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Abstract. In this paper we consider the location of stops along the edges of an already existing public
transportation network. This can be the introduction of bus stops along given routes, or of railway stations
along the tracks in a railway network. The goal is to achieve a maximal covering of given demand points with
a minimal number of stops. This bicriteria problem is in general NP-hard. We present a finite dominating
set yielding an IP-formulation as a bicriteria set covering problem. Using this formulation we discuss cases
in which the bicriteria stop location problem can be solved in polynomial time. Extensions for tackling
real-world instances are mentioned.
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Introduction

When designing or modifying a public transportation network, one has to decide about
the number and the location of the stops (or stations). Unfortunately, the objective is not
clear in this process, since even from a customer-oriented point of view, the following
two conflicting effects of stops apply.

• On the one hand, many stops are advantageous, since they increase the accessibility for
the customers. A customer is covered if the next stop is within a specified distance,
called the covering radius (usually 400 m in bus transportation and 2 km in rail
transportation).

• On the other hand, each additional stop increases the transportation time (e.g., by 2
minutes in rail transportation) for all trains or buses stopping there.

Consequently, it makes sense to establish as few stops as possible, in such a way that
all customers are covered. For a given finite set of possible new locations, this has been
done in the discrete stop location problem which turns out to be an unweighted set
covering problem (as tackled in Toregas et al., 1971). In the context of stop location
this set covering problem has been solved by Murray (2001b) using the Lagrangian-
based set covering heuristic of Caprara, Fischetti, and Toth (1999), and applied in bus
transportation in Brisbane, Australia, see Murray et al. (1998), Murray (2001a, 2001b).
Recently, another discrete stop location model has been developed by Laporte, Mesa, and
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demand point
given tracks

Figure 1. The set of tracks T and a set of demand points D in the plane.

Ortega (2002a). They investigate which candidate stops along one given line in Seville,
Spain should be opened, taking into account constraints on the inter-station space. The
problem is solved by a longest path algorithm in an acyclic graph.

On the other hand, in the continuous stop location problem, the whole track system
(or the routes of the buses) may be used for locating stations. This problem was intro-
duced in Hamacher et al. (2001) within a project with the largest German rail company
(DB). In this paper, a genetic algorithm was used to minimize the average door-to-door
traveling time of all customers. Minimizing the number or costs of the new stations
while covering all demand points was discussed in Schöbel et al. (2002). A similar cov-
ering model has been considered in Kranakis (2002). An overview about continuous stop
location is provided in Schöbel (2003). Planning not only the stops along the line but
also the line itself occurs in network design problems, and has been investigated among
others in Bruno, Ghiani, and Improta (1998) and Laporte, Mesa, and Ortega (2002b).
A more general approach in this area is suggested in Current, ReVelle, and Cohon
(1987).

In this paper we extend the continuous stop location problem as defined in Schöbel
et al. (2002) to a bicriteria problem. We need the following notation (see figure 1).

LetD ⊆ IR2 be a given finite set of demand points, and PTN = (V, E) be the current
public transportation network, given as a set of already existing stations or breakpoints
V and their direct connections E . Then the set T of all points of the linear embedding
of the graph PTN represents the given track system (for railways) or the bus routes (for
bus transportation). Given a distance measure γd (which may depend on the demand
point d), a demand point d is covered by a stop s ∈ T , if γd(d, s) ≤ r . In the following
we assume that γd is a norm-distance for each demand point d. To allow different distance
functions for each demand point is due to the possibly different environments close to the
demand points and allows the distance functions to be modeled more accurately. (Note
that it is also possible to allow γd to be a distance derived from a gauge function. A gauge
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is defined similar to a norm, but without requiring symmetry, i.e., γd(x, y) = γd(y, x)
need not be satisfied, see, e.g., Minkowski (1967).

Let r be the specified covering radius. We define the cover of a set of stops S ⊆ T
as

cover(S) = {d ∈ D: there exists s ∈ S such that γd(d, s) ≤ r}.
The goal of the (unweighted) continuous stop location problem (CSL) as defined

in Schöbel et al. (2002) is to find a set of (new) stops S ⊆ T with minimal cardinality,
covering all demand points. This problem has been shown to be NP-complete.

Theorem 1 [(Schöbel et al., 2002)]. (CSL) is NP-complete.

However, in a practical setting, one might not want to cover all demand points D
but only a given percentage of the population. Hence let us assume that for each demand
point d, we have given a weight wd representing the number of customers who would
like to use public transportation, if the next station was closer than r . Then the function

fcover(S) =
∑

d∈cover(S)

wd

gives the number of (potential) customers which live closer than r to some stop in S.
Certainly, it is preferable to cover as many customers as possible, i.e, to maximize

fcover(S). On the other hand, establishing many new stops is costly and increases the travel
time for the customers in the trains (or buses), because each stop needs an additional
time of, e.g., two minutes. Since this causes dissatisfaction for the customers we use

fcost(S) = |S|
as a second objective function. The bicriteria stop location problem (BSL) can now be
stated.

(BSL)

Given G = (V, E) with its set of points of its planar embedding T = ⋃
e∈E e ⊆ IR2, as

well as a finite set of points D ⊆ IR2 with weights wd and norms (or gauges) γd for all
d ∈ D, find a set S ⊆ T such that both

fcost(S) = |S| and

− fcover(S) = −
∑

d∈cover(S)

wd

are minimized.
The remainder of the paper is organized as follows. In the next section we introduce

the two e-constraint subproblems needed for a bicriteria analysis of (BSL) and transfer
the finite candidate set of Schöbel et al. (2002) for the single objective problem to these
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problems in Section 2. In Section 3 we analyze the situation along a polygonal line and
present a dynamic programming approach which finds all efficient solutions in this case
in Section 4. Further research topics are mentioned in Section 5.

1. e-constraint problems

What we mean by “minimizing both” objective functions is to find Pareto solutions of
the problem with respect to fcost and fcover. Recall (e.g., from textbooks as Steuer (1989)
or Ehrgott (2000)) that if S1, S2 ⊆ T denote two feasible sets of stops, S1 dominates S2

if

fcost(S1) ≤ fcost(S2) and

fcover(S1) ≥ fcover(S2),

where at least one of the inequalities is strict. Then a Pareto solution S∗ is a feasible
set of stops which is not dominated by any other feasible set of stops. If S∗ is a Pareto
solution, then the point

( fcost(S∗), fcover(S∗))

is called an efficient point.
To find Pareto solutions we can utilize the following two one-criteria problems.

(BSL-cost(Q)): Given D, G = (V, E) with its set of points T , weights wd , and norms
(or gauges) γd for all d ∈ D, find a set S∗ ⊆ T such that fcover(S∗) ≥ Q and fcost(S∗)
is minimal.

(BSL-cover(k)): Given D, G = (V, E) with its set of points T , weights wd and norms
(or gauges) γd for all d ∈ D, find a set S∗ ⊆ T such that fcost(S∗) ≤ k and fcover(S∗)
is maximal.

These problems are called the e-constraint problems resulting from (BSL). Note that
(BSL-cost) resembles the location set covering problem introduced by Toregas (1971)
and Toregas et al. (1971), while (BSL-cover) is related to the Maximal Covering Location
Problem, see Church and ReVelle (1974) or White and Case (1974).

To utilize the e-constraint problems in our analysis we need the following result of
Haimes and Chankong (1983).

Lemma 1. Let Q, k ∈ IN.
1. Let S be a unique optimal solution of (BSL-cost(Q)). Then S is a Pareto solution.

If more than one optimal solution of (BSL-cost(Q)) exists, the solutions that addi-
tionally maximize fcover are Pareto solutions.

2. Let S be a unique optimal solution of (BSL-cover(k)). Then S is a Pareto solu-
tion. If more than one optimal solution of (BSL-cover(k)) exists, the solutions that
additionally minimize fcost are Pareto solutions.
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Using Lemma 1 to find Pareto solutions is known as the e-constraint method; see,
e.g., Ehrgott (2000). Unfortunately, both e-constraint problems are hard to solve.

Corollary 1. (BSL) and the two e-constraint problems (BSL-cost) and (BSL-cover) are
NP-hard, even if all weights wd are equal to 1.

Proof. From Theorem 1 we know that finding a minimum cardinality set of stations cov-
ering all demand points is NP-hard. The decision version of both e-constraint problems
(BSL-cost(Q)) and (BSL-cover(k)) is the following:

Given D, G = (V, E) with its planar embedding T , weights wd , norms (or gauges)
γd , does there exist a set S∗ ⊆ T such that fcost(S∗) ≤ Q and fcover(S∗) ≥ k?

Defining Q = ∑
d∈D wd shows that the decision version of (CSL) is a special

case of the decision version of both (BSL-cost(Q)) and (BSL-cover(k)) and thus both
e-constraint problems are NP-hard.

We now discuss the two lexicographic optimal solutions, which we know are Pareto
solutions.

• Maximizing fcover as first objective means that we have to cover all demand points
that can be covered, i.e., all demand points d ∈ cover(T ). This yields (CSL), if we
define

D′ = D ∩ cover(T )

as the set of demand points to be covered, and hence this problem is NP-hard (see
Theorem 1).

• On the other hand, minimizing fcost leads to a trivial problem since it can be solved
easily by not installing any stop at all.

Note that (BSL-cover(k)) was investigated in Kranakis et al. (2002) for the case of one
single straight-line track and a special case with two parallel straight-line tracks. For both
cases, polynomial time algorithms using dynamic programming were developed with a
time complexity of O(k|D|2) for the single track case. Moreover, it is shown that along one
straight line track, (BSL-cover(k)) is equivalent to the one-dimensional (uncapacitated)
k-facility location problem. Due to Hassin and Tamir (1991), (BSL-cover(k)) can hence
be solved in O(|D|2) time.

2. Integer programming formulations

To derive integer programming formulations we proceed as follows. For an edge e ∈ E
with endpoints ve

1, v
e
2 we define

T e(d) = {s ∈ e : γd(d, s) ≤ r}
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as the set of all points on the edge e ⊆ T that can be used to cover demand point d, and

T (d) = {s ∈ T : γd(d, s) ≤ r}.
Note that s ∈ T (d) if and only if d ∈ cover(s). The following simple observation will
become important later.

Lemma 2. For each demand point d ∈ IR2 the set T e(d) is either empty or an interval
contained in edge e.

Proof. Note that T e(d) = e∩{x ∈ IR2 : γd(d, x) ≤ r} is the intersection of two convex
sets, namely, of the line segment e and the unit ball of the norm (or gauge) γd about d.
Consequently, T e(d) itself is a convex set contained in a line segment and hence either
empty or a line segment itself.

Let f e
d , le

d denote the endpoints of the interval T e(d) (which may coincide with the
endpoints ve

1, v
e
2 of the edge e). We write

[
f e
d , le

d

] = T e(d).

Along the lines of Schöbel et al. (2002) we can now derive a finite dominating set S ⊆ T
as follows. For each edge let

Se =
⋃

d∈D

{
f e
d , le

d

} ∪ {
ve

1, v
e
2

}

be the set of all endpoints of intervals T e(d). This set can be ordered along the edge e
(e.g., by starting in ve

1 and moving to ve
2), resulting in a set

Se = {
s0, s1, . . . , sNe

}
,

and we write ve
1 = s0 < s1 < · · · < sNe = ve

2 to indicate the order of the points with
respect to ve

1 < ve
2. In the following we show that

S =
⋃

e∈E

Se

is a finite dominating set for the bicriteria stop location problem. For an illustration of S
we refer to figure 2.

The next lemma states that we can always improve the cover of a stop by moving
the stop to an appropriate point in S.

Lemma 3 [(Schöbel et al., 2002)]. Let e be an edge of E, and let s ∈]s j , s j+1[e for
some j ∈ {0, 1, . . . , Ne − 1}. Then

cover(s) ⊆ cover(s j ) ∩ cover(s j+1).
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v1=s0

s1

s2

s3
s4

v2=s5
d2

d3

d1

Figure 2. The set of candidates along one linear piece e ∈ E .

Theorem 2. S is a finite dominating set for (BSL-cost(Q)), (BSL-cover(k)), and (BSL).
More precisely,

• If (BSL-cost(Q)) is feasible there exists an optimal solution S∗ ⊆ S.

• If (BSL-cover(k)) is feasible there exists an optimal solution S∗ ⊆ S.

• Let (k, Q) be an efficient solution of (BSL). Then there exists a Pareto solution S ∈ S
with fcost(S) = k and fcover(S) = Q.

Proof. Given some Pareto set S∗, we iteratively construct a set S′ ⊆ S by moving stops
of the given set S∗ into points of S without changing the objective function values as
follows. Let s ∈ S∗ \S be a point in the optimal solution and let e be the edge of s. Then
determine two consecutive points s j , s j+1 ∈ Se such that s lies between s j and s j+1.
According to Lemma 3 we know that cover(s) ⊆ cover(s j ), hence

S′ = S∗ \ {s} ∪ {s j }

satisfies

fcover(S∗) ≤ fcover(S′) and

fcost(S∗) ≥ fcost(S′),

i.e., S′ is at least as good as S∗ with respect to both criteria. Proceeding like this for all
points in S∗ \ S proves the result.
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Using Theorem 2, (BSL) and its two e-constraint problems can be formulated as
integer programs. As decision variable we define

xs =
{

1 if candidate s is chosen as a new stop

0 otherwise
.

To keep track of the population covered by the new stops, we also have to know
which demand points are covered and which are not. We therefore define another set of
binary variables

yd =
{

1 if demand point d is covered

0 otherwise
,

and let w = (wd1, wd2, . . . , wd|D|) and 1 ∈ IR|S| be the vector with a 1 in each component.
Furthermore, we can store the covering information in the following covering matrix

Acov = (ads) with

ads =
{

1 if d ∈ cover(s) (or, equivalently, if s ∈ T (d))

0 otherwise
,

The IP model of (BSL) can now be formulated as

min

(
1x

−wy

)

s.t. Acovx ≥ y
x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.

The IP model for (BSL-cost(Q)) is

min 1x

s.t. Acovx − y ≥ 0
wy ≥ Q

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|,

and (BSL-cover(k)) is given by

max wy

s.t. Acovx − y ≥ 0
1x ≤ k

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.
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3. Bicriteria stop location along a polygonal line

We now analyze the situation along a polygonal line T .

Lemma 4. If T is a polygonal line and T (d) is connected for each demand point d,

then Acov has the consecutive ones property, i.e., in each row of Acov the ones appear
consecutively.

Proof. Let ads1 = ads2 = 1 for s1 < s2. We then have to show that ads = 1 for all s
with s1 < s < s2. Take a candidate s on the polygonal line between s1 and s2. From
ads1 = ads2 = 1 we know that s1, s2 ∈ T (d). Hence, since T (d) is connected, also
s ∈ T (d) and hence ads = 1.

Note that the assumption of Lemma 4 is always satisfied if T consists of one single
edge only, an observation which was first noted in Schöbel et al. (2002). Generalizations
and decomposition results that can be used to apply this fact to more complex networks
are given in Schöbel (2003).

To illustrate the condition of Lemma 4 we consider figures 3 and 4. In figure 3
an example of a polygonal line not satisfying the condition of Lemma 4 and with a
coefficient matrix without consecutive ones property is given.

In this example, T is a polygonal line consisting of three nodes. Numbering the
candidates from left to right, Acov

Fig3 is given by

Acov
Fig3 =




1 1 1 0 0 0 1 1 0

0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0



 ,

which cannot be reordered to satisfy the consecutive ones property.

d1

d2
d3

s8

s6

s5

s4

s3

s0 s1

s2

s7

Figure 3. An instance of (BSL) on a polygonal line where T (d1) is not connected, and without consecutive
ones property.
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Figure 4. An instance of (BSL) on a polygonal line satisfying that all sets T (d) are connected, and hence
having the consecutive ones property.

On the other hand, figure 4 shows an example for a polygonal line together with a
set of demand points D, in which all sets T (d) are connected. Hence, the covering matrix
Acov

Fig4 of this example satisfies the consecutive ones property.
The importance of Lemma 4 is due to the fact that matrices having the consecutive

ones property are totally unimodular such that in this case the stop location problem (CSL)
can be solved efficiently by linear programming methods. Unfortunately, even if Acov

has the consecutive ones property and wd = 1 for all d ∈ D, this property need not hold
for the constraint versions of our problem (BSL) as the following example demonstrates.

Consider figure 5 and note that the coefficient matrix in this small example is

Acov
Fig5 =

(
1 1 1

0 1 1

)
,

which has the consecutive ones property.

(BSL-cost(Q)): Although Acov
Fig5 has the consecutive ones property this does not yield

a totally unimodular coefficient matrix for (BSL-cost(Q)). Namely, the coefficient
matrix of (BSL-cost) in the example shown in figure 5 is given as




1 1 1 −1 0

0 1 1 0 −1

0 0 0 1 1



 ,

which is not totally unimodular.
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a=s1

   s2

b=s3

d2

d1

Figure 5. The coefficient matrix of (BSL-cost) is not totally unimodular.

(BSL-cover(k)): On the other hand, using again the example depicted in figure 5, the
coefficient matrix of (BSL-cover(k)) is given by




1 1 1 −1 0

0 1 1 0 −1

−1 −1 −1 0 0



 ,

which does not have the consecutive ones property, but still is a totally unimodular
matrix.

This observation holds in general.

Lemma 5. Let Acov have the consecutive ones property and assume that wd = 1 for all
d ∈ D. Then (BSL-cover(k)) can be solved by linear programming.

Proof. Note that ( Acov

1 1 ... 1 ) has the consecutive ones property and hence is totally unimod-
ular. Thus, also ( Acov

−1 −1 ... −1 ) is totally unimodular and hence the coefficient
matrix

(
Acov −I

−1 − 1 . . . − 1 0 0 . . . 0

)

of the IP-formulation of (BSL-cover(k)) also satisfies this property. Consequently, the
result follows from integer programming theory, see, e.g., Nemhauser, and Wolsey
(1988).

Based on this observation (although not true for arbitrary weights wd) we suggest to
solve a family of e-constraint problems of type (BSL-cover) to find all efficient solutions
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of (BSL) in the case that Acov has the consecutive ones property. In the next section we
show how this can be done efficiently by dynamic programming.

4. Dynamic programming approach

To develop a dynamic programming approach for (BSL) we first investigate cover(S) in
more detail. Again, consider a polygonal line T satisfying the assumption of Lemma 4
and let S be the set of candidates. We assume that the candidates have been ordered along
T , e.g., from left to right.

Lemma 6. Let T be a polygonal line satisfying that T (d) is connected for all d ∈ D.
Let S = {s1, . . . , sp} ⊆ T be any set of points with s1 < · · · < sp. Then for all
i = 1, . . . , p − 1 we have

cover(si+1) \ cover{s1, . . . , si } = cover(si+1) \ cover(si ).

Proof. Since “⊆” is trivial, we only need to verify “⊇”.
To this end, let d ∈ cover(si+1) \ cover(si ). We show that d 
∈ cover(s j ) for all

j ≤ i . Assume to the contrary that d ∈ cover(s j ) for some j < i but that d ∈ cover(si+1).
This means that s j ∈ T (d) and si+1 ∈ T (d), and, since T (d) is connected due to our
assumption also si ∈ T (d), a contradiction to d 
∈ cover(si ).

As an example, consider figure 2 and note that, e.g.,

cover(s6) \ cover(s4) = cover(s6) − cover({s2, s3, s4}) = {d3},
while in figure 3, T (d1) is not connected, and

cover(s7) \ cover(s6) 
= cover(s7) \ cover({s1, . . . , s7}.
Lemma 6 suggests a standard dynamic programming approach to solve (BSL-cover(k)).
This approach has been derived by transferring the Bellman-Ford algorithm (see Bellman,
1958; Ford, and Fulkerson, 1962) for k-cardinality constrained shortest paths to set
covering problems along the lines of Section 4.3 in Schöbel (2003). Note that the resulting
approach for solving single-criteria problems of type (BSL-cover) along a straight line
has also been developed directly in the context of stop location by Kranakis (2002) and
an improved version of this approach has been suggested in Hassin and Tamir (1991) for
the k-facility location problem along a line.

In this paper we embed such an approach for solving BSL-cover(k) in our algorithm
for finding all efficient solutions. In step 4 of our approach we are looking for a set of
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stops, all of them smaller than (i.e. on the left hand side of) a given stop s j which itself
should be contained in S, i.e., we solve subproblems of type

(P(k, s j )) max{ fcover(S) : S ⊆ {s1, . . . , s j }, s j ∈ S, and |S| ≤ k}.

Note that we start with the optimal solution {s j } of P(1, s j ) in step 3. To obtain the
solution of P(k, s j ) within step 4 we can use the previously calculated solutions for k −1.
To this end, we set (in step 2)

wi j =
∑

d∈cover(s j )\cover(si )

wd for i < j and

W = fcover(S).

W denotes the maximum weight that we can cover, if we choose all candidates as
new stops, while wi j gives the gain if we add s j to a set of stops containing si as
its rightmost stop. Denoting the optimal solution of P(k, s j ) by hk(s j ) we iteratively
calculate

hk(s j ) = max
i :si <s j

wi j + hk−1(si ).

in each sub iteration of step 4. For the sake of simplicity we use the standard dynamic
programming approach in step 4 but remark that since the weights wi j satisfy the concav-
ity property, the implementation of Galil, and Park (1990) and Hassin, and Tamir (1991)
leads to a better time complexity of our algorithm.

Finally, the optimal solution of (BSL-cover(k)) can be obtained as the best solution
over all optimal solutions of P(k, s j ) over j = 1, . . . , N (step 5). In step 6, we use
Lemma 1 to obtain all efficient solutions. We first state the algorithm and then show the
correctness of the above statements.

Algorithm : Finding all efficient solutions of (BSL)

Input: D, a polygonal line T with connected sets T (d), weights wd for

all d ∈ D.

Output: All efficient solutions of (BSL), and a Pareto solution for each

of them.

Step 1. Derive the set of candidates S = {s1, s2, . . . , sN } as in Theorem 2 and

order them along T .

Step 2. Let W = fcover(S) and wi j = ∑
d∈cover(s j )\cover(si ) wd for all i < j with

i, j ∈ {1, . . . , N }
Step 3. Let for all j = 1, . . . , N: h1(s j ) = cover(s j ), S1(s j ) = {s j }, k = 2.
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Step 4. For all j = 1, . . . , N:

hk(s j ) = max
i :si <s j

wi j + hk−1(si )

If hk(s j ) = wi∗ j + hk−1(si∗) let Sk(s j ) = Sk−1(si∗) ∪ {s j }.
Step 5. Let hk = max j=1,...,N hk(s j ) =: hk(s∗) and let Sk = Sk(s∗).

• If hk = W then set K ∗ = k and stop.

• Otherwise k = k + 1 and goto step 4.

Step 6. Output: Eff = {(hk, k) : k = 1, . . . , K ∗} with corresponding Pareto so-

lutions Sk, k = 1, . . . , K ∗.

To show the correctness of the algorithm we need the following lemmas.

Lemma 7. Sk(s j ) is an optimal solution of (P(k, s j )) with objective value hk(s j ).

Proof. We use induction over k. For k = 1 the optimal solution of (P(1, s j )) is S1(s j ) =
{s j }. Now assume that Sk−1(s j ) is the optimal solution of (P(k − 1, s j )) for any fixed s j .
For the induction step we first note that (P(k, s j )) is equivalent to

max{ fcover(S′ ∪ {s j }) : S′ ⊆ {s1, . . . , s j−1}, and |S′| ≤ k − 1}.
Now calculate for any S′ = {si1, si2, . . . , si p} with si1 < si2 < . . . si p < s j

fcover(S′ ∪ {s j }) =
∑

d∈cover(S′∪{s j })
wd

= fcover(S′) +
∑

d∈cover(s j )\cover(S′)

wd

= fcover(S′) +
∑

d∈cover(s j )\cover(si p )

wd due to Lemma 6

= fcover(S′) + wi p j

Hence, (P(k, s j )) can further be rewritten as

max{ fcover(S′) + wi p j : i p ∈ {s1, . . . , s j−1}, S′ ⊆ {s1, . . . , si p},
i p ∈ S′, and |S′| ≤ k − 1}

and it becomes clear that the set S′ in this formulation is an optimal solution of
(P(k−1, si p )). Using the induction hypothesis we finally obtain that (P(k, s j )) is equivalent
to

max{ fcover(Sk−1(i p)) + wi p j : i p ∈ {s1, . . . , s j−1}}
which shows the result.
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Corollary 2. Sk is an optimal solution of (BSL-cover(k)) and its objective value is hk .

Proof. This consequence follows from Lemma 7 and the definition of Sk in step 5 of
the algorithm.

Finally, to apply Lemma 1 we need the following result.

Lemma 8. For k ≤ K ∗ any optimal solution S∗ of (BSL − cover(k)) satisfies |S∗| = k.

Proof. Let S be an optimal solution of (BSL-cover(k)) for some k < K ∗. This means
that fcover(S) = fcover(Sk) < W due to Corollary 2 and step 6 of the algorithm. Hence
there exists s 
∈ S such that

∑

d∈cover(s)\cover(S)

wd > 0

and hence fcover(S∪{s}) > fcover(S). If |S| ≤ k−1 this yields that S∪{s} does not contain
more than k stops and hence is feasible for (BSL-cover(k)), which is a contradiction to
the optimality of S.

Theorem 3. The algorithm finds all efficient solutions of (BSL).

Proof. For each k ≤ K ∗ we know from Corollary 2 that Sk is an optimal solution
of (BSL-cover(k)) . Furthermore, Lemma 8 shows that all optimal solutions of (BSL-
cover(k)) consist of the same number k of stops. Hence (hk, k) is an efficient solution
according to Lemma 1.

On the other hand, no solution S with |S| > K ∗ is Pareto, since such a solution S
is always dominated by SK ∗

, because

|S| > K ∗ = |SK ∗ | and

fcover(S) ≤ W = fcover(SK ∗
).

Since the number of candidates |S| is at most twice the number of demand points for
a polygonal line satisfying the assumptions of the algorithm, the worst-case complexity
of the algorithm (finding all efficient solutions of the bicriteria stop location problem)
is given by O(K ∗|D|2) where K ∗ is the minimum number of stops needed to cover all
demand points in cover(T ). Using the concavity property of the weights and the resulting
better implementation of step 4 due to Galil and Park (1990) and Hassin and Tamir (1991),
one can reduce the overall time complexity to O(|D|2) to find all efficient solutions of
(BDM).
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5. Conclusion

In this paper we developed a model for the bicriteria stop location problem and proposed
an efficient solution approach for determining a Pareto solution for each efficient solution
in the special case that the set of tracks is given by a polygonal line with connected
intervals T (d) for each demand point d. Investigating the real-world data of German rail
(DB) all over Germany, it turns out that this assumption is almost satisfied in practice.
Dealing with a few demand points not satisfying the connectedness of T (d) (or, more
specific, with a few rows of the covering matrix not satisfying the consecutive ones
property) has been treated in Ruf, and Schöbel (2004).

Moreover, the extension of the results to demand regions instead of demand points
is investigated. For some first results in this area we refer to Schöbel and Schröder
(2003).

References

Bellman, R. (1958). “On a Routing Problem.” Quarterly Applied Mathematics 16, 87–90.
Bruno, G., G. Ghiani, and G. Improta. (1998). “A multi-Modal Approach to the Location of a Rapid Transit

Line.” European Journal of Operational Research 104(2), 321–332.
Caprara, A., M. Fischetti, and P. Toth (1999). “A Heuristic Method for the Set Covering Problem.” Operations

Research 47(5), 730–743.
Church, R. and C. ReVelle (1974). “The Maximal Covering Location Problem.” Papers of the Regional

Science Association 32, 101–118.
Current, J., C. ReVelle, and J. Cohon. (1987). “The Median Shortest Path Problem: A Multiobjective Ap-

proach to Analyze Cost vs. Accessibility in the Design of a Transportation Network.” Transportation
Science 21(3), 490–503.

Ehrgott, M. (2000). Multiple Criteria Optimization. Vol. 491 of Lecture Notes in Economics and Mathemat-
ical Systems Springer, Berlin.

Ford, L.R. and D.R. Fulkerson (1962). Flows in Networks. Princeton University Press.
Galil, Z. and K. Park (1990). “A Linear-Time Algorithm for Concave One-Dimensional Dynamic Program-

ming.” Information Processing Letters 33, 309–311.
Haimes, Y.Y. and V. Chankong (1983). Multiobjective Decision Making—Theory and Methodology. North

Holland, New York.
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Laporte, G., J.A. Mesa, and F.A. Ortega (2002a). “Locating Stations on Rapid Transit lines.” Computers and

Operations Research 29, 741–759.
Laporte, G., J.A. Mesa, and F.A. Ortega (2002b). “Maximizing Trip Coverage in the Location of a Single

Rapid Transit Alignment.” ISOLDE IX, Fredericton & St. Andrews, New Brunswick, Canada.
Minkowski, H. (1967). Gesammelte Abhandlungen, Band 2. Chelsea Publishing Company, New York.
Murray, A. (2001a). “Coverage Models for Improving Public Transit System Accessibility and Expanding

Access.” Technical report, Department of Geography, Ohio State University.
Murray, A. (2001b). “Strategic Analysis of Public Transport Coverage.” Socio-Economic Planning Sciences

35, 175–188.



LOCATING STOPS ALONG BUS OR RAILWAY LINES—A BICRITERIA PROBLEM 227

Murray, A., R. Davis, R.J. Stimdon, and L. Ferreira (1998). “Public Transportation Access.” Transportation
Research D 3(5), 319–328.

Nemhauser, G.L. and L.A. Wolsey. (1988). Integer and Combinatorial Optimization. Wiley.
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