
Annals of Operations Research 133, 23–46, 2005
 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

The DC (Difference of Convex Functions) Programming
and DCA Revisited with DC Models of Real World
Nonconvex Optimization Problems

LE THI HOAI AN lethi@sciences.univ-metz.fr
Laboratoire de I’Informatique Théorique et Appliquée, UFR MIM, Université de Metz,
Ile du Saulcy 57045 Metz, France

PHAM DINH TAO ∗ pham@insa-rouen.fr
Laboratory of Modelling, Optimization and Operations Research, National Institute for Applied
Sciences-Rouen, BP 8, F 76 131 Mont Saint Aignan Cedex, France

Abstract. The DC programming and its DC algorithm (DCA) address the problem of minimizing a func-
tion f = g −h (with g, h being lower semicontinuous proper convex functions on R

n) on the whole space.
Based on local optimality conditions and DC duality, DCA was successfully applied to a lot of different
and various nondifferentiable nonconvex optimization problems to which it quite often gave global solu-
tions and proved to be more robust and more efficient than related standard methods, especially in the large
scale setting. The computational efficiency of DCA suggests to us a deeper and more complete study on
DC programming, using the special class of DC programs (when either g or h is polyhedral convex) called
polyhedral DC programs. The DC duality is investigated in an easier way, which is more convenient to
the study of optimality conditions. New practical results on local optimality are presented. We emphasize
regularization techniques in DC programming in order to construct suitable equivalent DC programs to non-
differentiable nonconvex optimization problems and new significant questions which have to be answered.
A deeper insight into DCA is introduced which really sheds new light on DCA and could partly explain its
efficiency. Finally DC models of real world nonconvex optimization are reported.

Keywords: DC programming, DC algorithms (DCA), DC duality, local optimality conditions, global opti-
mality conditions, polyhedral DC programming, regularization techniques

1. Introduction

In recent years there has been a very active research in nonconvex programming. A great
deal of work involves global optimization (which is concerned with finding global so-
lutions to nonconvex programs) whose main tools and solution methods are developed
according to the spirit of the combinatorial optimization, but with the difference that
one works in the continuous framework (see Horst and Tuy, 1996; Horst, Pardalos, and
Thoai, 1995; Horst and Thoai, 1999). People recognize that it was Hoang Tuy who has
incidentally put forward, by his pioneering paper in 1964 (Tuy, 1964), the new global

∗ Corresponding author. Address: LMI – INSA de Rouen, Place Emile Blondel, BP 8, 76131 Mont Saint
Aignan, France.



24 AN AND TAO

optimization concerning convex maximization over a polyhedral convex set. It is worth
noting that the works by Hoang Tuy, R. Horst, H. Benson, P.M. Pardalos, H. Konno, Le
Dung Muu, Le Thi Hoai An, Nguyen Van Thoai, Phan Thien Thach, and Pham Dinh
Tao are among the most important contributions to this approach. During the last decade
tremendous progress has been made, especially in the computational aspect. One can
now globally solve specially structured nonconvex problems arising from applications
with larger dimensions, especially large scale but low rank nonconvex problems (Konno,
Thach, and Tuy, 1999). However, most robust and efficient global algorithms actually
do not meet the expected desire: solving real life programs in their true dimension.

Beside this combinatorial approach to global continuous optimization, the convex
analysis approach to nonconvex programming has been much less worked. It seemed to
take rise in the works of Pham Dinh Tao on the computation of bound-norms of matrices
(i.e. maximizing a seminorm over the unit ball of a norm) in 1974 (Tao, 1975, 1976,
1981, 1984, 1986; and references therein). These works are extended in a natural and
logical way to the DC (difference of convex functions) program:

α = inf
{
f (x) := g(x) − h(x): x ∈ X

}
where X = R

n is the usual Euclidean space and g, h are lower semicontinuous proper
convex functions on X (i.e. g, h ∈ �0(X), see section 2). Indeed we would like to
make an extension of convex programming, not too large to still allow using the arse-
nal of powerful tools in convex analysis and convex optimization but sufficiently wide
to cover most real world nonconvex optimization problems. The set of DC functions
f = g −h, being the vector subspace spanned by the convex cone �0(X), is then closed
under all the operations usually considered in optimization (see, e.g., Tao and An, 1997;
Tuy, 1998; and references therein). There the convexity of the two DC components g

and h of the objective function has been used to develop appropriate tools from both
theoretical and algorithmic viewpoints. The other support of this approach is the DC
duality, which has been first studied by J.F. Toland in 1978 (Toland, 1978, 1979) who
generalized, in a very elegant and natural way, the just mentioned works by Pham Dinh
Tao on convex maximization programming (g then is the indicator function of a non-
empty closed convex set in X). In contrast with the combinatorial approach where many
global algorithms have been studied, there have been a very few algorithms for solv-
ing DC programs in the convex analysis approach. Here we are interested in local and
global optimality conditions, relationships between local and global solutions to primal
DC programs and their dual

α = inf
{
h∗(y) − g∗(y): y ∈ Y

}
(where Y is the dual space of X, which can be identified with X itself, and g∗, h∗ denote
the conjugate functions of g and h, respectively) and solution algorithms.

DC algorithms (DCA), based on local optimality conditions and the duality in DC
programming, have been introduced by Pham Dinh Tao in 1986 (Tao, 1986, 1988) as
an extension of the aforementioned subgradient algorithms (for convex maximization
programming) to DC programming. Important developments and improvements for
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DCA from both theoretical and computational aspects have been completed since 1993
throughout the joint works of Le Thi Hoai An and Pham Dinh Tao (see References). Due
to its local character it cannot guarantee the globality of computed solutions for general
DC programs. However, we observe that with a suitable starting point it converges quite
often to a global one. In practice, DCA was successfully applied to a lot of different and
various nonconvex optimization problems to which it quite often gave global solutions
and proved to be more robust and more efficient than related standard methods, espe-
cially in the large scale setting (see section 3 and References). To our knowledge, DCA
is actually one of the rare algorithms for nonsmooth nonconvex programming which al-
low to solve large-scale DC programs. It is worth noting that (see, e.g., (An and Tao,
2002b)) for suitable DC decompositions, DCA generates almost standard algorithms in
convex and nonconvex programming.

The computational efficiency of DCA for solving nonsmooth nonconvex optimiza-
tion problems suggested to us a deeper and more complete study on DC programming
in the convex analysis approach. That is the purpose of the paper.

In section 2 we present the backbone of the paper which is dealing with:

(i) New results on local optimality in DC programming and a special class of DC pro-
grams (when either g or h are polyhedral convex) called polyhedral DC programs.
Polyhedral DC programs, which play a key role in nonconvex programming, con-
stitute here the main stream of the exposition.

(ii) The DC duality is formulated, using the main feature of lower semicontinuous
proper convex functions on X (namely such a function is characterized as the supre-
mum of a collection of affine minorizations), in an easier way which is more con-
venient to the study of optimality conditions in DC programming and DCA.

(iii) We emphasize the still open problem whose answer is crucial to a deeper under-
standing of the DC structure: does it exist false DC program whose dual program
is really DC program? This problem is intimately related to the notion more convex
and less convex introduced by J.J. Moreau (Moreau, 1965). We discuss also regu-
larization techniques in DC programming in order to construct suitable equivalent
DC programs to nonconvex programs.

(iv) Using polyhedral DC programming, a deeper insight into DCA is introduced which
really sheds new light on DCA and could partly explain its efficiency.

We briefly indicate in section 3 the succinct list of DC programs which have been suc-
cessfully treated by DCA. Finally concluding remarks are reported in the last section.

2. DC programming and DCA

In this section we summarize the material needed for an easy understanding of DC pro-
gramming and DCA. We are working with the space X = R

n which is equipped with
the canonical inner product (·, ·) and the corresponding Euclidean norm ‖ · ‖, thus the
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dual space Y of X can be identified with X itself. We follow (Rockafellar, 1970) for
definitions of usual tools of convex analysis where functions could take the infinite val-
ues ±∞. A function θ : X → R ∪ {±∞} is said to be proper if it takes nowhere the
value −∞ and is not identically equal to +∞. The effective domain of θ , denoted by
dom θ , is

dom θ = {
x ∈ X: θ(x) < ∞}

.

The set of all lower semicontinuous proper convex functions on X is denoted by �0(X).
For g ∈ �0(X), the conjugate function g∗ of g is a function belonging to �0(Y ) and
defined by

g∗(y) = sup
{〈x, y〉 − g(x): x ∈ X

}
.

Note that g∗∗ = g.
Let g ∈ �0(X) and let x0 ∈ dom g and ε > 0. Then ∂εg(x0) stands for the

ε-subdifferential of g at x0 and is given by

∂εg
(
x0) = {

y0 ∈ Y : g(x) � g
(
x0) + 〈

x − x0, y0〉 − ε, ∀x ∈ X
}

while ∂g(x0) corresponding to ε = 0 stands for the usual (or exact) subdifferential of g

at x0. Recall that

y0 ∈ ∂g
(
x0

) ⇐⇒ x0 ∈ ∂g∗(y0
) ⇐⇒ 〈

x0, y0
〉 = g

(
x0

) + g∗(y0
)
.

One says that g is subdifferentiable at x0 if ∂g(x0) is nonempty. It has been proved that
(Rockafellar, 1970)

ri(dom g) ⊂ dom ∂g ⊂ dom g

where ri(dom g) stands for the relative interior of dom g and dom ∂g := {x ∈ X:
∂g(x) = 0}. The interior of a set S in X is denoted int S. Also, the indicator func-
tion χC of a closed convex set C is defined by χC(x) = 0 if x ∈ C, and +∞ otherwise.

A function θ ∈ �0(X) is said to be polyhedral convex if (Rockafellar, 1970)

θ(x) = max
{〈

ai, x
〉 − βi: i = 1, . . . , m

} + χS(x), ∀x ∈ X, (1)

where ai ∈ Y , αi ∈ R for i = 1, . . . , m and S is a nonempty polyhedral convex set
in X. Recall that (Rockafellar, 1970) the conjugate of a polyhedral convex function is
polyhedral convex and the sum of polyhedral convex functions is polyhedral convex too.

Let ρ � 0 and C be a convex subset of X. One says that a function θ : C →
R ∪ {+∞} is ρ-convex if

θ
[
λx+(1−λ)x′] � λθ(x)+(1−λ)

(
x′)−λ(1 − λ)

2
ρ
∥∥x−x′∥∥2

, ∀λ ∈ ]0, 1[, ∀x, x′ ∈ C.

It amounts to saying that θ −(ρ/2)‖·‖2 is convex on C. The modulus of strong convexity
of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is given by

ρ(θ, C) = sup
{
ρ � 0: θ − (ρ/2)‖ · ‖2 is convex on C

}
. (2)
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Clearly, θ is convex on C if and only if ρ(θ, C) � 0. One says that θ is strongly convex
on C if ρ(θ, C) > 0.

A function f ∈ �0(X) is said to be essentially differentiable if it satisfies the
following three conditions (Rockafellar, 1970):

(i) int(dom f ) = ∅,

(ii) f is differentiable on int(dom f ),

(iii) limk→+∞ ‖∇f (xk)‖ = +∞ for every sequence {xk} ⊂ int(dom f ) converging to a
boundary point x of int(dom f ).

A function f ∈ �0(X) is said to be strictly convex on a convex set C of dom f if

f
(
λx + (1 − λ)x′) < λf (x) + (1 − λ)f

(
x′), ∀λ ∈ ]0, 1[, ∀x, x′ ∈ C, x = x′.

For g, h ∈ �0(X), a general DC program is that of the form

(Pdc) α = inf
{
f (x) = g(x) − h(x): x ∈ X

}
,

where, to avoid ambiguity, we adopt the convention (which is justified in section 2.2)

+∞ − (+∞) = +∞. (3)

One says that g − h is a DC decomposition (or DC representation) of f , and g, h are its
convex DC components. If g and h are finite on X, then f = g − h is said to be a finite
DC function on X. The set of DC functions (resp. finite DC functions) on X is denoted
by DC(X) (resp. DCf (X)).

Note that the finiteness of α merely implies that

dom g ⊂ dom h and dom h∗ ⊂ dom g∗. (4)

Such inclusions will be assumed throughout the paper.
A point x∗ is said to be a local minimizer of g − h if g(x∗) − h(x∗) is finite (i.e.,

x∗ ∈ dom g ∩ dom h) and there exists a neighbourhood U of x∗ such that

g(x∗) − h(x∗) � g(x) − h(x), ∀x ∈ U . (5)

Under the convention +∞ − (+∞) = +∞, the property (5) is equivalent to g(x∗) −
h(x∗) � g(x) − h(x), ∀x ∈ U ∩ dom g.

A point x∗ is said to be a critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) = ∅.
It is worth noting the richness of DC(X) and DCf (X) (An, 1997; Tao and An,

1997, 1998; and references therein): they contain almost realistic objective functions
and are closed under all the operations usually considered in optimization.

DC programming is a natural extension of convex maximization in which the func-
tion g is the indicator function of a nonempty closed convex set C. In the convex analysis
approach to nonsmooth nonconvex optimization, convex maximization has been exten-
sively studied since 1974 by Pham Dinh Tao (Tao, 1981, 1984, 1985, 1986, and refer-
ences therein) who has introduced subgradient algorithms for solving convex maximiza-
tion problems.
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Let us mention, at the very beginning, the main features of DC programming which
have been developed and exploited in our works:

(i) a DC function has infinitely many DC decompositions;

(ii) the DC duality and optimality in DC programming are built uniquely from DC
components and their conjugates (but not from the DC function f itself);

(iii) DC algorithms (DCA) are also constructed from DC components and their conju-
gates.

In (Pdc) the nonconvexity comes from the concavity of the function −h (except
the case h is affine since (Pdc) then is a convex program). Let us outline our way of
introducing the duality in DC programming.

2.1. Polyhedral DC programs and their dual DC programs

Polyhedral DC programs are DC programs in which one of DC components is polyhedral
convex. Consider first the case where h is a polyhedral convex function given by (1).
According to (4), (Pdc) can be written as

(̃P) α = inf
{
f (x) = g(x) − h̃(x): x ∈ X

}
where

h̃(x) = max
{〈

ai, x
〉 − βi : i = 1, . . . , m

}
, ∀x ∈ X.

Hence (Pdc) takes the form (M := {1, . . . , m})
α = inf

x∈X
inf

i∈M
{
f (x) = g(x) − [〈

ai, x
〉 − βi

]}
= inf

i∈M
inf
x∈X

{
f (x) = g(x) − [〈

ai, x
〉 − βi

]}
. (6)

That gives rise to convex programs

(̃Pi) α(i) = inf
x∈X

{
f (x) = g(x) − [〈

ai, x
〉 − βi

]}
whose the solution set P̃i is ∂g∗(ai). Let

M(α) := {
i ∈ M: α(i) = α

}
and M(x) := {

i ∈ M:
〈
ai, x

〉 − βi = h̃(x)
}

then the solution set P̃ of (̃P) is given by

α = min
{
α(i): i ∈ M

}
,

(7)
P̃ =

⋃{
P̃i : i ∈ M(α)

} =
⋃{

∂g∗(ai
)
: i ∈ M(α)

}
.

Solving the DC program (̃P) amounts then to solving convex programs (̃Pi) with i ∈ M.
These results hide a certain duality we are now displaying. From (6) we have

α = inf
i∈M

{
βi − g∗(ai

)}
. (8)
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The next result, stated for polyhedral DC programming (Tao and An, 1997), is crucial to
a good understanding of the general DC programming from both theoretical and algo-
rithmic viewpoints.

Proposition 1. There holds

(D̃) α = inf
{
h̃∗(y) − g∗(y): y ∈ co

{
ai : i ∈ M

}}
with the optimal value α satisfying

α = inf
{
h̃∗(ai

) − g∗(ai
)
: i ∈ M

}
.

According to (3) and (4), (D̃) can be written as

α = inf
{
h̃∗(y) − g∗(y): y ∈ Y

}
(9)

and is said to be the dual program of (̃P). It is polyhedral DC program too.

2.2. Duality in DC programming

Proposition 1 can be extended to the general case where h ∈ �0(X) is arbitrary by
using the fundamental characterization of a convex function θ ∈ �0(X) as the pointwise
supremum of a collection of affine minorizations:

θ(x) = sup
{〈x, y〉 − θ∗(y): y ∈ Y

}
, ∀x ∈ X (10)

(the polyhedral convex function h corresponds to a finite collection of affine minoriza-
tions). Indeed, replacing the function h by its expression of the form (10) in (Pdc), we
have

α = inf
{
g(x) − sup

{〈x, y〉 − h∗(y): y ∈ Y
}
: x ∈ X

} = inf
{
α(y): y ∈ Y

}
with

(Py) α(y) := inf
{
g(x) − [〈x, y〉 − h∗(y)

]
: x ∈ X

}
.

It is clear that (Py) is a convex program and

α(y) =
{

h∗(y) − g∗(y) if y ∈ dom h∗,
+∞ otherwise.

(11)

Finally we state the dual program of (Pdc)

α = inf
{
h∗(y) − g∗(y): y ∈ dom h∗}

that is written, according to (3), as

(Ddc) α = inf
{
h∗(y) − g∗(y): y ∈ Y

}
.

We observe the perfect symmetry between primal and dual DC programs: the dual to
(Ddc) is exactly (Pdc).
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These results generalize, in a very elegant and natural way, the early works of Pham
Dinh Tao on convex maximization programming, just mentioned above. The formulation
of dual DC programs can also be deduced from the general framework on duality in
nonconvex programming by J.F. Toland (1978, 1979).

2.3. Optimality conditions in DC programming

Let P and D denote the solution sets of problems (Pdc) and (Ddc), respectively, and let

Pl = {
x∗ ∈ X: ∂h(x∗) ⊂ ∂g(x∗)

}
, Dl = {

y∗ ∈ Y : ∂g∗(y∗) ⊂ ∂h∗(y∗)
}
.

We first present the well-known fundamental result on DC programming on which the
DCA relies (An, 1997; Tao and An, 1998).

Theorem 1. (i) Transportation of global minimizers:
⋃{∂h(x): x ∈ P} ⊂ D ⊂

dom h∗. The first inclusion becomes identity if g∗ is subdifferentiable in D (in par-
ticular if D ⊂ ri(dom g∗) or if g∗ is subdifferentiable in dom h∗). In this case
D ⊂ (dom ∂g∗ ∩ dom ∂h∗).

(ii) If x∗ is a local minimizer of g − h, then x∗ ∈ Pl . The converse statement holds
if h is a polyhedral convex function.

(iii) Let x∗ be a critical point of g − h and y∗ ∈ ∂g(x∗) ∩ ∂h(x∗). Let U be a
neighbourhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈ U ∩ dom g there
is y ∈ ∂h(x) such that h∗(y) − g∗(y) � h∗(y∗) − g∗(y∗), then x∗ is a local minimizer
of g − h. More precisely,

g(x) − h(x) � g(x∗) − h(x∗), ∀x ∈ U ∩ dom g.

(iv) Transportation of local minimizers: Let x∗ ∈ dom ∂h be a local minimizer of
g − h and let y∗ ∈ ∂h(x∗) (i.e., ∂h(x∗) is nonempty and x∗ admits a neighbourhood U
such that g(x) − h(x) � g(x∗) − h(x∗), ∀x ∈ U ∩ dom g). Under the assumption

y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U , (12)

for example if g∗ is differentiable at y∗, we have y∗ is a local minimizer of h∗ − g∗.

Remark 1. (i) Naturally, by the symmetry of the DC duality, theorem 1 has its dual
counterpart.

(ii) All these results concern only the DC components g and h (but not f ).

Problem (Pdc) is a “false” DC program if the function f = g−h is actually convex
on X. In this case we have

Proposition 2. Let f = g − h, with g, h ∈ �0(X) verifying dom g ⊂ dom h and
ri(dom g) ∩ ri(dom h) = ∅. Let x0 ∈ dom g (resp. dom h) be a point where g (resp. h)
is continuous. If f is convex, then
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(i) h is continuous at x0,

(ii) ∂f (x0) = ∂g(x0) −* ∂h(x0),

(iii) 0 ∈ ∂f (x0) ⇔ ∂h(x0) ⊂ ∂g(x0).

Proof. We have dom f = dom g and g = f + h. Hence ∂g(x0) = ∂f (x0) + ∂h(x0) in
virtue of ri(dom g) ∩ ri(dom h) = ∅. If g is continuous at x0 ∈ dom g, we have

x0 ∈ ri(dom g) = int(dom g) ⊂ int(dom h).

So the closed convex set ∂h(x0) is bounded and it follows from (An, 1994; Pschenichny,
1971)

∂f (x0) = ∂g(x0) −* ∂h(x0) :=
⋂{

∂g(x0) − z: z ∈ ∂h(x0)
}

(the symbol C −* D stands for the ∗ difference of the two sets C and D of X: C −* D =
{x ∈ X: x + D ⊂ C} (Pschenichny, 1971)). �

The equivalence (iii) then is immediate.

Remark 2. Convex programs can then be recasted (and solved) in the DC program-
ming as follows: Let f, θ ∈ �0(X) be such that dom f ⊂ dom θ and ri(dom f ) ∩
ri(dom θ) = ∅, then the convex program

inf
{
f (x): x ∈ X

}
is equivalent to the false DC program

inf
{
(f + θ)(x) − θ(x): x ∈ X

}
(13)

in the following sense:

(i) they have the same optimal value and the same solution set,

(ii) we have

0 ∈ ∂f (x∗) �⇒ ∂θ(x∗) ⊂ ∂(f + θ)(x∗) = ∂f (x∗) + ∂θ(x∗) (14)

and the other implication holds if, in addition, θ is continuous at x∗.

The following result on local optimality in DC programming is very useful for
a large class of real world DC programs (An, 1997, 2003; An and Tao, 1999, 2000a,
2000b, 2001a, 2001b, 2001c, 2002a, 2003a, 2003b; An, Tao, and Hao, 2003, 2004b).

Proposition 3. Let f = g − h, with g, h ∈ �0(X) verifying dom g ⊂ dom h. If there
exists a convex neighbourhood U of x∗ such that f is finite and convex on U , then the
following two assertions are equivalent:

(i) 0 ∈ ∂(f + χU )(x∗),

(ii) ∂h(x∗) ⊂ ∂g(x∗).
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It amounts to say that, under the above assumptions, the necessary condition of local DC
optimality (theorem 1)

∂h(x∗) ⊂ ∂g(x∗)

is also sufficient: f (x) � f (x∗) for all x ∈ U .

Proof. By hypothesis, we have

U ⊂ dom f = dom g. (15)

Hence

x∗ ∈ intU ⊂ int(dom g) ⊂ int(dom h), (16)

and

g + χU = (f + χU ) + h.

On the other hand, we can write (Laurent, 1972)

∂g(x∗) = ∂(g + χU )(x∗) = ∂(f + χU )(x∗) + ∂h(x∗).

Since the closed convex set ∂h(x∗) is bounded, we deduce that (An, 1994; Pschenichny,
1971)

∂(f + χU )(x∗) = ∂g(x∗) −* ∂h(x∗).

The proof is then complete by using the same reasonings as proposition 2. �

Consider now a DC program of the form

inf
{
ϕ(x) = k(x) − h(x): x ∈ C

}
(17)

with k, h ∈ �0(X) both being finite on X and C being a closed convex set of X. This
DC program can be rewritten in the canonical form

inf
{
(ϕ + χC)(x) = (k + χC)(x) − h(x): x ∈ X

}
or

inf
{
f (x) := g(x) − h(x): x ∈ X

}
where

g = k + χC.

A local optimality condition for problem (17), similar to proposition 3, is given below.

Proposition 4. If there is a convex neighbourhood U of x∗ such that the function ϕ =
k − h is convex on C ∩ U , then the following two assertions are equivalent:

(i) 0 ∈ ∂(ϕ + χC∩U)(x∗),

(ii) ∂h(x∗) ⊂ ∂(k + χC)(x∗).
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It amounts to say that, under the above assumptions, the necessary condition of local DC
optimality (theorem 1 with g = k + χC)

∂h(x∗) ⊂ ∂g(x∗)

is also sufficient: ϕ(x) � ϕ(x∗) for all x ∈ C ∩ U .

Proof. By assumption, the function ϕ + χC∩U is convex on X and

k + χC∩U = h + (ϕ + χC∩U).

Hence

∂(k + χC∩U )(x∗) = ∂h(x∗) + ∂(ϕ + χC∩U)(x∗).

It follows that (An, 1994; Pschenichny, 1971)

∂(ϕ + χC∩U)(x∗) = ∂(k + χC∩U )(x∗) −* ∂h(x∗). (18)

But from

k + χC∩U = k + χC + χU and ∂χU (x∗) = {0}
we deduce that

∂(ϕ + χC∩U )(x∗) = ∂(k + χC)(x∗) + ∂χU (x∗) = ∂(k + χC)(x∗).

Finally, as in the preceding demonstrations, we conclude the assertions in proposi-
tion 4. �

The equality of the optimal value in the primal and dual DC programs can be easily
translated (with the help of ε-subdifferential of the DC components) in global optimality
conditions, namely x∗ is a global solution to (Pdc) if and only if (see (An, 1997; Hiriat
Urruty, 1989; Tao and An, 1997) and references therein)

∂εh(x∗) ⊂ ∂εg(x∗), ∀ε � 0.

Unfortunately, as we foresee, these conditions are rather difficult to use for devising
solution methods to DC programs.

2.4. False DC program whose dual is a real DC program?

Thanks to a symmetry in the DC duality (the bidual DC program is exactly the primal
one) and the DC duality transportation of global minimizers (see theorem 1), solving a
DC program implies solving the dual one and vice versa. It may be useful if one of them
is easier to solve than the other. It leads to the open problem whose answer is crucial
to a deep understanding of the DC structure: does it exist false DC program whose dual
program is really DC program? This problem is intimately related to the notion more
convex and less convex introduced by J.J. Moreau (1965): Let g, h ∈ �0(X), the function



34 AN AND TAO

g is said to be more convex than h (or h is said to be less convex than g), and we write
g � h (or h ≺ g) if

g = h + θ, with θ ∈ �0(X).

According to (Moreau, 1965) we have, for h(x) := 1
2〈x,Ax〉 + 〈x, b〉 with A being a

symmetric positive definite n × n matrix

g � h ⇐⇒ g∗ ≺ h∗.

It is very important to study the set of functions g, h ∈ �0(X) verifying one of the
following properties:

(i) g � h and g∗ ≺ h∗.
In this case both the corresponding primal and dual DC programs are convex.

(ii) g � h but not g∗ ≺ h∗.
The primal DC program is then convex but not its dual. Regarding problem (13), it
amounts to find θ ∈ �0(X) such that (f + θ)∗ ≺ θ∗ does not hold.

Another important feature of the DC structure, which must be taken into account
while studying solution algorithms, is regularization techniques in DC programming
which have been first studied by Pham Dinh Tao in 1986 (Tao, 1988) and they were used
to improve DCA in numerical solutions of many real world nonconvex programs (Tao
and An, 1997, and references therein).

Remark 3. Different ways to formulate equivalent DC programs to nonconvex optimiza-
tion problems can be used affording Lagrangian duality without gap or exact penalty
techniques (An, Tao, and Muu, 1999; Tao and An, 1994, 1995; see also Thach, 1993b,
1994, 1996).

Using the theoretical framework of DC programming just above displayed, we are
now in a position to outline the DCA for general DC programs.

2.5. The DCA for general DC programs

The DCA consists in the construction of the two sequences {xk} and {yk} (candidates for
being primal and dual solutions, respectively) that we improve at each iteration (thus, the
sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are decreasing) in an appropriate way
such that their corresponding limits x∞ and y∞ satisfy the local optimality condition

∂h
(
x∞) ⊂ ∂g

(
x∞)

and ∂g∗(y∞) ⊂ ∂h∗(y∞)
, i.e.

(
x∞, y∞) ∈ Pl × Dl

(where Pl = {x∗ ∈ X: ∂h(x∗) ⊂ ∂g(x∗)} and Dl = {y∗ ∈ Y : ∂g∗(y∗) ⊂ ∂h∗(y∗)}) or
are critical points of g − h and h∗ − g∗, respectively.
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These sequences are generated as follows: xk+1 (resp. yk) is a solution to the
convex program (Pk) (resp. (Dk)) defined by

(Pk)

{
αk = inf

{
g(x) − [

h
(
xk

) + 〈
x − xk, yk

〉]}
s.t. x ∈ X,

(Dk)

{
inf

{
h∗(y) − [

g∗(yk−1
) + 〈

xk, y − yk−1
〉]}

s.t. y ∈ Y.

In view of the relation: (Pk) (resp. (Dk)) is obtained from (Pdc) (resp. (Ddc)) by re-
placing h (resp. g∗) with its affine minorization defined by yk ∈ ∂h(xk) (resp. xk ∈
∂g∗(yk−1)), the DCA yields the next scheme

yk ∈ ∂h
(
xk

); xk+1 ∈ ∂g∗(yk
)
. (19)

It corresponds actually to the simplified DCA (which will be shortly called DCA through
the paper for simplicity) where xk+1 (resp. yk) is arbitrarily chosen in ∂g∗(yk) (resp.
∂h(xk)). Remark that

h
(
xk

) + 〈
x − xk, yk

〉 = 〈
x, yk

〉 − h∗(yk
)

and

g∗(yk−1) + 〈
xk, y − yk−1〉 = 〈

xk, y
〉 − g

(
xk

)
according to (19) and so problem (Pk) is exactly (Py) with y = yk . We have the analo-
gous result for problem (Dk) via the DC duality.

In the complete form of DCA, we impose the following natural choice

xk+1 ∈ arg min
{
g(x) − h(x): x ∈ ∂g∗(yk

)}
(20)

and

yk ∈ arg min
{
h∗(y) − g∗(y): y ∈ ∂h

(
xk

)}
. (21)

Problems (20) and (21) are equivalent to convex maximization problems (22) and (23),
respectively

xk+1 ∈ arg min
{〈

x, yk
〉 − h(x): x ∈ ∂g∗(yk

)}
, (22)

yk ∈ arg min
{〈

xk, y
〉 − g∗(y): y ∈ ∂h

(
xk

)}
. (23)

The complete DCA ensures that (x∞, y∞) ∈ Pl × Dl . It can be viewed as a sort of the
decomposition approach of the primal and dual problems (Pdc), (Ddc). From a practical
point of view, although problems (20) and (21) are simpler than (Pdc), (Ddc) (we work
in ∂h(xk+1) and ∂g∗(yk) with convex maximization problems), they remain nonconvex
programs and thus are still hard to solve. In practice, except for the cases where the
convex maximization problems (22) and (23) are easy to treat, one generally uses the
simplified DCA to solve DC programs.

The DCA was introduced by Pham Dinh Tao in 1986 as an extension of the afore-
mentioned subgradient algorithms (for convex maximization programming) to DC pro-
gramming. However, this field has been really developed since 1994 by joint works of
Le Thi Hoai An and Pham Dinh Tao (An, 1994, 1997, 2000, 2003; An and Tao, 1997,
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1998, 1999, 2000a, 2000b, 2001a, 2001b, 2001c, 2002a, 2002b, 2003a, 2003b; An, Tao,
and Muu, 1996, 1998, 1999, 2003a, 2003b; An, Tao, and Thoai, 2002; An, Tao, and
Hao, 2002, 2003, 2004a, 2004b; Tao and An, 1994, 1995, 1998, 1997) for solving non-
smooth nonconvex optimization problems. To our knowledge, DCA is actually one of
a few algorithms (in the convex analysis approach to DC programming) which allow to
solve large-scale DC programs.

It had been proved in Pham Dinh Tao and Le Thi Hoai An (see, e.g., An, 1997;
Tao and An, 1998, 1997) that for the simplified DCA we have

(i) The sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are decreasing and

• g(xk+1) − h(xk+1) = g(xk) − h(xk) if and only if yk ∈ ∂g(xk) ∩ ∂h(xk), yk ∈
∂g(xk+1) ∩ ∂h(xk+1) and [ρ(g) + ρ(h)]‖xk+1 − xk‖ = 0.

• h∗(yk+1)−g∗(yk+1) = h∗(yk)−g∗(yk) if and only if xk+1 ∈ ∂g∗(yk)∩∂h∗(yk),
xk+1 ∈ ∂g∗(yk+1) ∩ ∂h∗(yk+1) and [ρ(g∗) + ρ(h∗)]‖yk+1 − yk‖ = 0.

DCA terminates at the kth iteration if either of the above equalities holds.

(ii) If ρ(g)+ρ(h) > 0 (resp. ρ(g∗)+ρ(h∗) > 0), then the series {‖xk+1 −xk‖2} (resp.
{‖yk+1 − yk‖2}) converges.

(iii) If the optimal value α of problem (Pdc) is finite and the sequences {xk} and {yk} are
bounded, then every limit point x∞ (resp. y∞) of the sequence {xk} (resp. {yk}) is
a critical point of g − h (resp. h∗ − g∗).

(iv) DCA has a linear convergence for general DC programs.

(v) In polyhedral DC programs, the sequences DCA {xk} and {yk} contain finitely many
elements and DCA has a finite convergence.
We have the same results for the complete DCA, except that in (i) (resp. (iii)) we
must add the following property:
∂h(xk) ⊂ ∂g(xk) and ∂g∗(yk) ⊂ ∂h∗(yk) (resp. ∂h(x∞)⊂ ∂g(x∞) and ∂g∗(y∞) ⊂
∂h∗(y∞)).

(vi) If DCA converges to a point x∗ that admits a convex neighbourhood in which the
objective function f is finite and convex (i.e. the function f is locally convex
at x∗) and if the second DC component h is differentiable at x∗, then x∗ is a local
minimizer for (Pdc). For the complete DCA the second condition is not needed.
Property (vi) has of course its dual part.

For more details, see (An, 1997; Tao and An, 1998, 1997) and references therein.

Remark 4. (i) There are as many DCA as there are DC decompositions. It is of particu-
lar interest to study various equivalent DC forms for the primal and dual DC problems.
It is worth mentioning, for instance, that by using suitable DC decompositions of convex
functions we can obtain almost standard algorithms for convex and nonconvex program-
ming (An and Tao, 2002b).
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(ii) The choice of the DC decomposition of the objective function in a DC program
and the initial point for DCA are open questions to be studied. Of course, this depends
strongly on the very specific structure of the problem being considered. In practice, for
solving a given DC program, we try to choose g and h such that sequences {xk} and {yk}
can be easily calculated, i.e. either they are in explicit form or their computations are
inexpensive.

2.6. Deeper insight into DCA

The special class of polyhedral DC programs, which plays a key role in nonconvex op-
timization, possesses worthy properties, from both theoretical and computational view-
points, necessary and sufficient local optimality conditions, and finite convergence for
DCA (see theorem 1, sections 2.1, 2.3 and 2.5, (An, 1997; Tao and An, 1998, 1997)).
Here also they are used to give a deeper interpretation of DCA.

Denote by hk (resp. hk) the affine (resp. polyhedral convex) minorization of the
convex function h:

hk(x) = h
(
xk

) + 〈
x − xk, yk

〉 = 〈
x, yk

〉 − h∗(yk
)
, ∀x ∈ X, (24)

hk(x) := sup
{
hi(x): i = 0, . . . , k

} = sup
{〈

x, yi
〉 − h∗(yi

)
: i = 0, . . . , k

}
, ∀x ∈ X,

(25)

where the sequences {xk} and {yk} are generated as above, i.e. as corresponding solu-
tions of the relaxed convex program (Pk) and (Dk) which are obtained from the original
program (Pdc) and (Ddc) by replacing the convex function h with hk and g∗ by its affine
minorization, y → g∗(yk) + 〈xk+1, y − yk〉.

Likewise, for the dual part, let (g∗)k (resp. (g∗)k) be the affine (resp. polyhedral
convex) minorization of the convex function g∗:

(g∗)k(y) := g∗(yk−1
) + 〈

y − yk−1, xk
〉 = 〈

y, xk
〉 − g

(
xk

) ∀y ∈ Y, (26)

and

(g∗)k(y) := sup
{
(g∗)i(y): i = 1, . . . , k

} = sup
{〈

y, xi
〉−g

(
xi

)
: i = 1, . . . , k

} ∀y ∈ Y.

(27)
Since a proper lower semicontinuous convex function θ is characterized as the supremum
of a collection of its affine minorizations, namely

θ(x) = sup
{〈x, y〉 − θ∗(y): y ∈ Y

}
, ∀x ∈ X,

it is better, instead of the affine minorizations hk and (g∗)k, to use the polyhedral convex
functions hk and (g∗)k to under approximate the convex functions h and g∗, respectively
(we then tighten up these approximations at each iteration)

hk � hk � h, αk � βk � α, ∀k � 0. (28)
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In other words we are dealing with the following relaxed programs (which still are (non-
convex) DC programs as opposed to the relaxed convex programs (Pk))

βk = inf
{
g(x) − hk(x): x ∈ X

}
, (29)

and

inf
{
h∗(y) − (g∗)k(y): y ∈ Y

}
(30)

which actually are polyhedral DC programs.
It naturally leads us to the following crucial questions:

• how to solve the polyhedral DC programs (29) and (30)?

• what exactly are the relationships between the sequences {xk}, {yk} and solutions to
problems (29) and (30)?

• what additional assumptions (on the tightening of the approximations hk and (g∗)k

for the convex functions h and g∗, respectively) to ensure the convergence of the
sequences {xk}, {yk} to optimal solutions to problems (Pdc) and (Ddc), respectively?

Answers to these questions are presented below. First, by writing problem (29) in the
form

inf
{
g(x) − sup

{
hi(x): i = 0, . . . , k

}
: x ∈ X

}
,

we see that it is equivalent to the problem

inf
x∈X

inf
i=0,...,k

{
g(x) − hi(x)

}
,

and is so to

inf
i=0,...,k

inf
x∈X

{
g(x) − hi(x)

}
.

Since xi+1 is an optimal solution to (Pi), we easily deduce that xl , with l ∈
arg min{g(xi+1) − hi(x

i+1): i = 0, . . . , k}, is an optimal solution to problem (29).
On the other hand, we have

g
(
xi+1) − h

(
xi+1) � g

(
xi+1) − hi

(
xi+1), for i = 0, . . . , k.

So

g
(
xk+1

) − h
(
xk+1

)
� inf

{
g
(
xi+1

) − hi

(
xi+1

)
: i = 0, . . . , k

}
(31)

since the sequence {g(xi) − h(xi)} is decreasing.
It is clear that if

hk

(
xk+1

) = h
(
xk+1

)
, (32)

then hk(xk+1) = h(xk+1) and the equality holds in (31)

g
(
xk+1

) − h
(
xk+1

) = g
(
xk+1

) − hk

(
xk+1

) = inf
{
g
(
xi+1

) − hi

(
xi+1

)
: i = 0, . . . , k

}
.

Hence xk+1 is an optimal solution to the polyhedral DC program (29).
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Similarly, for the dual part, problem (30) can be written as

inf
i=1,...,k

inf
y∈Y

{
h∗(y) − (g∗)i(y)

}
.

Since yi is an optimal solution to problem (Di), it follows that yl , with l ∈
arg min{h∗(yi) − (g∗)i(y

i): i = 1, . . . , k}, is an optimal solution to problem (30).
Like the primal part, we have

h∗(yi
) − g∗(yi

)
� h∗(yi

) − (g∗)i(y) for i = 1, . . . , k

and

h∗(yk
) − g∗(yk

)
� inf

{
h∗(yi

) − (g∗)i(y), i = 1, . . . , k
}

(33)

since the sequence {h∗(yi) − g∗(yi)} is decreasing. Moreover, if

g∗(yk
) = (g∗)k

(
yk

)
, (34)

then g∗(yk) = (g∗)k(yk) and the equality holds in (33)

h∗(yk
) − g∗(yk

) = h∗(yk
) − (g∗)k

(
yk

) = inf
{
h∗(yi

) − (g∗)i

(
yi

)
: i = 1, . . . , k

}
and yk is a solution to problem (30).

To point out relationships between the sequences {xk}, {yk} and solutions to prob-
lems (29) and (30) and also additional assumptions for ensuring the convergence of DCA
to solutions of (Pdc) and (Ddc), we shall now find conditions ensuring the equalities (32)
and (34). For this we will distinguish two cases:

(A) There is some k such that hk(x
k+1) = h(xk+1) or g(yk) = (g∗)k(y

k).

In this case, the following result can be deduced from the general convergence
theorem of DCA (An, 1997; Tao and An, 1998, 1997)

Theorem 2. (i) g(xk+1)−h(xk+1) = h∗(yk)−g∗(yk) if and only if hk(x
k+1) = h(xk+1),

(ii) h∗(yk) − g∗(yk) = g(xk) − h(xk) if and only if g∗(yk) = (g∗)k(y
k),

(iii) g(xk+1) − h(xk+1) = g(xk) − h(xk) if and only if hk(x
k+1) = h(xk+1) and

g∗(yk) = (g∗)k(y
k). Consequently, if g(xk+1) − h(xk+1) = g(xk) − h(xk) (and the

common value thus equals h∗(yk) − g∗(yk)), then the following statements hold:

• xk+1 (resp. yk) is a solution to problem (29) (resp. (30)).

• Moreover, if h and hk coincide at some solution to (Pdc) or g∗ and (g∗)k coincide at
some solution to (Ddc), then xk+1 (resp. yk) is also a solution to (Pdc) (resp. (Ddc))
and hk(xk+1) = h(xk+1).

(B) hk(x
k+1) < h(xk+1) for every k.

This case corresponds to making k equal to infinity in (A) and the asymptotic be-
haviour of DCA can be described as below.
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Assume the optimal value of problem (Pdc) be finite and the sequences {xk} and
{yk} generated by DCA be bounded. Then

g
(
x∞) − h

(
x∞) = inf

{
g
(
xi+1) − hi

(
xi+1): i = 0, . . . ,∞}

for every limit point x∞ of the sequence {xk}, where h∞ denotes the affine minorization
of h:

h∞(x) := h
(
x∞) + 〈

x − x∞, y∞〉 = 〈
x, y∞〉 − h∗(y∞)

, ∀x ∈ X

with y∞ ∈ ∂h(x∞) being a limit point of {yk}.
Consequently the point x∞ is a solution to the DC program

inf
{
g(x) − h∞(x): x ∈ X

}
, (35)

where the convex function h∞ is defined by

h∞(x) := sup
{〈

x, yi
〉 − h∗(yi

)
: i = 0, . . . ,∞}

, ∀x ∈ X.

Similarly, for the dual DC program (Ddc), the related affine minorizations of g∗ are
defined by

(g∗)∞(y) := g∗(y∞) + 〈
y − y∞, x∞〉 = 〈

y, x∞〉 − g
(
x∞)

, ∀y ∈ Y

and

(g∗)∞(y) := sup
{
(g∗)i(y): i = 1, . . . ,∞}

= sup
{〈

y, xi
〉 − g

(
xi

)
: i = 1, . . . ,∞}

, ∀y ∈ Y.

As above we have

h∗(y∞) − (g∗)∞(
y∞) = inf

{
h∗(yi

) − (g∗)i

(
yi

)
: i = 1, . . . ,∞}

and the point y∞ is a solution to the DC program

inf
{
h∗(y) − (g∗)∞(y): y ∈ Y

}
. (36)

Moreover, the optimal values of problems (35) and (36) are equal

g
(
x∞) − h∞(

x∞) = h∗(y∞) − (g∗)∞(
y∞)

.

Summing up, DCA generates two sequences {xk} and {yk} (candidates to primal
and dual solutions, respectively) which are improved at each iteration (the sequences
{g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are decreasing) and serve, in turn, to construct
affine minorizations of h (the affine functions hi), and affine minorizations of g∗ (the
affine functions (g∗)i). These functions will be used to construct convex programs (Pi)
and (Di) – whose solutions are the next iterations of the sequences {xk} and {yk} – and
to built up tighter and tighter polyhedral convex minorizations of the functions h and g∗
so that DCA have the following asymptotic behaviour.
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Theorem 3. If the optimal value α of the DC program (Pdc) is finite and the sequences
{xk}, {yk} are bounded, then every limit point x∞ (resp. y∞) of {xk} (resp. {yk}) is a
solution to the approximated DC program

inf
{
g(x) − h∞(x): x ∈ X

}
and

inf
{
h∗(y) − (g∗)∞(y): y ∈ Y

}
,

respectively. Moreover, the optimal values of these problems are equal

g
(
x∞) − h∞(

x∞) = h∗(y∞) − (g∗)∞(
y∞)

.

Consequently, the nearer the function h∞ (resp. (g∗)∞) approaches to the function h

(resp. g∗), the better x∞ (resp. y∞) approximates an optimal solution to the DC program
(Pdc) (resp. (Ddc)). Furthermore, if either of the following conditions holds

(i) the functions h∞ and h coincide at some optimal solution to (Pdc),

(ii) the functions (g∗)∞ and g∗ coincide at some optimal solution to (Ddc),

then x∞ and y∞ are also optimal solutions to (Pdc) and (Ddc), respectively.

Proof. It is immediate by using the argument in the proof of theorem 2 (just setting
k = +∞ in (A)) and the general convergence theorem of DCA (see An, 1997; Tao and
An, 1998, 1997). �

Remark 5. (i) Theorem 2 holds especially in polyhedral DC programs where DCA has
a finite convergence. The hidden features of DCA reside in (iv) and (v):

• the limit point xk+1 (resp. yk) is not only the solution of (Pk) (resp. (Dk)) but also
the solution to the more tightly approximate problem (29) (resp. (30)) of (Pdc) (resp.
(Ddc)),

• βk + εk � α � βk where εk := inf{hk(x) − h(x): x ∈ P} � 0 and the more εk is
near zero (i.e. the more the polyhedral convex minorization hk is close to h over P)
the more xk+1 is near P.

(ii) Theorem 3 corresponds to the infinite convergence of DCA (k = +∞).
In practice, in order to globally solve (Pdc) and (Ddc), it is of particular interest to

have the function hk (resp. (g∗)k), with k being finite or +∞, tight under-approximate
the function h (resp. g∗) especially in a neighborhood of a solution to problem (Pdc)

(resp. (Ddc)). To this end, we have to find suitable DC decompositions and initial points
for DCA according to the specific structure of the DC program being considered.

3. DC models of real world nonsmooth nonconvex optimization problems

The major difficulty in nonconvex programming resides in the fact that there is, in gen-
eral, no practicable global optimality conditions. Thus, checking globalilty of solutions
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computed by local algorithms is only possible in the cases where optimal values are
known a priori or by comparison with global algorithms which, unfortunately, cannot be
applied to large scale problems. A pertinent comparison of local algorithms should be
based on the following aspects:

• mathematical foundations of the algorithms,

• rate of convergence and running-time,

• ability to treating large-scale problems,

• quality of computed solutions: the lower the corresponding value of the objective is,
the better the local algorithm will be,

• the degree of dependence on initial points: the larger the set (made up of starting
points which ensure convergence of the algorithm to a global solution) is, the better
the algorithm will be.

DCA seems to meet these features since it was successfully applied to a lot of dif-
ferent and various nonconvex optimization problems to which it quite often gave global
solutions and proved to be more robust and more efficient than related standard methods,
especially in the large-scale setting. We present below the list of these problems:

1. The Trust Region subproblems (An, 1997, 2000; Conn, Gould, and Toint, 2000;
Tao and An, 1998);

2. Nonconvex Quadratic Programs and Quadratic Zero-One Programming problems
(An, 1997; An and Tao, 1997, 1998, 2001a; An, Tao, and Muu, 1998);

3. Multiple Criteria Optimization: Optimization over the Efficient and Weakly Effi-
cient Sets (An, 1997; An, Tao, and Muu, 1996, 2003a; An, Tao, and Thoai, 2002);

4. Optimization in Mathematical Programming problems with Equilibrium Constraints
(An, Tao, and Muu, 2003b);

5. Optimization in Mathematics Finance;

6. Molecular Optimization via the Distance Geometry Problems (An, 1997, 2003; An
and Tao, 2000a, 2000b, 2003a, 2003b);

7. Multidimensional Scaling Problems (MDS) (An, 1997; An and Tao, 2001c);

8. Optimization for Restoration of Signals and Images (An, 1997; An and Tao, 2001b);

9. Tikhonov Regularization for Nonlinear Ill-Posed problems (An, Tao, and Hao, 2002,
2003, 2004b);

10. Nonconvex Multicommodity Network Optimization problems (An and Tao, 2002a);

11. Data Mining.
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4. Concluding remarks

Using the polyhedral DC programming as the main stream of the exposition, we have
revisited the DC programming and DCA in an easy way which is more suitable to ap-
plications. New results on optimality conditions and a deeper insight into DCA (again
with the support of the polyhedral DC programming) allow a good understanding of the
DC programming and partly explain the computational efficiency of DCA.

To guarantee globality of sought solutions or to improve their quality, it is advised
to combine DCA with the following techniques in a deeper and efficient way:

1. Branch-and-Bound Techniques (see, e.g., 2, 3, 4, 8 in the preceding list): the most
popular approach in global optimization;

2. Continuation methods (see, e.g., An, 2003; More and Wu, 1997, 1996; Wu, 1996).
In the continuation approach, the original objective function is gradually transformed
into a smoother with fewer local minimizers. An optimization algorithm is then ap-
plied to the transformed function, tracing the minimizers back to the original function.

3. Monotonic optimization, recently developed by H. Tuy (2000).

To our knowledge, these approaches are not much evolved in the literature. We are
convinced that they will constitute new trends in nonconvex programming.
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