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Abstract. In this paper, we study the strong extension groups of Cuntz–
Krieger algebras, and present a formula to compute the groups. We also detect
the position of the Toeplitz extension of a Cuntz–Krieger algebra in the strong
extension group and in the weak extension group to see that the weak extension
group with the position of the Toeplitz extension is a complete invariant of the
isomorphism class of the Cuntz–Krieger algebra associated with its transposed
matrix.

1. Preliminary

There are several kinds of extension groups Ext∗(A) for a C∗-algebra A.
Among them two extension groups Extw(A) and Exts(A) for a unital nu-
clear separable C∗-algebra A have been studying in many papers (see [2,4,
7–9,13,14,16–18], etc.). In this paper, we study the strong extension groups
Exts(OA) of Cuntz–Krieger algebras OA, and present a formula to com-
pute the groups. We also detect the position of the Toeplitz extension TA
of a Cuntz–Krieger algebra OA in the weak extension group Extw(OA) to
show that it is a complete invariant of the isomorphism class of the Cuntz–
Krieger algebra OAt for the transposed matrix At of A by using Rørdam’s
classification result.

In what follows, H stands for a separable infinite dimensional Hilbert
space. Let us denote by K(H) the C∗-algebra of compact operators on H .
It is a closed two-sided ideal of the C∗-algebra B(H) of bounded linear op-
erators on H . The quotient C∗-algebra B(H)/K(H) is called the Calkin
algebra, denoted by Q(H). The quotient map B(H) −→ Q(H) is denoted
by π.
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2 K. MATSUMOTO

Let A be a unital separable C∗-algebra. Throughout the paper, a uni-
tal ∗-monomorphism τ : A −→ Q(H) is called an extension. Two extensions
τ1, τ2 : A −→ Q(H) are said to be strongly equivalent , written τ1 ∼s τ2, if
there exists a unitary U ∈ B(H) such that τ1(a) = π(U)τ2(a)π(U

∗) in Q(H)
for all a ∈ A. They are said to be weakly equivalent, written τ1 ∼w τ2, if
there exists a unitary u ∈ Q(H) such that τ1(a) = uτ2(a)u

∗ in Q(H) for all
a ∈ A. The strong equivalence class of an extension τ : A −→ Q(H) is de-
noted by [τ ]s, and similarly the weak equivalence class is denoted by [τ ]w .
We note that weakly equivalent extensions are strongly equivalent if one may
take a unitary u ∈ Q(H) of Fredholm index zero such that τ1(a) = uτ2(a)u

∗

in Q(H) for all a ∈ A. An extension τ : A −→ Q(H) is said to be trivial if
there exists a unital ∗-monomorphism ρ : A −→ B(H) such that τ = π ◦ ρ.
We regard Q(H)⊕Q(H) ⊂ Q(H ⊕H) in a natural way and identify H ⊕H
with H , so that Q(H)⊕Q(H) ⊂ Q(H). The sum of extensions τ1, τ2 : A
−→ Q(H) are defined by

(τ1 + τ2)(a) = τ1(a)⊕ τ2(a) ∈ Q(H)⊕Q(H) ⊂ Q(H), a ∈ A

that gives rise to an extension τ1 ⊕ τ2 : A −→ Q(H). Let us denote by
Exts(A) the set of strong equivalence classes of extensions. Similarly the
set of weak equivalence classes is denoted by Extw(A). Both Exts(A) and
Extw(A) have commutative semigroup structure by the above sums. There
is a canonical surjective homomorphism qA : Exts(A) −→ Extw(A) of com-
mutative semigroups defined by qA([τ ]s) = [τ ]w.

By virtue of Voiculescu’s theorem in [20], the following basic lemma
holds:

Lemma 1.1 [20]. Let A be a unital separable C∗-algebra. For any two
trivial extensions τ1, τ2 : A −→ Q(H), there exists a unitary U ∈ B(H) such
that τ2 = Ad(π(U)) ◦ τ1, that is, τ1 ∼s τ2. The strong (resp. weak) equiv-
alence class of a trivial extension is the neutral element of Exts(A) (resp.
Extw(A)).

Choi–Effros in [5] (cf. [1]) proved that if A is nuclear, the semigroups
Exts(A), Extw(A) become groups, that is, any element has its inverse. The
following lemma is seen in [17].

Lemma 1.2. Let A be a unital separable nuclear C∗-algebra. For m ∈ Z,
take a unitary um ∈ Q(H) of Fredholm index m. Take a trivial extension
τ : A −→ Q(H). Consider the extension σm = Ad(um) ◦ τ : A −→ Q(H).
Then the map ιA : m ∈ Z −→ [σm] ∈ Exts(A) gives rise to a homomorphism
of groups such that the sequence

(1.1) Z
ιA−−−−→ Exts(A)

qA
−−−−→ Extw(A).

is exact at the middle, that is, ιA(Z) = Ker(qA), so that

Exts(A)/ιA(Z) ∼= Extw(A).
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ON STRONG EXTENSION GROUPS OF CUNTZ–KRIEGER ALGEBRAS 3

The groups Exts(A) and Extw(A) for a unital separable nuclear C∗-
algebra A are called the strong extension group for A and the weak extension
group for A, respectively.

Let e ∈ Q(H), E ∈ B(H) be projections such that e = π(E). For an
element x ∈ Q(H) such that exe ∈ eQ(H)e is invertible in eQ(H)e, one may
denote by inde x the Fredholm index indE X for X ∈ B(EH) satisfying x =
π(X). As the Fredholm index is invariant under compact perturbations, the
integer inde x does not depend on the choice of E and X as long as e = π(E),
x = π(X). The following lemma is well-known (cf. [8, Lemma 5.1]).

Lemma 1.3. Let e, f ∈ Q(H) be projections. Suppose that x ∈ Q(H)
commutes with e and f , and exe, fxf are invertible in eQ(H)e and fQ(H)f ,
respectively.

(i) If ef = 0, then inde+f x = inde x+ indf x.

(ii) If x, y ∈ eQ(H)e are both invertible in eQ(H)e, then inde xy =
inde x+ inde y.

2. Ext-groups for Cuntz–Krieger algebras

Let A = [A(i, j)]Ni,j=1 be an irreducible non permutation matrix with en-

tries in {0, 1} with N > 1. The Cuntz–Krieger algebra OA is defined to
be the universal C∗-algebra generated by N partial isometries S1, . . . , SN

subject to the operator relations (see [8]):

(2.1)
N∑

j=1

SjS
∗
j = 1, S∗

i Si =
N∑

j=1

A(i, j)SjS
∗
j , i = 1, . . . N

It is a nuclear C∗-algebra uniquely determined by the operator relations
(2.1) (see [8]). If the entries of A are all one’s, the C∗-algebra OA is called
the Cuntz algebra written ON ([6]).

In [8], Cuntz–Krieger pointed out the C∗-algebras OA are closely related
to dynamical properties of underlying topological Markov shifts. Among
other things, they proved that the weak extension group Extw(OA) is iso-
morphic to the abelian group ZN/(I −A)ZN . The group ZN/(I − A)ZN

is known as the Bowen–Franks group that is a crucial invariant under flow
equivalence class of the underlying two-sided topological Markov shift (see
[3]). We note that the group Extw(OA) was written as Ext(OA) in the
Cuntz–Krieger’s paper [8]. For the Cuntz algebra ON , both of the groups
Exts(ON ) and Extw(ON) had been computed as Z and Z/(1−N)Z, respec-
tively by Pimsner–Popa [17] and Paschke–Salinas [16].
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4 K. MATSUMOTO

In this paper, we will compute the strong extension group Exts(OA)
for OA and present a formula (2.3) stated in the theorem below. For
n = 1, . . . ,N , let Rn = [Rn(i, j)]

N
i,j=1 be the N ×N matrix defined by

(2.2) Rn(i, j) =

{
1 if i = n,

0 otherwise,

meaning that the only nth row is the vector [1, . . . , 1] but the other rows
are zero vectors. The homomorphisms ιA : Z −→ Exts(A) and qA : Exts(A)
−→ Extw(A) in (1.1) for A = OA are denoted by ιA : Z −→ Exts(OA) and
qA : Exts(OA) −→ Extw(OA), respectively.

Theorem 2.1 (Theorem 2.6 and Theorem 3.3). (i) The strong extension

group Exts(OA) for the Cuntz–Krieger algebra OA is

(2.3) Exts(OA) = Z
N/(1− Â)ZN

where the matrix Â is Â = A+ R1 −AR1.

(ii) The homomorphism ιA : Z −→ Exts(OA) in (1.1) is injective if

det(I − A) 6= 0.

Hence the short exact sequence

(2.4) 0 −−−−→ Z
ιA−−−−→ Exts(OA)

qA
−−−−→ Extw(OA) −−−−→ 0

holds if det(I −A) 6= 0.

The given proof in this paper for the formula (2.3), presented as The-
orem 2.6, basically follows the proof of [8, Theorem 5.3] that showed the
formula Extw(OA) = ZN/(I −A)ZN .

Among various extensions of the Cuntz–Krieger algebra OA, there is one
specific extension called the Toeplitz extension σTA

of OA. It arises from the
short exact sequence

(2.5) 0 −−−−→ K(HA)
ι

−−−−→ TA
q

−−−−→ OA −−−−→ 0

of the Toeplitz algebra TA on the sub Fock spaceHA (cf. [10,12]). We will de-
tect the positions of the Toeplitz extension σTA

of OA in the strong extension
group Exts(OA) and in the weak extension group Extw(OA) (Theorem 4.4).
As a result, we will know that the group Extw(OA) with the position [TA]w
of the Toeplitz extension σTA

in Extw(OA) is a complete invariant of the iso-
morphism class of the Cuntz–Krieger algebra OAt for its transposed matrix
At of A by using Rørdam’s classification result (Corollary 4.5).
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ON STRONG EXTENSION GROUPS OF CUNTZ–KRIEGER ALGEBRAS 5

Let us denote by Pi the projection SiS
∗
i . Let σ : OA −→ Q(H) be an

extension. Put ei = σ(Pi). There exists a trivial extension τ : OA −→ Q(H)
such that τ(Pi) = σ(Pi), i = 1, . . . ,N . As the partial isometry σ(Si)τ(S

∗
i )

commutes with ei, eiσ(Si)τ(S
∗
i )ei becomes a unitary in eiQ(H)ei. One may

define indei σ(Si)τ(S
∗
i ) denoted by di(σ, τ), that is

di(σ, τ) = indei σ(Si)τ(S
∗
i ), i = 1, . . . ,N.

The proof of [8, Proposition 5.2] describes the following lemma. We give its
proof for the sake of completeness.

Lemma 2.2 [8, Proposition 5.2]. Let σ : OA −→ Q(H) be an extension.
Put ei = σ(Pi). Let τ1, τ2 : OA −→ Q(H) be trivial extensions such that

τj(Pi) = σ(Pi), j = 1,2, i = 1, . . . ,N . Then there exists a vector [ki]
N
i=1 ∈ ZN

such that

(i) di(σ, τ2) = di(σ, τ1)− ki +
∑N

j=1A(i, j)kj,

(ii)
∑N

i=1 ki = 0.

Proof. By Lemma 1.1, one may find a unitary U ∈ B(H) such that
τ2(x) = π(U)τ1(x)π(U

∗), x ∈ OA. Put u = π(U) ∈ Q(H). Since

(eiuei)(eiuei)
∗ = τ2(Pi)π(U)τ1(Pi)π(U

∗)τ2(Pi) = τ2(Pi)τ2(Pi)τ2(Pi) = ei

and similarly (eiuei)
∗(eiuei) = ei, we see that eiuei is a unitary in eiQ(H)ei.

By putting ki = indei u, the equality

(2.6) di(σ, τ2) = di(σ, τ1)− ki +
N∑

j=1

A(i, j)kj

holds, following the proof of [8, Proposition 5.2]. In fact, we see that

di(σ, τ2) = indei σ(Si)τ2(S
∗
i ) = indei σ(Si)σ(S

∗
i Si)uτ1(S

∗
i Si)τ1(S

∗
i )u

∗

= indei σ(Si)τ1(S
∗
i Si)uτ1(S

∗
i Si)τ1(S

∗
i )τ1(SiS

∗
i )u

∗

= indei σ(Si)τ1(S
∗
i )

(
τ1(Si)

N∑

j=1

A(i, j)uτ1(SjS
∗
j )τ1(S

∗
i )

)
eiu

∗

= indei σ(Si)τ1(S
∗
i )

(
τ1(Si)

N∑

j=1

A(i, j)ejuejτ1(S
∗
i )

)
eiu

∗ei

= indei σ(Si)τ1(S
∗
i ) + indei

(
τ1(Si)

N∑

j=1

A(i, j)ejuejτ1(S
∗
i )

)
+ indei u

∗
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6 K. MATSUMOTO

= di(σ, τ1) +

N∑

j=1

A(i, j) indei τ1(Si)ejuejτ1(S
∗
i )− ki.

As indeiτ1(Si)ejuejτ1(S
∗
i ) = indej u = kj whenever A(i, j) = 1, we obtain

equality (2.6).
Since u = π(U) for some unitary U on H , Lemma 1.3 tells us

N∑

i=1

ki =
N∑

i=1

indei u = ind∑N
i=1

ei
u = indU = 0. �

Define a subgroup Im(I − A)0 ⊂ ZN by setting

Im(I −A)0 =

{
(I −A)[ki]

N
i=1 ∈ Z

N
∣∣ [ki]Ni=1 ∈ Z

N with
N∑

i=1

ki = 0

}
.

We thus see that an extension σ : OA −→ Q(H) defines an element of
ZN/Im(I −A)0 in a unique way by

dσ := [di(σ, τ)]
N
i=1 ∈ Z

N/Im(I −A)0

for a trivial extension τ : OA −→ Q(H) satisfying τ(Pi) = σ(Pi), i = 1, . . . ,N .

Lemma 2.3. Let σ1, σ2 : OA −→ Q(H) be extensions. If σ1 ∼s σ2, then
dσ1

= dσ2
in ZN/Im(I −A)0.

Proof. Assume that σ1 ∼s σ2 so that, by Lemma 1.1, one may find a
unitary V in B(H) such that σ2 = Ad(π(V )) ◦ σ1. Put e1i = σ1(Pi), e

2
i =

σ2(Pi), i = 1, . . . ,N and v = π(V ) ∈ Q(H), and hence ve1i v
∗ = e2i . Take a

trivial extension τ1 : OA −→ Q(H) such that τ1(Pi) = e1i , i = 1, . . . ,N . We
set τ2 = Ad(v) ◦ τ1 so that τ2(Pi) = vτ1(Pi)v

∗ = e2i . We then have

di(σ2, τ2) = inde2i σ2(Si)τ2(S
∗
i ) = indve1i v∗ vσ1(Si)τ1(S

∗
i )v

∗ = di(σ1, τ1). �

Let us define ds : Exts(OA) −→ ZN/Im(I − A)0 by setting

ds([σ]s) =
[
[di(σ, τ)]

N
i=1

]
∈ Z

N/Im(I − A)0

for a trivial extension τ : OA −→ Q(H) satisfying τ(Pi) = σ(Pi), i = 1, . . . ,N .

Proposition 2.4. ds : Exts(OA) −→ ZN/ Im(I −A)0 is an isomor-
phism of groups.

Proof. It is obvious that ds : Exts(OA) −→ Z
N/ Im(I −A)0 is a ho-

momorphism of groups. It remains to show that ds is bijective. We will
first show that ds is injective. Let σ : OA −→ Q(H) be an extension such

Analysis Mathematica



ON STRONG EXTENSION GROUPS OF CUNTZ–KRIEGER ALGEBRAS 7

that ds([σ]s) = 0 in ZN/ Im(I − A)0. Take a trivial extension τ such that
τ(Pi) = σ(Pi), i = 1, . . . ,N . Put di = di(σ, τ) ∈ Z. Let ρτ : OA −→ B(H) be
a unital ∗-monomorphism such that τ = π ◦ ρτ . By the assumption, there
exists [ki]

N
i=1 ∈ Z

N such that

[di]
N
i=1 = (I −A)[ki]

N
i=1,

N∑

i=1

ki = 0.

Put ei = τ(Pi) and Ei = ρτ (Pi) so that π(Ei) = ei. Take an isometry

or coisometry Vi ∈ B(EiH) such that ind(Vi) = −ki. Put V =
∑N

i=1 Vi

∈ B(H) and v = π(V ). Since v is a unitary in Q(H) such that ind(v) =∑N
i=1 indEi

(Vi) = −
∑N

i=1 ki = 0, one may take a unitary U in B(H) such
that v = π(U). By following the proof of [8, Theorem 5.3], we have

indei π(U)σ(Si)π(U
∗)τ(S∗

i )

= indei π(Vi)σ(Si)σ(S
∗
i Si)π

( N∑

n=1

V ∗
n

)
τ(S∗

i )

= indei π(Vi)σ(Si)

( N∑

j=1

A(i, j)π(Ej)

)
π

( N∑

n=1

EnV
∗
n

)
τ(S∗

i )

= indei π(Vi)σ(Si)σ(S
∗
i Si)π

( N∑

j=1

A(i, j)V ∗
j

)
τ(S∗

i )

= indei π(Vi)σ(Si)τ(S
∗
i )

(
τ(Si)π

( N∑

j=1

A(i, j)V ∗
j

)
τ(S∗

i )

)

= indei π(Vi) + indei σ(Si)τ(S
∗
i ) + indei τ(Si)π

( N∑

j=1

A(i, j)V ∗
j

)
τ(S∗

i )

= −ki + di +
N∑

j=1

A(i, j) indei τ(Si)π(V
∗
j )τ(S

∗
i ).

Since indei τ(Si)π(V
∗
j )τ(S

∗
i ) = indej π(V

∗
j ) = kj whenever A(i, j) = 1, we

have

indei π(U)σ(Si)π(U
∗)τ(S∗

i ) = −ki + di +

N∑

j=1

A(i, j)kj = 0

Analysis Mathematica



8 K. MATSUMOTO

so that there exists a unitary Wi ∈ B(EiH) on EiH such that

π(U)σ(Si)π(U
∗)τ(S∗

i ) = π(Wi), i = 1, . . . ,N.

By putting Ti = Wiρτ (Si), i = 1, . . . ,N , we have

N∑

j=1

TjT
∗
j =

N∑

j=1

Wjρτ (Sj)ρτ (S
∗
j )W

∗
j =

N∑

j=1

WjW
∗
j =

N∑

j=1

Ej = 1,

and

T ∗
i Ti = ρτ (S

∗
i )W

∗
i Wiρτ (Si) = ρτ (S

∗
i )ρτ (SiS

∗
i )ρτ (Si) =

N∑

j=1

A(i, j)ρτ (SjS
∗
j ).

As ρτ (SjS
∗
j ) = TjT

∗
j , we see that T ∗

i Ti =
∑N

j=1A(i, j)TjT
∗
j . Since π(U) =

π(V ) =
∑N

k=1 π(Vk) and Vk ∈ B(EkH), we have

π(U∗)τ(S∗
i Si) = π(V ∗)

N∑

j=1

A(i, j)τ(SjS
∗
j )

=
N∑

j=1

A(i, j)
N∑

k=1

π(V ∗
k Ej) =

N∑

j=1

A(i, j)π(V ∗
j )

and

τ(S∗
i Si)π(U

∗) =
N∑

j=1

A(i, j)τ(SjS
∗
j )π(V

∗)

=
N∑

j=1

A(i, j)
N∑

k=1

π(EjV
∗
k ) =

N∑

j=1

A(i, j)π(V ∗
j )

so that π(U∗)τ(S∗
i Si) = τ(S∗

i Si)π(U
∗).

Define ρσ(Si) = Ti ∈ B(H), i = 1, . . . ,N so that ρσ : OA −→ Q(H) is a
unital ∗-monomorphism such that

π ◦ ρσ(Si) = π(Wiρτ (Si)) = π(U)σ(Si)π(U
∗)τ(S∗

i )π(ρτ (Si))

= π(U)σ(Si)π(U
∗)τ(S∗

i )τ(Si)

= π(U)σ(Si)τ(S
∗
i Si)π(U

∗) = π(U)σ(Si)π(U
∗).

Hence we have Ad(π(U)) ◦ σ = π ◦ ρσ . This shows that σ is strongly equiv-
alent to the trivial extension π ◦ ρσ proving [σ]s = 0 in Exts(OA).
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ON STRONG EXTENSION GROUPS OF CUNTZ–KRIEGER ALGEBRAS 9

We will next show that ds is surjective. We will show that there exists
an extension σ : OA −→ Q(H) and a trivial extension τ : OA −→ Q(H) such
that τ(Pi) = σ(Pi) denoted by ei and

(2.7) indei σ(Si)τ(S
∗
i ) =

{
−1 if i = 1,

0 otherwise.

Decompose the Hilbert space H as H = H1 ⊕ · · · ⊕HN such that dimHi =
dimH , i = 1, . . . ,N . Take a nonzero vector v1 ∈ H1 and put its orthogonal
complement H0

1 = {Cv1}
⊥ ∩H1 in H1. Let Ei be the orthogonal projection

onto Hi, i = 1, . . . ,N . The orthogonal projection onto H0
1 is denoted by E0

1 ,

so that
∑N

i=1Ei = 1 and E1 −E0
1 is the projection onto Cv1. Take partial

isometries T1, . . . , TN and V1, . . . , VN on H such that

T1T
∗
1 = E0

1 , TiT
∗
i = Ei, i = 2, . . . ,N, ViV

∗
i = Ei, i = 1, . . . ,N,

T ∗
i Ti = V ∗

i Vi =
N∑

j=1

A(i, j)Ej , i = 1, . . . ,N.

We know that

π(Ti)π(Ti)
∗ = π(Vi)π(Vi)

∗ = π(Ei),
N∑

i=1

π(Ei) = 1,

π(Ti)
∗π(Ti) = π(Vi)

∗π(Vi) =
N∑

j=1

A(i, j)π(Ej), i = 1, . . . ,N.

By setting σ(Si) = π(Ti), τ(Si) = π(Vi), i = 1, . . . ,N , we have extensions
σ, τ : OA −→ Q(H) such that τ is a trivial extension. Put ei = π(Ei), i =
1, . . . ,N . Since σ(Si)τ(S

∗
i ) = π(TiV

∗
i ), i = 1, . . . ,N , we have

indei σ(Si)τ(S
∗
i ) = indEi

TiV
∗
i

so that the equality (2.7) holds. Therefore we have ds([σ]s) = [(−1, 0, . . . , 0)]
in ZN/ Im(I −A)0. One may show that ds : Exts(OA) −→ ZN/ Im(I −A)0
is surjective by a similar fashion. �

Recall that the N ×N matrix Rn for n = 1, . . . ,N is defined in (2.2).

Lemma 2.5. For n = 1,2, . . . ,N , put Ân = A+Rn−ARn. Then we have

(2.8) Im(I − A)0 = (I − Ân)Z
N .

In particular for n = 1, we put Â = Â1 so that we have Im(I −A)0 =

(I − Â)ZN .
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10 K. MATSUMOTO

Proof. As Im(I −A)0 =
{
(I −A)[ki]

N
i=1 |

∑N
i=1 ki = 0

}
, a vector [ki]

N
i=1

∈ ZN satisfies
∑N

i=1 ki = 0 if and only if [ki]
N
i=1 = (I −Rn)[ki]

N
i=1. Hence we

have

Im(I −A)0 = (I −A)(I − Rn)Z
N .

Since (I −A(I −Rn) = I − Ân, we have Im(I −A)0 = (I − Ân)Z
N . �

Therefore we reach the following theorem.

Theorem 2.6. Exts(OA) ∼= ZN/(I − Â)ZN , where Â = A+R1 − AR1.

3. The homomorphism ιA : Z −→ Exts(OA)

For m ∈ Z, take k1, . . . , kN ∈ Z such that m =
∑N

j=1 kj . Take triv-

ial extensions τ, τ ′ : OA −→ Q(H) such that τ(Pi) = τ ′(Pi) denoted by ei,
i = 1, . . . ,N . Let ρτ , ρτ ′ : OA −→ B(H) be unital ∗-monomorphisms such
that τ = π ◦ρτ , τ

′ = π ◦ρτ ′ , respectively. Put Ei = ρτ (Pi) so that π(Ei) = ei.
Take an isometry or coisometry Vi ∈ B(EiH) such that indEi

Vi = ki and put

V =
∑N

i=1 Vi ∈ B(H). Hence we see that

indei π(V ) = ki, i = 1, . . . ,N.

Recall that the extension σm : OA −→ Q(H) is defined by setting σm =
Ad(π(V ))◦ τ : OA −→ Q(H). Put di=di(σm, τ ′) = indei σm(Si)τ

′(S∗
i ). Then

ds([σm]s) = [(d1, . . . , dN )] ∈ Z
N/(I − Â)ZN

does not depend on the choice of trivial extensions τ, τ ′, because of Lemma
2.2 and Lemma 2.3.

Proposition 3.1. Define ι̂A : Z −→ ZN/(I − Â)ZN by setting ι̂A(m) =[
(I −A)[ki]

N
i=1

]
for m =

∑N
i=1 ki. Then we have

(i) ι̂A(m) = [(I − A)[ki]
N
i=1] does not depend on the choice of [ki]

N
i=1 as

long as m =
∑N

i=1 ki.

(ii) The diagram

Z Exts(OA)

Z ZN/(I − Â)ZN

ιA

= ds

ι̂A

is commutative, that is ds(ιA(m)) = ι̂A(m), where ιA(m) = [σm]s.
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(iii) The position ι̂A(1) in ZN/(I − Â)ZN is invariant under the isomor-

phism class of OA.

(iv) If det(I − A) 6= 0, then we have a short exact sequence

(3.1) 0 −−−−→ Z
ιA−−−−→ Exts(OA)

qA
−−−−→ Extw(OA) −−−−→ 0.

Proof. (i) Suppose that m =
∑N

i=1 ki =
∑N

i=1 k
′
i for some ki, k

′
i ∈ Z.

Put li = ki − k′i so that
∑N

i=1 li = 0 and

(I −A)[ki]
N
i=1 − (I −A)[k′i]

N
i=1 = (I −A)[li]

N
i=1 ∈ (I − Â)ZN

by Lemma 2.5. This shows that

[(I −A)[ki]
N
i=1] = [(I − A)[k′i]

N
i=1]

in ZN/(I − Â)ZN .
(ii) Keep the notation stated before Proposition 3.1. Since

di = indei σm(Si)τ
′(S∗

i )

does not depend on the choice of a trivial extension τ ′ : OA −→ Q(H) as
long as τ(Pi) = τ ′(Pi), we may take τ ′ as τ . We then have

di = indei σm(Si)τ(S
∗
i ) = indei π(V )τ(Si)π(V

∗)τ(S∗
i )

= indei π(V ) + indei τ(Si)π(V
∗)τ(S∗

i ) = ki + indτ(S∗
i PiSi) π(V

∗)

= ki +
N∑

j=1

A(i, j) indτ(Pj) π(V
∗) = ki −

N∑

j=1

A(i, j)kj

so that we obtain

ds(ιA(m)) = ds([σm]s) = [di]
N
i=1 = [(I −A)[ki]

N
i=1] = ι̂A(m).

(iii) By construction, the map ιA : m ∈ Z −→ [σm]s ∈ Exts(A) as well as
the position ιA(1) in Exts(A) is invariant under the isomorphism class of a
C∗-algebra A. For A = OA, the assertion (ii) says that

(
Exts(OA), ιA(1)

)
∼=

(
Z
N/(I − Â)ZN , ι̂A(1)

)

so that the position of ι̂A(1) in the group ZN/(I − Â)ZN is invariant under
the isomorphism class of OA.

(iv) Assume that det(I −A) 6= 0. Let m ∈ Z satisfy ιA(m) = 0. Take

k1, . . . , kN ∈ Z such that m =
∑N

i=1 ki and hence ι̂A(m) = [(I − A)[ki]
N
i=1].
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As ι̂A(m) = ds(ιA(m)) = 0, there exists [ni]
N
i=1 ∈ Z

N such that
∑N

i=1 ni = 0
and ι̂A(m) = (I − A)[ni]

N
i=1. We then have

(I −A)
[
ki
]N
i=1

= (I −A)
[
ni

]N
i=1

.

By the assumption det(I − A) 6= 0, we have [ni]
N
i=1 = [ki]

N
i=1 so that m =∑N

i=1 ni = 0. �

Since I − Â = (I −A)(I −R1), the inclusion relation

(I − Â)ZN ⊂ (I − A)ZN

holds. There exists a natural quotient map

q̂A : ZN/(I − Â)ZN −→ Z
N/(I − A)ZN .

In [8], Cuntz–Krieger proved that the map

dw : Extw(OA) −→ Z
N/(I −A)ZN

defined by dw([σ]w) = [(d1, . . . , dN )] ∈ Z
N/(I −A)ZN yields an isomorphism

of groups.

Let us denote by Ker(I −A), Ker(I − Â) the subgroups of ZN defined

by the kernels in ZN of the matrices I −A and of I − Â, respectively. Define
homomorphisms of groups

i1 : Z −→ Ker(I − Â), jA : Ker(I − Â) −→ Ker(I −A),

sA : Ker(I −A) −→ Z

by setting

i1 : n −→




n
0
...
0


 , jA : [li]

N
i=1 −→




−
∑N

i=2 li
l2
...
lN


 , sA : [li]

N
i=1 −→

N∑

i=1

li.

Lemma 3.2. We have the following long exact sequence:

0 Z Ker(I − Â) Ker(I −A)

0 ZN/(I −A)ZN ZN/(I − Â)ZN Z

i1 jA

sA
q̂A ι̂A
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Proof. It suffices to show the exactness at the lower right corner

(3.2) Ker(I −A)
sA−−−−→ Z

ι̂A−−−−→ ZN/(I − Â)ZN .

Suppose that m ∈ Z satisfies ι̂A(m) = 0. Take k1, . . . , kN ∈ Z such that

m =
∑N

i=1 ki and hence (I −A)[ki]
N
i=1 belongs to Im(I −A)0. There ex-

ists [ni]
N
i=1 ∈ ZN such that (I −A)[ki]

N
i=1 = (I −A)[ni]

N
i=1 and

∑N
i=1 ni = 0.

Put li = ki − ni. Hence [li]
N
i=1 ∈ Ker(I −A) and

∑N
i=1 li =

∑N
i=1 ki = m so

that sA([li]
N
i=1) = m, proving Ker(ι̂A) ⊂ sA(Ker(I −A)).

Conversely, for [li]
N
i=1 ∈ Ker(I −A), we have

ι̂A
(
sA([li]

N
i=1)

)
= ι̂A

( N∑

i=1

li

)
=

[
(I −A)[li]

N
i=1

]
= 0,

so that sA(Ker(I −A)) ⊂ Ker(ι̂A). Hence the sequence (3.2) is exact at the
middle. Exactness at the other places is easily seen. �

Theorem 3.3. (i) The isomorphisms

dw : Extw(OA) −→ Z
N/(I −A)ZN , ds : Exts(OA) −→ Z

N/(I − Â)ZN

of groups and a homomorphism ι̂A : Z −→ ZN/(I− Â)ZN defined by ι̂A(m) =

(I − A)[ki]
N
i=1 with m =

∑N
i=1 ki yield the commutative diagram:

Z Exts(OA) Extw(OA)

Z ZN/(I − Â)ZN ZN/(I −A)ZN .

ιA

=

qA

ds dw

ι̂A q̂A

(ii) The pair
(
ZN/(I − Â)ZN , ι̂A(1)

)
showing the position

ι̂A(1) =


(I −A)




1
0
...
0







in the group Z
N/(I − Â)ZN is invariant under the isomorphism class of OA.

(iii) The homomorphism ιA : Z −→ Exts(OA) is injective if det(I − A)
6= 0. In this case, we have a short exact sequence

(3.3) 0 −−−−→ Z
ιA−−−−→ Exts(OA)

qA
−−−−→ Extw(OA) −−−−→ 0.
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4. Toeplitz extension

Among various extensions of OA, there is a specific extension σTA
of OA

called the Toeplitz extension (cf. [10,12]). We fix an irreducible non per-
mutation matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}. Let CN be an

N -dimensional Hilbert space with orthonormal basis {ξ1, . . . , ξN}. Let H0

be a one-dimensional Hilbert space with unit vector v0. Let H⊗n be
the n-fold tensor product CN ⊗ · · · ⊗ CN . Consider the full Fock space
FN = H0 ⊕

(⊕∞
n=1H

⊗n
)
. Define a sub Fock space HA to be the closed

linear span of vectors

{v0} ∪ {ξi1 ⊗ · · · ⊗ ξin | A(ij , ij+1) = 1 for j = 1, . . . , n− 1, n = 1, 2, . . . }.

Define creation operators Ti for i = 1, . . . ,N on HA by

Tiv0 = ξi,

Ti(ξi1 ⊗ · · · ⊗ ξin) =

{
ξi ⊗ ξi1 ⊗ · · · ⊗ ξin if A(i, i1) = 1,

0 otherwise.

Let us denote by E0 the rank one projection onto the subspace H0 on HA.
The operators Ti, i = 1, . . . ,N on HA are partial isometries satisfying the
relations

(4.1)
N∑

j=1

TjT
∗
j = 1−E0, T ∗

i Ti =
N∑

j=1

A(i, j)TjT
∗
j +E0, i = 1, . . . N

(see [10,12]). The Toeplitz algebra for the matrix A is defined to be the
C∗-algebra C∗(T1, . . . , TN ) on HA generated by the partial isometries Ti,
i = 1, . . . ,N . By (4.1), we know that the correspondence Si ∈ OA −→ π(Ti)
∈ Q(HA) = B(HA)/K(HA) gives rise to a unital ∗-monomorphism, that is
called the Toeplitz extension denoted by σTA

. In this section, we will detect
the positions ds([σTA

]s) in Exts(OA) and dw([σTA
]w) in Extw(OA), respec-

tively. The classes [σTA
]s and [σTA

]w are simply denoted by [TA]s and [TA]w,
respectively.

For j = 1, . . . ,N , let HA,j be the closed linear subspace of HA spanned
by the vectors {ξj⊗η ∈ HA | η ∈ HA}, so thatHA = H0⊕HA,1⊕· · ·⊕HA,N .
Let us denote by EA,i the projection on HA onto the subspace HA,i. We

then see that E0 +
∑N

j=1EA,j = 1 and

(4.2) TiT
∗
i = EA,i, T ∗

i Ti = E0 +

N∑

j=1

A(i, j)EA,j , i = 1, . . . N.
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We fix m ∈ {1, . . . ,N} for a while. By setting

Hj :=

{
HA,j ⊕H0 if j = m,

HA,j if j 6= m,

we have a decomposition HA = H1 ⊕ · · · ⊕HN of HA depending on m. Let
us denote by Ei the orthogonal projection on HA onto the subspace Hi, so
that we have

∑N
j=1Ej = 1. Take a family of partial isometries V1, . . . , VN

on HA satisfying the relations

(4.3) ViV
∗
i = Ei, V ∗

i Vi =

N∑

j=1

A(i, j)Ej , i = 1, . . . N.

Lemma 4.1. For a fixed m ∈ {1, . . . ,N}, we have for i = 1, . . . ,N ,

Ei =

{
EA,i +E0 if i = m,

EA,i if i 6= m,
V ∗
i Vi =

{
T ∗
i Ti if A(i,m) = 1,

T ∗
i Ti − E0 if A(i,m) = 0.

For i = 1, . . . ,N , the operator TiE0T
∗
i on HA is a rank one projection

on HA onto the one-dimensional subspace spanned by the vector ξi. We
note that the operator TiV

∗
i : Hi −→ Hi is a (not necessarily onto) partial

isometry. We then have

Lemma 4.2. For i = 1, . . . ,N, we have (TiV
∗
i )

∗TiV
∗
i = ViV

∗
i = Ei and

(4.4) TiV
∗
i (TiV

∗
i )

∗ =





Ei −E0 if i = m, A(i,m) = 1,

Ei −E0 − TiEoT
∗
i if i = m, A(i,m) = 0,

Ei if i 6= m, A(i,m) = 1,

Ei − TiEoT
∗
i if i 6= m, A(i,m) = 0.

Since the partial isometries Vi, i = 1, . . . ,N on HA satisfy (2.1), there
exists a unital ∗-monomorphism τm : OA −→ B(HA) satisfying τm(Si) = Vi,
i = 1, . . . ,N , so that π ◦ τm : OA −→ Q(HA) is a trivial extension. The above
lemma says the following proposition.

Proposition 4.3. For a fixed m ∈ {1, . . . ,N}, we have

(4.5) di(σTA
, τm) =





−1 if i = m, A(i,m) = 1,

−2 if i = m, A(i,m) = 0,

0 if i 6= m, A(i,m) = 1,

−1 if i 6= m, A(i,m) = 0.
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Proof. As Hi = EiHA and

di(σTA
, τm) = indEi

TiV
∗
i

= dim(Ker(TiV
∗
i ) in Hi)− dim(Coker(TiV

∗
i ) in Hi)

= −dim(Hi/TiV
∗
i (TiV

∗
i )

∗Hi),

we get the formula (4.5) by (4.4). �

Therefore we have

Theorem 4.4. Let us denote by [TA]∗ the class in Ext∗(OA) of the

Toeplitz extension σTA
of OA. We then have

(i) ds([TA]s) = −ι̂A(1)− [1N ] in ZN/(I − Â)ZN ,

(ii) dw([TA]w) = −[1N ] in ZN/(I − A)ZN ,

where [1N ] = [(1, . . . , 1)] means the class of the vector (1, . . . , 1) ∈ ZN

Proof. Let us denote by v(m) ∈ Z
N the column vector in Z

N whose
mth component is one and the other components are zero’s. Denote by
(1, . . . , 1)t the column vector defined by the transpose of the row vector
whose components are all one’s. By (4.5), we have

[
di(σTA

, τm)
]N
i=1

= −(1, . . . , 1)t − v(m) +
[
A(i,m)

]N
i=1

= −(I −A)v(m)− (1, . . . , 1)t.

Since [(I − A)v(m)] = ι̂A(1) in ZN/(I − Â)ZN , we have

ds([TA]s) = −ι̂A(1)− [1N ]

in Z
N/(I − Â)ZN . As ι̂A(1) = 0 in Z

N/(I −A)ZN , we have dw([TA]w) =
−[1N ] in ZN/(I −A)ZN . �

By virtue of the Rørdam’s classification theorem for Cuntz–Krieger al-
gebras [19] (cf. [7,11]) showing that the K0-group K0(OA) with the position
of the class [1] of the unit 1 of OA in K0(OA) is a complete invariant of the
isomorphism class of the algebra OA, we obtain the following corollary.

Corollary 4.5. The pair (Extw(OA), [TA]w) of the weak extension

group Extw(OA) and the weak equivalence class [TA]w of the Toeplitz ex-

tension σTA
of the Cuntz–Krieger algebra OA is a complete invariant of the

isomorphism class of the Cuntz–Krieger algebra OAt for the transposed ma-

trix At of the matrix A. This shows that two Cuntz–Krieger algebras OA and

OB are isomorphic if and only if there exists an isomorphism ϕ : Extw(OAt)
−→ Extw(OBt) of groups such that ϕ([TAt]w) = [TBt ]w.
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Proof. As K0(OAt) ∼= ZN/(I −A)ZN and (ZN/(I − A)ZN ,−[1N ]) ∼=
(ZN/(I −A)ZN , [1N ]), we have

(Extw(OA), [TA]w) ∼= (ZN/(I −A)ZN , [1N ]) ∼= (K0(OAt), [1]).

By virtue of the Rørdam’s classification result for Cuntz–Krieger algebras
[19] ([7], cf. [11]), we obtain the desired assertion. �

Remark 4.6. (i) The position [TA]∗ in Ext∗(OA) is not necessarily in-
variant under the isomorphism class of OA (see Example 2 in the next sec-
tion).

(ii) The abelian groups Extw(OA) and K0(OA) are isomorphic, and two
C∗-algebras OA ⊗K(H) and OAt ⊗K(H) are always isomorphic for every
matrix A. There is however an example of an irreducible non permutation
matrix A such that OA is not isomorphic to OAt as in the classification
table in [11] of the Cuntz–Krieger algebras for 3× 3 matrices (see also [11,
Example 2.1], or Example 4 in the next section).

5. Examples

Example 1. Let A =



1 · · · 1
...

...
1 · · · 1


 be the N ×N matrix whose entries

are each one with N > 1. The Cuntz–Krieger algebra OA is nothing but
the Cuntz algebra ON (see [6]). The element ιA(1) in Exts(ON ) is denoted
by ιN (1). The Toeplitz algebra TA is also denoted by TN . As AR1 = A, we

have Â = A+R1 −AR1 = R1, so that

I − Â =




0 −1 −1 · · · −1
0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1



.

Define

LN =




1 1 1 · · · 1
0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1




so that LN (I − Â) =




0 0 0 · · · 0
0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1



.
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Hence LN induces an isomorphism

Z
N/(I − Â)ZN −→ LNZ

N/LN (I − Â)ZN ∼= Z

such that

[v] ∈ Z
N/(I − Â)ZN −→ [LNv] ∈ LNZ

N/LN (I − Â)ZN −→ (LNv)1 ∈ Z .

For

[v] = ι̂N (1) =


(I −A)




1
0
...
0





 ,

we see that

LNv = LN (I −A)




1
0
...
0


 =




1−N
0
...
0




so that (LNv)1 = 1−N . Therefore we have (Exts(ON), ιN (1)) ∼= (Z, 1−N)
and hence the exact sequence (3.3) goes to

(5.1) 0 −−−−→ Z
×(1−N)
−−−−−→ Z

q
−−−−→ Z/(1−N)Z −−−−→ 0.

By using Theorem 4.4, one may easily compute that

(Extw(ON ), [TN ]w) ∼= (Z/(1−N)Z,−1),

(Exts(ON ), [TN ]s, ιN (1)) ∼= (Z,−1, 1−N).

Example 2. Let us denote by F the Fibonacci matrix

[
1 1
1 0

]
. It is

well-known that the Cuntz–Krieger algebra OF is isomorphic to the Cuntz
algebra O2. Hence we have Extw(OF ) ∼= Extw(O2) ∼= {0}, and Exts(OF )
∼= Exts(O2) ∼= Z. By the formula in Theorem 4.4 together with the above
Example 1, we see

(Exts(OF ), [TF ]s, ιF (1)) = (Z,−2,−1),

(Exts(O2), [T2]s, ι2(1)) = (Z,−1,−1).

Hence the position [TF ]s in Exts(OF ) is different from the position [T2]s in
Exts(O2).
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Example 3. The weak extension groups Extw(OAi
), i = 1,2,3,4 of OAi

,
i = 1, 2, 3, 4 for the following list of matrices Ai, i = 1, 2, 3, 4 have been pre-
sented in [8, Remark 3.4]. Their strong extension groups Exts(OAi

) with
the positions of the element ιAi

(1), i = 1, 2, 3, 4 are easily computed by us-
ing Theorem 3.3. We also easily know the positions [TAi

]∗ in Ext∗(OAi
)

by Theorem 4.4. We present the list in the following, computed without
difficulty by hand.

• A1 =



0 0 1
1 0 1
1 1 1


, (Extw(OA1

), [TA1
]w) ∼= (Z/3Z, 2),

(Exts(OA1
), [TA1

]s, ιA1
(1)) ∼= (Z, 4, 3).

• A2 =



0 1 1
1 0 1
1 1 1


, (Extw(OA2

), [TA2
]w) ∼= (Z/4Z, 2),

(Exts(OA2
), [TA2

]s, ιA2
(1)) ∼= (Z⊕ Z/2Z,−2⊕ 0, 2⊕ 1).

• A3 =



0 1 1
1 0 1
1 1 0


, (Extw(OA3

), [TA3
]w) ∼= (Z/2Z⊕ Z/2Z, 0⊕ 0),

(Exts(OA3
), [TA3

]s, ιA3
(1)) ∼= (Z⊕ Z/2Z⊕ Z/2Z,−2⊕ 0⊕ 0, 1 ⊕ 1⊕ 1).

• A4 =



1 0 1
0 1 1
1 1 1


, (Extw(OA4

), [TA4
]w) ∼= (Z,−1),

(Exts(OA4
), [TA4

]s, ιA4
(1)) ∼= (Z⊕ Z,−2 ⊕ (−1), 1⊕ 0).

Example 4. The matrices

A5 =



1 1 1
1 1 1
1 0 0


 , A6 = At

5 =



1 1 1
1 1 0
1 1 0




are examples presented in [11, Example 2.1] such that (K0(OA5
), [1]) ∼=

(Z/2Z, 1) and (K0(OA6
), [1]) ∼= (Z/2Z, 0), so that OA5

is not isomorphic to
OA6

. We then see that

(Extw(OA5
), [TA5

]w) ∼= (Z/2Z, 0), (Extw(OA6
), [TA6

]w) ∼= (Z/2Z, 1).

We also easily see that

(Exts(OA5
), [TA5

]s, ιA5
(1)) ∼= (Z,−2,−2),

Analysis Mathematica
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(Exts(OA6
), [TA6

]s, ιA6
(1)) ∼= (Z⊕ Z/2Z,−1⊕ 0,−1⊕ (−1)),

and hence Exts(OA5
) is not isomorphic to Exts(OA6

).

Some of the results in this paper will be generalized to more general set-
ting in a class of C ∗-algebras associated with symbolic dynamical systems
in [15].
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