ON STRONG EXTENSION GROUPS OF CUNTZ-KRIEGER ALGEBRAS

K. MATSUMOTO

Department of Mathematics, Joetsu University of Education, Joetsu, 943-8512, Japan e-mail: kengo@juen.ac.jp

(Received May 15, 2023; revised February 6, 2024; accepted February 18, 2024)

Abstract. In this paper, we study the strong extension groups of Cuntz–Krieger algebras, and present a formula to compute the groups. We also detect the position of the Toeplitz extension of a Cuntz–Krieger algebra in the strong extension group and in the weak extension group to see that the weak extension group with the position of the Toeplitz extension is a complete invariant of the isomorphism class of the Cuntz–Krieger algebra associated with its transposed matrix.

1. Preliminary

There are several kinds of extension groups $\operatorname{Ext}_*(\mathcal{A})$ for a C^* -algebra \mathcal{A} . Among them two extension groups $\operatorname{Ext}_w(\mathcal{A})$ and $\operatorname{Ext}_s(\mathcal{A})$ for a unital nuclear separable C^* -algebra \mathcal{A} have been studying in many papers (see [2,4, 7–9,13,14,16–18], etc.). In this paper, we study the strong extension groups $\operatorname{Ext}_s(\mathcal{O}_A)$ of Cuntz–Krieger algebras \mathcal{O}_A , and present a formula to compute the groups. We also detect the position of the Toeplitz extension \mathcal{T}_A of a Cuntz–Krieger algebra \mathcal{O}_A in the weak extension group $\operatorname{Ext}_w(\mathcal{O}_A)$ to show that it is a complete invariant of the isomorphism class of the Cuntz–Krieger algebra \mathcal{O}_{A^t} for the transposed matrix A^t of A by using Rørdam's classification result.

In what follows, H stands for a separable infinite dimensional Hilbert space. Let us denote by K(H) the C^* -algebra of compact operators on H. It is a closed two-sided ideal of the C^* -algebra B(H) of bounded linear operators on H. The quotient C^* -algebra B(H)/K(H) is called the Calkin algebra, denoted by Q(H). The quotient map $B(H) \longrightarrow Q(H)$ is denoted by π .

Published online: 15 September 2024

This work was supported by JSPS KAKENHI Grant Number 19K03537.

 $Key\ words\ and\ phrases:$ extension group, C^* -algebra, extension, Cuntz-Krieger algebra, strong extension group, Toeplitz extension, Fredholm index.

Mathematics Subject Classification: primary 46L80, secondary 19K33.

^{0133-3852 © 2024} The Author(s), under exclusive licence to Akadémiai Kiadó, Budapest, Hungary

Let \mathcal{A} be a unital separable C^* -algebra. Throughout the paper, a unital *-monomorphism $\tau\colon\mathcal{A}\longrightarrow Q(H)$ is called an extension. Two extensions $\tau_1,\tau_2\colon\mathcal{A}\longrightarrow Q(H)$ are said to be $strongly\ equivalent$, written $\tau_1\sim_s\tau_2$, if there exists a unitary $U\in B(H)$ such that $\tau_1(a)=\pi(U)\tau_2(a)\pi(U^*)$ in Q(H) for all $a\in\mathcal{A}$. They are said to be $weakly\ equivalent$, written $\tau_1\sim_w\tau_2$, if there exists a unitary $u\in Q(H)$ such that $\tau_1(a)=u\tau_2(a)u^*$ in Q(H) for all $a\in\mathcal{A}$. The strong equivalence class of an extension $\tau\colon\mathcal{A}\longrightarrow Q(H)$ is denoted by $[\tau]_s$, and similarly the weak equivalence class is denoted by $[\tau]_w$. We note that weakly equivalent extensions are strongly equivalent if one may take a unitary $u\in Q(H)$ of Fredholm index zero such that $\tau_1(a)=u\tau_2(a)u^*$ in Q(H) for all $a\in\mathcal{A}$. An extension $\tau\colon\mathcal{A}\longrightarrow Q(H)$ is said to be trivial if there exists a unital *-monomorphism $\rho\colon\mathcal{A}\longrightarrow B(H)$ such that $\tau=\pi\circ\rho$. We regard $Q(H)\oplus Q(H)\subset Q(H\oplus H)$ in a natural way and identify $H\oplus H$ with H, so that $Q(H)\oplus Q(H)\subset Q(H)$. The sum of extensions $\tau_1,\tau_2\colon\mathcal{A}\longrightarrow Q(H)$ are defined by

$$(\tau_1 + \tau_2)(a) = \tau_1(a) \oplus \tau_2(a) \in Q(H) \oplus Q(H) \subset Q(H), \quad a \in \mathcal{A}$$

that gives rise to an extension $\tau_1 \oplus \tau_2 \colon \mathcal{A} \longrightarrow Q(H)$. Let us denote by $\operatorname{Ext}_{\mathbf{s}}(\mathcal{A})$ the set of strong equivalence classes of extensions. Similarly the set of weak equivalence classes is denoted by $\operatorname{Ext}_{\mathbf{w}}(\mathcal{A})$. Both $\operatorname{Ext}_{\mathbf{s}}(\mathcal{A})$ and $\operatorname{Ext}_{\mathbf{w}}(\mathcal{A})$ have commutative semigroup structure by the above sums. There is a canonical surjective homomorphism $q_{\mathcal{A}} \colon \operatorname{Ext}_{\mathbf{s}}(\mathcal{A}) \longrightarrow \operatorname{Ext}_{\mathbf{w}}(\mathcal{A})$ of commutative semigroups defined by $q_{\mathcal{A}}([\tau]_s) = [\tau]_w$.

By virtue of Voiculescu's theorem in [20], the following basic lemma holds:

LEMMA 1.1 [20]. Let \mathcal{A} be a unital separable C^* -algebra. For any two trivial extensions $\tau_1, \tau_2 \colon \mathcal{A} \longrightarrow Q(H)$, there exists a unitary $U \in B(H)$ such that $\tau_2 = \operatorname{Ad}(\pi(U)) \circ \tau_1$, that is, $\tau_1 \sim_s \tau_2$. The strong (resp. weak) equivalence class of a trivial extension is the neutral element of $\operatorname{Ext}_s(\mathcal{A})$ (resp. $\operatorname{Ext}_w(\mathcal{A})$).

Choi–Effros in [5] (cf. [1]) proved that if \mathcal{A} is nuclear, the semigroups $\operatorname{Ext}_{s}(\mathcal{A})$, $\operatorname{Ext}_{w}(\mathcal{A})$ become groups, that is, any element has its inverse. The following lemma is seen in [17].

LEMMA 1.2. Let \mathcal{A} be a unital separable nuclear C^* -algebra. For $m \in \mathbb{Z}$, take a unitary $u_m \in Q(H)$ of Fredholm index m. Take a trivial extension $\tau \colon \mathcal{A} \longrightarrow Q(H)$. Consider the extension $\sigma_m = \operatorname{Ad}(u_m) \circ \tau \colon \mathcal{A} \longrightarrow Q(H)$. Then the map $\iota_{\mathcal{A}} \colon m \in \mathbb{Z} \longrightarrow [\sigma_m] \in \operatorname{Ext}_s(\mathcal{A})$ gives rise to a homomorphism of groups such that the sequence

$$(1.1) \mathbb{Z} \xrightarrow{\iota_{\mathcal{A}}} \operatorname{Ext}_{s}(\mathcal{A}) \xrightarrow{q_{\mathcal{A}}} \operatorname{Ext}_{w}(\mathcal{A}).$$

is exact at the middle, that is, $\iota_A(\mathbb{Z}) = \operatorname{Ker}(q_A)$, so that

$$\operatorname{Ext}_{s}(\mathcal{A})/\iota_{\mathcal{A}}(\mathbb{Z}) \cong \operatorname{Ext}_{w}(\mathcal{A}).$$

The groups $\operatorname{Ext}_{s}(\mathcal{A})$ and $\operatorname{Ext}_{w}(\mathcal{A})$ for a unital separable nuclear C^* algebra \mathcal{A} are called the *strong extension group* for \mathcal{A} and the *weak extension*group for \mathcal{A} , respectively.

Let $e \in Q(H)$, $E \in B(H)$ be projections such that $e = \pi(E)$. For an element $x \in Q(H)$ such that $exe \in eQ(H)e$ is invertible in eQ(H)e, one may denote by $\operatorname{ind}_e x$ the Fredholm index $\operatorname{ind}_E X$ for $X \in B(EH)$ satisfying $x = \pi(X)$. As the Fredholm index is invariant under compact perturbations, the integer $\operatorname{ind}_e x$ does not depend on the choice of E and X as long as $e = \pi(E)$, $x = \pi(X)$. The following lemma is well-known (cf. [8, Lemma 5.1]).

LEMMA 1.3. Let $e, f \in Q(H)$ be projections. Suppose that $x \in Q(H)$ commutes with e and f, and exe, fxf are invertible in eQ(H)e and fQ(H)f, respectively.

- (i) If ef = 0, then $\operatorname{ind}_{e+f} x = \operatorname{ind}_e x + \operatorname{ind}_f x$.
- (ii) If $x, y \in eQ(H)e$ are both invertible in eQ(H)e, then $\operatorname{ind}_e xy = \operatorname{ind}_e x + \operatorname{ind}_e y$.

2. Ext-groups for Cuntz-Krieger algebras

Let $A = [A(i,j)]_{i,j=1}^N$ be an irreducible non permutation matrix with entries in $\{0,1\}$ with N > 1. The Cuntz-Krieger algebra \mathcal{O}_A is defined to be the universal C^* -algebra generated by N partial isometries S_1, \ldots, S_N subject to the operator relations (see [8]):

(2.1)
$$\sum_{j=1}^{N} S_j S_j^* = 1, \quad S_i^* S_i = \sum_{j=1}^{N} A(i,j) S_j S_j^*, \quad i = 1, \dots N$$

It is a nuclear C^* -algebra uniquely determined by the operator relations (2.1) (see [8]). If the entries of A are all one's, the C^* -algebra \mathcal{O}_A is called the Cuntz algebra written \mathcal{O}_N ([6]).

In [8], Cuntz–Krieger pointed out the C^* -algebras \mathcal{O}_A are closely related to dynamical properties of underlying topological Markov shifts. Among other things, they proved that the weak extension group $\mathrm{Ext}_{\mathrm{w}}(\mathcal{O}_A)$ is isomorphic to the abelian group $\mathbb{Z}^N/(I-A)\mathbb{Z}^N$. The group $\mathbb{Z}^N/(I-A)\mathbb{Z}^N$ is known as the Bowen–Franks group that is a crucial invariant under flow equivalence class of the underlying two-sided topological Markov shift (see [3]). We note that the group $\mathrm{Ext}_{\mathrm{w}}(\mathcal{O}_A)$ was written as $\mathrm{Ext}(\mathcal{O}_A)$ in the Cuntz–Krieger's paper [8]. For the Cuntz algebra \mathcal{O}_N , both of the groups $\mathrm{Ext}_{\mathrm{s}}(\mathcal{O}_N)$ and $\mathrm{Ext}_{\mathrm{w}}(\mathcal{O}_N)$ had been computed as \mathbb{Z} and $\mathbb{Z}/(1-N)\mathbb{Z}$, respectively by Pimsner–Popa [17] and Paschke–Salinas [16].

In this paper, we will compute the strong extension group $\operatorname{Ext}_{s}(\mathcal{O}_{A})$ for \mathcal{O}_{A} and present a formula (2.3) stated in the theorem below. For $n=1,\ldots,N$, let $R_{n}=[R_{n}(i,j)]_{i,j=1}^{N}$ be the $N\times N$ matrix defined by

(2.2)
$$R_n(i,j) = \begin{cases} 1 & \text{if } i = n, \\ 0 & \text{otherwise,} \end{cases}$$

meaning that the only nth row is the vector [1, ..., 1] but the other rows are zero vectors. The homomorphisms $\iota_{\mathcal{A}} : \mathbb{Z} \longrightarrow \operatorname{Ext}_{s}(\mathcal{A})$ and $q_{\mathcal{A}} : \operatorname{Ext}_{s}(\mathcal{A}) \longrightarrow \operatorname{Ext}_{w}(\mathcal{A})$ in (1.1) for $\mathcal{A} = \mathcal{O}_{A}$ are denoted by $\iota_{A} : \mathbb{Z} \longrightarrow \operatorname{Ext}_{s}(\mathcal{O}_{A})$ and $q_{A} : \operatorname{Ext}_{s}(\mathcal{O}_{A}) \longrightarrow \operatorname{Ext}_{w}(\mathcal{O}_{A})$, respectively.

THEOREM 2.1 (Theorem 2.6 and Theorem 3.3). (i) The strong extension group $\operatorname{Ext}_{s}(\mathcal{O}_{A})$ for the Cuntz-Krieger algebra \mathcal{O}_{A} is

(2.3)
$$\operatorname{Ext}_{s}(\mathcal{O}_{A}) = \mathbb{Z}^{N}/(1-\widehat{A})\mathbb{Z}^{N}$$

where the matrix \widehat{A} is $\widehat{A} = A + R_1 - AR_1$.

(ii) The homomorphism $\iota_A \colon \mathbb{Z} \longrightarrow \operatorname{Ext}_{\operatorname{s}}(\mathcal{O}_A)$ in (1.1) is injective if

$$\det(I - A) \neq 0$$
.

Hence the short exact sequence

$$(2.4) 0 \longrightarrow \mathbb{Z} \xrightarrow{\iota_A} \operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_A) \xrightarrow{q_A} \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) \longrightarrow 0$$

holds if $det(I - A) \neq 0$.

The given proof in this paper for the formula (2.3), presented as Theorem 2.6, basically follows the proof of [8, Theorem 5.3] that showed the formula $\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) = \mathbb{Z}^N/(I-A)\mathbb{Z}^N$.

Among various extensions of the Cuntz–Krieger algebra \mathcal{O}_A , there is one specific extension called the Toeplitz extension $\sigma_{\mathcal{T}_A}$ of \mathcal{O}_A . It arises from the short exact sequence

$$(2.5) 0 \longrightarrow K(H_A) \xrightarrow{\iota} \mathcal{T}_A \xrightarrow{q} \mathcal{O}_A \longrightarrow 0$$

of the Toeplitz algebra \mathcal{T}_A on the sub Fock space H_A (cf. [10,12]). We will detect the positions of the Toeplitz extension $\sigma_{\mathcal{T}_A}$ of \mathcal{O}_A in the strong extension group $\operatorname{Ext}_{\mathbf{x}}(\mathcal{O}_A)$ and in the weak extension group $\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A)$ (Theorem 4.4). As a result, we will know that the group $\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A)$ with the position $[\mathcal{T}_A]_w$ of the Toeplitz extension $\sigma_{\mathcal{T}_A}$ in $\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A)$ is a complete invariant of the isomorphism class of the Cuntz-Krieger algebra \mathcal{O}_{A^t} for its transposed matrix A^t of A by using Rørdam's classification result (Corollary 4.5).

Let us denote by P_i the projection $S_iS_i^*$. Let $\sigma \colon \mathcal{O}_A \longrightarrow Q(H)$ be an extension. Put $e_i = \sigma(P_i)$. There exists a trivial extension $\tau \colon \mathcal{O}_A \longrightarrow Q(H)$ such that $\tau(P_i) = \sigma(P_i)$, i = 1, ..., N. As the partial isometry $\sigma(S_i)\tau(S_i^*)$ commutes with e_i , $e_i\sigma(S_i)\tau(S_i^*)e_i$ becomes a unitary in $e_iQ(H)e_i$. One may define $\operatorname{ind}_{e_i}\sigma(S_i)\tau(S_i^*)$ denoted by $d_i(\sigma,\tau)$, that is

$$d_i(\sigma, \tau) = \operatorname{ind}_{e_i} \sigma(S_i) \tau(S_i^*), \quad i = 1, \dots, N.$$

The proof of [8, Proposition 5.2] describes the following lemma. We give its proof for the sake of completeness.

LEMMA 2.2 [8, Proposition 5.2]. Let $\sigma: \mathcal{O}_A \longrightarrow Q(H)$ be an extension. Put $e_i = \sigma(P_i)$. Let $\tau_1, \tau_2 \colon \mathcal{O}_A \longrightarrow Q(H)$ be trivial extensions such that $\tau_j(P_i) = \sigma(P_i), \ j = 1, 2, \ i = 1, \dots, N$. Then there exists a vector $[k_i]_{i=1}^N \in \mathbb{Z}^N$ such that

(i)
$$d_i(\sigma, \tau_2) = d_i(\sigma, \tau_1) - k_i + \sum_{i=1}^N A(i, j) k_j$$
,

(ii)
$$\sum_{i=1}^{N} k_i = 0$$
.

PROOF. By Lemma 1.1, one may find a unitary $U \in B(H)$ such that $\tau_2(x) = \pi(U)\tau_1(x)\pi(U^*), x \in \mathcal{O}_A$. Put $u = \pi(U) \in Q(H)$. Since

$$(e_i u e_i)(e_i u e_i)^* = \tau_2(P_i)\pi(U)\tau_1(P_i)\pi(U^*)\tau_2(P_i) = \tau_2(P_i)\tau_2(P_i)\tau_2(P_i) = e_i$$

and similarly $(e_i u e_i)^*(e_i u e_i) = e_i$, we see that $e_i u e_i$ is a unitary in $e_i Q(H) e_i$. By putting $k_i = \text{ind}_{e_i} u$, the equality

(2.6)
$$d_i(\sigma, \tau_2) = d_i(\sigma, \tau_1) - k_i + \sum_{i=1}^{N} A(i, j) k_j$$

holds, following the proof of [8, Proposition 5.2]. In fact, we see that

$$d_{i}(\sigma, \tau_{2}) = \operatorname{ind}_{e_{i}} \sigma(S_{i}) \tau_{2}(S_{i}^{*}) = \operatorname{ind}_{e_{i}} \sigma(S_{i}) \sigma(S_{i}^{*}S_{i}) u \tau_{1}(S_{i}^{*}S_{i}) \tau_{1}(S_{i}^{*}) u^{*}$$

$$= \operatorname{ind}_{e_{i}} \sigma(S_{i}) \tau_{1}(S_{i}^{*}S_{i}) u \tau_{1}(S_{i}^{*}S_{i}) \tau_{1}(S_{i}^{*}) \tau_{1}(S_{i}S_{i}^{*}) u^{*}$$

$$= \operatorname{ind}_{e_{i}} \sigma(S_{i}) \tau_{1}(S_{i}^{*}) \left(\tau_{1}(S_{i}) \sum_{j=1}^{N} A(i, j) u \tau_{1}(S_{j}S_{j}^{*}) \tau_{1}(S_{i}^{*})\right) e_{i} u^{*}$$

$$= \operatorname{ind}_{e_{i}} \sigma(S_{i}) \tau_{1}(S_{i}^{*}) \left(\tau_{1}(S_{i}) \sum_{j=1}^{N} A(i, j) e_{j} u e_{j} \tau_{1}(S_{i}^{*})\right) e_{i} u^{*} e_{i}$$

$$= \operatorname{ind}_{e_{i}} \sigma(S_{i}) \tau_{1}(S_{i}^{*}) + \operatorname{ind}_{e_{i}} \left(\tau_{1}(S_{i}) \sum_{j=1}^{N} A(i, j) e_{j} u e_{j} \tau_{1}(S_{i}^{*})\right) + \operatorname{ind}_{e_{i}} u^{*}$$

$$= d_i(\sigma, \tau_1) + \sum_{i=1}^{N} A(i, j) \operatorname{ind}_{e_i} \tau_1(S_i) e_j u e_j \tau_1(S_i^*) - k_i.$$

As $\operatorname{ind}_{e_i} \tau_1(S_i) e_j u e_j \tau_1(S_i^*) = \operatorname{ind}_{e_j} u = k_j$ whenever A(i,j) = 1, we obtain equality (2.6).

Since $u = \pi(U)$ for some unitary U on H, Lemma 1.3 tells us

$$\sum_{i=1}^{N} k_i = \sum_{i=1}^{N} \operatorname{ind}_{e_i} u = \operatorname{ind}_{\sum_{i=1}^{N} e_i} u = \operatorname{ind} U = 0. \quad \Box$$

Define a subgroup $\operatorname{Im}(I-A)_0 \subset \mathbb{Z}^N$ by setting

$$\operatorname{Im}(I - A)_0 = \left\{ (I - A)[k_i]_{i=1}^N \in \mathbb{Z}^N \mid [k_i]_{i=1}^N \in \mathbb{Z}^N \text{ with } \sum_{i=1}^N k_i = 0 \right\}.$$

We thus see that an extension $\sigma \colon \mathcal{O}_A \longrightarrow Q(H)$ defines an element of $\mathbb{Z}^N/\mathrm{Im}(I-A)_0$ in a unique way by

$$d_{\sigma} := [d_i(\sigma, \tau)]_{i=1}^N \in \mathbb{Z}^N / \operatorname{Im}(I - A)_0$$

for a trivial extension $\tau \colon \mathcal{O}_A \longrightarrow Q(H)$ satisfying $\tau(P_i) = \sigma(P_i), i = 1, \dots, N$.

LEMMA 2.3. Let $\sigma_1, \sigma_2 \colon \mathcal{O}_A \longrightarrow Q(H)$ be extensions. If $\sigma_1 \sim_s \sigma_2$, then $d_{\sigma_1} = d_{\sigma_2}$ in $\mathbb{Z}^N/\mathrm{Im}(I - A)_0$.

PROOF. Assume that $\sigma_1 \sim_s \sigma_2$ so that, by Lemma 1.1, one may find a unitary V in B(H) such that $\sigma_2 = \operatorname{Ad}(\pi(V)) \circ \sigma_1$. Put $e_i^1 = \sigma_1(P_i)$, $e_i^2 = \sigma_2(P_i)$, $i = 1, \ldots, N$ and $v = \pi(V) \in Q(H)$, and hence $ve_i^1 v^* = e_i^2$. Take a trivial extension $\tau_1 \colon \mathcal{O}_A \longrightarrow Q(H)$ such that $\tau_1(P_i) = e_i^1$, $i = 1, \ldots, N$. We set $\tau_2 = \operatorname{Ad}(v) \circ \tau_1$ so that $\tau_2(P_i) = v\tau_1(P_i)v^* = e_i^2$. We then have

$$d_i(\sigma_2, \tau_2) = \operatorname{ind}_{e_i^2} \sigma_2(S_i) \tau_2(S_i^*) = \operatorname{ind}_{ve_i^1 v^*} v \sigma_1(S_i) \tau_1(S_i^*) v^* = d_i(\sigma_1, \tau_1). \quad \Box$$

Let us define $d_s : \operatorname{Ext}_{s}(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N/\operatorname{Im}(I-A)_0$ by setting

$$d_s([\sigma]_s) = \left[[d_i(\sigma, \tau)]_{i=1}^N \right] \in \mathbb{Z}^N / \operatorname{Im}(I - A)_0$$

for a trivial extension $\tau \colon \mathcal{O}_A \longrightarrow Q(H)$ satisfying $\tau(P_i) = \sigma(P_i), i = 1, \dots, N$.

Proposition 2.4. $d_s \colon \operatorname{Ext}_s(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N / \operatorname{Im}(I - A)_0$ is an isomorphism of groups.

PROOF. It is obvious that d_s : $\operatorname{Ext}_s(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N / \operatorname{Im}(I - A)_0$ is a homomorphism of groups. It remains to show that d_s is bijective. We will first show that d_s is injective. Let $\sigma \colon \mathcal{O}_A \longrightarrow Q(H)$ be an extension such

that $d_s([\sigma]_s) = 0$ in $\mathbb{Z}^N / \operatorname{Im}(I - A)_0$. Take a trivial extension τ such that $\tau(P_i) = \sigma(P_i), i = 1, \ldots, N$. Put $d_i = d_i(\sigma, \tau) \in \mathbb{Z}$. Let $\rho_\tau \colon \mathcal{O}_A \longrightarrow B(H)$ be a unital *-monomorphism such that $\tau = \pi \circ \rho_\tau$. By the assumption, there exists $[k_i]_{i=1}^N \in \mathbb{Z}^N$ such that

$$[d_i]_{i=1}^N = (I - A)[k_i]_{i=1}^N, \quad \sum_{i=1}^N k_i = 0.$$

Put $e_i = \tau(P_i)$ and $E_i = \rho_{\tau}(P_i)$ so that $\pi(E_i) = e_i$. Take an isometry or coisometry $V_i \in B(E_iH)$ such that $\operatorname{ind}(V_i) = -k_i$. Put $V = \sum_{i=1}^N V_i \in B(H)$ and $v = \pi(V)$. Since v is a unitary in Q(H) such that $\operatorname{ind}(v) = \sum_{i=1}^N \operatorname{ind}_{E_i}(V_i) = -\sum_{i=1}^N k_i = 0$, one may take a unitary U in B(H) such that $v = \pi(U)$. By following the proof of [8, Theorem 5.3], we have

$$\operatorname{ind}_{e_{i}} \pi(U)\sigma(S_{i})\pi(U^{*})\tau(S_{i}^{*})$$

$$= \operatorname{ind}_{e_{i}} \pi(V_{i})\sigma(S_{i})\sigma(S_{i}^{*}S_{i})\pi\left(\sum_{n=1}^{N} V_{n}^{*}\right)\tau(S_{i}^{*})$$

$$= \operatorname{ind}_{e_{i}} \pi(V_{i})\sigma(S_{i})\left(\sum_{j=1}^{N} A(i,j)\pi(E_{j})\right)\pi\left(\sum_{n=1}^{N} E_{n}V_{n}^{*}\right)\tau(S_{i}^{*})$$

$$= \operatorname{ind}_{e_{i}} \pi(V_{i})\sigma(S_{i})\sigma(S_{i}^{*}S_{i})\pi\left(\sum_{j=1}^{N} A(i,j)V_{j}^{*}\right)\tau(S_{i}^{*})$$

$$= \operatorname{ind}_{e_{i}} \pi(V_{i})\sigma(S_{i})\tau(S_{i}^{*})\left(\tau(S_{i})\pi\left(\sum_{j=1}^{N} A(i,j)V_{j}^{*}\right)\tau(S_{i}^{*})\right)$$

$$= \operatorname{ind}_{e_{i}} \pi(V_{i}) + \operatorname{ind}_{e_{i}} \sigma(S_{i})\tau(S_{i}^{*}) + \operatorname{ind}_{e_{i}} \tau(S_{i})\pi\left(\sum_{j=1}^{N} A(i,j)V_{j}^{*}\right)\tau(S_{i}^{*})$$

$$= -k_{i} + d_{i} + \sum_{j=1}^{N} A(i,j)\operatorname{ind}_{e_{i}} \tau(S_{i})\pi(V_{j}^{*})\tau(S_{i}^{*}).$$

Since $\operatorname{ind}_{e_i} \tau(S_i)\pi(V_j^*)\tau(S_i^*) = \operatorname{ind}_{e_j} \pi(V_j^*) = k_j$ whenever A(i,j) = 1, we have

$$\operatorname{ind}_{e_i} \pi(U)\sigma(S_i)\pi(U^*)\tau(S_i^*) = -k_i + d_i + \sum_{j=1}^N A(i,j)k_j = 0$$

so that there exists a unitary $W_i \in B(E_iH)$ on E_iH such that

$$\pi(U)\sigma(S_i)\pi(U^*)\tau(S_i^*) = \pi(W_i), \quad i = 1, \dots, N.$$

By putting $T_i = W_i \rho_{\tau}(S_i)$, i = 1, ..., N, we have

$$\sum_{j=1}^{N} T_j T_j^* = \sum_{j=1}^{N} W_j \rho_{\tau}(S_j) \rho_{\tau}(S_j^*) W_j^* = \sum_{j=1}^{N} W_j W_j^* = \sum_{j=1}^{N} E_j = 1,$$

and

$$T_i^* T_i = \rho_{\tau}(S_i^*) W_i^* W_i \rho_{\tau}(S_i) = \rho_{\tau}(S_i^*) \rho_{\tau}(S_i S_i^*) \rho_{\tau}(S_i) = \sum_{i=1}^N A(i,j) \rho_{\tau}(S_j S_j^*).$$

As $\rho_{\tau}(S_j S_j^*) = T_j T_j^*$, we see that $T_i^* T_i = \sum_{j=1}^N A(i,j) T_j T_j^*$. Since $\pi(U) = \pi(V) = \sum_{k=1}^N \pi(V_k)$ and $V_k \in B(E_k H)$, we have

$$\pi(U^*)\tau(S_i^*S_i) = \pi(V^*) \sum_{i=1}^N A(i,j)\tau(S_jS_j^*)$$

$$= \sum_{i=1}^{N} A(i,j) \sum_{k=1}^{N} \pi(V_k^* E_j) = \sum_{i=1}^{N} A(i,j) \pi(V_j^*)$$

and

$$\tau(S_i^* S_i) \pi(U^*) = \sum_{j=1}^N A(i,j) \tau(S_j S_j^*) \pi(V^*)$$

$$= \sum_{j=1}^{N} A(i,j) \sum_{k=1}^{N} \pi(E_j V_k^*) = \sum_{j=1}^{N} A(i,j) \pi(V_j^*)$$

so that $\pi(U^*)\tau(S_i^*S_i) = \tau(S_i^*S_i)\pi(U^*)$.

Define $\rho_{\sigma}(S_i) = T_i \in B(H), i = 1, ..., N$ so that $\rho_{\sigma} \colon \mathcal{O}_A \longrightarrow Q(H)$ is a unital *-monomorphism such that

$$\pi \circ \rho_{\sigma}(S_{i}) = \pi(W_{i}\rho_{\tau}(S_{i})) = \pi(U)\sigma(S_{i})\pi(U^{*})\tau(S_{i}^{*})\pi(\rho_{\tau}(S_{i}))$$

$$= \pi(U)\sigma(S_{i})\pi(U^{*})\tau(S_{i}^{*})\tau(S_{i})$$

$$= \pi(U)\sigma(S_{i})\tau(S_{i}^{*}S_{i})\pi(U^{*}) = \pi(U)\sigma(S_{i})\pi(U^{*}).$$

Hence we have $\operatorname{Ad}(\pi(U)) \circ \sigma = \pi \circ \rho_{\sigma}$. This shows that σ is strongly equivalent to the trivial extension $\pi \circ \rho_{\sigma}$ proving $[\sigma]_s = 0$ in $\operatorname{Ext}_s(\mathcal{O}_A)$.

We will next show that d_s is surjective. We will show that there exists an extension $\sigma \colon \mathcal{O}_A \longrightarrow Q(H)$ and a trivial extension $\tau \colon \mathcal{O}_A \longrightarrow Q(H)$ such that $\tau(P_i) = \sigma(P_i)$ denoted by e_i and

(2.7)
$$\operatorname{ind}_{e_i} \sigma(S_i) \tau(S_i^*) = \begin{cases} -1 & \text{if } i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Decompose the Hilbert space H as $H = H_1 \oplus \cdots \oplus H_N$ such that $\dim H_i = \dim H$, $i = 1, \ldots, N$. Take a nonzero vector $v_1 \in H_1$ and put its orthogonal complement $H_1^0 = \{\mathbb{C}v_1\}^{\perp} \cap H_1$ in H_1 . Let E_i be the orthogonal projection onto H_i , $i = 1, \ldots, N$. The orthogonal projection onto H_1^0 is denoted by E_1^0 , so that $\sum_{i=1}^N E_i = 1$ and $E_1 - E_1^0$ is the projection onto $\mathbb{C}v_1$. Take partial isometries T_1, \ldots, T_N and V_1, \ldots, V_N on H such that

$$T_1 T_1^* = E_1^0, \quad T_i T_i^* = E_i, \quad i = 2, \dots, N, \quad V_i V_i^* = E_i, \quad i = 1, \dots, N,$$

$$T_i^* T_i = V_i^* V_i = \sum_{j=1}^N A(i, j) E_j, \quad i = 1, \dots, N.$$

We know that

$$\pi(T_i)\pi(T_i)^* = \pi(V_i)\pi(V_i)^* = \pi(E_i), \quad \sum_{i=1}^N \pi(E_i) = 1,$$

$$\pi(T_i)^*\pi(T_i) = \pi(V_i)^*\pi(V_i) = \sum_{j=1}^N A(i,j)\pi(E_j), \quad i = 1,\dots, N.$$

By setting $\sigma(S_i) = \pi(T_i)$, $\tau(S_i) = \pi(V_i)$, i = 1, ..., N, we have extensions $\sigma, \tau \colon \mathcal{O}_A \longrightarrow Q(H)$ such that τ is a trivial extension. Put $e_i = \pi(E_i)$, i = 1, ..., N. Since $\sigma(S_i)\tau(S_i^*) = \pi(T_iV_i^*)$, i = 1, ..., N, we have

$$\operatorname{ind}_{e_i} \sigma(S_i) \tau(S_i^*) = \operatorname{ind}_{E_i} T_i V_i^*$$

so that the equality (2.7) holds. Therefore we have $d_s([\sigma]_s) = [(-1,0,\ldots,0)]$ in $\mathbb{Z}^N/\operatorname{Im}(I-A)_0$. One may show that $d_s \colon \operatorname{Ext}_s(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N/\operatorname{Im}(I-A)_0$ is surjective by a similar fashion. \square

Recall that the $N \times N$ matrix R_n for n = 1, ..., N is defined in (2.2).

LEMMA 2.5. For n = 1, 2, ..., N, put $\widehat{A}_n = A + R_n - AR_n$. Then we have

(2.8)
$$\operatorname{Im}(I - A)_0 = (I - \widehat{A}_n)\mathbb{Z}^N.$$

In particular for n = 1, we put $\widehat{A} = \widehat{A}_1$ so that we have $\text{Im}(I - A)_0 = (I - \widehat{A})\mathbb{Z}^N$.

PROOF. As $\text{Im}(I - A)_0 = \{(I - A)[k_i]_{i=1}^N \mid \sum_{i=1}^N k_i = 0\}$, a vector $[k_i]_{i=1}^N \in \mathbb{Z}^N$ satisfies $\sum_{i=1}^N k_i = 0$ if and only if $[k_i]_{i=1}^N = (I - R_n)[k_i]_{i=1}^N$. Hence we have

$$\operatorname{Im}(I - A)_0 = (I - A)(I - R_n)\mathbb{Z}^N.$$

Since
$$(I - A(I - R_n)) = I - \widehat{A}_n$$
, we have $\operatorname{Im}(I - A)_0 = (I - \widehat{A}_n)\mathbb{Z}^N$. \square

Therefore we reach the following theorem.

THEOREM 2.6. $\operatorname{Ext}_{s}(\mathcal{O}_{A}) \cong \mathbb{Z}^{N}/(I-\widehat{A})\mathbb{Z}^{N}$, where $\widehat{A} = A + R_{1} - AR_{1}$.

3. The homomorphism $\iota_A : \mathbb{Z} \longrightarrow \operatorname{Ext}_s(\mathcal{O}_A)$

For $m \in \mathbb{Z}$, take $k_1, \ldots, k_N \in \mathbb{Z}$ such that $m = \sum_{j=1}^N k_j$. Take trivial extensions $\tau, \tau' \colon \mathcal{O}_A \longrightarrow Q(H)$ such that $\tau(P_i) = \tau'(P_i)$ denoted by e_i , $i = 1, \ldots, N$. Let $\rho_{\tau}, \rho_{\tau'} \colon \mathcal{O}_A \longrightarrow B(H)$ be unital *-monomorphisms such that $\tau = \pi \circ \rho_{\tau}, \tau' = \pi \circ \rho_{\tau'}$, respectively. Put $E_i = \rho_{\tau}(P_i)$ so that $\pi(E_i) = e_i$. Take an isometry or coisometry $V_i \in B(E_iH)$ such that $\inf_{E_i} V_i = k_i$ and put $V = \sum_{i=1}^N V_i \in B(H)$. Hence we see that

$$ind_{e_i} \pi(V) = k_i, \quad i = 1, ..., N.$$

Recall that the extension $\sigma_m : \mathcal{O}_A \longrightarrow Q(H)$ is defined by setting $\sigma_m = \operatorname{Ad}(\pi(V)) \circ \tau : \mathcal{O}_A \longrightarrow Q(H)$. Put $d_i = d_i(\sigma_m, \tau') = \operatorname{ind}_{e_i} \sigma_m(S_i) \tau'(S_i^*)$. Then

$$d_s([\sigma_m]_s) = [(d_1, \dots, d_N)] \in \mathbb{Z}^N / (I - \widehat{A})\mathbb{Z}^N$$

does not depend on the choice of trivial extensions τ, τ' , because of Lemma 2.2 and Lemma 2.3.

PROPOSITION 3.1. Define $\hat{\iota}_A \colon \mathbb{Z} \longrightarrow \mathbb{Z}^N / (I - \widehat{A}) \mathbb{Z}^N$ by setting $\hat{\iota}_A(m) = [(I - A)[k_i]_{i=1}^N]$ for $m = \sum_{i=1}^N k_i$. Then we have

- (i) $\hat{\iota}_A(m) = [(I A)[k_i]_{i=1}^N]$ does not depend on the choice of $[k_i]_{i=1}^N$ as long as $m = \sum_{i=1}^N k_i$.
 - (ii) The diagram

$$\mathbb{Z} \xrightarrow{\iota_A} \operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_A)$$

$$\downarrow = \qquad \qquad \downarrow d_s$$

$$\mathbb{Z} \xrightarrow{\hat{\iota}_A} \mathbb{Z}^N / (I - \widehat{A}) \mathbb{Z}^N$$

is commutative, that is $d_s(\iota_A(m)) = \hat{\iota}_A(m)$, where $\iota_A(m) = [\sigma_m]_s$.

- (iii) The position $\hat{\iota}_A(1)$ in $\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$ is invariant under the isomorphism class of \mathcal{O}_A .
 - (iv) If $det(I A) \neq 0$, then we have a short exact sequence

$$(3.1) 0 \longrightarrow \mathbb{Z} \xrightarrow{\iota_A} \operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_A) \xrightarrow{q_A} \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) \longrightarrow 0.$$

PROOF. (i) Suppose that $m = \sum_{i=1}^{N} k_i = \sum_{i=1}^{N} k_i'$ for some $k_i, k_i' \in \mathbb{Z}$. Put $l_i = k_i - k_i'$ so that $\sum_{i=1}^{N} l_i = 0$ and

$$(I-A)[k_i]_{i=1}^N - (I-A)[k_i']_{i=1}^N = (I-A)[l_i]_{i=1}^N \in (I-\widehat{A})\mathbb{Z}^N$$

by Lemma 2.5. This shows that

$$[(I-A)[k_i]_{i=1}^N] = [(I-A)[k_i']_{i=1}^N]$$

in $\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$.

(ii) Keep the notation stated before Proposition 3.1. Since

$$d_i = \operatorname{ind}_{e_i} \sigma_m(S_i) \tau'(S_i^*)$$

does not depend on the choice of a trivial extension $\tau' : \mathcal{O}_A \longrightarrow Q(H)$ as long as $\tau(P_i) = \tau'(P_i)$, we may take τ' as τ . We then have

$$d_{i} = \operatorname{ind}_{e_{i}} \sigma_{m}(S_{i})\tau(S_{i}^{*}) = \operatorname{ind}_{e_{i}} \pi(V)\tau(S_{i})\pi(V^{*})\tau(S_{i}^{*})$$

$$= \operatorname{ind}_{e_{i}} \pi(V) + \operatorname{ind}_{e_{i}} \tau(S_{i})\pi(V^{*})\tau(S_{i}^{*}) = k_{i} + \operatorname{ind}_{\tau(S_{i}^{*}P_{i}S_{i})} \pi(V^{*})$$

$$= k_{i} + \sum_{j=1}^{N} A(i, j) \operatorname{ind}_{\tau(P_{j})} \pi(V^{*}) = k_{i} - \sum_{j=1}^{N} A(i, j)k_{j}$$

so that we obtain

$$d_s(\iota_A(m)) = d_s([\sigma_m]_s) = [d_i]_{i=1}^N = [(I - A)[k_i]_{i=1}^N] = \hat{\iota}_A(m).$$

(iii) By construction, the map $\iota_{\mathcal{A}} \colon m \in \mathbb{Z} \longrightarrow [\sigma_m]_s \in \operatorname{Ext}_s(\mathcal{A})$ as well as the position $\iota_{\mathcal{A}}(1)$ in $\operatorname{Ext}_s(\mathcal{A})$ is invariant under the isomorphism class of a C^* -algebra \mathcal{A} . For $\mathcal{A} = \mathcal{O}_A$, the assertion (ii) says that

$$\left(\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A}), \iota_{A}(1)\right) \cong \left(\mathbb{Z}^{N}/(I-\widehat{A})\mathbb{Z}^{N}, \hat{\iota}_{A}(1)\right)$$

so that the position of $\hat{\iota}_A(1)$ in the group $\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$ is invariant under the isomorphism class of \mathcal{O}_A .

(iv) Assume that $\det(I-A) \neq 0$. Let $m \in \mathbb{Z}$ satisfy $\iota_A(m) = 0$. Take $k_1, \ldots, k_N \in \mathbb{Z}$ such that $m = \sum_{i=1}^N k_i$ and hence $\hat{\iota}_A(m) = [(I-A)[k_i]_{i=1}^N]$.

As $\hat{\iota}_A(m) = d_s(\iota_A(m)) = 0$, there exists $[n_i]_{i=1}^N \in \mathbb{Z}^N$ such that $\sum_{i=1}^N n_i = 0$ and $\hat{\iota}_A(m) = (I - A)[n_i]_{i=1}^N$. We then have

$$(I-A)[k_i]_{i=1}^N = (I-A)[n_i]_{i=1}^N$$

By the assumption $\det(I-A) \neq 0$, we have $[n_i]_{i=1}^N = [k_i]_{i=1}^N$ so that $m = \sum_{i=1}^N n_i = 0$. \square

Since $I - \widehat{A} = (I - A)(I - R_1)$, the inclusion relation

$$(I - \widehat{A})\mathbb{Z}^N \subset (I - A)\mathbb{Z}^N$$

holds. There exists a natural quotient map

$$\hat{q}_A \colon \mathbb{Z}^N / (I - \widehat{A}) \mathbb{Z}^N \longrightarrow \mathbb{Z}^N / (I - A) \mathbb{Z}^N.$$

In [8], Cuntz–Krieger proved that the map

$$d_w \colon \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N/(I-A)\mathbb{Z}^N$$

defined by $d_w([\sigma]_w) = [(d_1, \ldots, d_N)] \in \mathbb{Z}^N / (I - A)\mathbb{Z}^N$ yields an isomorphism of groups.

Let us denote by $\operatorname{Ker}(I-A)$, $\operatorname{Ker}(I-\widehat{A})$ the subgroups of \mathbb{Z}^N defined by the kernels in \mathbb{Z}^N of the matrices I-A and of $I-\widehat{A}$, respectively. Define homomorphisms of groups

$$i_1 \colon \mathbb{Z} \longrightarrow \operatorname{Ker}(I - \widehat{A}), \quad j_A \colon \operatorname{Ker}(I - \widehat{A}) \longrightarrow \operatorname{Ker}(I - A),$$

 $s_A \colon \operatorname{Ker}(I - A) \longrightarrow \mathbb{Z}$

by setting

$$i_1 \colon n \longrightarrow \begin{bmatrix} n \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad j_A \colon [l_i]_{i=1}^N \longrightarrow \begin{bmatrix} -\sum_{i=2}^N l_i \\ l_2 \\ \vdots \\ l_N \end{bmatrix}, \quad s_A \colon [l_i]_{i=1}^N \longrightarrow \sum_{i=1}^N l_i.$$

Lemma 3.2. We have the following long exact sequence:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{i_1} \operatorname{Ker}(I - \widehat{A}) \xrightarrow{j_A} \operatorname{Ker}(I - A)$$

$$0 \longleftarrow \mathbb{Z}^N / (I - A) \mathbb{Z}^N \xleftarrow{\hat{q}_A} \mathbb{Z}^N / (I - \widehat{A}) \mathbb{Z}^N \xleftarrow{\hat{\iota}_A} \mathbb{Z}$$

PROOF. It suffices to show the exactness at the lower right corner

(3.2)
$$\operatorname{Ker}(I-A) \xrightarrow{s_A} \mathbb{Z} \xrightarrow{\hat{\iota}_A} \mathbb{Z}^N / (I-\widehat{A})\mathbb{Z}^N.$$

Suppose that $m \in \mathbb{Z}$ satisfies $\hat{\iota}_A(m) = 0$. Take $k_1, \ldots, k_N \in \mathbb{Z}$ such that $m = \sum_{i=1}^N k_i$ and hence $(I - A)[k_i]_{i=1}^N$ belongs to $\operatorname{Im}(I - A)_0$. There exists $[n_i]_{i=1}^N \in \mathbb{Z}^N$ such that $(I - A)[k_i]_{i=1}^N = (I - A)[n_i]_{i=1}^N$ and $\sum_{i=1}^N n_i = 0$. Put $l_i = k_i - n_i$. Hence $[l_i]_{i=1}^N \in \operatorname{Ker}(I - A)$ and $\sum_{i=1}^N l_i = \sum_{i=1}^N k_i = m$ so that $s_A([l_i]_{i=1}^N) = m$, proving $\operatorname{Ker}(\hat{\iota}_A) \subset s_A(\operatorname{Ker}(I - A))$.

Conversely, for $[l_i]_{i=1}^N \in \text{Ker}(I-A)$, we have

$$\hat{\iota}_A(s_A([l_i]_{i=1}^N)) = \hat{\iota}_A(\sum_{i=1}^N l_i) = [(I-A)[l_i]_{i=1}^N] = 0,$$

so that $s_A(\text{Ker}(I-A)) \subset \text{Ker}(\hat{\iota}_A)$. Hence the sequence (3.2) is exact at the middle. Exactness at the other places is easily seen. \square

Theorem 3.3. (i) The isomorphisms

$$d_w \colon \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N/(I-A)\mathbb{Z}^N, \quad d_s \colon \operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_A) \longrightarrow \mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$$

of groups and a homomorphism $\hat{\iota}_A \colon \mathbb{Z} \longrightarrow \mathbb{Z}^N / (I - \widehat{A}) \mathbb{Z}^N$ defined by $\hat{\iota}_A(m) = (I - A)[k_i]_{i=1}^N$ with $m = \sum_{i=1}^N k_i$ yield the commutative diagram:

$$\mathbb{Z} \xrightarrow{\iota_{A}} \operatorname{Ext}_{s}(\mathcal{O}_{A}) \xrightarrow{q_{A}} \operatorname{Ext}_{w}(\mathcal{O}_{A})$$

$$\downarrow = \qquad \qquad \downarrow d_{s} \qquad \qquad \downarrow d_{w}$$

$$\mathbb{Z} \xrightarrow{\hat{\iota}_{A}} \mathbb{Z}^{N}/(I-\widehat{A})\mathbb{Z}^{N} \xrightarrow{\hat{q}_{A}} Z^{N}/(I-A)\mathbb{Z}^{N}.$$

(ii) The pair $(\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N, \hat{\iota}_A(1))$ showing the position

$$\hat{\iota}_A(1) = \left[(I - A) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \right]$$

in the group $\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$ is invariant under the isomorphism class of \mathcal{O}_A . (iii) The homomorphism $\iota_A \colon \mathbb{Z} \longrightarrow \operatorname{Ext}_{\operatorname{s}}(\mathcal{O}_A)$ is injective if $\det(I-A)$ $\neq 0$. In this case, we have a short exact sequence

$$(3.3) 0 \longrightarrow \mathbb{Z} \xrightarrow{\iota_A} \operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_A) \xrightarrow{q_A} \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A) \longrightarrow 0.$$

4. Toeplitz extension

Among various extensions of \mathcal{O}_A , there is a specific extension $\sigma_{\mathcal{T}_A}$ of \mathcal{O}_A called the Toeplitz extension (cf. [10,12]). We fix an irreducible non permutation matrix $A = [A(i,j)]_{i,j=1}^N$ with entries in $\{0,1\}$. Let \mathbb{C}^N be an N-dimensional Hilbert space with orthonormal basis $\{\xi_1,\ldots,\xi_N\}$. Let H_0 be a one-dimensional Hilbert space with unit vector v_0 . Let $H^{\otimes n}$ be the n-fold tensor product $\mathbb{C}^N \otimes \cdots \otimes \mathbb{C}^N$. Consider the full Fock space $F_N = H_0 \oplus \left(\bigoplus_{n=1}^{\infty} H^{\otimes n}\right)$. Define a sub Fock space H_A to be the closed linear span of vectors

$$\{v_0\} \cup \{\xi_{i_1} \otimes \cdots \otimes \xi_{i_n} \mid A(i_j, i_{j+1}) = 1 \text{ for } j = 1, \dots, n-1, n = 1, 2, \dots \}.$$

Define creation operators T_i for i = 1, ..., N on H_A by

$$T_i v_0 = \xi_i,$$

$$T_i(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \begin{cases} \xi_i \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n} & \text{if } A(i, i_1) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let us denote by E_0 the rank one projection onto the subspace H_0 on H_A . The operators T_i , i = 1, ..., N on H_A are partial isometries satisfying the relations

(4.1)
$$\sum_{j=1}^{N} T_j T_j^* = 1 - E_0, \quad T_i^* T_i = \sum_{j=1}^{N} A(i,j) T_j T_j^* + E_0, \quad i = 1, \dots N$$

(see [10,12]). The Toeplitz algebra for the matrix A is defined to be the C^* -algebra $C^*(T_1,\ldots,T_N)$ on H_A generated by the partial isometries T_i , $i=1,\ldots,N$. By (4.1), we know that the correspondence $S_i \in \mathcal{O}_A \longrightarrow \pi(T_i) \in Q(H_A) = B(H_A)/K(H_A)$ gives rise to a unital *-monomorphism, that is called the Toeplitz extension denoted by $\sigma_{\mathcal{T}_A}$. In this section, we will detect the positions $d_s([\sigma_{\mathcal{T}_A}]_s)$ in $\operatorname{Ext}_s(\mathcal{O}_A)$ and $d_w([\sigma_{\mathcal{T}_A}]_w)$ in $\operatorname{Ext}_w(\mathcal{O}_A)$, respectively. The classes $[\sigma_{\mathcal{T}_A}]_s$ and $[\sigma_{\mathcal{T}_A}]_w$ are simply denoted by $[\mathcal{T}_A]_s$ and $[\mathcal{T}_A]_w$, respectively.

For $j=1,\ldots,N$, let $H_{A,j}$ be the closed linear subspace of H_A spanned by the vectors $\{\xi_j\otimes\eta\in H_A\mid\eta\in H_A\}$, so that $H_A=H_0\oplus H_{A,1}\oplus\cdots\oplus H_{A,N}$. Let us denote by $E_{A,i}$ the projection on H_A onto the subspace $H_{A,i}$. We then see that $E_0+\sum_{j=1}^N E_{A,j}=1$ and

(4.2)
$$T_i T_i^* = E_{A,i}, \quad T_i^* T_i = E_0 + \sum_{j=1}^N A(i,j) E_{A,j}, \quad i = 1, \dots N.$$

We fix $m \in \{1, ..., N\}$ for a while. By setting

$$H_j := \begin{cases} H_{A,j} \oplus H_0 & \text{if } j = m, \\ H_{A,j} & \text{if } j \neq m, \end{cases}$$

we have a decomposition $H_A = H_1 \oplus \cdots \oplus H_N$ of H_A depending on m. Let us denote by E_i the orthogonal projection on H_A onto the subspace H_i , so that we have $\sum_{j=1}^N E_j = 1$. Take a family of partial isometries V_1, \ldots, V_N on H_A satisfying the relations

(4.3)
$$V_i V_i^* = E_i, \quad V_i^* V_i = \sum_{j=1}^N A(i,j) E_j, \quad i = 1, \dots N.$$

LEMMA 4.1. For a fixed $m \in \{1, ..., N\}$, we have for i = 1, ..., N,

$$E_{i} = \begin{cases} E_{A,i} + E_{0} & \text{if } i = m, \\ E_{A,i} & \text{if } i \neq m, \end{cases} \quad V_{i}^{*}V_{i} = \begin{cases} T_{i}^{*}T_{i} & \text{if } A(i,m) = 1, \\ T_{i}^{*}T_{i} - E_{0} & \text{if } A(i,m) = 0. \end{cases}$$

For $i=1,\ldots,N$, the operator $T_iE_0T_i^*$ on H_A is a rank one projection on H_A onto the one-dimensional subspace spanned by the vector ξ_i . We note that the operator $T_iV_i^*: H_i \longrightarrow H_i$ is a (not necessarily onto) partial isometry. We then have

LEMMA 4.2. For i = 1, ..., N, we have $(T_i V_i^*)^* T_i V_i^* = V_i V_i^* = E_i$ and

(4.4)
$$T_{i}V_{i}^{*}(T_{i}V_{i}^{*})^{*} = \begin{cases} E_{i} - E_{0} & \text{if } i = m, \ A(i,m) = 1, \\ E_{i} - E_{0} - T_{i}E_{o}T_{i}^{*} & \text{if } i = m, \ A(i,m) = 0, \\ E_{i} & \text{if } i \neq m, \ A(i,m) = 1, \\ E_{i} - T_{i}E_{o}T_{i}^{*} & \text{if } i \neq m, \ A(i,m) = 0. \end{cases}$$

Since the partial isometries V_i , $i=1,\ldots,N$ on H_A satisfy (2.1), there exists a unital *-monomorphism $\tau_m \colon \mathcal{O}_A \longrightarrow B(H_A)$ satisfying $\tau_m(S_i) = V_i$, $i=1,\ldots,N$, so that $\pi \circ \tau_m \colon \mathcal{O}_A \longrightarrow Q(H_A)$ is a trivial extension. The above lemma says the following proposition.

PROPOSITION 4.3. For a fixed $m \in \{1, ..., N\}$, we have

(4.5)
$$d_{i}(\sigma_{\mathcal{T}_{A}}, \tau_{m}) = \begin{cases} -1 & \text{if } i = m, \ A(i, m) = 1, \\ -2 & \text{if } i = m, \ A(i, m) = 0, \\ 0 & \text{if } i \neq m, \ A(i, m) = 1, \\ -1 & \text{if } i \neq m, \ A(i, m) = 0. \end{cases}$$

PROOF. As $H_i = E_i H_A$ and

$$d_i(\sigma_{\mathcal{T}_A}, \tau_m) = \operatorname{ind}_{E_i} T_i V_i^*$$

$$= \dim(\operatorname{Ker}(T_i V_i^*) \text{ in } H_i) - \dim(\operatorname{Coker}(T_i V_i^*) \text{ in } H_i)$$

$$= -\dim(H_i/T_i V_i^* (T_i V_i^*)^* H_i),$$

we get the formula (4.5) by (4.4). \square

Therefore we have

THEOREM 4.4. Let us denote by $[\mathcal{T}_A]_*$ the class in $\operatorname{Ext}_*(\mathcal{O}_A)$ of the Toeplitz extension $\sigma_{\mathcal{T}_A}$ of \mathcal{O}_A . We then have

(i)
$$d_s([\mathcal{T}_A]_s) = -\hat{\iota}_A(1) - [1_N] \text{ in } \mathbb{Z}^N/(I - \widehat{A})\mathbb{Z}^N,$$

(ii)
$$d_w([\mathcal{T}_A]_w) = -[1_N]$$
 in $\mathbb{Z}^N/(I-A)\mathbb{Z}^N$,

where $[1_N] = [(1, ..., 1)]$ means the class of the vector $(1, ..., 1) \in \mathbb{Z}^N$

PROOF. Let us denote by $v(m) \in \mathbb{Z}^N$ the column vector in \mathbb{Z}^N whose mth component is one and the other components are zero's. Denote by $(1,\ldots,1)^t$ the column vector defined by the transpose of the row vector whose components are all one's. By (4.5), we have

$$[d_i(\sigma_{\mathcal{T}_A}, \tau_m)]_{i=1}^N = -(1, \dots, 1)^t - v(m) + [A(i, m)]_{i=1}^N$$

$$= -(I - A)v(m) - (1, \dots, 1)^t.$$

Since $[(I-A)v(m)] = \hat{\iota}_A(1)$ in $\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$, we have

$$d_s([\mathcal{T}_A]_s) = -\hat{\iota}_A(1) - [1_N]$$

in
$$\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N$$
. As $\hat{\iota}_A(1)=0$ in $\mathbb{Z}^N/(I-A)\mathbb{Z}^N$, we have $d_w([\mathcal{T}_A]_w)=-[1_N]$ in $\mathbb{Z}^N/(I-A)\mathbb{Z}^N$. \square

By virtue of the Rørdam's classification theorem for Cuntz-Krieger algebras [19] (cf. [7,11]) showing that the K_0 -group $K_0(\mathcal{O}_A)$ with the position of the class [1] of the unit 1 of \mathcal{O}_A in $K_0(\mathcal{O}_A)$ is a complete invariant of the isomorphism class of the algebra \mathcal{O}_A , we obtain the following corollary.

COROLLARY 4.5. The pair $(\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A), [\mathcal{T}_A]_w)$ of the weak extension group $\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A)$ and the weak equivalence class $[\mathcal{T}_A]_w$ of the Toeplitz extension $\sigma_{\mathcal{T}_A}$ of the Cuntz-Krieger algebra \mathcal{O}_A is a complete invariant of the isomorphism class of the Cuntz-Krieger algebra \mathcal{O}_{A^t} for the transposed matrix A^t of the matrix A. This shows that two Cuntz-Krieger algebras \mathcal{O}_A and \mathcal{O}_B are isomorphic if and only if there exists an isomorphism $\varphi \colon \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_{A^t}) \to \operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_{B^t})$ of groups such that $\varphi([\mathcal{T}_{A^t}]_w) = [\mathcal{T}_{B^t}]_w$.

PROOF. As $K_0(\mathcal{O}_{A^t}) \cong \mathbb{Z}^N/(I-A)\mathbb{Z}^N$ and $(\mathbb{Z}^N/(I-A)\mathbb{Z}^N, -[1_N]) \cong (\mathbb{Z}^N/(I-A)\mathbb{Z}^N, [1_N])$, we have

$$(\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_A), [\mathcal{T}_A]_w) \cong (\mathbb{Z}^N/(I-A)\mathbb{Z}^N, [1_N]) \cong (K_0(\mathcal{O}_{A^t}), [1]).$$

By virtue of the Rørdam's classification result for Cuntz–Krieger algebras [19] ([7], cf. [11]), we obtain the desired assertion. \Box

REMARK 4.6. (i) The position $[\mathcal{T}_A]_*$ in $\operatorname{Ext}_*(\mathcal{O}_A)$ is not necessarily invariant under the isomorphism class of \mathcal{O}_A (see Example 2 in the next section).

(ii) The abelian groups $\operatorname{Ext}_{\operatorname{w}}(\mathcal{O}_A)$ and $K_0(\mathcal{O}_A)$ are isomorphic, and two C^* -algebras $\mathcal{O}_A \otimes K(H)$ and $\mathcal{O}_{A^t} \otimes K(H)$ are always isomorphic for every matrix A. There is however an example of an irreducible non permutation matrix A such that \mathcal{O}_A is not isomorphic to \mathcal{O}_{A^t} as in the classification table in [11] of the Cuntz-Krieger algebras for 3×3 matrices (see also [11, Example 2.1], or Example 4 in the next section).

5. Examples

EXAMPLE 1. Let
$$A = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$
 be the $N \times N$ matrix whose entries

are each one with N > 1. The Cuntz-Krieger algebra \mathcal{O}_A is nothing but the Cuntz algebra \mathcal{O}_N (see [6]). The element $\iota_A(1)$ in $\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_N)$ is denoted by $\iota_N(1)$. The Toeplitz algebra \mathcal{T}_A is also denoted by \mathcal{T}_N . As $AR_1 = A$, we have $\widehat{A} = A + R_1 - AR_1 = R_1$, so that

$$I - \widehat{A} = \begin{bmatrix} 0 & -1 & -1 & \cdots & -1 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$

Define

$$L_N = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \quad \text{so that} \quad L_N(I - \widehat{A}) = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$

Hence L_N induces an isomorphism

$$\mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N \longrightarrow L_N\mathbb{Z}^N/L_N(I-\widehat{A})\mathbb{Z}^N \cong \mathbb{Z}$$

such that

$$[v] \in \mathbb{Z}^N/(I-\widehat{A})\mathbb{Z}^N \longrightarrow [L_N v] \in L_N \mathbb{Z}^N/L_N(I-\widehat{A})\mathbb{Z}^N \longrightarrow (L_N v)_1 \in \mathbb{Z}.$$

For

$$[v] = \hat{\iota}_N(1) = \begin{bmatrix} (I - A) & 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

we see that

$$L_N v = L_N (I - A) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - N \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

so that $(L_N v)_1 = 1 - N$. Therefore we have $(\operatorname{Ext}_s(\mathcal{O}_N), \iota_N(1)) \cong (\mathbb{Z}, 1 - N)$ and hence the exact sequence (3.3) goes to

$$(5.1) 0 \longrightarrow \mathbb{Z} \xrightarrow{\times (1-N)} \mathbb{Z} \xrightarrow{q} \mathbb{Z}/(1-N)\mathbb{Z} \longrightarrow 0.$$

By using Theorem 4.4, one may easily compute that

$$(\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_N), [\mathcal{T}_N]_w) \cong (\mathbb{Z}/(1-N)\mathbb{Z}, -1),$$

$$(\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_N), [\mathcal{T}_N]_s, \iota_N(1)) \cong (\mathbb{Z}, -1, 1-N).$$

EXAMPLE 2. Let us denote by F the Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. It is well-known that the Cuntz–Krieger algebra \mathcal{O}_F is isomorphic to the Cuntz algebra \mathcal{O}_2 . Hence we have $\operatorname{Ext}_{\operatorname{w}}(\mathcal{O}_F) \cong \operatorname{Ext}_{\operatorname{w}}(\mathcal{O}_2) \cong \{0\}$, and $\operatorname{Ext}_{\operatorname{s}}(\mathcal{O}_F) \cong \operatorname{Ext}_{\operatorname{s}}(\mathcal{O}_2) \cong \mathbb{Z}$. By the formula in Theorem 4.4 together with the above Example 1, we see

$$(\operatorname{Ext}_{s}(\mathcal{O}_{F}), [\mathcal{T}_{F}]_{s}, \iota_{F}(1)) = (\mathbb{Z}, -2, -1),$$

$$(\operatorname{Ext}_{s}(\mathcal{O}_{2}), [\mathcal{T}_{2}]_{s}, \iota_{2}(1)) = (\mathbb{Z}, -1, -1).$$

Hence the position $[\mathcal{T}_F]_s$ in $\operatorname{Ext}_s(\mathcal{O}_F)$ is different from the position $[\mathcal{T}_2]_s$ in $\operatorname{Ext}_s(\mathcal{O}_2)$.

EXAMPLE 3. The weak extension groups $\operatorname{Ext}_{\operatorname{w}}(\mathcal{O}_{A_i})$, i=1,2,3,4 of \mathcal{O}_{A_i} , i=1,2,3,4 for the following list of matrices A_i , i=1,2,3,4 have been presented in [8, Remark 3.4]. Their strong extension groups $\operatorname{Ext}_{\operatorname{s}}(\mathcal{O}_{A_i})$ with the positions of the element $\iota_{A_i}(1)$, i=1,2,3,4 are easily computed by using Theorem 3.3. We also easily know the positions $[\mathcal{T}_{A_i}]_*$ in $\operatorname{Ext}_*(\mathcal{O}_{A_i})$ by Theorem 4.4. We present the list in the following, computed without difficulty by hand.

•
$$A_1 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $(\text{Ext}_{\mathbf{w}}(\mathcal{O}_{A_1}), [\mathcal{T}_{A_1}]_w) \cong (\mathbb{Z}/3\mathbb{Z}, 2)$,

$$(\operatorname{Ext}_{s}(\mathcal{O}_{A_{1}}), [\mathcal{T}_{A_{1}}]_{s}, \iota_{A_{1}}(1)) \cong (\mathbb{Z}, 4, 3).$$

•
$$A_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $(\text{Ext}_{\mathbf{w}}(\mathcal{O}_{A_2}), [\mathcal{T}_{A_2}]_w) \cong (\mathbb{Z}/4\mathbb{Z}, 2)$,

$$(\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A_2}), [\mathcal{T}_{A_2}]_s, \iota_{A_2}(1)) \cong (\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, -2 \oplus 0, 2 \oplus 1).$$

•
$$A_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $(\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_{A_3}), [\mathcal{T}_{A_3}]_{\mathbf{w}}) \cong (\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, 0 \oplus 0)$,

 $(\operatorname{Ext}_{s}(\mathcal{O}_{A_{3}}), [\mathcal{T}_{A_{3}}]_{s}, \iota_{A_{3}}(1)) \cong (\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, -2 \oplus 0 \oplus 0, 1 \oplus 1 \oplus 1).$

•
$$A_4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $(\operatorname{Ext}_{\mathbf{w}}(\mathcal{O}_{A_4}), [\mathcal{T}_{A_4}]_w) \cong (\mathbb{Z}, -1)$,

$$(\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A_4}), [\mathcal{T}_{A_4}]_s, \iota_{A_4}(1)) \cong (\mathbb{Z} \oplus \mathbb{Z}, -2 \oplus (-1), 1 \oplus 0).$$

Example 4. The matrices

$$A_5 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A_6 = A_5^t = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

are examples presented in [11, Example 2.1] such that $(K_0(\mathcal{O}_{A_5}),[1]) \cong (\mathbb{Z}/2\mathbb{Z},1)$ and $(K_0(\mathcal{O}_{A_6}),[1]) \cong (\mathbb{Z}/2\mathbb{Z},0)$, so that \mathcal{O}_{A_5} is not isomorphic to \mathcal{O}_{A_6} . We then see that

$$(\operatorname{Ext}_w(\mathcal{O}_{A_5}), [\mathcal{T}_{A_5}]_w) \cong (\mathbb{Z}/2\mathbb{Z}, 0), \quad (\operatorname{Ext}_w(\mathcal{O}_{A_6}), [\mathcal{T}_{A_6}]_w) \cong (\mathbb{Z}/2\mathbb{Z}, 1).$$

We also easily see that

$$(\operatorname{Ext}_{s}(\mathcal{O}_{A_{5}}), [\mathcal{T}_{A_{5}}]_{s}, \iota_{A_{5}}(1)) \cong (\mathbb{Z}, -2, -2),$$

$$(\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A_6}), [\mathcal{T}_{A_6}]_s, \iota_{A_6}(1)) \cong (\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, -1 \oplus 0, -1 \oplus (-1)),$$

and hence $\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A_5})$ is not isomorphic to $\operatorname{Ext}_{\mathbf{s}}(\mathcal{O}_{A_6})$.

Some of the results in this paper will be generalized to more general setting in a class of C *-algebras associated with symbolic dynamical systems in [15].

Acknowledgement. The author would like to thank Joachim Cuntz for his useful comments and suggestions on a preliminary version of this paper. The author expresses his thanks to the referee for careful reading and lots of helpful advices and suggestions in the presentation of the paper.

References

- [1] W. B. Arveson, Notes on extensions of C^* -algebras, Duke Math. J., 44 (1977), 329–335.
- B. E. Blackadar, K-theory for Operator Algebras, MSRI Publications, 5, Springer-Verlag (Berlin, Heidelberg, New York, 1986).
- [3] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2), 106 (1977), 73–92.
- [4] L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras and K-homology, Ann. of Math. (2), 105 (1977), 265–324.
- [5] M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. (2), 104 (1976), 585–609.
- [6] J. Cuntz, Simple C^* -algebras generated by isometries, Comm. Math. Phys., **57** (1977), 173–185.
- [7] J. Cuntz, A class of C^* -algebras and topological Markov chains II: reducible chains and the Ext-functor for C^* -algebras, *Invent. Math.*, **63** (1980), 25–40.
- [8] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math., 56 (1980), 251–268.
- [9] R. G. Douglas, C*-algebra extensions and K-homology, Princeton University Press (Princeton, NJ. 1980).
- [10] M. Enomoto, M. Fujii and Y. Watatani, Tensor algebras on the sub Fock space associated with O_A, Math. Japon., 24 (1979), 463–468.
- [11] M. Enomoto, M. Fujii and Y. Watatani, K_0 -groups and classifications of Cuntz–Krieger algebras, *Math. Japon.*, **26** (1981), 443–460.
- [12] D. Evans, Gauge actions on \mathcal{O}_A , J. Operator Theory, 7 (1982), 79–100.
- [13] N. Higson and J. Roe, Analytic K-homology, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press (Oxford, 2000).
- [14] G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 571–636, 719 (in Russian); translated in Math. USSR Izvestiya, 16 (1981), 513–572.
- [15] K. Matsumoto, Extension groups for the C^* -algebras associated with λ -graph systems, arXiv:2405.03204 (2024).
- [16] W. L. Paschke and N. Salinas, Matrix algebras over \mathcal{O}_n , Michigan Math. J., **26** (1979), 3–12.
- [17] M. Pimsner and S. Popa, The Ext-groups of some C^* -algebras considered by J. Cuntz, Rev. Roumaine Math. Pures Appl., 23 (1978), 1069–1076.

ON STRONG EXTENSION GROUPS OF CUNTZ-KRIEGER ALGEBRAS

- [18] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-products C*-algebras, J. Operator Theory, 4 (1980), 93–118.
- [19] M. Rørdam, Classification of Cuntz-Krieger algebras, K-theory, 9 (1995), 31–58.
- [20] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl., 21(1976), 97–113.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.