to improve likewise the quality of the neighborhood, both for greedy local
search and for modern heuristic search methods, incorporating evaluations by means of a
pilot strategy to guide the search into promising regions of the search space. To evaluate
the outcome of a specific local search step (or choice) the pilot process may perform a
number of iterations. Note that in this case the termination criterion for the pilot process
may control the total running time.
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We will report in Section 6 on a hybrid strategy combining the pilot method with
a tabu search approach.

3. Pilot method for the continuous flow shop scheduling problem

It may be interesting to investigate the pilot method with respect to the TSP or other types
of problems that are represented by means of permutations. Here we consider a special
case of the time dependent traveling salesman problem (TDTSP); see, e.g., Gouveia and
Vo8B (1995). Note that the TDTSP itself is a special case of the quadratic assignment prob-
lem (QAP). As a specific example for an application of the TDTSP we consider the contin-
uous flow shop scheduling problem (see Fink and Vof, 2003 and the references therein).

Flow shop scheduling problems focus on processing a given set of n jobs, where
each job has to be processed in an identical order on a given number of m machines. Each
machine can process only one job at a time. Continuous flow shop scheduling problems
have the additional restriction that the processing of each job has to be continuous, i.e.,
once the processing of a job begins, there must not be any waiting times between the
processing of any consecutive tasks of this job. This may be due to technological restric-
tions or lack of intermediate storage capacity between the processing stages (machines)
if completed tasks are not allowed to remain on a machine. Such problems occur, e.g., in
chemical or steel production processes. See, for instance, Dudek, Panwalkar, and Smith
(1992), who emphasize the practical importance of this problem type. Continuous pro-
cessing of a job generally determines an inevitable delay dyx, 1 <i <n,1 < k < n,
i # k, on the first machine between the start of job i and job k. The delay may be
computed as

djx = max {thh_ztkh 1}
1<j<m

where 7;;, 1 <i <n,1 < j < m denotes the processing time of job i on machine j. The
objective is to construct a permutation 7 = (7, .. ., 7,) of the jobs that minimizes some
given objective function. Here 7r; denotes the job that is positioned at the i-th position of
a schedule. The objective considered here is to minimize the total processing time (flow
time)

F(TL')— Z(”+ 1 _l)dn(l 1)n(1)+22t11 .

i=1 j=1

3.1. Application of the pilot method

We explore the pilot method with a cheapest insertion heuristic (called CHINS) as the
underlying application process. CHINS is applied for all possible local steps. That is, in
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each iteration we perform the cheapest insertion heuristic for all incomplete solutions
(partial sequences) resulting from adding some not yet included job at some position to
the current incomplete solution. As this leads to a time complexity of O(n®) it may be
reasonable to restrict the pilot process to a given evaluation depth (see the experimental
results presented below). That is, the pilot method is performed until an incomplete
solution with a given number of jobs is reached (and, hopefully, the most significant
construction decisions have been done); this solution is completed by continuing with
a conventional (myopic) cheapest insertion heuristic. Note that an evaluation depth of 1
corresponds to repeating CHINS for all possible initial jobs.

3.2. Computational results

In Fink and Vo8 (2003) we apply the heuristics for benchmark data sets of Taillard
(1993) which have been generated for unrestricted flow shop scheduling. The data sets
are available from the OR library.! We use problem instances with 20 (ta001-ta030), 50
(ta031-ta060), 100 (ta061-ta090), and 200 (ta091-tal10) jobs. These instances partly
differ in the number of machines, which is mostly irrelevant for our purposes. So we
present results for problem instances of the same number of jobs. To assess our heuristic
results we used a mixed integer programming formulation based on a formulation of
the QAP in Picard and Queyranne (1978) to compute optimal results for the problem
instances with 20 jobs and to compute lower bounds provided by the linear programming
(LP) relaxation for problem instances with 50 and 100 jobs. For n = 200 we compare
to the best results obtained during all experiments. Generally, the results are stated as
average percentage deviations (dev.). Computation times are given as average CPU time
(¢) in seconds on a Pentium II with 266 MHz.

Table 1 shows the results of the application of simple construction methods and the
pilot method. The deviations for the identity permutations (in accordance with the num-
bering of the jobs), given as reference, show that there is a large potential for optimization.

Table 1
Average deviations due to the application of different construction methods and the pilot method.
n =20 n =50 n =100 n =200

dev. (%) t dev. (%) t dev. (%) t dev. (%) t

Identity 43.98 - 59.61 - 69.26 - 74.15 -
NN 25.81 0.0 29.88 0.0 30.21 0.1 21.13 0.3
Pilot-1-NN 19.15 0.0 26.49 0.2 27.90 1.3 19.62 11.2
CHINS 3.21 0.0 4.52 0.1 6.18 0.2 2.79 1.6
Pilot-1-CHINS 0.93 0.0 2.99 1.3 4.32 20.1 1.62 315.0

Pilot-10-CHINS 0.27 0.8 1.59 37.5 3.18 879.0 0.65 7612.4
Pilot-20-CHINS 0.25 1.2 1.26 107.6 2.81 3068.4 - -
Pilot-CHINS 0.25 1.2 1.23 189.4 2.26 8217.2 - -
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The results of the nearest neighbor heuristic (NN, i.e. appending at each step a not yet
included job with a minimal inevitable delay to the last job of the yet incomplete se-
quence), even when iteratively performed for all jobs used as initial job (Pilot-1-NN),
are much worse than those of CHINS. Repeating CHINS for all jobs treated as initial
job (Pilot-1-CHINS) leads to clearly better results at the expense of an increased running
time, which is especially relevant for the larger problem instances. The last three rows
show the results of the pilot method with an evaluation depth of 10 (Pilot-10-CHINS),
20 (Pilot-20-CHINS), or an unbounded evaluation depth (Pilot-CHINS), respectively.
While these results are of high quality the self-imposed running time limit of 10,000
seconds hindered the completion of the unbounded pilot method and Pilot-20-CHINS
for the problem instances with 200 jobs. It should be noted that the majority of the small
problem instances with 20 jobs are not solved to optimality by the considered construction
methods (e.g., the unbounded pilot method solved 10 out of 30 instances to optimality).
Figures 1 and 2 show the effect of the evaluation depth on the effectiveness of the
pilot method for ten instances each with n = 50 and n = 100, respectively. These results
confirm the expectation that the most important decisions of the construction process
are made at the first steps. So it seems reasonable to use a rather small evaluation depth
when running time is important. To supplement these results it should be noted that we
have obtained similar results regarding the evaluation depth for another permutation-
type problem, i.e., the pattern sequencing problem. Here we are given a set of n patterns
that have to be located in a sequence (e.g., patterns may represent groupings of some
locations) with the objective of minimizing the average location spread (see, e.g., Fink
and VoB3, 1999 for a detailed description of the pattern sequencing problem as well as a
comparison of different meta-heuristics such as simulated annealing and tabu search).
Further results from Fink and Vof3 (2003) indicate that the unbounded pilot method
may provide solutions of equal quality when compared to state-of-the-art simulated
annealing or tabu search implementations if additional computation time is allowed.

avg. dev.
3.00% ¢
2.50% 1 |

*
200% { \

1.50% \\‘V

-
1.00% 0000000000000 0000000000000004

0.50%

0.00%

0 10 20 30 40 50
evaluation depth

Figure 1. Results at different evaluation depths (ta041-050 with n = 50).
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Figure 2. Results at different evaluation depths (ta071-080 with n = 100).
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Figure 3. Solution quality vs. running time for problem instances with n = 100 jobs.
Figure 3 shows this for instances with 100 jobs. This motivated the research question

whether an integration of these methods could lead to improved results. The first research
results are provided for the ring load balancing problem in Section 6.

4. Pilot method for the ring network design problem

The ring network design problem (RNDP), as it has been considered by Gendreau,
Labbé, and Laporte (1995), is a special case of the general ring network design problem
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(GRNDP) according to Fink, Schneidereit, and Vof3 (2000). Given a graph G with vertex

set V.= {1, ..., n} and edge set E with non-negative edge weights c;; forall (i, j) € E,
the RNDP is defined as follows. A solution is aring R = (iy, . . ., i;) with corresponding
edges ((i1, i2), - .., (ik—1, ix), (ix, i1)). Whenever a ring contains a direct link between i

and j, a cost ¢;; is incurred. That is, only fixed construction costs are taken into account,
and the sum of construction costs of R is given by ¢(R) = le‘;i Ciij +Cipip- Abudget
b limits the construction costs by c(R) < b. For every pair of nodes i, j, i < j, arevenue
rij is obtained if and only if i and j both belong to the ring. The objective is to construct a
feasible ring with maximum profit as defined by the obtained revenues minus the incurred

construction costs.

4.1. Application of the pilot method

The application of the pilot method to the RNDP is similar to the application to the
continuous flow shop scheduling problem. Starting from an empty solution (ring), we
successively construct a larger ring by considering all possibilities for including some not
yetincluded node at some position into the current ring until the budget constraint prevents
any such extension. In each iteration of the pilot method we evaluate all such options
for extension by means of the conventional (myopic) cheapest insertion procedure (i.e.,
by the respective objective function value eventually obtained). As discussed before, we
consider restricting the pilot process to some evaluation depth. That is, the pilot method
is performed until an incomplete solution with a given number of nodes is reached; this
solution is completed by continuing with a conventional cheapest insertion heuristic.

4.2. Computational results

In order to assess the pilot method, in Fink, Schneidereit, and Vo3 (2000) we have
generated random instances of the RNDP according to a procedure described in Gendreau,
Labbé, and Laporte (1995). For each instance, first coordinates of n points P; were
randomly generated in the unit square according to a continuous uniform distribution.
Then, each of the values c¢;; was set to the Euclidean distance between P; and P;. The
budget value was defined as b = 0.75 - \/n/2. For all pairs (i, j) withi < j the revenue
rij = rj; was randomly determined according to a continuous uniform distribution in
(0, 18.4 - b/n?). The pilot method was applied for randomly generated data sets with 40,
80, and 120 nodes (ten problem instances each).

The pilot method obtained very good results, although it required unreasonable
computation times (Fink, Schneidereit, and Vo3, 2000). Therefore, we again examined
the effect of limiting the evaluation depth. The development of the pilot process is
shown in Figure 4. The lines show the best objective function value obtained during the
application of the pilot method for the ten problem instances with 80 nodes. These results
are similar to those of, e.g., the continuous flow shop problem (note that the RNDP is a
maximization problem). As can be seen, an evaluation depth of approximately 10 seems



296 VOB, FINK AND DUIN

--------------------------------------- — rdp-80-01
_____________________________________________ — rdp-80-02
/m_mn S e oy

T - | — rdp-80-04
— rdp-80-05
— rdp-80-06
--------------------------------------------------------- — rdp-80-07
U s A rdp-80-08
£y — rdp-80-09

A U — 1dp-80-10

objective function value

evaluation depth

Figure 4. Development of best objective function values for the pilot method for instances with 80 nodes.

reasonable to speed up the computation, where in this case an evaluation depth of 22
would have led to the same results as the unbounded pilot method.

5.  Pilot method for the minimum weight vertex cover problem

The minimum weight vertex cover problem as a basic problem underlies specific real-
world situations from areas such as location theory or telecommunications network and
circuit design. Given an undirected graph G = (V, E) and a positive weight w, for each
vertex v € V the objective is to determine a subset V' C V satisfying U,cye(v) = E,
where e(v) denotes the set of edges incident to vertex v, such that the sum of the incurred
costs ZU <y Wy is minimized. That is, for each edge in E, at least one of its two incident
vertices must belong to the selected vertex set. The minimum weight vertex cover problem
is one of the classic NP-hard problems as proven by Karp (1972). Up-to-date references
on the minimum weight vertex cover problem are provided in Shyu, Yin, and Lin (2004).

5.1. Application of the pilot method

Following the lines of the preceding applications we use a pilot strategy for enhancing a
construction procedure. Yet we apply the pilot strategy in connection with an improve-
ment method which operates on a solution space that includes incomplete (infeasible)
solutions. We take into account infeasibilities by adding appropriate penalty values to
the objective function. For each edge ¢ = (i, j) that is not covered by the considered
vertex set (i.e.,i ¢ V' and j ¢ V'), we add a penalty value

min{w;(1 4+ 1/y:), w;(1 +1/y)}
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to the objective function, where y, denotes the degree of a vertex v € V. This penalizes
uncovered edges by taking into account the weights as well as the degrees of incident
vertices. We start with an empty solution (i.e., the set V' of selected vertices is empty)
and successively choose the best local move (regarding the inclusion or exclusion of one
vertex) by evaluating such neighbors with a steepest descent until a local optimum, and
with that a feasible solution, is obtained.

5.2. Computational results

We assess the pilot method in comparison to the recent research of Shyu, Yin, and Lin
(2004), where best overall results have been obtained by means of an advanced ant-colony
optimization (ACO) algorithm. We use a set of large problem instances from Shyu, Yin,
and Lin (2004) with 300 vertices and the number of edges ranging from 300 to 5000.
For each scenario there are ten problem instances. We report average objective function
values (avg. res.) and average deviations (avg. dev.) from the best results of Shyu, Yin,
and Lin (2004) as reference (see Table 2). Due to large computation times we restrict
ourselves to small evaluation depths from 1 up to 20. (Computation times with respect
to using a Pentium IV with 1.8 GHz are about 20 seconds per problem instance for an
evaluation depth of 1. The CPU times scale linearly for the considered range of evaluation
depth values.) Table 2 shows the results for an evaluation depth of 1, 10, and 20 (Pilot-1,
Pilot-10, and Pilot-20, respectively) in comparison to the ACO results of Shyu, Yin, and
Lin (2004). Figure 5 further shows the effect of an increasing evaluation depth from 1 up
to 10 (also for the set of 70 problem instances with 300 nodes). The outcome resembles
the computational results for the other problems considered in this paper as high-quality
results can be obtained even for small evaluation depths.

6. Pilot method for the ring load balancing problem

In this section we investigate the possibility of developing hybrid methods combining
the pilot method with local search and tabu search. In particular, we develop hybrids

Table 2
Numerical results for the minimum weight vertex cover problem.

ACO Pilot-1 Pilot-10 Pilot-20

(|VIHIE])  Avg.res. Avg.res. Avg.dev. (%) Avg.res. Avg.dev. (%) Avg.res. Avg.dev. (%)

(300;300) 734277  7382.0 0.54 7298.9 —0.60 7298.9 —0.60
(300;500) 9517.4  9623.6 1.12 9450.0 —-0.71 9449.6 —0.71
(300;750) 111669 11219.0 0.47 11068.7 —0.88 11068.5 —0.88
(300;1000) 12241.7 12249.7 0.07 12146.4 —0.78 12136.3 —0.86
(300;2000) 148949 149124 0.12 14836.4 —0.39 14817.2 —0.52
(300;3000) 16054.1 16024.9 —0.18 15960.3 —0.58 15952.4 —0.63
(300;5000) 17545.4 17473.6 —0.41 17405.2 —0.80 17405.2 —0.80

Average 0.24 —0.68 —-0.72
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Figure 5. Average deviations of the pilot method applied to minimum weight vertex cover problem instances
with 300 nodes.

that incorporate pilot strategies into steepest descent/mildest ascent and tabu search. The
problem under consideration is the ring load balancing problem which comes from the
so-called SONET technology. A SONET ring consists of a set of connected facilities
deployed in ring configuration with parallel protection channels. In the event of cable
failures the traffic, such as telephone calls moving in one direction, e.g. clockwise, is
reversed counterclockwise such that calls are not interrupted.

Here we consider the problem of balancing the loads for bidirectional communica-
tion rings for the case when demand splitting is not allowed, which occurs as a part of
SONET design (Cosares and Saniee, 1994; Myung, Kim, and Tcha, 1997). It should be
noted that the ring load balancing problem is not a pure design problem on a strategic
level as we assume a given ring whose loads have to be determined. Furthermore, from
an algorithmic point of view we need to develop fast and effective methods as the load
balancing has to be performed several times with fast response requirements.

Given is a ring of nodes with a set of communication demands between node pairs.
Assuming that the communication demands occur simultaneously, the task is to decide
for each demand whether to route it clockwise or counterclockwise, minimizing the
maximum bandwidth requirement on any of the links between adjacent nodes. That is,
given a set of n nodes and a set of demands between pairs of nodes, find a direction for each
of the demands so that the maximum of the loads on the links in the network is as small
as possible. Figure 6 shows a problem instance with five nodes where communication
demands d;; for the communication between nodes i and j are shown as dotted lines with
respective values. (For ease of exposition we assume i < j for the visual representation
of the demands.)

6.1. Application of the pilot method

We explore the incorporation of the pilot method into improvement procedures with the
aim of enhancing the quality of the evaluation of the neighborhood; see Section 2.3.
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Figure 6. A sample problem instance of the ring load balancing problem.

We employ the straightforward neighborhood defined by switching the routing direction
for one demand (node pair). The quality of such a local search step is assessed by the
quality of the solution eventually obtained after performing a number of iterations of a
pilot process. In particular, we enhance a simple steepest descent/mildest ascent (SDMA)
approach as well as reactive tabu search (RTS) by evaluating neighbors with an SDMA
pilot for ten iterations. This results in two hybrid approaches SDMA/SDMA-10 and
RTS/SDMA-10 where in each case the former acronym describes the guiding process
and the latter acronym describes the pilot process.

6.2. Computational results

We report the numerical outcomes of our approaches for the hardest problem instances of
the ring load balancing problem from Cosares and Saniee (1994), Fink and Vof3 (2001),
and Myung, Kim, and Tcha (1997). These instances may be characterized by means of
the demands which are decentralized. In Table 3 we denote the number of nodes by n
which ranges from 5 to 30. For the demands of the considered scenario the number p of
origin-destination pairs ranges between 10 and 435. For each combination of n and the
different demand scenarios we have ten problem instances. The demands themselves are

Table 3
Numerical results for the ring load balancing problem.
Pilot method
(n;p) Opt SDMA/SDMA-10 RTS/SDMA-10 Reactive tabu search
(5;10) 186.0 186.0 0.00% 186.0 0.00% 186.0 0.00%
(10;45) 728.3 728.5 0.03% 728.3 0.00% 728.3 0.00%
(15;105) 1599.9 1600.3 0.03% 1599.9 0.00% 1602.2 0.14%
(20;190) 2720.2 2726.4 0.23% 2720.3 0.00% 2736.2 0.59%
(25;300) 4218.4 4219.3 0.02% 4219.3 0.02% 4238.7 0.48%
(30;435) 59433 5943.5 0.00% 5943.3 0.00% 5987.7 0.75%

Average deviation: 0.05% 0.004% 0.33%
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randomly selected within the interval [5, 100]. All computations have been performed
on a Pentium II with 266 MHz using a time limit of 100 CPU seconds as termination
criterion to have a fair comparison.

Among those heuristics previously tested on these instances the RTS implementa-
tion of Fink and VoB (2001) seems to be the most efficient method. Here we investigate
the two pilot method hybrids as described in the previous section in comparison with
the original version of the RTS according to Fink and Vof3 (2001). The results in Table 3
(giving average objective function values and the percentage deviation from optimality)
reveal that it is advantageous to modify the RTS with the look ahead mechanism of
the pilot method as the results may be considerably improved. Even the steepest descent
mildest ascent approach, which is usually clearly outperformed by RTS, is able to provide
better results compared to the RTS when hybridized with the pilot method.

7. Conclusions

The pilot method may be regarded as an effective meta-heuristic to overcome the greedy
trap. As the basic mechanism of the pilot method requires a considerable computation
time it is reasonable to think about all means of speeding up the objective value tests.
The focus of this paper was to restrict the evaluation depth. Numerical results for various
problems (both summarizing results from the literature as well as new results for problems
where the pilot method had previously not yet been applied) show that even small values
of the evaluation depth allow for considerable enhancements of the solution quality.

Thus a shorter evaluation depth is a simple and yet effective means for speeding up
the pilot method. However, it seems hard, if not impossible, to provide a general answer
to the question: what evaluation depth is best. It depends on several factors: the nature
of the problem, the importance of a (further) improvement, the CPU time to spare, et
cetera. Most important in this respect seems to be computational experience.

Section 6 of this paper contained an experiment showing that the strategy of the
pilot method can also enhance existing local search methods. Future research may study
such mixed strategies to improve the quality of modern meta-heuristics. To decrease the
time requirements, more advanced policies for speeding up the pilot method, combining a
shorter evaluation depth with other options (see Section 2.2), can be investigated. Further,
much more comprehensive numerical testing is required.
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Note

1. http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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