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Abstract. Let 2 be a bounded domain in R™ with n > 2 and s € (0,1). As-
sume that ¢: [0,00) — [0,00) is a Young function obeying the doubling condition
with the constant Ky < 2% . We demonstrate that 2 supports a (¢n,¢p)-Poincaré
inequality if it is a John domain. Alternatively, assume further that () is a bounded
domain that is quasiconformally equivalent to a uniform domain (for n > 3) or a
simply connected domain (for n = 2), then we show that 2 is a John domain if a
(¢ 7, ¢)-Poincaré inequality holds.

1. Introduction

Let n > 2 and 2 C R” be a bounded domain. Suppose that ¢ is a Young
function in [0,00), that is, ¢ € C[0,00) is convex and satisfies ¢(0) = 0,
¢(t) >0 for t > 0 and lim; o ¢(t) = co. For any s € (0, 1), define the in-
trinsic fractional Orlicz—Sobolev space KS7¢(Q) as the collection of all mea-
surable functions u in €2 for which the semi-norm

: lu(z) —u(y)|\ dzdy
71| := inf )\>O:// qb( <1
Il @) { Q J|a—y|< ! d(z,00) ANz —yl* ) |z -y

is finite. Modulo constant functions, Vks’¢(Q) is a Banach space. When s =1,
we usually consider the classical Orlicz-Sobolev space W¢(€)), whose sharp
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embedding has been solved in [11] (see also [3] for an alternate formulation
of the solution).

Alberico et al. [4] established an imbedding of Vi**(R™) into certain an
Orlicz target space. Recall that for any Young function %, the Orlicz space
L¥(£2) is the collection of all u € Ll (£2) endowed with the norm

. |ul
= : < .
lull o) 1nf{)\>0 /sz}< N )dﬂ:_l < 00

The following is a more thorough description.

THEOREM 1.1. Let ¢ be a Young function satisfying

(1.1) /Ot <¢Z—T)) = dr < oo fort € [0,00),

and

(1.2) /OOO <¢(TT)) " = o,

Define ¢r :=¢o H~', where

(1.3) H(t) = (/Ot (QS(TT))"S*" dT> - for all t > 0.

Then we have V°(R™) C Lé/+(R™), that is, for any u € VS%(R™) with
Hz € R" : |u(z)| > t}| < oo for every t >0, one has w € L/+(R™) with
||U||L¢n/s(w) < Cllullyz¢(gny, where C'is a constant independent of u.

They also showed that L?»/+(R"™) is an optimal target space for the imbe-
ding of V:*?(R™) in the sense that if V;>?(R™) ¢ LA(R") holds for another
Orlicz space LA(R™), then L®/+(R") C LA(R").

We are interested in bounded domains which support the imbedding
V() € LP/+(Q) or (¢, d)-Poincaré inequality, that is, there exists a
constant C' > 1 such that

(14) = ual o2 ) < Cllully, (g

(©
for every u € L*(2), where ug = fyu = ‘é‘ [ wdz denotes the average of u

in the set of E with |E| > 0.
The major aim of this article is to characterize the Orlicz—Sobolev imbed-

ding V,?(Q) c L%/+(Q) via John domains under specific doubling assump-
tion in ¢; see Theorem 1.2 below. Remember that a bounded domain 2 C R"
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is called as a ¢-John domain with respect to some zq € €2 for some ¢ > 0 if for
each x € Q, there is a rectifiable curve 7: [0,7] — Q parameterized by arc-

length such that v(0) = z, v(T) = z¢ and d(v(t), %) > et for all t > 0. For
further research on c-John domains, see [6-9,35-37] and references therein.
We say that a Young function ¢ has the doubling property (¢ € Ag) if

(1.5) Ky :=sup ¢(2t) < 00.

>0 ¢(t)

Note that if a Young function ¢ € Ay with Ky < 2%, then ¢ satisfies (1.1)
and (1.2); see Lemma 2.3.

MAIN THEOREM 1.2. Let 0 < s <1. Suppose ¢ is a Young function and
OESIAY) wz’thK¢<2 m (15)

(i) 1/ Q C R" is a c-John domain, then 2 supports the (¢, ¢)-Poincaré
inequality (1.4) with the constant C depending on n, s, ¢ and K¢

(ii) Assume further that Q@ C R™ is a bounded simply connected planar
domain, or a bounded domain which is a quasiconformally equivalent to some
uniform domain when n > 3. If Q supports the (QS: , @)-Poincaré inequality,

then € is a c-John domain, where the constant ¢ depend on n, s, C, Ky
and 2.

Theorem 1.2 extends several known results in the literature; for details
see the following remark.

REMARK 1.3. (i) For 1 <p <n, c-John domain 2 supports Sobolev
WP-imbedding or (n”_pp, p)-Poincaré inequality:

(1.6) lu = ug| Lo/ e-n () < Cllullyiing forallue Whe(Q),

where the constant C' depends on n,p and c; see Reshetnyak [37] and Martio
[36] for 1 < p < n and Borjarski [5] (and also Hajlasz [23]) for p = 1. Con-
versely, further assume that €2 is a bounded simply connected planar domain
or a domain that is quasiconformally equivalently to some uniform domain
when n > 3. Buckley and Koskela [7] proved that if (1.6) holds, then € is a
c-John domain.

(ii) For 0 < s <1 and 1 < p < oo, the intrinsic fractional Sobolev space
WEP(Q) consists of all functions u € LL (Q) with the norm

lu(z) — u(y)|P >1/p
Wl yirsp dx dy < 00.
e @ </ /z y|< 3 d(z,00) |z — y|rtsp

In the special case ¢(t) = t? with p > 1, V;5?(Q) is exactly WP (€).
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For s € (0,1) and 1 < p < n/s, [17] for p=1 and [25] for 1<p<n/s
proved that a ¢-John domain §2 supports the following fractional (n —p p)
Poincaré inequality (or fractional Sobolev embedding WP(Q) — <3 Ln o (Q)),
which means that for any u € WJ(Q),

(1.7) [u = vl Lrr/o-sm(@) < Cllullyizrq)

holds, where C' depends on n, s, p and ¢. On the other hand, additionally
assume that  is a bounded simply connected planar domain or a domain
that is quasiconformally equivalently to some uniform domain when n > 3.
They [17,25] also proved that if (1.7) holds, then € is a ¢-John domain.

If1<p<7,itis easy to see that ¢~ (t) = Ot~ for any ¢ > 0 and some
positive constant C. If ¢(t) = tP with p > 1 and 0 < s <1, then the (¢, ¢)-
Poincaré inequality is the classical fractional (" e s , p)-Poincaré inequality.

(iii) Analogous results to (ii) were established for the intrinsic fractional
Hajlasz—Sobolev space M;P(9); see [41] for details.

(iv) In the above theorem, a domain Q C R" is quasiconformally equiva-
lent to a uniform domain G C R"™ means that there exists a homeomorphism
f: G — Qsuch that f € W2"(G) and | D f(z)|" < KJf(z) for almost every

loc

x € G, where |Df] is the operator norm of the formal derivative D f of f,
J f is the Jacobian determinant of Df, and K > 1 is a fixed constant.

We also note that imbeddings of the fractional Sobolev space W*P(€)

and fractional Orlicz-Sobolev space V®9(Q) were taken into account in
the literature (see [4,28,29,40] for examples). Define the fractional Orlicz-
Sobolev space V*¢((2) consisting of all functions u € L{ () with

lu(z y)|> dz dy }
.. =inf<A>0: / / < <1l; <oo.
ver@) { AI:Jc—yls & — y|"

The V*¢(Q)-(semi)norm is evidently derived by substituting the whole do-
main Q for the range B(z, ; dist(z,d9)) for the variable y in the VS (Q)-
(semi)norm. It goes without saying that V=?(R") = V,>*(R"). For gencral
domain €, one has V59(Q) C V*(€2) with a normal bound because the
following inequality always holds:

//|:c yl<d(z,09) <|ug\\;—y|(8y)|> |$daiC§J|"
// <|uklfc—ylg)|> Ijidyyln'

[l
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But the reverse side Vks’¢(ﬂ) C V*9(Q) is not true necessarily. Just like
the example of [17] and [41], the embedding WP (Q) € W*P(Q) fails when
a domain Q = B(0,1)\{(x,0)|z > 0} C R? and define u as u(x) =1/2 for
QN{(z,y)|y > 0}, and u = 0 otherwise. In fact, when ¢(t) =t with p > 1,
ViE2(Q) = WEP(Q) and VS9(€) is the fractional Sobolev space W5P((),

which consists of all functions u € L], () with

lu(x) —u(y)[? e
HuHWs,p(Q) = (/Q P — dz dy < 00.

REMARK 1.4. (i) If ®(t) =¥ with s € (0,1) and 1 <p <n/s, we con-
sider the W*P-imbedding, that is, for any u € W*P(2), there exists a con-
stant C' > 0 such that

lu—wuall 22, o) < Cllullienq)-
It was shown in [28,29,40] that a domain Q supports the W*P-imbedding if

and only if € is Ahlfors n-regular, that is, there exists a constant ¢ > 0 such
that

|B(z,7) N >Cr" foralzeQ, 0<r<2diam.

Note that in the case [Q] = oo, we set ug = 0.
(ii) For a general Young function ¢ satisfying (1.1) and (1.2), it was
shown in [4] that Lipschitz domain § supports the V*¢(2)-imbedding

|lu — UQHLth @ < C|u| Veo(q) forallue V()

whenever s € (0,1). Note that the V*?(Q)-imbedding is exactly the W *P-
imbedding if ®(t) = ¥ with s € (0,1) and 1 <p < n/s. In this case, ¢~ (t) =

t."iip. But it is not clear whether Ahlfors n-regular domains characterize
V#9(§))-imbedding domains.

The paper is organized as follows. The proof of Theorem 1.2(i) is given
in Section 2, which uses Boman’s chain property, the embedding \st"z’(Q)
< L9/+(Q) for cubes @ C R™ and the vector-valued inequality in Orlicz
norms for the Hardy—Littlewood maximum operators. We also give some
property of ¢ € Ay with Ky < 2% in Section 2. Conversely, under the condi-
tion (2.1), together with the aid of some ideas from [7,24,33,39,40], we obtain
the LLC(2) property of €2, and then prove Theorem 1.2(ii) by a capacity
argument; see Section 3 for details.
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2. Proof of Theorem 1.2(i)

It is well known that a Young function ¢ satisfies

(2.1) Cy := sup/ o) d < 00.
>0 Jo ¢(t) p
In fact, since for practically all t > 0, ¢/(t) > 0 and ¢’ is increasing, we know
¢ o(p) — #(0
(0) _ 9(0) = 0(0) _
p P
Hence
00 a0k
)dp <1,
o o) ¢'(p)dp <

that is, Cy < 1.
Based on the above fact, it is feasible to obtain the embedding C2°(12)
c VI(Q).

LEMMA 2.1. Let 0 <s< 1 andgb. be a Youn_g function. For any bounded
domain Q C R™, we have C°(Q) C V=2(Q) C V().

PROOF. For any u € C}(Q), denote L := ||ul|p=(q) + || Dul|=~(q). Let-
ting W C 2 such that V =suppu € W & 2, we write

e [ [[o() )
Az =yl ) |lz—y|?
S//¢<L\x—y\8> dwdyn+2// ¢< L 5> dxdyn.
wlw \ Az —yl*) |z -yl view \Mz—yl*/) |z -yl
By (2.1), we have
//¢<Llw—y| dx dy // LI:E yl'~ s) dy
wJw )\|x_y|s |33 y|n B(w2d1amW A |33 y|n

2diamW 7 1-s, 4
:nwn/w/o ng( p )ppdac

L(2di *LmW)l_

dp
—nwnl_s// )Md:z

gb( L(2diam W)~

< .
C¢nwn1 B N )|W|
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Using (2.1) once more, we know

L dx dy
¢
/v /Q\W ()\|x - yls) |z —y["

S// ¢< L ) dx dy
v Jo\B.dist(v,we))  Alz —yls/ |z —y[n

& L\ dp
< nwy, ¢ dy
/v /dist(V,Wc) <)\PS> p

1 Adist(é,WG)S d,u 1 < L )
= n dy < C n V.
nw s /V/O o(u) 1 Y= bgne Sd) Adist(V, I/VE)S 14

Let A large enough such that H < 1. Then we get v € V5%(Q), and hence
CH(Q) c V*9(Q). Combining C>(2) C CL(Q) and V=¢(Q) C Vi*?(Q), we
get the desired result. [

To prove Theorem 1.2(i), we need the embedding V59(Q) < L%/+(Q)
in all cubes @ C R™. Hence we give some necessary lemmas.

LEMMA 2.2. Let ¢ € Ay be a Young function. Then for any ¢ > 1 and
x>0, we have ¢(cx) < Ko lg(x).

PROOF. By the increasing property of ¢/, for any > 0 we know
2x

¢(2x) —p(x) = [ ¢'(t)dt > ¢'(x).

xT

Moreover, together with ¢ € Ay and ¢(2z) — ¢(z) < (Kg — 1)¢(z), we get

_ W) K1

(noy(r) = 7<)

Hence for any ¢ > 1 we have

1n(qj;(cf))) = /:c(ln ¢)(t)dt < /xm K‘f bt = (e,

Using the increasing property of In, we get ¢(cx) < ¢~ 1¢(x) as desired.
]

LEMMA 2.3. Let ¢ be a Young function and ¢ € Ao with Ky < 2%, Then
¢ satisfies (1.1) and (1.2).
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PRrROOF. Applying the definition of the Ky in (1.5), that is, ¢(2t) <
K4o(t), we get

t

/;<¢>(Tr))nis a7 = / <¢(22TT)>£52‘” = / <K¢2<;(T)>ni52d7'

Then

By induction, we have

a1 s Knis a2 nls
/2 (o) s, / <¢<TT>> .
Kroonm-l gt 2
= <2¢ ) / <¢(TT)) i

If we convert m from 1 to oo and add them together, then

/ot<¢( )" rs Z <2n_:>m_1 /; (sm)) " o

K n s m—1 .
) ) 1s convergent.

It means that there exists a constant C' > 0 such that

(2.2) /0 (¢(TT))"SS dr < C’/; (¢(TT))"SS dr.

Moreover,

(1) =o0- 180 MO0 gty @) - (1)
o(t) (1) @(t) #(1)

where 0 < £ < t. Using the increasing property of ¢, we know ( Jt))/ <0.

: . N
/; (or)) " 7 <¢<2§>> , <o

Then (1.1) holds.

Because of the range of the Ky, the series > ", (

Therefore,
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On the other hand, for any m € N we have

gm s gm=1 o
[ Gi) = <K¢2<;<T>> 2T
onte (2 2nte \™ 1
= K¢/0 <¢(TT)> drz--z <K¢> /0 (¢(TT)) dr.

Letting m — oo, we get (1.2). O

LEMMA 2.4. Let ¢ be a Young function and ¢ € Ay with the parameter
K4 < 2. Then for any A > 0, there exists a constant C = C(n,s, Ky) >0
such that

(2.3)

PROOF. Applying (2.2) in Lemma 2.3, we get

/ot<¢<Tr>> ars C/;t(qb(Tr)) s 0<¢é)) N .

Together with ¢ € Ay, we have

H(A) ( ((bT)nsdT) <
A A
A/2 .
DT e
B A g4
With above lemmas, we proved V*¢(Q) < L%/*(Q).

LEMMA 2.5. Let 0 < s < 1 and a Young function ¢ € Ao with Ky < 2.
Then there exists a constant C; = C1(n,s) such that for any cube Q C R™

and u € V8’¢(Q), letting \ > C1||u||Vs,¢ ) the following inequality holds:

24 /¢3¢:< 1 </, o) e s

PRrROOF. Denote a cube centered at the origin with sides of length 2 par-
alleled to the axes by Q(0,1). At first we prove that for u € Vs’¢(Q(0, 1)),

. lu(z) — UQ(0,1)|>
(2.5) /Q(o,1)¢s < ) dx

Analysis Mathematica
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/ / (Cllu z) — U(y)|> dx dy
Q(0,1) JQ(0,1) Az — y| |z — ?J\n

By Lemma 2.3 and [4], we know that for u € Vi¢(Q(0, 1)) there exists
a constant C7 = Cq(n, s) such that

[l o < Cilully

(Q(0,1)) (Q(0,1))

where

. S,¢

VIQ0,1) == {ueVv® ?(Q(0,1)) : ug,1) =0}
Replacing u by u — ug(o,1), for any u € V8’¢(Q(0, 1)), we have

lu —u < Cillu—wu

Q(O,l)HL‘i’g(Q(OJ)) ol g1

Without loss of generality, suppose that HuHV # 0. Letting A >

Ch|

“(Q(0,1))
we have

“(Q(o,1))’
lu —ugo,)|
. DN gz < 1.
/Q(o,l) i ( A °=

= 0, then u — ug(p,1) is constant in Q(0,1). The

(Q(o,1)
inequality holds obv10usly

Fixed ug € V8’¢(Q(0, 1)), write

Mo / / <01|U0 )—Uo(y)\> dx dy 40,
Q(0,1) JQ(0,1) lz —yl* |z —y|"

Letting ¢ = J\d/’[, then qb: (t) = Al/[qbz (Mti ) Therefore,

_ < .
le =@l ox g0, = COlely2 g0

Then we know

ez
Q.1 M [ul] e 0

and C’1Hu0|| Q1)) < 1. Otherwise, we have

) / / (Cl\uo )—uo(y)\> dx dy
<
(0,1) JQ(0,1) |z —yl* |z —y["

Analysis Mathematica
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/ / <01|U0 )—Uo(y)\> dedy _
M Q(0,1) JQ(0,1) lz —yl* oz —yln

that is, a contradiction.
Specially, if u = ug, we have

\Uo - UOQ(0,1)| ) . ) da

/ ¢: ( C|uo(z)—u, dx d
Q(0.1) (fQ(o,l) fQ(0,1)¢( | ls(n—)yls (y)l) lr—yglJ” ’

S/ bn < \Uo — UoQ(0,1)| >dm
Q( ) ClM HUO| 5 d) Q(O,l))

/ / <Cl|uo )—Uo(y)|> dz dy
0,1) /Q(0,1) lz —yl|* |z —y|"
By the arbitrariness of ug, we have
lu —ugo,)|
/ ¢n ( Chlu :E7 —u dx d : dz
Q(0.1) (fQ(Ol Jow.n é( ||g(g_)y|s(y)|) \x_ﬁn)"

/(01 / (0,1) <Cl|u|$iy|g(y)|> |33daicily|n

Replacing u by ¥,

[u = ug,)]
(2.6) / cbg( ool > s
Q(0,1) )‘(fQ(01 fQ01 o( lu(z) (y)l) vy

Alz—yl® |z—y|"

/01/01 <Cl|z|$)—yz|i(y)|> |jﬂidj”'

Putting A\ > C1||u|

we know

VIQ(o,1))

/ / <Cllu z) — U(y)|> dedy _
Q(0,1) JQ(0,1) Alz —yl* lz —y[" ~

/ oo <\U - uQ(O,l)‘) "
Qo1 A

u —ug,)|
< / ¢" ( Cylu (’L’ —u dx d s dz
Q(0.1) )‘(fQ(O,l) fQ(0,1)¢( |M(z)—y\5(y)|) Ix—y?")n

Analysis Mathematica
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/ / <Cllu T) — U(y)\> dx dy
Q(0,1) JQ(0,1) Az —yl |z —y|"

Now we prove the case of general cube (). Let @ be a cube with a
as the center and 2/ as the side length, then there is an orthogonal trans-

formation T', and T'(Q — a) = Q(0,1). For any u € Vs’¢(Q) and u is not a

constant. Let v(z) = u(T_ll(jx)Jra) where x € Q(0,1). Then v € V8’¢(Q(O, 1)),
vQ01) = <, and

Cilv(z) —o(y)| dxdy
/?n,/01 ( Alz —yl® >|$—yw

/ / Cy |u lm )+a)  w(T~ l(sly)—i-a)‘ da dy
Q(0,1) JQ(0,1) Az —yl |z —y|™

By transformation z; = T~ 1(lx) + a,20 = T~ 1(ly) + a, we have |z —y| =

T(z— T (20— -
| (le a) _ (Z"; “)|: |lez2‘,so we have

/ / Cl\v z) —v(y)\ dzdy
Q(0,1) JQ(0,1) Al —yl |z — y|"
/ / Cylu(z1) — u(z2)| dz1 dz

Az1 — 29]® 7|21 — 2o

and

lv— v,
/ ¢>’;< Cu Jule)—u . 3>da¢
Q(0,1) )\(fQ(O,l) fQ(0,1)¢( |u(@) (y)\) da dy )

Alz—yl® |z—y|"

v — vQ(o,1)| ) ) > d.

- o <
/"2(01 TNA(Jg S (RN

)\‘Zl 22| ln|21—22‘n

By transformation y = T~ !(lx) + a, we get

[v =gl
/ ¢Z< cu;_u de d 3>da?
Q(0,1) A(féwJ)féwJ>¢( lu(z) SWN) y)n

Alz—y] lz—y|™
- [o(, uly) gl )
Chlu(z1)—u(z2 21 dzo Z n’
(foQ ( ‘)\|(21 z2\( )‘)\i—i\") !

Analysis Mathematica
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Applying (2.6), we have
o u(y) — vl ;
(f f (Cl\U(m —U(Zz)\) dz1 dzs )Z y
QJQ Az1—z2[® |21 —22|"
// <C’1|u 21 —u(z2)|> dzy dzo
>\|Z1 —Z2|S |Zl —22|n‘

Letting A > ClHuHVS,¢ we get

)7

[ [o(Cluto-uonny ads
Alz =yl |z —y|» ~
Hence,

/Q¢3<| A Q‘>dm</¢ ( (f fQ (C‘?u;u?oly)) d:cdy)i)dx

Alz—yl* lz—y|"

// <01|u U(y)|> dedy _ .
Az =yl |z —y» —

We also need the Fefferman—Stein type vector-valued inequality for
Hardy—Littlewood maximum operator in Orlicz space. Denote by M the
Hardy-Littlewood maximum operator,

- f s
xEQ

with the supremum taken over all cubes ) C R” containing . The Young
function ¢ is in Vs if there exist an a > 1, such that

o(x) < ;aqﬁ(aa;) for all z > 0.

LEMMA 2.6. If a Young function ¢ € Ao with K4 < 2%, we have ¢n €
Ao NV with the parameter Ky, a depending on n, s, Ke. ‘

PROOF. Since ¢ € Ay, we write

H) = </02 (s6) ") e </;(K¢2<;<T>)"3‘52d7> " - o2 1O

Putting 2y = H(2t), we have K(fy > H(Hilz(zy)). Therefore,

2 Kd?
H\(2y) <2H N(Kpy) < 22H 'K Sy

Analysis Mathematica
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KA m
m+1 pr—1 " ¢
e (s())

Because of the range of K, we get Kf < 1. Letting m large enough such

that K(g (Kf )™ < 1, then we have H~!(2y) < CH™!(y). Hence H 1 € Ay
and ¢ = po H 1 € Ay.
On the other hand, using the decreasing property of ¢(TT), we get

H@wo) = </o2gw<¢<i>) dT) = </o <¢<2;:TT>> et d7'> -
: </()x<¢(77)>;52:d7> " =2 H(x).

Hence 2<2 < H™'(2": H(z)), that is, 2° H~'(z) < H~'(2"-"z). It means
that

2:¢po H N z) < p(2- H Y (z)) < po H (2" 2).
Letting a = 2=~ > 1, we have o (x) < 21a¢’j(ax) and ¢» € Vy. U

REMARK 2.7. If Ky > 2%, then there exists ¢ € Ay such that ¢ & Ao
(see [4, Example 6.4]). Let ¢ be a Young function with

ts(logt)®  mear oo,

t<(log 1)* near 0,
¢(t):{ Z( gt)

where ap > " — 1, a <" — 1. And connected by a convex function,

_ n
—t s(aptl)—n

e near 0,
n
¢~ (1) is equivalent to eln ety near oo, a < 7 —1,
etnis n
e near oo, @ = — 1,

80 ¢n Z Ns.

Then we present a few lemmas that might be utilized to support the
assertion of Theorem 1.2(i).

LEMMA 2.8 [16]. Let ¢ € Ao NV be a Young function. For any 0 < ¢ <
00, there exists a constant C > 1 depending on n, q, Ky and a such that for

Analysis Mathematica



A (¢n,$)-POINCARE INEQUALITY ON JOHN DOMAINS
el

all sequences {fj}jen, we have

Lo | Sy ;> o= cuiva) [ o[ Sy 3‘) &z

JEN JEN

LEMMA 2.9. For any constant k > 1, sequence {a;}jen, and cubes
{Qjtjen with > ~: xq, <k, we have

> lajlxia, < Clkm) Y- [Masl>xe,)]”

PROOF. By the definition of M we know that xiq, < A" M(xq,), so

1 2
Z laj|xke, = Z (lajl2xke,)” < K> [Mllajl2xq,)]" O
J
Now we are in the position to prove Theorem 1.2(i).
PROOF OF THEOREM 1.2(i). Let © be a ¢-John domain. Applying Bo-
man [6] and Buckley [9], €2 enjoys the following chain property: for every
integer x > 1, there exist a positive constant C\; o and a collection F of the

cubes satisfying the following conditions:
(i) QCrQCQforall Qe F, Q :UQe}‘Q and

Z XeQ < Cn,cXQ-
QEF

(ii) Let Qo € F be the fixed cube with center zp by the definition
of the John domain. For any other @) € F, there exists a subsequence

{Q] =1 C ]: Satleylng Q QN C Cn cQ]a |Q]+1| < |Q]| < Cli c|Qg+1|

and \Q] NQj41| > Ot min{|Q;l,Qj41]} for all j=0,...,N—1.
Let kK = 5n. By Q C 5nQ C Q for each @Q € F in (i), we know

d(Q,99) > d(Q,d(5nQ) > 5”2_ L1Q) > 2n1(0).

Hence for any z,y € QQ € F,
1 1
o ] < Vl(Q) < mI(Q) < 5 d(Q.0) < | d(x,00).
Let u € V*SQS(Q) Up to approximating by min{max{u, —N}, N}, we can

assume that u € L>°(Q2). Remember the boundedness of 2, we know u €
LY(Q). Since |z — y| < 5d(z,0) for any z,y € Q, we know that

27) / / (‘uw - y|y)‘> ot
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/ /B(z ! d(2,00)) <|U(AT;:ZI(§)|> \md?id;\"'

< \|u\|v*s,¢(ﬂ). It means that if A > \|u\|v*s,¢(ﬂ), then \ >

Hence Q)

||U| Vs,(P(Q).
Because of the convexity of ¢, we have

2 2|ug —
7 _/¢n \u UQ\ @ </¢ Ju(2) UQOI/\+ Jug UQJ))dZ

A (0]

By Jensen inequality,
2 UQ UQ, 2 u(z) — ug,
|Q|¢Z ( | @l / qb ul @ ‘)

Applying xo < > perX@ in (i),

I</gb 2|u uQO & <Z/ 2|u uQO|>dz
S T L (M “@')mé > e,

QeF QEF\{Qo}
1 1
= T Is.
o1 + 92
By the inequalities (2.4) and (2.7), we get

fr= Z// < o |x—yg\J)|> Ijidyyl”

QeF

<Z// <\U($)—U(y)|> dy dx ‘
B(z, . d(x,00)) 4?;1|$—y|s lz —y|"

QeF

Using the > o7 Xw@ < Crexo in (i) above,

ey <|u<;c>—u<y8>|> s
B(x, ) d(x,00)) 401\33—y| ‘.Z'—y|
If A >4C) max{Cj, 1}||u||v where Cy =C(n,s), we have I} < 1.
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For I, for each Q € F and @ # @, by the chain property in (ii), we
know that there exist a chain connecting Q) = Qn and Qy. Write

N-—1
|uQ - qu| < Z |qu - qu+1|
=0
N-1
(|qu - qu+1ﬂQj| + |qu+1 - qu+1ﬂQj|)'
=0

For adjacent cubes Q;, @41, one has

1Qj — Qj41] = Crt min{|Q;],|Qj111},  CrdlQit1] < 1Q;| < CrclQjsal,

SO

| <y u(v) — g, |d
uQ, — UQ,.,nQ,| < u(v) — ug,|dv
QTN =10,1n Q5 Jo,.no, “
Cie
< 7 lu(v) — ug,| dv.
‘Q]| Q;
Similarly,
2
K,C
|qu+1 - qu+1ﬂQj| < ) lu(v) — qu+1|dU'
|Q]+1| Qjt1

As a result, we get

N
g —ua <262, f Juto) ~uqy|dv
i=07%

For each @Q;, by the convexity of ¢~ and the Jensen inequality,

][. |U(v);uQ,~|dv:¢z_1o¢z<][. \U(v);qu|dv>

J J

S¢:_1<][j¢g<|u(v);uc’2j|)dv).

Using inequalities (2.4) and (2.7),

/ngb <|u<> uQJ " <// < A|U_5|U)|>|Udfdﬁn
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/]/B(vldvé)ﬂ <|uA |)U—ZEJI|U >|Udl—uf0v| / fv

Then we have

|U(U)_UQ]| dv§¢n_1< f('U) d’l))
Q; A ’ Q;

Hence

4|UQ)\UQ0 <802 Z¢ —1<f f >

Together with Lemma 2.2, we get

o:(set. 3o (f, s
< C(n,s,Crc, K)o <Z¢ _1<][f ))

Applying Q@ = Qn C Cy Q; given in (ii),

Qlo- <ﬁ¢g—1<72 ) dv))
/¢"<Z¢n‘1<][f dv)xC p)< ) da.

PeF
Using the ZQef xq < ZQef XxQ < Crexa in (i) above,

I, < C(n,s,Cp, Ka) Z/¢n<2¢n—1<][f dv)xC p>< ) d

QeF PEeF

SC(TIH'S)CH,C)K@/ <Z¢ _1<7[f dU>XC P)( )dz.

PeF

By Lemma 2.9,
IQ S C(n7 S, Cﬁ,c; KCP)

></chg<I;T{M[<¢:_l(ﬁf(v)dv)>;>@]}2>(93)d$-
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Set (t) := ¢~ (t?). Applying ¢~ € AyNVy in Lemma 2.6 gives ¢ € Ay NVs.
Together with Lemma 2.8 to ¢ = 2 and 1, we have

2 Ctnncuein [ on (5 (6 (o) o) roe

Denote ap = f, f(v) dv. For each x € Q, using the convexity and the in-
creasing property of <;Sn

¢n ( > (¢:_1(GP))XP(37)> = ¢ <ZPEFXP($) > (¢:_1(GP))XP(1’)>

PeF 2perxr(®) 3

<or( e S o ame)

T
2perxp(®) g

<

xp(x) .
n Cnc " < C , 705 C7K
PeF ZPG}‘ xp(z) ¢5( ’ ¢S (ap)) (.5, Ch, @) %XP(ZE)GP

Therefore,

B¢ [ S are@dr<e Y alpl =Y [ o)

PeF PeF PeF

Clu(v) — u(y)|> dw dv
<C(n,s,Ckc, K, / / < s .
( D Jo Sowrawony N Nu—wl ) u—wlr

Combining I; and I gives

1< Cn.s,Cre Ky) / / ¢<C|U(v)_—ugy)\> dudy
Q JB(v,}d(v,00) Alu — wl u — w)

Letting A > 4C(n,s,CK7C,K¢)01||U||VS,¢(Q), we have I <1. O

3. Proof of Theorem 1.2(ii)

To prove Theorem 1.2(ii), the most important method is getting the fact
which Lemma 3.5 expressed. We first need to choose a special test function
to estimate the relationship between its norms and its radius.

Let z € Q, d(z,09) < m < diam (). Denote by €2, ,, a component of 2

\ Ba(z,m). For t > r >m with Q, ,, # @, define u,,; in  as

0 y € Q\ [Qm \ Bal(z,7)]
(3.1) wera(y) = WAy € QLN [B(2, 1)\ Blz, 7)),
1 y € Qm \ Ba(z,1),
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where Bq(z,t) = B(z,t) N .
It’s not difficult to prove the following property.

LEMMA 3.1. u,,; is Lipschitz with the Lipschitz constant tir.

PROOF. We split the proof into three cases.

Case 1. For xz € Q\ [Q,,, \ Ba(z,7)], we have u,,(x)=0. Since
Usrt(y) = Uz pi(z) =0 when y € Q\ [Q,, \ Ba(z,r)], we only need to con-
sidery € Q. ,,N[B(z,t)\ B(z,7)] ory € Q. \ Ba(z,t). Ify € Q. ,,N[B(z,t)
\ B(z,r)], we know |z — z| < r. Hence

ly—zl=r _ly—zl—lz—z[ _ |z -yl
— = < < .
|uz,r,t($) uz,r,t(y)| ‘o > P S,
If y € Q.. \ Ba(z,t), we get |x —y| >t — r. Therefore,

|z —y

|uz,r,t(x) - uz,r,t(y)‘ =1< P

Case 2. For x € Q, ,, N [B(z,t) \ B(z,r)], we have u, ,(x) = Im:ln—r. If
Y € Qo N [B(2,1) \ B(z,7)] with us,4(y) = Y7777,

t—r
x—zl—r |y—z—r

s al) — ety = |7 T A

=2l =ly == _lz—yl

- t—r T t-r
If y e Q\ Q0 \ Bal(z,7)] with u,,+(y) =0, we have |y — z| <r. Then
N R B TR )

t—r t—r t—r

Ify € Q. m\ Bal(z,t) with u, ,¢(y) = 1, then |y — z| > t. Together with |z — 2|
< 't, we have

Uzt (T) — Uzt (Y

T—z—r x—z —t
|Uz,r,t($)_uz,r,t(y)‘ = “ t—‘T _1‘ = | t—‘T ‘
_tlo—zl _ly-z-lo—z _ -yl

t—r - t—r — t—r

Case 3. For x € Q. , \ Ba(z,t), we have u, ,¢(x) = 1. Since u,,.(y) =
Uy rt(z) =1 when y € Q. ,,, \ Ba(z,t), we only need to consider y € '\
[Qz,m\BQ(z7 T)] oryc Qz,m N [B(Z7 t) \ B(Z7 T)] If yE Q \ [Qz,m \ BQ(Za T)]
with u,,¢(y) = 0, together with |z — y| >t — r, we know

|z —yl

s re() = vz = 1<y
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Ify € Q. N [B(z,t)\ B(z,r)] with u, ,+(y) = |y;fL_T, then |y —z| < t. More-
over, |x — z| > t. Hence

ly =2l —r| o=zl =ly—z] _lz—yl

|uz,r,t($) - uz,r,t(y)| =1- PR > PR S,

Combining the above cases, we get that u, ,; is Lipschitz with the Lip-
schitz constant t_lT. O

Next we provide an estimation of the test function.

LEMMA 3.2. Let s € (0,1) and ¢ be a Young function. For any bounded
domain Q C R™ and z € Q with d(z,0Q) < m < diam Q. Fort >r > m, we

have u ,; € V*S’(b(Q) with

1 -
. < -1
e rally, wm—c[@ﬁ (mz,m\mz,r»ﬂ (t=7)*

where C' = C(n,s,Cy) > 1.

PROOF. For any x € Q and y € B(x, %d(x,aﬂ)) CQ, uz () —usrt(y)]
# 0 means that either z or y in Q. ,,, \ B(z,7).

H = / / ¢< |U’Z77“7t(x) - UZ;T,t(y”) dy dxn
0 Jjz—y|<Ld(@.09) Az —yl [z —y
< 2/ / ¢(‘uzmt(x) - uz;r,t(y”) dy dxn
Q. \B(z,r) JQ Az =yl |z —y
z—y|'7*\ dydx
Q.. \B(z) J Blag—r) N At —7) / |z =y

+2/ / o( b L) M o 2,
Q. \B(zir) JRAB(at—r) AT =yl |z —y

Using change of variable and (2.1), we have

1-s

t—r
p dp
H :/ / nwp dx
' Q..m\B(z,7) J0O ¢<)\(t—7“)) p

/\ti'rs 1
:/ / o nwy, qu(,u)al'u dx
Q. . \B(z) J0 l1—s H
Cynwy, 1 Cynwy, 1
< d = sz B 9 .
_/QZ’M\B(ZW) 1—s ¢<)\(t—r)8> v 1—s ¢<)\(t—r)5)| m\B(z)
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Similarly, for Iy, we get

’ Q. .m\B(z,r) Jt—r <)\p8) P

A tir s 1
:/ / o nwy, gb(,u)d'u dx
Q. m\B(z,r) J0 S M

Ctim“wn 1
= dx
N /Qz,m\B(z,r) S ¢<>\(t _ 7«)5)

_ Cygnuwy, 1

S ¢<)\(t_ )s>‘92,m\B(z,r)‘,

Let . ' L
A= Mo <|sz\B(zr)|)] (t—r)s

with M > max{4ci¢nsw", 404’"“" 1} Then H; < 4 and Hy < i. In other
words, H < 1. As a result, We have

Ioseilyo < (67 (g, \ Bt @y

as desired. [
For xg,z € Q, let r > 0 such that d(z,0Q) < r < |zg — z|. Define

Wag 2 (Y) 1= ! inf I(yNB(z,r)) forallye,
w r "/($07y)

where the infimum is taken over all rectifiable curves v joining xg and y.

LEMMA 3.3. Let s € (0,1) and ¢ be a Young function. For any bounded
domain Q@ C R"™ and xp,z € Q and r > 0 with d(z,09) <r < |xo— 2|, we

know wg, . € V*S’(b(Q) and there exist a constant C' = C(n,s,Cy) > 1 such
that

1\]7' 1
—1
HWCCO,Z,THV*S’d)(Q) < C|:¢ <7“n):| s’

PrOOF. For x € Q\ B(z,6r),y € B(xz, %d(ﬂ:,@ﬂ)), we have
d(xz,00) < |z —z| +d(z,00) < |z — 2|+,

and
1
y—zl 2oz —ly—al 2|z -2 = (jo —2[+7)
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1
:2\m—z|—gz3r—222r.

So B(x,00)) N B(z,2r) =<

Let 7, be the segment joining x, y contained in B(z, ;d(m,aﬂ)), then
Yoy C 2\ B(z,r). For any y(xo,x), we know (g, ) U, is a curve join-
ing zg and y, with

Wy (o, ) Unzy) N B(z,7)) = U(y(2o, ) N B(z,7)).

Hence wg, »r(y) < wyy2r(x). Similarly, we could also get wsy, ., (2) <
Wy, 2 (y). Hence for any @ € Q\ B(z,6r),y € B(z, yd(z,0Q)), we have

Wﬂco,zm(x) = on,z,r(y)'

For any z € Q and |z — y| < 3d(z,09), it is easy to know I(v,,, N B(z,7))
< |z — y|. Since y(xg,x) U~y is a curve joining xo and y, we get

1
w$0,zﬂ“(y) < w$072,7“($) + T|33 - y|
Likewise, wg, - (2) < way 2 (y) + Lz —y|. So

1
\wxo,z,r(y) - on,z,r(x)‘ < r ‘(L‘ - y|

For z € QN B(z,6r), we have d(z,00) < 6r + d(z,00) < 8r. Hence

H = / / <|ng,z,r( ) Waxg,z, T(y)|> dy dz
lo—y|< Ld(z,00) Az —yl* |z —y|"
= / / ¢<‘wxo,z,r(m) - on,Z,T(?J)‘) dydx
QNB(2,6r) J |z—y|< Ld(z,09) Az —yl |z —y|"

4r 1-s
S/ / nwn¢<p > ap dx
QNB(z,6r) J0 A P
Cynwy  (417° Conw? (4173
= < n
- /QQB(%G?”) L—s ¢< A > = 1—s ¢ Ars (6r)",

-11

Letting A = M[gb_l(rln )] rs with M > max{ C¢"w241 36” 41- 5} we get H

<1. So

TTL 7«8

IRV
—1
ez zrlly, 0 gy < C[¢ ( )] -
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LEMMA 3.4. Let s € (0,1) and a Young function ¢ € Ay with Ky < 2%,
Assume a bounded domain Q) C R™ supports the (qﬁ , @)-Poincaré inequality
(1.4). Fiz a point x¢ so that ro = max{d(z,00) : x € Q} = d(x0,00). If
x,x0 € Q\ B(z,r) for some z € Q and r € (0,2diam ), then there exists a
positive constant by independent of x, z, r such that x, x¢ are contained in
the same component of Q\ B(z, bor).

PROOF. Denote
by zr i= SUp {c € (0,1] : z,z¢ are in the same component of Q\ B(z, cr)}.

It suffices to prove that b, ., has the positive low bound independent of

x, z, r. Since let by = b 5", we could get the conclusion. Because it is a

infimum problem, we may assume b, ., < 1 . Then we only need to prove
that there exists a constant C' > 1 such that

r /1 1
C (2 - 2br,z,r) < |Qm|" < QCbx,z,rra

where €, is the component of Q \ B(z,2b, ,,r) containing xz. Hence b, , ,

1 .
> 4(C241)0 that is, b > 0.

First for fixed z, z, r, we get b, ., > 0. In fact, applying z € €2, then
there exists 0 < § < 1 such that B(z,dr) C Q, and z¢ € B(z,0r). Let h = g
and a curve y(z,xo) connecting x and xo. If y(z,x0) N B(z, hr) = &, then
x,xo are contained in the same component of Q\ B(z,hr). If v(x,z9) N
B(z, hr) # @, we make some notations. Put

=inf {t € [0,1] : y(z, 20)(t) € IB(z,6r)},
t1 = sup {t € [0,1] : y(z,z0)(t) € 83(245”}?

A = 7y(x,z0)(to) and B := y(x,x¢)(t1). Then we have
¥ =72, 70)te(0,0) U AB U(2,20) [1ety,1) € Q\ B(z, hr),

where x, xo are contained in the same component of 2\ B(z, hr). Therefore,
we have by ., > h > O

Set cg = 2by ., < 5, then xg € B(z, cor). Denote by €, the component
of Q\ B(z,cor) contalnlng xo. Using by ,, < 200 < 1, we have z,z( are not
contained in the same component of Q\ B(z, cor) Now we prove that
B(z,cor) N0 # @. If not, by z € 2, we have B( z,3cor) C B(z,cor) C Q.

Then x, xy are contained in the same component of Q\ B(z, cor) which we
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get contradiction with location between x and zp. So B(z,cor) N0 # @.
Noting that

ro = d(x0,00) < gl(ax )|a:0 —y| <r+cor +d(zo, B(z,1))
yeB(z,cor

6
é 5T + d(il?o, B(Z,T')),
we know

4
d(xo, B(z,cor)) > |xg — 2| — g = d(zg, B(z,7)) + 57‘

1 6 70
> =
>, (d(azo,B(z,T)) + 5r) 5
that is, d(zo, B(z,cor)) > 'y . Therefore,
(3.2) B(azo, T;) C Qpy € O\ Q.

For any y € Q, define

1
w(y) == inf I(vN B(z,cor)).
)=, inf 10y B(zcor)

Since B(z,cor) N0 # @ and zg &€ B(z,cor), we have d(z,00) < cor <
|zg — z|. Using Lemma 3.3, we know

1
ol e = C[¢_1<(001?“)”>} (001?“)8'

Applying the (¢, ¢)-Poincaré inequality (1.4) ,

1 \]7" 1
_ . < oo oy < - :
||lw WQHLtbS @ = CHOJHV Y@ S C[¢ ((COT)">] (cor)®

On the other hand, we have w(y) = 0 for y € B(zo, yr0) by (3.2). Since Q is
bounded and rg > 0, we have ‘dii?fﬂ' < C'. Using the convexity of ¢,

[ (4

1 w(z) — wal €] |WB (o, 1) — e
< n n 2 .
= 2/Q¢s< A dot g o A

Analysis Mathematica



S. FENG and T. LIANG

By the Jensen inequality once more,

|w Zo, L1y _WQ| _
|Q|¢n< B(xo, y70) > < |Q|][ o <|w(33) WQ|> e
s A B(IO,;TO) s A

o () — wal v [ (o) — ol
§|B<xo,§ro>|/g¢?< L )arszen o (MO ) o

As a result,
\W(m ) — wal
<
/ o (5 dx C ¢ R )dw,
that is,

Since w(y) > 1 for any y € €2, we have

1 BV e
> n > n .
Lo (5 doz 00 ()il and foler g 2 [0 ()]
Therefore,
—1 1 S —1 1
< n

Ce [(COT)”}(COT) s 9 [|Qw|}

By HI(4A) < ¢>(A)3 in (2.3), letting A = ¢~} [(co:t”)"]’ we get

¢ ey

51 [(Colr)n] < C(cor)®.

Hence

¢’2_1[(c;ﬂ)n} = C¢?_1[|led‘

Together Lemma 2.6, ¢» € Ay and Lemma 2.2, we have

1 1
<C
(cor)™ = 7 |Qq|
and
(3.4) Q] < Cleor).
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Set ¢; > cj_; for j > 1 such that
1 By
|90\ B(z,¢57)] = [\ B(z,¢j17)| = 27|l
For j > 0 with Q, \ B(z,¢;r) # @, define v; in Q by

0, y € Q\ [\ Ba(z, ¢jar)]
vily) = Ty e QN [B(z,¢ir) \ Blz,¢jpar),

Cj41T—C,4T ?

17 yGQm\BQ(Z,CjT),
If Q,, =Qp, r=cjrand ¢t = ¢jqr, then

Uy (y) = uz,cjr,cj+17“(y)

where u; ¢ rc,.,r(y) is defined in (3.1). Using Lemma 3.2, we know

1 o 1
Ay < -1 :
HUJHV* Q) = C[¢ <|Qx \ B(z,cjr)|>} (cjy1r —¢jr)®

By (3.2), we have v;(y) = 0 for y € B(wg, y70). In a manner similar to (3.3),
we have

Together with v;(y) =1 for y € Q, \ Ba(z,¢;r), we have

1 -1
Noon > |pnt '
||”JHL"’S @ = [¢5 <\QI\BQ(Z,CJ7")\)]

Using (¢, ¢)-Poincaré inequality (1.4), we have

1 1 . 1 | .
¢: <|Qw \BQ(Z,CjT)|) > C@b <|Qx \ B(z,cjr)|)(cj+1r c]r) .

By (2.3) once again and letting A = ¢_1(|QI\B%z,cjr)\)’ we get
(cjpar —¢;r)° < C|Q, \ B(z, cjr)“.
Hence ¢ — ¢jr < C|Qy \ B(z,cjr)\i <C2 [oMER
Now we prove that sup{c;} > 1. Otherwise, we have ¢; <1 for all j.
Since z € Q \ B(z,r), then there exists § > 0 such that

B(z,0) C Q\ B(z,r) C Q\ B(x, cor).
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By the connectivity of the B(x,d), we have B(x,0) C Q.
B(z,6) C Q; \ B(z,r) C Qg \ B(z, ¢jr),
and
0 < |B(z,0)| < Q4 \ B(z,7)| < |\ Blz, ¢jr)| = 277 |Qy).

Letting j — oo, we get a contradiction. Hence we get sup{c;} > 1 as desired.

It means that there exists ¢; such that ¢; > 5. Put jp = inf {j >1:¢; < 2}
then
1 Jo—1 Jo—1
<2 —co>r < (¢j, —co)r = ZO(CJH —¢j)r < C’ZO 27 \Q |n <2019, \n
j= J

So g(% —2by .r) < || . Applying the (3.4), there exists a constant C' > 1
such that

r /1 1
_2b:czr)< QI"S 2bzzr-
C(Q 1% —| ‘ C 77T

Then b, ., > 4(C2+1) which implies b > 0. [

LEMMA 3.5. Let s € (0,1) and a Young function ¢ € Ay with Ky < 2
n (1.5). If a bounded domain Q C R™ supports the (QS: , @)-Poincaré inequal-

ity (1.4), then the Q has the LLC(2) property, that is, there exists a constant
b € (0,1) such that for all z € R™ and r > 0, any pair of points in Q\ B(z,1)
can be joined in Q\ B(z,br).
PROOF. Fix zq so that rg := max(d(z,09Q) : z € Q) = d(z0,02)) and b
is the constant in Lemma 3.4. Then we spilt into three cases to prove it.
Case 1. For z & B(ZE(), 3 di’;’mﬂr), we consider the radius r.

Ifr > 16(dlam @7 , then for any y € B(z, 6 df;mgr), we have
ly — x| > |z — x| — |2 —y| > "0 p s diamQ
v ls T 1= 16 diam 0 '

By Q C B(zo,diam ), we get QN B(z, 440 r) = @. Here, any pair of
points in Q\ B(z,7) can be joined in Q\ B(z, 14542, ") = .

Ifr < 16(dii;m ° and d(z,00) > 4 3?;3197“ When z ¢ Q, then any pair of

points in ©\ B(z,r) can be joined in 0\ B(z, 32325&9 ) = Q. When z € Q,

then B(z, 643‘;;&97“) C B(z, 39 S?Q&Qr) C . Similar to the process of prov-

ing by ., > 0 in Lemma 3.4, we know Q\ B( z, 643‘3;&9 ) is a connected set.
b oT0

Here, any pair of points in 2\ B(z,r) can be joined in Q \ B( 2y gagimo T )
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16(diam ©)2
It r < WY and d(z,00) < 40 gr- Let y € Bz, 5k o) N2
By B(y, (1= %) gaimma”) € B(2 saimmar) C B(z,r), forany o € Q\ B(z,7),

we know

T %o € Q\B<y’ (1_ ?)Sdigllﬁr)'

Applying Lemma 3.4, z, g are in the same component of

Q\B<y’b°<1 - b20>8di22n§2r)'

bo(l—bo)To

Since for any w € B(z, 16 diam

T),wehave
lw—y| <fw—2z[+[z -yl

bo(1 —bo)ro_ boro (1 B bo) o
16 diam 16 diam 0 2/)8diamQ

Then we get

B (Z’ b(i;ldi_az?)fzo r) cB (y bo (1 - bzo) 8di;(in§2r)’

and Q\ B(y,bo(1 — @)8&;‘;“974) C Q\ B(z, bfﬁ(ldi_;&)go r). Here, any pair of

points in  \ B(z,r) can be joined in Q\ Bz, bféhi_;r‘;l)gg r).

Case 2. If z € B(ﬂ:o, Sdi’;;mr), for any = € Q\ B(z,r),
P g g o < Je =2l = a0 = 2] < o — ol < diam 2,

SO
diam

TS 1— o
8 diam 2

< 2diam €.
Then

B(‘Z’ 8di:1)rnﬂr> < B(”;O’ 4di:])mQT> < B(“’ 7420> C Bzo,mo) € 2

Similar to the process of proving by ., >0 in Lemma 3.4, we have Q)
B(z, 8di7z;(;nQT) is a connected set. And by

7o
Q\ B(z,r) C Q\B(z, 8diamQr)’

we know any pair of points in 2\ B(z,7) can be joined in Q\ B(z, ¢4 7).
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Combining the above cases, we get the desired result with

70 boro bo(l—bo)To} 0
16 diam Q’ 64 diam Q’ 16diamQ J°

PROOF OF THEOREM 1.2(ii). Suppose 2 C R" be a simply connected
planar domain, or a bounded domain that is quasiconformally equivalent to
some uniform domain when n > 3. Assume that 2 is in agreement with the
(¢, ¢)-Poincaré inequality.

According to [7,8], © has a separation property with xy € 2 and some
constant Cy > 1. It means that for any = € Q, there exists a curve y(t) : [0, 1]
— Q with 7(0) = z,7(1) = zp such that for any t € [0,1], either (|0, 1])
C B := B(y(t),Cod(v(t), Q) or for any y € v(]0,1]) \ B belongs to the dif-
ferent component of Q \ B. For any x € 2, let v be the above curve. By the
arguments in [35], it suffices to prove there exists a constant C' > 0 so that

b:min{

(3.6) d(y(t), Q%) > Cdiam~([0,1]) for all ¢ € [0,1].

Indeed, (3.6) could modify v to get a John curve for x.
Applying Lemma 3.5, 2 has the LLC(2) property. Let a =2+ C;", where
b is the constant in Lemma 3.5. Next we spilt into two cases.

(i) If d(~(t),Qb) > d(mga’gc), then we know

ad(y(t), 2F)

RCIR ] CIOR

diam Q) .
Therefore,

2ad(~(t), QP)

diam ~([0,¢]) < diam 2.

d(il?o, QC)
In other words, it means
C
C > d(il?o, Q ) .
A(7(0),0%) = ) ) diam 5([0,1)

(id) If d(y(t), 28) < %) e declare that
1([0,4]) € B(v(t), (a — 1)d(y(2), QF)).
Otherwise, there exists a y €7([0,))\ B(Y(t), (a — 1)d(~(t), QC)). Because of
2o — ()] = d(wo, Q%) — d(v(1), ) > (a — D)d(x(1), ),
we know zg,y € Q\ B (v(t), (a — 1)d(y(t),Q0)).
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Together with Lemma 3.5, we know zy and y are contained in the same
complement of 2\ B(y(t),b(a — 1)d(y(t),Q2F)). Since b(a — 1) > Cj, then zq

and y are contained in the same complement of Q\ B(v(t), Cod(7(t),QP)),
which is in contradiction with the separation property. Hence we have

v([0,¢]) € B(v(t), (a — 1)d(~(t),QP)) as desired.
With above claim, we get

diam ([0,1]) < 2(a — 1)d(y(t),25).
It means that

d(v(1), %) > 2(a1_ ) diam ([0, 1)).

Combining two cases, (3.6) holds if C = min{;éi?ﬁfg), 2(a1_1)}. The
proof is completed. [J
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