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Abstract. Motivated by [19] and [10], we define the modified proximity
function mq(f, r) for entire curves in complex projective space P

n
C, and estab-

lish an asymptotic equality of Cartan’s Second Main Theorem. This is a general-
ization of [19, Theorem 1.6] for transcendental meromorphic functions. Moreover,
we strengthen the result to entire curves of finite order and holomorphic mappings
over multiple variables.

1. Introduction

Nevanlinna theory is a generalization of the fundamental theorem of al-
gebra to meromorphic maps between complex spaces. Classical Nevanlinna
theory consists of two fundamental theorems, which study the relation be-
tween the proximity function mf (r, a), counting function Nf (r, a) and char-
acteristic function Tf (r). (We will give the definitions later.) The First Main
Theorem (FMT) is just a reformulation of Poisson–Jensen formula and can
be derived directly from the definitions, while the Second Main Theorem
(SMT) is much deeper and more complicated. In some sense, Nevanlinna’s
SMT can be considered as a generalization of Riemann–Hurwitz formula.
However, the later is an equality while SMT is just an inequality. This
inspires a question that whether one can modify the SMT to an equality.
There are some early results about this question in [17]. But in previous re-
search, the SMT equality can only hold for certain restricted meromorphic
functions. Owing to the compatibility conditions in [3], it was believed that
the form of equality for SMT can not be literally true for all meromorphic
functions.
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In 2013, Yamanoi [19] proved the Gol’dberg conjecture and Mues’ conjec-
ture. His innovative technique consists of Ahlfors’ covering theory, holomor-
phic motions for quasimeromorphic functions and the tree theory for points
configurations. In his article, he modified the proximity function (with mov-
ing targets) and obtained an asymptotic equality of SMT for transcenden-
tal meromorphic functions. Soon later, Eremenko [3] applied the potential
theory and discussed the possibility of an asymptotic equality for higher-
dimensional cases. However, Eremenko’s modification is not optimal so that
the asymptotic equality only holds for a class of holomorphic curves defined
by solutions for linear differential equations.

Our work is motivated by the oscillation methods in [19] and the general
form of SMT in [10]. We define the modified proximity function mq(f, r),
which is a special case of multidivisor proximity function in [14], and gen-
eralize the asymptotic equality of SMT to the holomorphic curve in PnC.
Our main result reads as follows.

Theorem 1.1 (main theorem). Let f = [f0 : . . . : fn] : C → PnC be a
holomorphic curve that is non-degenerate. Let v : R>e → N>0 be a positive

function satisfying that v(r) ∼
(
log+ T (r)

log r

)20
. Then for any ε > 0, we have

(1.1) mv(r)+n+1(f, r) +NWf
(r, 0) = (n+ 1)Tf (r) + ε(Tf (r)),

for all r → ∞ outside an exceptional set of logarithmic density 0.

Here is the outline of our paper. After recalling the definitions and main
results in Nevanlinna theory, Section 2 introduces the asymptotic equality of
SMT for transcendental meromorphic functions in [19]. Section 3 defines the
modified proximity function mq(f, r) in higher-dimensional case and gives
the reversion of Cartan’s Second Main Theorem, which proves our Theo-
rem 1.1. Assuming v(r) to be arbitrarily slow growth, we also exhibit the
asymptotic SMT for entire curves of finite order. In Section 4, we describe
the main Theorem in the setting of several complex variables.

2. Holomorphic curves in projective space

2.1. Notations of Nevanlinna theory. We start to recall some nota-
tions and definitions in Nevanlinna theory. Under homogenous coordinates,
let f = [f0 : . . . : fn] : C → PnC be a holomorphic map where f0, . . . , fn are
holomorphic functions having no common zeros. Denote by f = (f0, . . . , fn)
the reduced representation of the entire curve f . Cartan’s characteristic
function Tf (r) is defined by

Tf (r) =

∫ 2π

0
log ‖f(reiθ)‖

dθ

2π
,

where ‖f(z)‖ = maxk=0,...,n|fk(z)|.
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A hyperplane H in PnC is given by

H =

{
[x0 : . . . : xn] ∈ PnC

∣∣∣
n∑

k=0

akxk = 0

}
,

where a = (a0, . . . , an) is the nonzero vector associated with H . The Weil
function λH(f(z)) of f with respect to H is defined by

λH(f(z)) = log
‖f(z)‖ · ‖a‖

|〈f(z),a〉|
,

where |〈f(z),a〉| is the inner product in Cn+1. We define the proximity func-
tion mf (r,H) of f with respect to H as

mf (r,H) =

∫ 2π

0
λH(f(reiθ))

dθ

2π
.

The counting function Nf (r,H) of f with respect to H is defined by

Nf (r,H) =

∫ r

0
(nf (t,H) − nf (0,H))

dt

t
+ nf (0,H) log r,

where nf (t,H) is the number (counting multiplicity) of zeros of |〈f(z),a〉| in

the disk {|z| < t}. And the truncated counting function N
[k]
f (r,H) is given

by

Nf (r,H) =

∫ 2π

0
(n[k]

f (t,H)− n
[k]
f (0,H))

dt

t
+ n

[k]
f (0,H) log r,

where n
[k]
f (t,H) is the number of zeros of |〈f(z),a〉| in the disk {|z| < t} with

multiplicity counted at most k times.

Remark 1. Note that the above functions are all independent of the
choice of homogenous coordinates.

Theorem 2.1 (First Main Theorem). Following the definitions above,
we derive from the Poincaré–Lelong formula that

Tf (r) = mf (r,H) +Nf (r,H) +O(1).

2.2. A general form of Second Main Theorem. There have been
many generalizations of Nevanlinna’s second main theorem, see [1], [15], [10]
and [12] etc. The following presentation of SMT appeared in [10]. It was
firstly introduced by Vojta [16] as an analogy of Schmidt’s subspace theorem
in number theory. Compared with the standard SMT, the author does not
make the assumption of “in the general position” for hyperplanes.
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4 Y. CHEN

Theorem 2.2 (Second Main Theorem of general form, [10, Theorem
2.1]). Let f = [f0 : . . . : fn] : C → PnC be a holomorphic curve whose im-

age is not contained in any proper subspaces. Let H1, . . . ,Hq be arbitrary

hyperplanes in PnC. Then for any ε > 0, we have

(2.1)

∫ 2π

0
max
K

∑

k∈K
λHk

(f(reiθ))
dθ

2π
+NWf

(r, 0) ≤ (n+1)Tf (r)+ εTf(r) ‖,

where the maximum is taken over all subsets K of {1, . . . , q} such that Hk,
k ∈ K are linearly independent, and the ramification term NWf

(r, 0) is the

counting function of the Wronskian fucntion W (f0, . . . , fn) with respect to f .

Here and for the rest of the paper, the notation ‖ at the end of the
inequality or equality means that it holds for all r > e outside a set of finite
Lebesgue measure.

The protagonist of the proof of Theorem 2.2 is the lemma of logarithmic
derivatives. Since we will use the same strategies to examine the error term
in next section, we list the lemmas here; for references, see [2] and [12].

Lemma 2.3 [12, Lemma A5.1.4]. Let f be a non-const meromorphic

function. l is a non-negative integer. For arbitrary α with 0 < αl < 1/2,
there exists constants C,C1, C2 such that for any r < ρ < R,

∫ 2π

0

∣∣∣∣
f (l)(reiθ)

f(reiθ)

∣∣∣∣
α dθ

2π
≤ C

( ρ

r(ρ− r)

)αl[
C1Tf (ρ) + C2 log

R

ρ(R− ρ)
Tf (ρ)

]αl
.

Lemma 2.4 [12, Lemma A3.2.4]. Let F be a non-decreasing, positive,
continuous function defined on [e,∞) such that F (r) ≥ e. Then for arbitrary

ε > 0, there exists a closed exceptional set E ⊂ [e,∞) of finite Lebesgue mea-

sure, satisfying that if we take ρ = r + 1
log1+ε F (r)

for all r > e and not in E,

we have

logF (ρ) ≤ logF (r) + 1,

and

log+
ρ

r(ρ− r)
≤ (1 + ε) log+ logF (r) + O(1).

From the concavity of log+, Lemma 2.3 and Lemma 2.4, it follows that

Lemma 2.5 (logarithmic derivative lemma). Let f be meromorphic func-

tion on C. Then for arbitrary k ≥ 1 and arbitrary ε > 0, we have

∫ 2π

0
log+

∣∣∣∣
f (k)(reiθ)

f(reiθ)

∣∣∣∣
dθ

2π
≤ εTf (r) ‖.
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2.3. Asymptotic equality of SMT for meromorphic functions.

In this subsection, we pass to the asymptotic equality of SMT for meromor-
phic functions. This is also the origin of our story. The reader is referred to
[19] for more details. Let f be a transcendental meromorphic function on C.
That is, f is a holomorphic map from C to P1C.

Definition 1 (modified proximity function, [19, p. 708]). Given a pos-
itive integer q and a real number r > e, we define

m0,q(f, r) = sup
(a1,...,aq)∈Cq

∫ 2π

0
max
1≤j≤q

log

√
1 + |f(reiθ)|2

√
1 + |aj |2

|f(reiθ)− aj |

dθ

2π
.

It is a natural question that whether Definition 1 will make sense or not.
We will show it in the next section (See also [19, Lemma 2.2]). Indeed, Ya-
manoi gave the definition more general when aj(z), j = 1 . . . , q, are rational
functions of degree less than or equal to d. But here, we only deal with the
case of d = 0, which means that aj are complex constants.

Yamanoi showed the lower estimate of m0,q(f, r) with the characteristic
function Tf (r), which makes Definition 1 very interesting. This is a reversion
of the standard SMT. The following theorem is a simple case of the original
result in [19].

Theorem 2.6 [19, Theorem 1.3]. Let f be a transcendental meromor-
phic function on C. Let v : R>e → N>0 be a positive function satisfying that

v(r) ∼
(
log+ Tf (r)

log r

)20
. Then for any ε > 0, we have

(2.2) 2Tf (r) ≤ m0,v(r) +Nf ′(r, 0) +N1(f, r,∞) + εTf (r),

where r → ∞ outside a set of logarithmic density 0.

Here, N1(f, r,∞) = Nf (r,∞)−N
[1]
f (r,∞) is the counting function with

multiplicity greater than 1, and Nf ′(r, 0) is the counting function of the
derivative f ′.

Remark 2. We say a set E is of logarithmic density 0, if it satisfies that

lim sup
r→∞

∫
E

dt
t

log r
= 0.

It is not difficult to verify that the condition of finite Lebesgue measure
implies the condition of logarithmic density 0.

Remark 3. We would like to emphasize the history that the question of
reversal of SMT is not newly proposed. Many mathematicians contributed
to these results; see [7], [17] and [4]. The innovative point here is the defini-
tion of modified approximation function.
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6 Y. CHEN

The proof of Theorem 2.6 is based on the oscillation estimate of the mero-
morphic function on small arcs of the circle {|z| = r}. For a meromorphic
function f , we put the oscillation function as

u(r, f, θ) = sup
τ∈[0,2π]

(
sup

t∈[τ,τ+θ]
log|f(reit)| − inf

t∈[τ,τ+θ]
log|f(reit)|

)
,

with respect to the parameters r, f , θ. The next proposition announces the
relationship between the oscillation function and the characteristic function.

Proposition 2.7 [19, Proposition 3.1]. Let f be a transcendental mero-

morphic function in the complex plane. Let ε > 0, then we have

u(r, f, λ(r)20) ≤ εTf (r),

for all r > e outside a set of logarithmic density zero. Here

λ(r) = min
{
1,
(
log+

Tf (r)

log r

)−1}
.

This is a very important and useful tool in the sequel. However, we will
not collect this wonderful but long proof in our article. The reader who
are interested can refer to [19, Section 3], which applies Poisson–Jensen for-
mula. Provided with Proposition 2.7, Yamanoi equi-divide the the circle
{|z| = r} into v(r) parts, where the oscillations hardly contribute. Together
with Taylor expansion of f(z), the characteristic function is bounded from
above by m.

Combining Theorem 2.6 and Theorem 2.2 (see also inequality (1.10) in
[19]), one can obtain the asymptotic equality of SMT for meromorphic func-
tions as follows.

Theorem 2.8 [19, Theorem 1.6]. Let f and v(r) be as above. Then for

any ε > 0, we have

(2.3) m0,v(r) +
∑

a∈Ĉ

N1(f, r, a) = 2Tf (r) + εTf (r),

where r → ∞ outside a set of logarithmic density 0.

To end this subsection, we would like to insert more explanations on
Theorem 2.6. By some direct computations, we can check that

Nf ′(r, 0) +N1(f, r,∞) =
∑

a∈P1C

N1(f, r, a).
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For the transcendental meromorphic function f(z), we can regard f(z) as a
holomorphic map from C to P1C. Let f(z) = [f0(z) : f1(z)]. The Wronskian
function of f is defined by

Wf (z) =

∣∣∣∣
f0(z) f1(z)
f ′
0(z) f ′

1(z)

∣∣∣∣ .

Then we have
∑

a∈P1C

N1(r, a, f) = NWf
(r, 0).

For any a ∈ P1C, we can define the hyperplane Ha like that

Ha =

{
[1 : −a], a ∈ C,

[0 : 1], a = ∞.

Then the inequality 2.2 becomes that

2Tf (r) ≤ sup
Ha1 ,...,Hav(r)

∫ 2π

0
max
k∈K

log
‖f‖·‖Hak

‖

|〈f,Hak
〉|

(reiθ)
dθ

2π
+NWf

(r, 0)+εTf (r),

where the maximum is taken over all subsets K of {1, . . . , v(r)} such that
ak, k ∈ K, are distinct complex numbers. This inspires us to generalize
Theorem 2.6 to higher dimension.

3. Asymptotic equality of SMT in PnC

In this section, we will imitate Definition 1 to modify the proximity func-
tion of the holomorphic curve in PnC. As explained in the end paragraph
of Section 2, we will generalize Theorem 2.6 to higher dimension and obtain
the asymptotic equality as a direct consequence. Readers who are familiar
with [10] and [19] will understand our techniques without any obstacles.

3.1. Preliminaries.

Definition 2 (modified proximity function). Let f = [f0 : . . . : fn] : C
→ PnC be a holomorphic map. For any positive integer q and r > e, we
define

mq(f, r) = sup
H1,...,Hq

∫ 2π

0
max
K

∑

k∈K
λHk

(f(reiθ))
dθ

2π
,

where the maximum is taken over all subsets K of {1, . . . , q} such that the
hyperplanes Hk, k ∈ K are linearly independent and the superior is taken
over all sets of q arbitrary hyperplanes in PnC.

Analysis Mathematica



8 Y. CHEN

As foreshowed in Section 2, we firstly show the finiteness of Definition
2. It clearly follows from [19, Remark 2.3 ]. For readers’ convenience, we
repeat and refine the proof here.

Lemma 3.1. Let f = [f0 : . . . : fn] : C → PnC be a holomorphic curve

which is non-degenerate. Let H be an arbitrary hyperplane in PnC. Then

we have

mf (1,H) ≤ C

for some positive constant C which only depends on f .

Proof. Assume on the contrary that there is a sequence of hyperplanes
{H1,H2, . . .} in PnC, such that mf (1,Hk) → ∞ as k → ∞. For each k,
denote by ak = (a0,k, . . . , an,k) the associated vectors of hyperplanes Hk. We
may select a suitable subsequence from {ak}

∞
k=1 that converges to an (n+1)-

vector a = (a0, . . . , an) ∈ C
n+1

. For some l, 0 ≤ l ≤ n, it is possible that the
l-th component al of a reveals to be ∞. Under homogenous coordinate, we
may assign al to be 1 and other finite components to be 0. In this setting,
we can reduce that the limit vector a ∈ Cn+1. Denote by H the hyperplane
associated to the vector a. Since f is non-degenerate, we can take a constant
0 < δ < 1 satisfying that

min
0≤θ≤2π

|〈f(δeiθ),a〉| > 0.

It implies that

sup
k

mf (δ,Hk) < ∞.

On the other hand, by Jensen formula, we have

∫ 1

δ

(∫

|z|≤t
f∗ωFS

)
dt

t
+O(1) =

∫ 1

δ
nf (r,Hk)

dt

t
+mf (1,Hk)−mf (δ,Hk),

where ωFS is the Fubini–Study metric defined in PnC. Since
∫ 1
δ nf (r,H) dt

t
≥ 0, we have

mf (δ,Hk) ≥ mf (1,Hk)−

∫ 1

δ

(∫

|z|≤t
f∗ωFS

)
dt

t
+O(1).

By our assumption at the very beginning, we have

lim sup
k→∞

mf (δ,Hk) → ∞.

This gives a contradiction. �
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AN ASYMPTOTIC EQUALITY OF CARTAN’S SECOND MAIN THEOREM 9

Remark 4. Let Cf = supH mf (1,H). For any hyperplane H , we have

mf (r,H) ≤ Cf(rz).

Let H1, . . . , Hq be q arbitrary hyperplanes in PnC. Thus for r > e, we have

∫ 2π

0
max
K

∑

k∈K
λHk

(f(reiθ))
dθ

2π
≤

q∑

j=1

mf (r,Hj)

=

q∑

j=1

mf(rz)(1,Hj) ≤ qCf(rz).

We can assert that mq(f, r) is finite.

3.2. Proof of the main result. Now we will introduce the main re-
sult of this article. It gives a lower estimate of mq(f, r) by Tf (r), and thus
infers an extension of Theorem 2.6.

Theorem 3.2. Let f = [f0 : . . . : fn] : C → PnC be a holomorphic curve

that is non-degenerate. Let v : R>e →N>0 satisfies that v(r) ∼
(
log+ T (r)

log r

)20
.

Then for arbitrary 0 < ε < 1, we have

(3.1) mv(r)+n+1(f, r) +NWf
(r, 0) + ε(Tf (r)) ≥ (n+ 1)Tf (r) +O(1),

for all r → ∞ outside an exceptional set of logarithmic density 0.

We firstly prove Theorem 1.1 as a corollary of Theorem 3.2 and Theo-
rem 2.2.

Proof of Theorem 1.1. Taking the superior over v(r) + n+1 hyper-
planes in PnC in Theorem 2.2, we have

mv(r)+n+1(f, r) +NWf
(r, 0) ≤ (n+ 1)Tf (r) + ε(Tf (r)) ‖.

Accompanied with Theorem 3.2, we complete the proof of Theorem 1.1. �

Before giving the direct proof of Theorem 3.2, we would like to describe
the main idea briefly. It is a combination of [19] and [10]. We equi-divide the
circle {|z| = r} into some small arcs, and then the estimate of oscillation in
Proposition 2.7 makes a great difference. On each arc, we select n+1 appro-
priate hyperplanes in general position according to the Wronskian function
Wf . Using integral formula, we bound mq(f, r) from below by NWf

(r, 0),
Tf (r) as well as the error terms. Lemmas 2.3–2.5 and Proposition 2.7 can
help us to control the errors. These techniques will produce a reversion of
Cartan’s SMT.
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10 Y. CHEN

Proof of Theorem 3.2. We will divide our proof into three steps.

Step 1: Select n+1 hyperplanes. We fix an r > e and work on the circle
{|z| = r}. Given a positive integer q, for j = 1, . . . , q, we put θj =

2πj
q and

zj = reiθj . In this way, we equi-divide the circle {|z| = r} into q parts and
{zj}

q
j=1 are q break points. Recall the definition of the Wronskian function

Wf (z) associated to f that

Wf (z) =

∣∣∣∣∣∣∣∣∣

f0(z) . . . fn(z)
f ′
0(z) . . . f ′

n(z)
... . . .

...

f
(n)
0 (z) . . . f

(n)
n (z)

∣∣∣∣∣∣∣∣∣
.

For each j = 1, . . . , q, we will restrict our proof to the j-th arc Θj =
{z = reiθ | θ ∈ [θj−1, θj ]}. We define the hyperplanes Dj in PnC as

Dj =

{
[x0 : . . . : xn] ∈ PnC :

n∑

k=0

ajkxk = 0

}
,

where the associated vector aj = (aj0, . . . , a
j
n) satisfies that each component

ajk, k = 0, . . . , n, is the cofactor of the Wronskian Wf (zj) with respect to the
entries f ′

k(zj). More precisely, for k = 0, . . . , n, we define

ajk = (−1)k+1

∣∣∣∣∣∣∣∣∣

f0(zj) . . . fk−1(zj) fk+1(zj) . . . fn(zj)

f
(2)
0 (zj) . . . f

(2)
k−1(zj) f

(2)
k+1(zj) . . . f

(2)
n (zj)

... . . .
...

... . . .
...

f
(n)
0 (zj) . . . f

(n)
k−1(zj) f

(n)
k+1(zj) . . . f

(n)
n (zj)

∣∣∣∣∣∣∣∣∣
.

Then we have

〈f(z),aj〉 =

∣∣∣∣∣∣∣∣∣∣∣

f0(zj) . . . fn(zj)
f0(z) . . . fn(z)

f
(2)
0 (zj) . . . f

(2)
n (zj)

... . . .
...

f
(n)
0 (zj) . . . f

(n)
n (zj)

∣∣∣∣∣∣∣∣∣∣∣

.

Moreover, we have

〈f(z),aj〉
∣∣
z=zj

= 0,

Analysis Mathematica



AN ASYMPTOTIC EQUALITY OF CARTAN’S SECOND MAIN THEOREM 11

and

(〈f(z),aj〉)′
∣∣
z=zj

=

∣∣∣∣∣∣∣∣∣

f0(zj) . . . fn(zj)
f ′
0(zj) . . . f ′

n(zj)
... . . .

...

f
(n)
0 (zj) . . . f

(n)
n (zj)

∣∣∣∣∣∣∣∣∣
= Wf (zj).

Thus, using the elementary integral formula, for any θ ∈ [θj−1, θj ], we
have

〈f(reiθ),aj〉 =

∫ θ

θj−1

〈f ′(reis),aj〉 d(reis).(3.2)

Then for any θ ∈ [θj−1, θj ], we obtain that

(3.3) |〈f(reiθ),aj〉| ≤ eτj(2πr),

where

τj = max
s∈(θj−1,θ]

log|Wf (re
is)|+ max

s∈(θj−1,θ]
log

|〈f ′(reis),aj〉|

|Wf (reis)|
.

By the definition of aj , we have

log
|〈f ′(reis),aj〉|
|Wf (reis)|

= log|〈f ′(reis),aj〉| − log|Wf (re
is)|(3.4)

≤ O(log|Wf (re
is)| − log|Wf (zj)|) ≤ O

(
u
(
r,Wf ,

2π

q

))
,

where u
(
r,Wf ,

2π
q

)
is the oscillation function defined before Proposition 2.7.

Combining (3.2), (3.3) and (3.4), we have

log
1

|〈f(reiθ),aj〉|
≥ −τj − log(2πr)

≥ − max
s∈(θj−1,θ]

log|Wf (re
is)| −O

(
u
(
r,Wf ,

2π

q

))
− log(2πr)

≥ log
1

|Wf (reiθ)|
+
(
log |Wf (re

iθ)| − max
s∈(θj−1,θ]

log |Wf (re
is)|

)

− O
(
u
(
r,Wf ,

2π

q

))
− log(2πr)

≥ log
1

|Wf (reiθ)|
−O

(
u
(
r,Wf ,

2π

q

))
− log(2πr),

for any θ ∈ [θj−1, θj ].
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Summing up q parts together, we have
∫ 2π

0
log

1

|Wf (reiθ)|

dθ

2π
(3.5)

≤

q∑

j=1

∫ θj

θj−1

log
1

|〈f(reiθ),aj〉|

dθ

2π
+O

(
u
(
r,Wf ,

2π

q

))
+ log(2πr).

Denote by Dk, k = 0, . . . , n, the n+ 1 coordinate hyperplanes in PnC
with

Dk = {[x0 : . . . : xn]|xk = 0},

and the associated vectors

ak = [a0,k : . . . : ak,k : . . . : an,k] = [0 : . . . : 1 : . . . : 0].

Assume that

‖aj‖ = max
0≤k≤n

|ajk| = |ajkj
|

=

∣∣∣∣∣∣∣∣∣∣

det




f0(zj) . . . fkj−1(zj) fkj+1(zj) . . . fn(zj)

f
(2)
0 (zj) . . . f

(2)
kj−1(zj) f

(2)
kj+1(zj) . . . f

(2)
n (zj)

... . . .
...

... . . .
...

f
(n)
0 (zj) . . . f

(n)
kj−1(zj) f

(n)
kj+1(zj) . . . f

(n)
n (zj)




∣∣∣∣∣∣∣∣∣∣

.

Then we can see that n+ 1 hyperplanes {Dj,D0, . . . ,Dkj−1,Dkj+1 . . . ,Dn}
are in general position.

Now using the definitions of Weil function and modified proximity func-
tion, it follows from the inequality (3.5) that

∫ 2π

0

(
log

1

|Wf (reiθ)|
+ (n+ 1) log ‖f(reiθ)‖

) dθ

2π
(3.6)

≤

q∑

j=1

∫ θj

θj−1

(
log

1

|〈f(reiθ),aj〉|
+ (n+ 1) log ‖f(reiθ)‖

) dθ

2π

+O
(
u
(
r,Wf ,

2π

q

))
+ log(2πr)

≤

q∑

j=1

∫ θj

θj−1

(
log

‖f(reiθ)‖ · ‖aj‖

|〈f(reiθ),aj〉|
+ log

‖f(reiθ)‖

|〈f(reiθ),a0〉|
+ · · ·

+ log
‖f(reiθ)‖

|〈f(reiθ),akj−1〉|
+ log

‖f(reiθ)‖

|〈f(reiθ),akj+1〉|
+ · · · + log

‖f(reiθ)‖

|〈f(reiθ),an〉|

)
dθ

2π
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+

q∑

j=1

∫ θj

θj−1

log
|f0 · · · f̂kj

· · · fn|(re
iθ)

‖aj‖

dθ

2π
+O

(
u
(
r,Wf ,

2π

q

))
+ log(2πr)

≤

q∑

j=1

∫ θj

θj−1

(
λDj(f) + λD0

(f) + · · · + ̂λDkj
(f) + · · ·+ λDn

(f)
)
(reiθ)

dθ

2π

+

q∑

j=1

∫ θj

θj−1

log
|f0 · · · f̂kj

· · · fn|(re
iθ)

‖aj‖

dθ

2π
+O

(
u
(
r,Wf ,

2π

q

))
+ log(2πr)

≤ mq+n+1(f, r) +

q∑

j=1

∫ θj

θj−1

log
|f0 · · · f̂kj

· · · fn|(re
iθ)

‖aj‖

dθ

2π

+O
(
u
(
r,Wf ,

2π

q

))
+ log(2πr).

Step 2: Estimate the error terms. Firstly, we consider the left-hand side
of (3.6). By Poincaré–Lelong formula, it is easy to see that

∫ 2π

0

(
log

1

|Wf (reiθ)|
+ (n+ 1) log ‖f(reiθ)‖

) dθ

2π
(3.7)

= (n+ 1)Tf (r)−NWf
(r, 0) +O(1).

Next, we will estimate the right-hand side of (3.6). For a fixed j, kj is
also a fixed integer in {0, . . . , n}. We define the coefficient functions

|ajkj
|(z) :=

∣∣∣∣∣∣∣∣∣∣

det




f0(z) . . . fkj−1(z) fkj+1(z) . . . fn(z)

f
(2)
0 (z) . . . f

(2)
kj−1(z) f

(2)
kj+1(z) . . . f

(2)
n (z)

... . . .
...

... . . .
...

f
(n)
0 (z) . . . f

(n)
kj−1(z) f

(n)
kj+1(z) . . . f

(n)
n (z)




∣∣∣∣∣∣∣∣∣∣

.

Then by previous assumption, we have

|ajkj
|(zj) = ‖aj‖,

the norm of the vector aj .

Claim 3.3. We have

log ‖aj‖

q
≤

∫ θj

θj−1

log
(
|ajkj

|(reiθ)
) dθ

2π
+

1

q
u
(
r, |ajkj

|(z),
2π

q

)
.
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Proof. We consider the following term:

Uj =
log ‖aj‖

q
−

∫ θj

θj−1

log
(
|ajkj

|(reiθ)
) dθ

2π
.

Since

u
(
r, |ajkj

|(z),
2π

q

)

= sup
τ∈[0,2π]

(
sup

t∈[τ,τ+ 2π

q
]

log
(
|ajkj

|(reit)
)
− inf

t∈[τ,τ+ 2π

q
]
log

(
|ajkj

|(reit)
))

,

we have

|Uj | =

∣∣∣∣
∫ θj

θj−1

(
log ‖aj‖ − log(|ajkj

|(reiθ))
) dθ

2π

∣∣∣∣

≤

∫ θj

θj−1

∣∣∣ log
(
|ajkj

|(zj)
)
− log

(
|ajkj

|(reiθ)
)∣∣∣ dθ

2π
≤

1

q
· u

(
r, |ajkj

|(z),
2π

q

)
. �

Now we go back to our proof. We use Claim 3.3 to assert that

q∑

j=1

∫ θj

θj−1

log
|f0 · · · f̂kj

· · · fn|(re
iθ)

‖aj‖

dθ

2π

≤

∣∣∣∣
q∑

j=1

∫ θj

θj−1

log
‖aj‖

|f0 · · · f̂kj
· · · fn|(reiθ)

dθ

2π

∣∣∣∣

≤

∣∣∣∣
q∑

j=1

∫ θj

θj−1

log
|ajkj

|(reiθ)

|f0 · · · f̂kj
· · · fn|(reiθ)

dθ

2π

∣∣∣∣+
q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)
.

Observing that

|ajkj
|(z) =

∣∣∣∣∣

kj−1∑

l=0

(−1)lfl(z)

×

( ∑

i0+···+in=
(n−1)(n+2)

2

f
(i0)
0 (z) · · · f̂l(z) · · · f̂kj

(z) · · · f (in)
n (z)

)

+
n∑

l=kj+1

(−1)lfl(z)

( ∑

i0+···+in=
(n−1)(n+2)

2

f
(i0)
0 (z) · · · f̂kj

(z) · · · f̂l(z) · · · f
(in)
n (z)

)∣∣∣∣∣,
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we have

q∑

j=1

∫ θj

θj−1

log
|ajkj

|(reiθ)

|f0 · · · f̂kj
· · · fn|(reiθ)

dθ

2π

=

q∑

j=1

∫ θj

θj−1

log
|ajkj

|(reiθ) · |fkj
(reiθ)|

|f0 · · · fkj
· · · fn|(reiθ)

dθ

2π

≤

q∑

j=1

∫ θj

θj−1

log+
(
|ajkj

|(reiθ) · |fkj
(reiθ)|

|f0 · · · fn|(reiθ)

)
dθ

2π

≤

∫ 2π

0
log+

( ∑

i0+···+in=
(n+2)(n−1)

2

|
f
(i0)
0

f0
| · · · |

f
(in)
n

fn
|(reiθ)

)
dθ

2π
.

By the definition of the characteristic function, we have

Tfl(r) ≤ Tf (r) +O(1)

for each l = 0, . . . , n. Let α > 0 and αn(n+ 1) < 1
2 . From the concavity of

the logarithm, Hölder inequality, Lemma 2.3 and the inequality
(∑

i ai
)α

≤ C
∑

i a
α
i , we deduce that

∫ 2π

0
log+

( ∑

i0+···+in=
(n+2)(n−1)

2

∣∣∣∣
f
(i0)
0

f0

∣∣∣∣ · · ·
∣∣∣∣
f
(in)
n

fn

∣∣∣∣(reiθ)
)

dθ

2π

≤
1

α

∫ 2π

0
log+

( ∑

i0+···+in=
(n+2)(n−1)

2

∣∣∣∣
f
(i0)
0

f0

∣∣∣∣ · · ·
∣∣∣∣
f
(in)
n

fn

∣∣∣∣(reiθ)
)α dθ

2π

≤
1

α
log+

{∫ 2π

0

∑

i0+···+in=
(n+2)(n−1)

2

(∣∣∣∣
f
(i0)
0

f0

∣∣∣∣ · · ·
∣∣∣∣
f
(in)
n

fn

∣∣∣∣(reiθ)
)α dθ

2π

}

≤
1

α
log+

{ ∑

i0+···+in=
(n+2)(n−1)

2

n∏

l=0

(∫ 2π

0

∣∣∣∣
f
(il)
l

fl
(reiθ)

∣∣∣∣
α(n+1) dθ

2π

) 1

n+1
}
+O(1)

≤
1

α
log+

{ ∑

i0+···+in=
(n+2)(n−1)

2

n∏

l=0

(( ρ

r(ρ− r)

)ilα

×
[
C1Tfl(ρ) + C2 log

+
( R

ρ(R− ρ)
Tfl(ρ)

)]ilα)}
+O(1)
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≤
(n+2)(n−1)

2
log+

{ ρ

r(ρ−r)

[
C1Tf (ρ)+C2 log

( R

ρ(R−ρ)
Tf (ρ)

)]}
+O(1).

For arbitrary ε > 0, if we put

R = r +
1

log1+ε Tf (r)
and ρ =

R+ r

2
= r +

1

2 log1+ε Tf (r)
,

then for r large enough, ρ
r ≤ 2, R

ρ ≤ 2, 1
ρ−r ≤ 2 log1+ε Tf (r) and 1

R−ρ ≤

4 log1+ε Tf (r). In addition, Lemma 2.4 implies that

Tf (ρ) ≤ Tf (r) + O(1) ‖.

Combining above inequalities, we have

q∑

j=1

∫ θj

θj−1

log
|f0 · · · f̂kj

· · · fn|(re
iθ)

‖aj‖

dθ

2π
(3.8)

≤

∫ 2π

0
log+

( ∑

i0+···+in=
(n+2)(n−1)

2

∣∣∣∣
f
(i0)
0

f0

∣∣∣∣ · · ·
∣∣∣∣
f
(in)
n

fn

∣∣∣∣(reiθ)
)

dθ

2π

+

q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)

≤
(n+ 2)(n− 1)

2
log+

{ ρ

r(ρ− r)

[
C1Tf (ρ) + C2 log

( R

ρ(R− ρ)
Tf (ρ)

)]}

+

q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)
+O(1)

≤
(n+ 2)(n− 1)

2

(
log Tf (r) + (1 + ε) log+ log Tf (r)

)

+

q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)
+O(1) ‖.

It follows from (3.6), (4.9) and (3.8) that

(n+ 1)Tf (r)−NWf
(r, 0)(3.9)

≤ mq+n+1(f, r) +

q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)
+ O

(
u
(
r,Wf ,

2π

q

))
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+
(n+ 2)(n− 1)

2

(
log Tf (r) + (1 + ε) log+ log Tf (r)

)
+ log(2πr) +O(1) ‖.

Step 3: End of the proof. In order to bound the error terms in (3.9), we
can always find a constant r0 such that

(n+2)(n−1)

2
( log Tf (r)+(1+ε) log+ logTf (r))+ log(2πr) +O(1) ≤ εTf (r)

for all r > r0.
For above ε > 0, by Proposition 2.7, we have

u(r,Wf , λWf
(r)20) ≤ εTWf

(r)

for all r > e outside a set E1 of logarithmic density zero. Here λWf
(r) =

min
{
1,
(
log+

TWf
(r)

log r

)−1}
. On the other hand, by Lemma 2.5 (logarithmic

derivative lemma), we have

TWf
(r) ≤ Cn · Tf (r)

outside a set E2 of finite Lebesgue measure, where Cn is a constant depen-
dent of n. Hence we obtain

u(r,Wf , λWf
(r)20) ≤ εTf (r)

for all r > e outside a set E1 ∪E2 of logarithmic density zero.
Again by Proposition 2.7 and Lemma 2.5, we have

u(r, |ajkj
|, λkj

(r)20) ≤ εTf (r), j = 1, . . . , q,

for all r > e outside a set E3 of logarithmic density zero. Here

λkj
(r) = min

{
1,

(
log+

T|aj

kj
|(r)

log r

)−1}
.

Recall the condition that v(r) ∼
(
log+ T (r)

log r

)20
. Hence for r sufficiently

large, we have 2π
v(r) < λ(r)20, where λ(r) = min

{
1,
(
log+ Tf (r)

log r

)−1}
. We can

find a constant r1 such that λ(r)20 < λWf
(r)20 and λ(r)20 < λkj

(r)20 for
r > r1 outside a set E1 ∪E2 ∪E3 of logarithmic density zero. Hence taking
q = v(r) in (3.9), we have

u
(
r,Wf ,

2π

v(r)

)
≤ εTf (r)
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and

u
(
r, |ajkj

|,
2π

v(r)

)
≤ εTf (r), j = 1, . . . , q,

for all r > e outside a larger set E4 = (e, r1] ∪E1 ∪E2 ∪ E3 of logarithmic
density zero.

Now we put E = [e, r0] ∪E4, which is a set of logarithmic density zero.
Combining above estimates, we have

(n+ 1)Tf (r)−NWf
(r, 0) ≤ mv(r)+n+1(f, r) + εTf (r)

for all r > e outside a larger set E of logarithmic density zero. Then we
finish. �

3.3. Application for holomorphic map of finite order. In the
following contexts, we will prove a homologous theorem, in which the term
v(r) in Theorem 1.1 is assumed to be arbitrary slow growth provided that
f(z) is of finite order. This is a parallel generalization of [20].

Let f be a holomorphic curve from C into the n-dimensional complex
projective space PnC. We define the order of f as

ρ(f) = lim sup
r→∞

log Tf (r)

log r
.

Like Theorem 3.2, the major step is to prove the reversal of Cartan’s SMT.
This is based on the oscillation estimate as Proposition 2.7.

Proposition 3.4 [20, Proposition 1]. Let f be a transcendental mero-
morphic function of finite order λ. Let ε > 0, then there exists a positive

constant θλ,ε such that

u(r, f, θλ,ε) ≤ εTf (r),

for all r > e outside a set Eλ,ε with log densEλ,ε < ε. Here u(r, f, θ) is the
oscillation function defined as Proposition 2.7.

Theorem 3.5 (finite-order version of Theorem 3.2). Let f = [f0 : . . . :
fn] : C → PnC be a holomorphic curve that is non-degenerate and that is
of finite order λ. For 0 < ε < 1, there exists an integer qλ,ε and a set Eλ,ε

⊂ [e,∞) with log densEλ,ε < ε such that the inequality

(3.10) mqλ,ε+n+1(f, r) +NWf
(r, 0) + o(Tf (r)) ≥ (n+ 1)Tf (r)

holds for all r > e outside Eλ,ε, where qλ,ε depends only on λ and ε.

Remark 5. Yamanoi [20] showed that θλ,ε = ε20/(21402120
λ

ε2 ) and qλ,ε =

⌈220327680
λ

ε2 /ε20⌉, where ⌈x⌉ is the smallest integer which is not less than x.
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Proof. Granted with Proposition 3.4, the proof here is quite similar to
Theorem 3.2. We omit the details of first two steps to avoid the repetition.
Now let us begin with an analogue of inequality (3.9). Let q > 0 be a positive
integer. We assert that

(n+ 1)Tf (r)−NWf
(r, 0)(3.11)

≤ mq+n+1(f, r) +

q∑

j=1

1

q
u
(
r, |ajkj

|(z),
2π

q

)
+O

(
u
(
r,Wf ,

2π

q

))

+
(n+ 2)(n− 1)

2

(
log Tf (r) + (1 + ε) log+ log Tf (r)

)
+ log(2πr) + O(1) ‖.

For 0 < ε < 1, we set q = qλ,ε = ⌈ 2π
θλ,ε

⌉. Note that Wronskian function Wf (z)

and the coefficient function |ajkj
|(z) have the same order λ. Combined with

lemma of logarithmic derivative, it yields that there exists a set E1 with
log densE1 < ε/4 such that

u(r,Wf , θλ, 2π

qλ,ε

) ≤
ε

4
Tf (r)

and

u(r, |ajkj
|(z), θλ, 2π

qλ,ε

) ≤
ε

4
Tf (r)

hold for all r > e outside E1. We can always find a constant r0 such that

(n+2)(n−1)

2

(
log Tf (r)+(1+ε) log+ log Tf (r)

)
+ log(2πr)+O(1) ≤

ε

2
Tf (r)

for all r > r0. Then we put Eλ,ε = [e, r0] ∪E1 with log densEλ,ε < ε. We
conclude (3.10) as desired. �

Corollary 3.6. Let f = [f0 : . . . : fn] : C → PnC be a holomorphic
curve that is non-degenerate and that is of finite order. Let v : R>e → N>0

be a positive function satisfying that v(r) → ∞ and log v(r) = o(Tf (r)) as
r → ∞. Then we have

(3.12) mv(r)+n+1(f, r) +NWf
(r, 0) = (n+ 1)Tf (r) + o(Tf (r)),

for all r → ∞ outside an exceptional set of logarithmic density 0.

Proof. There is still a narrow gap between our corollary and Theo-
rem 3.5. In Theorem 3.5, we take ε = 1

2n for any positive integer n. There
exists a rn > e such that v(r) > qλ, 1

2n
if r > rn. We define a set F 1

2n
⊂ [e,∞)

such that for any r ∈ F 1

2n
, we have

mv(r)+n+1(f, r) +NWf
(r, 0) +

1

2n
Tf (r) < (n+ 1)Tf(r).
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Then Theorem 3.5 yields that log densF 1

2n
< 1

2n . That is, we can select

rn > e such that for all r > rn, we have
∫
F 1

2n
∩[e,r]

dt
t

log r
<

1

2n
.

Thereby we obtain a sequence {rn}
∞
n=1 tending to ∞ as n tends to ∞. For

r ∈ [rn, rn+1), we define ε(r) = 1
2n . Define a set F ∈ [r1,∞) such that for

any r ∈ F , we have

mv(r)+n+1(f, r) +NWf
(r, 0) + ε(r)Tf(r) < (n+ 1)Tf (r).

Similarly we have
∫
F∩[r1,r]

dt
t

log r
<

1

2n

for any r ∈ [rn, rn+1). It implies that

lim
r→∞

∫
F∩[e,r]

dt
t

log r
= 0

as limr→∞ ε(r) = 0. Thus the inequality (3.12) holds when r → ∞ outside
the set F of logarithmic density 0. �

4. Asymptotic equality of SMT for holomorphic mappings
over Cp

We fix p a positive integer for what follows. Let f : Cp → PnC be a
linearly non-degenerate holomorphic mapping. The main purpose of this
section is to strengthen the asymptotic equality of SMT for holomorphic
mappings by implementing the definition of geometric generalized Wron-
skians in [5].

Theorem 4.1. Given 1 ≤ p ≤ n, let f = [f0 : . . . : fn] : C
p → PnC be a

holomorphic mapping that is non-degenerate. Let v : R>e → N>0 satisfies

that v(r) ∼
(
log+ Tf (r)

log r

)20
. Then there exists a full set S and the associated

geometric generalized Wronskian WS such that for arbitrary 0 < ε < 1, we
have

(4.1) mpv(r)+n+1(f, r) +NWS ,f (r, 0) + ε(Tf (r)) = (n+ 1)Tf (r) +O(1),

for all r → ∞ outside an exceptional set of logarithmic density 0.

Theorem 4.1 is obviously derived from Theorem 4.4 (general form of
SMT) and Theorem 4.7 (recersion of SMT).
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4.1. Preliminaries of Nevanlinna theory in several complex
variables. First we recall some notations. For z = (z1, . . . , zp) in Cp, we

define the norm as |z| =
√
|z1|2 + · · · + |zn|2. Denote by

ω(z) = ddc log|z|2

the homogeneous metric form on Cp and denote by

v(z) = ddc|z|2, σp(z) = dc log|z|2 ∧ ω(z)p−1

where d = ∂ + ∂ and dc =
√
−1
4π (∂ − ∂). Put

Bp(r) = {z ∈ Cp | |z| < r}

the ball of radius r in Cp, and the sphere

Sp(r) = ∂Bp(r) = {z ∈ Cp | |z| = r}.

It is clear that the total measure of the form σp(z) along Sp(r) will be 1.
Let f = [f0 : . . . : fn] : C

p → PnC be a holomorphic mapping under the
homogeneous coordinate [w0 : . . . : wn] of P

nC. For each hyperplane H =
{[w0 : . . . : wn] ∈ PnC | a0w0 + · · ·+ anwn = 0} associated with the non-zero
vector a = (a0, . . . , an) in Cn+1, we suppose that the image of f does not
degenerate into supp(H). Then we can define the counting function of f
with respect to H as

Nf (r,H) =

∫ r

0

dt

t2p−1

∫

f−1(H)∩Bp(t)
v(z)p−1.

And the approximation function of f with respect to H is given by

mf (r,H) =

∫

Sp(r)
log

‖f(z)‖ · ‖H‖

|〈f(z),a〉|
σp(z),

where ‖f(z)‖ and ‖H‖ are defined as in Section 2.1. And the characteristic
function is given by

Tf,ωFS
(r) =

∫ r

0

dt

t2p−1

∫

Bp(t)
f∗ωFS ∧ v(z)p−1 =

∫

Sp(r)
log ‖f(z)‖σp(z),

where ωFS is the Fubini–Study metric on PnC. Similarly, we also follow
Poincaré–Lelong formular and Jensen fomular to deduce the First Main The-
orem:

(4.2) Tf,ωFS
(r) = mf (r,H) +Nf (r,H) +O(1).

Remark 6. The equality (4.2) is also valid if one replaces the hyper-
plane H by any hypersurface D in PnC.
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4.2. Geometric Generalized Wronskians. Wronskian is a funda-
mental tool to check the linear dependence. Given n+ 1 holomorphic func-
tions f0, . . . , fn ∈ OC, they are linearly independent if and only if their Wron-
skian W (f0, . . . , fn) does not vanish identically. It is generalized to multi-
variables case by many mathematicians. In this subsection, we will introduce
the geometric generalized Wronskians defined by Etesse [5].

Denote Wp the set of words written in the lexicographic order with the
alphabet {1, . . . , p}. That is, any word u ∈ Wp is defined as

u = 1α1(u) · · · pαp(u),

where αi(u) is the number of occurences of the letter i in the word u. Then
we define

∂u =
∂α1(u)+···+αp(u)

∂z
α1(u)
1 · · · ∂z

αp(u)
p

.

Let U = {u1, . . . , un} be a finite set in Wp of size n = card(U). We say
U is admissible if there exists an ordering of words {u1, . . . , un} in U such
that l(ui) ≤ i for i = 1, . . . , n. Let f0, . . . , fn ∈ OCp be n+ 1 holomorphic
functions over Cp. The associated Wronskian WU is defined as follows:

WU (f0, . . . , fn) =

∣∣∣∣∣∣∣∣

f0 . . . fn
∂u1

(f0) . . . ∂u1
(fn)

... . . .
...

∂un
(f0) . . . ∂un

(fn)

∣∣∣∣∣∣∣∣
.

W is called a geometric generalized Wronskian if for any g, f0, . . . , fn ∈ Cp,
it satisfies that W (gf0, . . . , gfn) = gn+1W (f0, . . . , fn). Etesse [5] proved that
WU is a geometric generalized Wronskian with respect to an admissible set U
if and only if U is a full set, which means that for any word u ∈ U , each
subword of u also belongs to U .

There are two important applications of geometric generalized Wron-
skian. Firstly, it can imply the linear dependence.

Theorem 4.2 [5, Theorem1.4.1]. The holomorphic functions f0, . . . , fn
on Cp are linearly independent if and only if there exists a full set U such

that WU (f0, . . . , fn) does not vanish identically.

Secondly, it induces the global invariant jet differentials on projective
varieties.

Theorem 4.3 [5, Theorem 1.2.7]. Let X be a projective variety equipped

with a line bundle L → X . Let s0, . . . , sn be global sections of L. Consider

the local chart U of X and x ∈ U . Let γ : (Cp, 0) → (X,x) be a holomorphic
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germ through x. Then the geometric generalized Wronskian W induces a

global section W (s0, . . . , sn) of Ep,k,w ⊗ Ln+1 locally defined as

W (s0, . . . , sn)(γ) = W (s0,U ◦ γ, . . . , sn,U ◦ γ).

Here n, k,w are respectively the size, order and weight of W defined in [5].

In the next subsection, we will utilize Theorem 4.3 when X is the n-
dimensional projective complex space, L = O(1) is the hyperplane line bun-
dle and w0, . . . , wn are the coordinate sections.

4.3. General form of Cartan’s SMT for holomorphic mappings

over Cp. This subsection is devoted to the several variables version of The-
orem 2.2. We follow closely the proof in [10] with some suitable adaptions
for several variables settings. Thus we will just indicate the differences and
we invite readers to refer to [10] and [12].

Theorem 4.4. Let f = [f0 : . . . : fn] : C
p → PnC be a holomorphic map-

ping which is non-degenerated. Let H1, . . . , Hq be arbitrary hyperplanes in

PnC. Then there exists a geometric generalized Wronskian WS such that for

arbitrary ε > 0, we have

∫

Sp(r)
max
K

∑

k∈K
λHk

(f(reiθ))σp(z) +NWS ,f (r, 0)(4.3)

≤ (n+ 1)Tf (r) + εTf (r) ‖,

where the notations serve as the ones in Theorem 2.2.

Proof. Denote by a1, . . . ,aq q vectors in Cn+1 associated with the hy-
perplanesH1, . . . ,Hq respectively. Without loss of generality, we assume that
there are always n+1 linearly independent hyperplanes. Let µ : {0, 1, . . . , n}
→ {1, . . . , q} be an injective map such that aµ(0), . . . , aµ(n) are linearly in-
dependent. Since f is non-degenerated, there exists a geometric generalized
Wronskian WS associated with a full set S = {u1, . . . , un} such that WS(f)
6≡ 0. Thus we have

∫

Sp(r)
max
K

∑

k∈K
λHk

(f(reiθ))σp(z)=

∫

Sp(r)
max
µ

n∑

j=0

log

(
‖f(z)‖·‖Hµ(j)‖

|〈f(z),aµ(j)〉|

)
σp(z)

≤

∫

Sp(r)
max
µ

log

∣∣WS(〈f(z),aµ(0)〉, . . . , 〈f(z),aµ(n)〉)
∣∣

∏n
j=0|〈f(z),aµ(j)〉|

σp(z)

+

∫

Sp(r)
log

‖f(z)‖n+1

|WS(f)|
σp(z) +O(1).
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Here WS
(
〈f(z),aµ(0)〉, . . . , 〈f(z),aµ(n)〉

)
is the geometric generalized Wron-

skian of functions 〈f(z),aµ(0)〉, . . . , 〈f(z),aµ(n)〉, which is also not identically
zero since the hyperplanes are in general position.

To estimate the first term, we recall the following lemmas on logarithmic
derivative for several complex variables.

Lemma 4.5 [12, Theorem A8.1.4]. Let g = [g0 : g1] : C
p → P1C be a

meromorphic function, and let u be a word in Wp. Then for any α with

0 < αl(u) < 1
2 , there exist positive constants C0, C1, C2 such that for any

r < ρ < R, we have

∫

Sp(r)
log+

∣∣∣∣
∂u(

g1
g0
)

g1
g0

∣∣∣∣
α

σp(z) ≤ C0

(ρ
r

)αl(u)(2n−2)( ρ

r(ρ− r)

)αl(u)

×
[
C1Tg(ρ) + C2 log

((R
ρ

)α(2n−2) R

ρ(R− ρ)
Tg(R)

)]αl(u)
.

Lemma 4.6 ([5, Theorem B.0.3], [12, TheoremA8.1.5]). Let g = [g0 : g1] :
Cp → P1C be a meromorphic function, and let u be a word in Wp. Then for

any ε > 0 we have

∫

Sp(r)
log+

∣∣∣∣
∂u(g)

g

∣∣∣∣σp(z) ≤ l(u) log Tg(r) + (1 + ε) log+ log Tg(r) ‖,

where C0, C1, C2 are positive constants.

For j = 0, . . . , n, denote by gµ(j)(z) =
|〈f(z),aµ(j)〉|
|〈f(z),aµ(0)〉| . It is clear that Tgµ(j)

(z)

≤ Tf,ωFS
(r) + O(1) for each j. Selecting an α with 0 < αl(u) < 1/2 for any

word u ∈ S , we yields that

∫

Sp(r)
max
µ

log
|WS(〈f(z),aµ(0)〉, . . . , 〈f(z),aµ(n)〉)|∏n

j=0|〈f(z),aµ(j)〉|
σp(z)

≤
1

α

∫

Sp(r)
max
µ

{
log

( |WS(1, gµ(1), . . . , gµ(n))|

|gµ(1), . . . , gµ(n)|
(z)

)α
}
σp(z) + O(1)

≤
1

α
log+

∫

Sp(r)

max
µ

( ∑

k1+···+kn≤n(n+1)/2

∣∣∣∣
∂uk1

(gµ(1))

gµ(1)
· · ·

∂ukn
(gµ(n))

gµ(n)

∣∣∣∣
α

(z)

)
σp(z) + O(1)

≤
1

α
log+

{
max
µ

[ ∑

k1+···+kn≤n(n+1)/2

n∏

l=1

(∫

Sp(r)

∣∣∣∣
∂ukl

(gµ(l))

gµ(l)
(z)

∣∣∣∣
α·l(ukl

)

σp(z)

)]}
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+O(1) ≤ l(S)( log Tf,ωFS
(r) + (1 + ε) log+ log Tf,ωFS

(r))+ O(1) ‖.

By definitions, the second term becomes

∫

Sp(r)
log

‖f(z)‖n+1

|WS(f)|
σp(z) = (n+ 1)Tf,ωFS

(r)−NWS
(r, 0).

Now we combine with the previous inequalities and conclude (4.3). �

4.4. End of proof. Tracking the same ideas in Section 3.3, we estab-
lish the reversal of Theorem 4.4.

Definition 3 (modified proximity function). Let f = [f0 : . . . : fn] : C
p

→ PnC be a holomorphic map. For any positive integer q and rational
number r > e, we define

mq(f, r) = sup
H1,...,Hq

∫

Sp(r)
max
K

∑

k∈K
λHk

(f(reiθ))σp(z),

where the maximum is taken over all subsets K of {1, . . . , q} such that the
hyperplanes Hk, k ∈ K are linearly independent, and the superior is taken
over all sets of q arbitrary hyperplanes in PnC.

Theorem 4.7. Given 1 ≤ p ≤ n, let f = [f0 : . . . : fn] : C
p → PnC be a

holomorphic mapping that is non-degenerate. Let v : R>e → N>0 satisfies

that v(r) ∼ (log+ T (r)
log r )

20. Then there exists a geometric generalized Wron-

skian WS such that for arbitrary 0 < ε < 1, we have

(4.4) mpv(r)+n+1(f, r) +NWS ,f (r, 0) + ε(Tf (r)) ≥ (n+ 1)Tf (r) +O(1),

for all r → ∞ outside an exceptional set of logarithmic density 0.

Proof. We also follow the three steps exposed in Theorem 3.2.

Step 1: Select n+ 1 hyperplanes.
We fix an r > e and work on the sphere {‖z‖ = r}. Given a positive

integer q, for all k = 1, . . . , p, we put jk ∈ {1, . . . , q}, θjk = 2πj
q and zjkk =

rke
iθjk . In this way, we equi-divide the sphere {‖z‖ = r} into pq parts and

{
zj1,...,jp = (r1e

iθj1 , . . . , rpe
iθjp ) : r21 + · · · + r2p = r2

}
(j1,...,jp)∈{1,...,q}p

are pq break points. According to the construction in [5], there exists
some geometric generalized Wronskian WS associated with the full set
S = {u1, . . . , un}, such that WS(f0, . . . , fn) 6≡ 0. Without loss of general-
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ity, we assume that ∂u1
= ∂

∂zp
, the partial derivative of order 1 with respect

to the last variable. Denote by

WS(f) =

∣∣∣∣∣∣∣∣

f0 . . . fn
∂u1

(f0) . . . ∂u1
(fn)

... . . .
...

∂un
(f0) . . . ∂un

(fn)

∣∣∣∣∣∣∣∣
.

For (j1, . . . , jp) ∈ {1, . . . , q}p, we define the hyperplaneDj1,...,jp inPnC as

Dj1,...,jp =

{
[w0 : . . . : wn] ∈ PnC :

n∑

k=0

a
j1,...,jp
k wk = 0

}
,

where the associated vector aj1,...,jp = (a
j1,...,jp
0 , . . . , a

j1,...,jp
n ) satisfies that each

component a
j1,...,jp
k is the cofactor of the Wronskian WS(f(zj1,...,jp)) with re-

spect to the entries ∂u1
(fk(zj1,...,jp)). More precisely, we define the hyper-

plane Dj1,...,jp such that

∣∣∣∣∣∣∣∣∣∣

f0(zj1,...,jp) . . . fn(zj1,...,jp)
w0 . . . wn

∂u2
(f0(zj1,...,jp)) . . . ∂u2

(fn(zj1,...,jp))
... . . .

...
∂un

(f0(zj1,...,jp)) . . . ∂un
(fn(zj1,...,jp))

∣∣∣∣∣∣∣∣∣∣

= 0.

Then we have

〈f(z),aj1,...,jp〉 =

∣∣∣∣∣∣∣∣∣∣

f0(zj1,...,jp) . . . fn(zj1,...,jp)
f0(z1, . . . , zp) . . . fn(z1, . . . , zp)

∂u2
(f0(zj1,...,jp)) . . . ∂u2

(fn(zj1,...,jp))
... . . .

...
∂un

(f0(zj1,...,jp)) . . . ∂un
(fn(zj1,...,jp))

∣∣∣∣∣∣∣∣∣∣

.

Moreover, we have

〈f(z),aj1,...,jp〉
∣∣
z=zj1,...,jp

= 0,

and

∂u1

(
〈f(z),aj1,...,jp〉

)∣∣
z=zj1,...,jp

= WS(f(zj1,...,jp)).

Recalling the oscillation function u(r, f, θ) and the estimation in Propo-
sition 2.7, we bound the difference between the multivariate function
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f(z1, . . . , zp) and univariate function f(zj11 , . . . , z
jp−1

p−1 , zp) for fixed compo-

nents (zj11 , . . . , z
jp−1

p−1 ) in Cp−1. This is the first distinction between single
variable and multiple variables. Define

I1j1,...,jp
∆
=

∣∣〈f(z1, . . . , zp),aj1,...,jp
〉
−
〈
f(zj11 , . . . , z

jp−1

p−1 , zp),a
j1,...,jp

〉∣∣(4.5)

≤
∣∣〈f(zj11 , . . . , z

jp−1

p−1 , zp),a
j1,...,jp

〉
−

〈
f(zj11 , . . . , z

jp−2

p−2 , zp−1, zp),a
j1,...,jp

〉∣∣

+
∣∣〈f(zj11 , . . . , z

jp−2

p−2 , zp−1, zp),a
j1,...,jp

〉

−
〈
f(zj11 , . . . , z

jp−3

p−3 , zp−2, zp−1, zp),a
j1,...,jp

〉∣∣

+ · · · +
∣∣〈f(zj11 , z2, . . . , zp),a

j1,...,jp
〉
−
〈
f(z1, . . . , zp),a

j1,...,jp
〉∣∣

≤ u
(√

r2 − (r21 + · · · + r2p−2 + |ξp|2),
〈
f |

z
j1
1 ,...,z

jp−2
p−2 ,ξp

(zp−1),a
j1,...,jp

〉
,
2π

q

)

+ u
(√

r2 − (r21 + · · · + r2p−3 + |ξp−1|2 + |ξp|2),

〈f
∣∣
z
j1
1 ,...,z

jp−3
p−3 ,ξp−1,ξp

(zp−2),a
j1,...,jp〉,

2π

q

)

+ · · · + u
(√

r2 − (|ξ2|2 + · · · + |ξp|2),
〈
f
∣∣
ξ2,...,ξp

(z1),a
j1,...,jp

〉
,
2π

q

)

≤ O

(
u
(√

r2 − (r21 + · · · + r2p−2 + |ξp|2), f |zj1
1 ,...,z

jp−2
p−2 ,ξp

(zp−1),
2π

q

)

+ u
(√

r2 − (r21 + · · ·+ r2p−3 + |ξp−1|2 + |ξp|2), f
∣∣
z
j1
1 ,...,z

jp−3
p−3 ,ξp−1,ξp

(zp−2),
2π

q

)

+ · · · + u
(√

r2 − (|ξ2|2 + · · · + |ξp|2), f
∣∣
ξ2,...,ξp

(z1),
2π

q

))
.

Here f
∣∣
z
j1
1 ,...,z

jk−1
k−1 ,ξk+1,...,ξp

(zk), k = 2, . . . , p, denotes the complex function

with fixed parameters

(ξk+1, . . . , ξp) ∈
(
(θjk+1−1, θjk+1

], . . . , (θjp−1, θjp ]
)

and fixed components (zj11 , . . . , z
jk−1

k−1 ) which are evaluated at the very begin-
ning. Thus, using the elementary integral formula for

〈
f(zj11 , . . . , z

jp−1

p−1 , zp),a
j1,...,jp

〉
,

for any θp ∈ [θjp−1, θjp ], we have

〈
f(zj11 , . . . , z

jp−1

p−1 , rpe
iθp),aj1,...,jp

〉
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=

∫ θp

θjp−1

∂u1

(
〈f(zj11 , . . . , z

jp−1

p−1 , rpe
is),aj1,...,jp〉

)
d(rpe

is).

Then for any θ ∈ [θj−1, θj ], we obtain that

∣∣〈f(zj11 , . . . , z
jp−1

p−1 , zp),a
j1,...,jp

〉∣∣ ≤ eτ
j1,...,jp

(2πr),

where

τ j1,...,jp = max
θ′

k∈(θjk−1,θk]
k=1,...,p

log
∣∣WS(f(r1e

iθ′

1 , . . . , rpe
iθ′

p))
∣∣

+ max
θ′

k∈(θjk−1,θk]
k=1,...,p

log

∣∣∂u1

(
〈f(zj11 , . . . , z

jp−1

p−1 , rpe
iθ′

p),aj1,...,jp〉
)∣∣

∣∣WS(f(r1eiθ
′

1 , . . . , rpe
iθ′

p))
∣∣ .

By the definition of aj1,...,jp , we have

I2j1,...,jp
∆
= log

∣∣∂u1

(
〈f(zj11 , . . . , z

jp−1

p−1 , rpe
iθ′

p),aj1,...,jp〉
)∣∣

∣∣WS(f(r1eiθ
′

1 , . . . , rpe
iθ′

p))
∣∣(4.6)

≤
[
log

∣∣∂u1

(
〈f(zj11 , . . . , z

jp−1

p−1 , rpe
iθ′

p),aj1,...,jp〉
)∣∣− log

∣∣WS(f(z
j1
1 , . . . , zjpp ))

∣∣
]

+
[
log

∣∣WS(f(z1, . . . , zp−1, z
jp
p ))

∣∣− log
∣∣WS(f(z1, . . . , zp−1, zp))

∣∣
]

+
[
log

∣∣WS(f(z1, . . . , zp−2, z
jp−1

p−1 , z
jp
p ))

∣∣− log
∣∣WS(f(z1, . . . , zp−2, zp−1, z

jp
p ))

∣∣
]

+ · · · +
[
log

∣∣WS(f(z
j1
1 , . . . , zjpp ))

∣∣− log
∣∣WS(f(z1, z

j2
2 , . . . , zjpp ))

∣∣
]

≤ O
(
u
(√

r2 − (r21 + · · · + r2p−1), ∂u1

(
f
∣∣
z
j1
1 ,...,z

jp−1
p−1

(zp)
)
,
2π

q

))

+u
(√

r2 − (|ξ1|2 + · · ·+ |ξp−1|2),WS(f
∣∣
ξ1,...,ξp−1

(zp)),
2π

q

)

+ u
(√

r2 − (|ξ1|2 + · · · + |ξp−2|2 + r2p),WS
(
f
∣∣
ξ1,...,ξp−2,z

jp
p
(zp−1)

)
,
2π

q

)

+ · · · + u
(√

r2 − (r22 + · · · + r2p),WS
(
f
∣∣
z
j2
2 ,...,z

jp
p
(z1)

)
,
2π

q

)
.

Combining (4.5) and (4.6), for any θk ∈ [θjk−1, θjk ], k = 1, . . . , p, we have

log
1

|〈f(z1, . . . , zp),aj1,...,jp〉|
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≥ log
1

|〈f(zj11 , . . . , z
jp−1

p−1 , zp),a
j1,...,jp〉|

− I1j1,...,jp

≥ − max
θ′

k∈(θjk−1,θk]
k=1,...,p

log
∣∣WS(f(r1e

iθ′

1 , . . . , rpe
iθ′

p))
∣∣− I2j1,...,jp − log(2πr)− I1j1,...,jp

≥ log
1

|WS(f(r1eiθ1 , . . . , rpeiθp))|
− I3j1,...,jp − I2j1,...,jp − I1j1,...,jp − log(2πr),

where

I3j1,...,jp = max
θ′

k∈(θjk−1,θk]
k=1,...,p

log
∣∣WS(f(r1e

iθ′

1 , . . . , rpe
iθ′

p))
∣∣

− log
∣∣WS(f(r1e

iθ1 , . . . , rpe
iθp))

∣∣

≤ u
(√

r2 − (|ξ1|2 + · · · + |ξp−1|2),WS
(
f
∣∣
ξ1,...,ξp−1

(zp)
)
,
2π

q

)

+ u
(√

r2 − (|ξ1|2 + · · ·+ |ξp−2|2 + r2p),WS
(
f
∣∣
ξ1,...,ξp−2,rpe

iθ′p
(zp−1)

)
,
2π

q

)

+ · · ·+ u
(√

r2 − (r22 + · · · + r2p),WS
(
f
∣∣
r2e

iθ′
2 ,...,rpe

iθ′p
(z1)

)
,
2π

q

)
.

Integrating along the sphere Sp(r), we have
∫

Sp(r)
log

1

|WS(f(r1eiθ1 , . . . , rpeiθp))|
σp(z)(4.7)

≤
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

1

|〈f(z),aj1,...,jp〉|
σp(z)

+

∫

Sp(r)

(
I1j1,...,jp + I2j1,...,jp + I3j1,...,jp

)
σp(z) + log(2πr).

Denote by Dl, l = 0, . . . , n, the n+ 1 coordinate hyperplanes in PnC
with

Dl = {[w0 : . . . : wn]
∣∣wl = 0},

and the associated vectors

al = [a0,l : . . . : al,l : . . . : an,l] = [0 : . . . : 1 : . . . : 0].

Assume that

‖aj1,...,jp‖ = max
0≤l≤n

|a
j1,...,jp
l | =

∣∣aj1,...,jplj1 ,...,jp

∣∣
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=

∣∣∣∣∣∣∣∣∣∣

det




f0(zj1,...,jp) . . . ̂flj1,...,jp
(zj1,...,jp) . . . fn(zj1,...,jp)

∂u2
(f0(zj1,...,jp)) . . . ̂∂u2

(flj1,...,jp
(zj1,...,jp)) . . . ∂u2

(fn(zj1,...,jp))
... . . .

...

∂un
(f0(zj1,...,jp)) . . . ̂∂un

(flj1,...,jp
(zj1,...,jp)) . . . ∂un

(fn(zj1,...,jp))




∣∣∣∣∣∣∣∣∣∣

,

where ̂means omitting this term in the matrix. Then we can see that n+1
hyperplanes {Dj1,...,jp,D0, . . . ,Dlj1,...,jp−1,Dlj1,...,jp+1 . . . ,Dn} are in general
position.

Now using the definitions of Weil function and modified proximity func-
tion, it follows from the inequality (4.7) that

∫

Sp(r)

(
log

1

|WS(f(z))|
+ (n+ 1) log ‖f(z)‖

)
σp(z)(4.8)

≤
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]

(
log

1

|〈f(z),aj1,...,jp〉|
+ (n+ 1) log ‖f(z)‖

)
σp(z)

+

∫

Sp(r)

(
I1j1,...,jp + I2j1,...,jp + I3j1,...,jp

)
σp(z) + log(2πr)

≤
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]

(
log

‖f(z)‖ · ‖aj1,...,jp‖

|〈f(z),aj1,...,jp〉|
+ log

‖f(z)‖

|〈f(z),a0〉|
+ · · ·

+ log
‖f(z)‖

|〈f(z),alj1,...,jp−1〉|
+ log

‖f(z)‖

|〈f(z),alj1,...,jp+1〉|

+ · · · + log
‖f(z)‖

|〈f(z),an >|

)
σp(z)

+
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

|f0 · · · f̂lj1,...,jp
· · · fn|(z)

‖aj1,...,jp‖
σp(z)

+

∫

Sp(r)

(
I1j1,...,jp + I2j1,...,jp + I3j1,...,jp

)
σp(z) + log(2πr)

≤
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]

(
λDj1,...,jp (f) + λD0

(f)

+ · · · + ̂λDlj1,...,jp
(f) + · · · + λDn

(f)
)
(z)σp(z)
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+
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

|f0 · · · f̂lj1,...,jp
· · · fn|(z)

‖aj1,...,jp‖
σp(z)

+

∫

Sp(r)
(I1j1,...,jp + I2j1,...,jp + I3j1,...,jp)σp(z) + log(2πr)

≤ mpq+n+1(f, r) +
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

|f0 · · · f̂lj1,...,jp
· · · fn|(z)

‖aj1,...,jp‖
σp(z)

+

∫

Sp(r)
(I1j1,...,jp + I2j1,...,jp + I3j1,...,jp)σp(z) + log(2πr).

Step 2: Estimate the error terms. By Poincaré–Lelong formula, we firstly
handle the left-hand side of (4.8).

∫

Sp(r)

(
log

1

|WS(f(z))|
+ (n+ 1) log ‖f(z)‖

)
σp(z)(4.9)

= (n+ 1)Tf (r)−NWS ,f (r, 0) +O(1).

For the right-hand side of (3.6), we estimate in the same methods as in
Section 3.3. For fixed j1, . . . , jp, lj1,...,jp is also a fixed integer in {0, . . . , n}.
We define the coefficient functions

∣∣∣aj1,...,jplj1,...,jp

∣∣∣ (z) :=

∣∣∣∣∣∣∣∣∣∣

det




f0(z) . . . ̂flj1,...,jp
(z) . . . fn(z)

∂u2
(f0(z)) . . . ̂∂u2

(flj1,...,jp
(z)) . . . ∂u2

(fn(z))
...

...
...

∂un
(f0(z)) . . . ̂∂un

(flj1,...,jp
(z)) . . . ∂un

(fn(z))




∣∣∣∣∣∣∣∣∣∣

.

We also have
∣∣aj1,...,jplj1,...,jp

∣∣(zj1,...,jp) = ‖aj1,...,jp‖.

Depending on the same strategies in (4.5) and (4.6), it yields that, for any
j1, . . . , jp,

I4j1,...,jp = log
∣∣aj1,...,jplj1,...,jp

∣∣(z)− log ‖aj1,...,jp‖

≤ O

(
u
(√

r2 − (|ξ1|2 + · · · + |ξp−1|2),WS(f
∣∣
ξ1,...,ξp−1

(zp)),
2π

q

)

+ u
(√

r2 − (|ξ1|2 + · · · + |ξp−2|2 + r2p),WS
(
f
∣∣
ξ1,...,ξp−2,z

jp
p
(zp−1)

)
,
2π

q

)
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+ · · · + u
(√

r2 − (r22 + · · · + r2p),WS
(
f
∣∣
z
j2
2 ,...,z

jp
p
(z1)

)
,
2π

q

))
.

Thus we assert that

∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

∣∣f0 · · · f̂lj1,...,jp
· · · fn

∣∣(z)
‖aj1,...,jp‖

σp(z)

≤

∣∣∣∣∣
∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

∣∣aj1,...,jplj1,...,jp

∣∣(z)
|f0 · · · f̂lj1,...,jp

· · · fn|(z)
σp(z)

∣∣∣∣∣

+

∫

Sp(r)
I4j1,...,jp σp(z).

Deriving from the definition of
∣∣∣aj1,...,jplj1,...,jp

∣∣∣ (z), we can see that

∑

j=1,...,q
k=1,...,p

∫

θk∈(θjk−1,θjk ]
log

∣∣aj1,...,jplj1,...,jp

∣∣(z)
|f0 · · · f̂lj1,...,jp

· · · fn|(z)
σp(z)

≤

∫

Sp(r)
log+

( ∑

i1+···+in=n(n+1)/2−1

∣∣∣∣
∂ui1

(f0)

f0

∣∣∣∣ · · ·
∣∣∣∣
∂uin

(fn)

fn

∣∣∣∣(z)
)
σp(z)

≤
(
l(S)− l(u1)

)(
log Tf (r) + (1 + ε) log+ log Tf (r)

)
+O(1).

Similar to (3.8), the last inequality refers to Lemma 4.5, Lemma 4.6 and
Hölder inequality.

Combining the statements above, it follows that

(n+ 1)Tf (r)−NWS ,f (r, 0) ≤ mpq+n+1(f, r)(4.10)

+

∫

Sp(r)

(
I1j1,...,jp + I2j1,...,jp + I3j1,...,jp + I4j1,...,jp

)
σp(z)

+ (l(S)− l(∂u1
))(logTf (r) + (1 + ε) log+ log Tf (r)) + log(2πr) +O(1) ‖.

Step 3: End of the proof. Firstly, we can always find a constant r0 such
that

(l(S)− l(∂u1
))
(
logTf (r)+ (1+ε) log+ logTf (r)

)
+ log(2πr)+O(1)≤ εTf (r),

for all r > r0.
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In the right-hand side of (4.5), let

Gk(z) = f
∣∣
z
j1
1 ,...,z

jk−1
k−1 ,ξk+1,...,ξp

(zk),

and

r′k =
√
r2 − (r21 + · · · + r2k−1 + |ξk+1|2 + · · · + |ξp|2),

for each k = 2, . . . , p. By Proposition 2.7, for above ε > 0, we have

u
(
r′k, Gk, λGk

(r′k)
20
)
≤ εTGk

(r′k)

for all r > e outside a set Ek of logarithmic density zero. Recall that

λGk
(r′k)

20 = min
{
1,
(
log+

TGk
(r′k)

log r′k

)−1}
. Indeed, log+

(TGk
(r′k)

log r′k

)
≤ O

(
log+ Tf (r)

log r

)

for r sufficiently large. Hence we obtain that there exists some integer q
≥ 2π

λf (r)20
satisfying that

∫

Sp(r)
I1j1,...,jp σp(z) =

1

r2p−2

∫

Cp−1(r)

(∫ 2π

0
I1j1,...,jp

dθ

2π

)
[v(z)]p−1

≤

p∑

k=2

1

r2p−2

∫

Cp−1(r)

(∫ 2π

0
εTGk

(r′k)
dθ

2π

)
[v(z)]p−1

=

p∑

k=2

1

r2p−2

∫

Cp−1(r)
ε

(∫ 2π

0
log ‖Gk(r

′
ke

iθ)‖
dθ

2π

)
[v(z)]p−1

≤

p∑

k=2

1

r2p−2

∫

Sp(r)
εTf (r)σp(z) = (p− 1)εTf(r),

for all r > e outside a set E1 =
⋃p

k=2Ek of logarithmic density zero. Again
by Proposition 2.7 and Lemma 2.5, we have

∫

Sp(r)

(
I2j1,...,jp + I3j1,...,jp + I4j1,...,jp

)
σp(z) ≤ Cp · εTf (r)

for all r > e outside a set E2 of logarithmic density zero and some integer
q ≥ 2π

λf (r)20
. Here Cp is a constant dependent of p. Note that we omit the

details of comparing λf (r) and λWS,f
(r), since it is extremely close to step

3 in the proof of Theorem 3.2.

Recall the condition that v(r) ∼
(
log+ T (r)

log r

)20
. For r sufficiently large,

we have 2π
v(r) < λ(r)20, where λ(r) = min

{
1,
(
log+ Tf (r)

log r

)−1}
. Hence taking

q = v(r) and E = [e, r0] ∪ E1 ∪ E2 a set of logarithmic density zero, we have

(n+ 1)Tf (r)−NWS,f
(r, 0) ≤ mpv(r)+n+1(f, r) + εTf (r)
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for all r > e outside E. We complete the proof. �
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