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Abstract. In this paper, we provide sufficient conditions for the functions
and ¢ to be the approximate duals in the Hardy space H?(R) for all 0 < p < 1.
Based on these conditions, we obtain the wavelet series expansion in the Hardy
space HP(R) with the approximate duals. The important properties of our ap-
proach include the following: (i) our results work for any 0 < p < 1; (ii) we do not
assume that the functions ¢ and ¢ are exact duals; (iii) we provide a tractable
bound for the operator norm of the associated wavelet frame operator so that it
is possible to check the suitability of the functions 1 and ¢.

1. Introduction

1.1. Preliminaries. Let Wy4(¢) be the wavelet system with dilation
factor A > 1 generated by ¢ € L?(R), i.e.

Wa(¥) = {wji == APp(AT - —k) - j.k € Z}.
We recall that Wa(v)) is a wavelet frame in L2(R) if, for every f € L?(R),

=" (f bk) i

J,kEZL

with its dual wavelet frame W4 (¢). In this case, the two generating functions
¥ and ¢ are referred to as (evact) duals in L?(R) [3,8].
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Wavelet frames have been used in literature to characterize function
spaces such as Triebel Lizorkin spaces and Besov spaces!. In particular,
for the Hardy space HP(R), 0 < p < 1, if the functions ¢ and ¢ are exact
duals in L?(R), and they satisfy smoothness and vanishing moment con-
ditions depending on p, then any function f € HP(R) has a wavelet series

expansion of the form [11-13,21]

(1.1) [ = Z (f, bjk) Vjk-

J,kEL

Approximate duals have been studied as a way to generalize the exact
duals in L?(R). Approximate duals in [8,9] are the functions 1 and ¢ whose
associated wavelet frame operator U defined as

Ulg) == D {9 9iw) v

J,kEZL

approzimates the identity operator in L?(R) in the sense that ||[U —1Id||z2— 2
< 1.

More recently, Bui and Laugesen [5] study approximate duals in H!(R).
They identify the conditions for the two generating functions ¢ and ¢
to satisfy in order to be approximate duals in H!(R) in the sense that
U —=1d| ;10 < 1. It is also shown that these approximate duals give
a wavelet series expansion of the form

(1.2) F=> (U f, din) s

J,kEeZ

for any function f € H*(R). Here, U~ f makes sense since, in this case, U is
bounded as well.

This wavelet series expansion can be understood as a generalization of
the aforementioned classical wavelet series expansion in (1.1) for H*(R). In
fact, if U is the identity operator in H'(R), then 1) and ¢ are exact duals in
H'(R) and the series expansion in (1.2) reduces to the series expansion in
(1.1).

Of course, when we already have the exact duals ¢ and ¢ in L?(R),
we can check to see if they satisfy additional conditions to get the series
expansion in (1.1). However, for this process to go smoothly, we have to
know both 1 and ¢ concretely enough to check these conditions, which may
not always be possible.

I These characterizations are studied mostly under the dyadic dilation setting with A = 2,
although many of them can be easily extended to a more general case with dilation A > 1.
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WAVELET SERIES EXPANSION IN HARDY SPACES 565

For example, it is well known that the Mexican hat function 1 has its
dual ¢ so that Wa(vp) and Wa(¢) are dual wavelet frames in L?(R) [10].
Although the dual function ¢ of 9 is not unique, to the best of our knowl-
edge, the dual function ¢ has never given explicitly enough to allow us to
check additional conditions for H'(R) characterization, resulting the series
expansion in (1.1).

On the other hand, by showing that the Mexican hat function ) and some
carefully chosen function ¢ are approximate duals in H!(R), it is proved in
[5] that the Mexican hat function ¢ provides

F=Y (U 'fbjuytbju forall feH(R).

J,keZ

In this paper, we extend the above result on H'(R) by Bui and Laugesen
to cover the full range of the Hardy spaces, i.e. HP(R) for 0 < p < 1.

Let L? := L?(R) and HP := HP(R). The (mixed) wavelet frame operator
U:L? — L? is studied in recent papers [3-5], and we recall its definition
below.

DEFINITION 1.1. Let ¢, ¢ € L?. Let A > 1 be the dilation factor. The
wavelet frame operator U := Uy 4 associated with a synthesizer 1) and an
analyzer ¢ is defined as

Up,g(f) = Z (fs Djk) Yk

J,kEZ

where 1,1, = A1/2p(AV - —k) and ¢j = AI/2H(A7 - k), as before.

We recall a result from [5] (see also [3, Propositions 6 and 7]) providing
sufficient conditions on 1 and ¢ for the operator U to be bounded on L?. Fur-
thermore, the operator can be written in an integral form with the wavelet
frame kernel K 4 defined below. Throughout the paper, WkP is used to
denote the Sobolev space, for K € N and 1 < p < oc.

THEOREM 1.2 [5]. Assume ¥, ¢ € L? satisfy

OGES
sl =1,

for some ¢ > 0.

(1.3) [0(E)],|6(6)] < {

Assume @E, gg € W21, Then the wavelet frame operator U = Uy,¢ 15 bounded
and linear on L?, and if f € L? has compact support and x & supp f, then

Uy )2 /way (y) dy
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566 Y. HUR and H. LIM

where the wavelet frame kernel Ky 4 is defined as

(1.4) Kyo(r,y) = > () djily

JEZL kEZ

In [5], by imposing sufficient decay conditions and smoothness condi-
tions with respect to the frequency domain of the synthesizer ¢ and the
analyzer ¢, it is shown that the wavelet frame operator U is the L2-based
Calderén-Zygmund operator? (see, for example, [16,19] for definition), and
has a bounded extension from L? to H', L? (1 < p < o), and the BMO
space. Also shown is the invertibility of U by assuming a sufficient com-
putable condition on v and ¢ to be approximate duals. This invertibility
result is in turn used to show that every element in these function spaces
has a wavelet series expansion via Wy4(v). These results allow the Mexi-
can hat function to be an explicit example for ¥ on these function spaces,
including H'.

In this paper, we extend the above result of H! to the Hardy space H? for
all 0 < p < 1. Specifically, we obtain the boundedness and the invertibility
of the wavelet frame operator U on HP, 0 < p <1, by using the appropri-
ately generalized Calderén—Zygmund operator for the full range of Hardy
spaces HP. Subsequently, we show the wavelet series expansion with the
wavelet system W, (1)) on the Hardy space, by applying the generalized re-
sult of Frazier and Jawerth, and by showing the equivalence between the
Hardy space HP and the (non-dyadic) Triebel-Lizorkin space F;E)Q (see Def-
inition 5.1(a)). We also show that the Mexican hat function can be used as
an explicit example as the synthesizer ¢ on HP for all 1/2 < p < 1.

To obtain our main results, we mostly follow the approach of [5], but
also employ tools developed in [3,4] as well as the classical theory in [1,14,
17,24,26] to handle a Calderén—Zygmund operator and the ¢-transform with
proper modifications as needed.

We use the following definition of a Calderén—Zygmund operator asso-
ciated with 0 < p <1 (cf., [23]) which is properly generalized to apply to
the Hardy space HP. As in many results and definitions in our paper, the
conditions in this definition depend on p, through the floor function

Ny = [1/p—1].

Note that A}, = 0 if p = 1, or more generally, if 1/2 < p < 1.

2Since we focus on the Calderén—Zygmund operator associated with p (cf., Defintion 1.3)

throughout the paper, we call the standard Calderén-Zygmund operator, defined in [16,19], L2-
based.
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DEFINITION 1.3. A Calderén—Zygmund operator Z (associated with p)
is a bounded linear operator on L? such that for compactly supported f € L?,

Zf(x) = /R K(z,y)f(y)dy for x ¢ supp f

where the kernel £ : (R x R)\ {(z,z) : z € R} — C is a measurable function
satisfying the following conditions:

(a) There is a constant Z > 0 such that

(1.5) 0y K(z,y)| < forall 0 <o <N, + 1.

|$ _ y‘a—i-l

(b) For any compactly supported f € L? with ff(a:)a:ﬁ dr =0 for all
0< B <N,

(1.6) /Zf(:z):za de =0 forall 0 <a<N,.

REMARK 1.4. The L?-based Calderén-Zygmund operator studied in the
literature (cf., [19]) does not require any vanishing moment condition such
as (1.6), but requires the smoothness conditions:

0y K, y)| < a=0,1.

|z —ylotl’

In some literature (e.g., [16]), these smoothness conditions are replaced by
slightly weaker smoothness conditions involving the Lipschitz continuity. [

REMARK 1.5. When p =1 (and thus N, = 0), the conditions in Defini-
tion 1.3 are similar to those in the Calderén—Zygmund operator introduced
in [5] for the Hardy space H', where smoothness conditions with Lipschitz
continuity are used. [

1.2. Main theorems. In this subsection, we state our main theorems.
Our first main theorem gives sufficient conditions on 1, ¢ € L? for the wavelet
frame operator U = Uy 4 to be a Calderén-Zygmund operator, and have a
bounded extension to HP.

THEOREM 1.6 (boundedness of wavelet frame operator on HP). Let 0 <
p <1 be fized and let N := N,. Assume that 1, ¢ € L? satisfy

St €1 =1
| JIPS {|£|—5—N—3/2’ €| > 1,
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S €] k=1
[ JIPS {|£|_5-2N—5/2, €l > 1

for some € > 0 and the following additional conditions:
(a) e WNHL and €2 € WNH3L for a =0,1,..., N +1;
(b) 1 € WNH32 ¢ c WNHL2 gnd £2¢ € Wor22 for a = 1,... N + 1;
) [(z)2P dz = [ ¢(z)2P dz =0, for all 0 < B < N.

Then the wavelet frame operator U = Uy, 4 is a Calderon-Zygmund op-
erator, and has a bounded extension to HP.

Compared with Theorem 1.2, the above theorem has the moment con-
ditions for the functions ¢ and ¢, which are typical for the Hardy spaces
H? 0 <p<1. In fact, the above conditions of Theorem 1.6 are all dedi-
cated to show that the wavelet frame operator U is a Calderén-Zygmund
operator associated with p (cf., Theorems 2.1 and 2.2). The bounded exten-
sion to H? of the frame operator can be seen by simply showing that the
Calderén—Zygmund operator has a bounded extension.

In the next theorem, we use the value My,(v, ¢;9*, ¢*) which will be
defined and explained later in Section 4. This theorem asserts that if this
value is less than 1, then the wavelet frame operator U is bijective on HP.

THEOREM 1.7 (bijectivity of wavelet frame operator on HP). Let 0 < p
<1 be fixed. Assume that 1, ¢ satisfy all the conditions in Theorem 1.6.
Assume also that *, ¢* satisfy all the conditions in Theorem 1.6 and they
are exact duals in L*. If M, p(0, 0;*, ¢%) < 1, then the wavelet frame oper-
ator U defined on L? has a bounded linear bzyectwe extension to HP.

We will show that the wavelet frame operator U = Uy, 4 satisfies
1Uy,¢ — 1d[| g mr < 1

from My,(v, ¢;4*, ¢*) < 1 together with other assumptions in Theorem 1.7.
That is, the functions ¥ and ¢ are approximate duals in H?. These approxi-
mate duals ¢ and ¢ in HP are used in the next theorem to provide a wavelet
series expansion for any function f € H? with an additional regularity con-
dition. Below, fo2 denotes the (non-dyadic) Triebel-Lizorkin sequence space
defined in Deﬁnltlon 5.1(b).

THEOREM 1.8 (wavelet series expansion in HP). Let 0 < p <1 be fized.
Assume that ¥, ¢, V*, ¢* satisfy all the conditions in Theorem 1.7 includ-

ing My(v, ¢;90*, ¢*) < 1. Further assume that &Z e WNH21 " Then for any
f € HP, there exist coefficients {cji};jrez € fo2 such that

F=Y" cipthj.
jkez
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Moreover, the coefficient c;ji, can be taken as <U‘1f, ¢jk>, where U1 is the
imwverse of the wavelet frame operator U on HP.

Let us set some notations used throughout the paper. We use Ny to
denote the set of non-negative integers. That is, Ny := NU{0}. We use
the notation f < g to denote f < Cg for some constant C' > 0. In addition,
for o € N, we denote the a-th derivative of f by f(®, and the a-th partial
derivative of K (x,y) with respect to x by 05K (x,y). For a = 1, we use both
f® and f', and both 01K (z,y) and 8, K (x,y). By f© and 90K (z,y), we
refer to f and K(x,y), respectively, so that the expression “0O-th derivative”
can be used. For f,g € L% (f g):= fng dx. The Fourier transform is
normalized as, for f € L' N L2,

f(e) = / f(@)e 27 e

and the inverse Fourier transform of f is denoted by f .

The rest of the paper is organized as follows. In Section 2, we find the
conditions on v, ¢ € L? with respect to the frequency domain for the wavelet
frame operator U = Uy, 4 to be a Calderén—Zygmund operator with a com-
putable constant. In Section 3, we define the Hardy space HP using atomic
decomposition, and show that a Calderén—Zygmund operator can be ex-
tended to the Hardy space HP for each 0 < p < 1. An explicit bound of the
operator norm is found in this section. In Section 4, we prove Theorem 1.6
and 1.7. In Section 5, we prove Theorem 1.8. In Section 6, we give an
illustration of our main theorems using the Mexican hat function as an ex-
ample for the case when 1/2 < p < 1. Finally, some more technical lemmas,
example, and proofs are placed in Appendixes A, B and C.

2. Wavelet frame operator as a Calderén—Zygmund operator

2.1. Main results. In the next two theorems, we provide sufficient
conditions on ¢ and ¢ for the wavelet frame kernel Ky  in (1.4) to satisfy
the smoothness condition (1.5) and the vanishing moment condition (1.6)
of a Calderon—Zygmund operator. This means that, by Theorem 1.2, the
wavelet frame operator U is a Calderén—Zygmund operator defined with the
kernel Ky 4. The case when p = 1 has already been studied in Proposition
4.5 and Theorem 4.6 of [5], and the sufficient conditions on ¢ and ¢ for p =1
correspond to our conditions below with A}, =0. Proofs of the following
theorems are presented in Sections 2.2 and 2.3.

Here and below, we use the two quantities defined as, for a € Ny,

(2.1) Taltr,6) = (2m)° Y €2 6() b + )|

IEZ

)

It
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I R R (GO
IeZ

Iz

THEOREM 2.1. Let 0 < p <1 be fized and let N := N,,. Also, let A>1
be a dilation factor. Assume that 1, ¢ € L? satisfy the following conditions:

(a) e WNH3L gnd ¢9¢ € WNH3L fora =0,1,... N +1,
(b) ¥ e WNH32 gnd ¢9¢ € Wot22 for o = 0,1,..., N + 1.
We also assume o,(1, ¢) < 0o and 7o,(1, @) < oo for all0 < a < N +1. Then

for any x,y € R such that x # y, every a-th partial derivative of wavelet
frame kernel Ky, 4 defined in (1.4) is bounded as follows:

1
O Kol < o (o mms, o)) forall D<@ <A1
where
(2.3) Co(t),0) = Ka(A)oa(t, §) D1, (1, p)@+D/(@+2)

with a constant ko (A)=A(2A%+ S0 AR) J(AF —1) (here St AF=0).

THEOREM 2.2. Let 0 <p <1 be fized and let N := N,,. Assume that
W, ¢ € L? satisfy

v F, <,
s {\§|—€—N—3/2, €l =1,
AN+ €1 €l <1,
|¢ +1 (£)| S {‘§|_5_2j\/’_5/27 |§‘ Z 1

for some € > 0, and the following additional conditions:
() ¥, ¢ € WNHL2,
(b) [Y(z)z*dx = [ ¢(x)z*dz =0, for all 0 < a < N.
If f € L? has compact support and ff(a:)a:ﬁ dr =0 for all 0 < S <N,

then the wavelet frame operator U satisfies the following vanishing moment
condition:

/Uf(a:)a:o‘dazzo forall 0 < a < N.

2.2. Auxiliary results and proof of Theorem 2.1. In this subsec-
tion, we present Proposition 2.3 and prove Theorem 2.1 by using the propo-
sition. In Appendix A, we place some lemmas used to show Proposition 2.3
and Theorem 2.1.
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We define the series K as

y) =Y (@ —k)dly—k),

kEZ

so that the wavelet frame kernel Ky, 4 in (1.4) can be written as

K¢¢xy ZA]KO A](L' A] )
JEL

with a dilation factor A > 1.

The following proposition gives the estimation for 9y’ Ko (z,y), and it is
a generalization of Lemmas 4.7 and 4.8 in [5], which handles the case p = 1.
Our proof of Proposition 2.3 is similar to the proofs of Lemmas 4.7 and
4.8 in [5], but shows how to handle the case 0 < p < 1 properly. We use
Lemmas A.1 and A.2 in Appendix A to show the proposition.

PROPOSITION 2.3. Let 0 <p <1 be fived and let N = [1/p—1]. As-
sume that 1, gb € L%. For any fired 0 < a < N, +1, suppose that 11} qu, L E%

e W2 and w,ﬁo‘qﬁ € Wot22 and that o4(v,¢) and 1,(¥, @) in (2.1) and
(2.2), respectively, are finite. Then for all x,y € R such that x # y, we have

Ta (¥, ) }

‘ |a+2

195 Kol y)| < min{oa(,0).

PROOF. Letusfix0<p<land 0 <a< Np + 1. From the assumptions

15, &5, e ,50‘5 € W21, we obtain the continuity of ¥, ¢, ..., (* and decay
conditions |1(x)],|o(x)], ..., ¢\ (x)] <1/(1+ |z[?) by Lemma A.1. Hence,
by Lemma A.2, we can write 8;‘K0(:E,y) as a converging series. Then, we
define a periodic function F'(t) with period 1 as

(2.4) F(t) == 0 Ko(x +t,y +t) = Zw(a: +t—k) o@D (y+t—k).
keZ

Since ¥, ¢, ..., ¢(* are continuous, F is continuous, by Lemma A.2 again.
For | € Z, the I-th Fourier coefficient of F' is given as

/quaz—i—t— )o@ (y +t — k)e 2™ gt

Since ¢(® is bounded and [¢)(x)| < 1/(1 + |z|?), the series in the integrand
converges uniformly. So, we have

= / Pz +t) ¢l (y +t)e ™M at
R
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— (i)t [ e e ) i+ 1) .
By summing the absolute value of the coefficients cg () over [ € Z, we have

D ler()] < @03 |64 (- + 1), = oalth, ¢) < oo

I€Z leZ

Also, one can show that |F(t)] <1/(1+ [t]?) holds. Since F is contin-
uous with >, ., |cp(l)| < oo, the Fourier series of F' converges pointwise
and F(0) = 3,5 cp(l). Then, we have 0; Ko(z,y) = )y cr(l) from (2.4).
Thus we have an estimation for the absolute value of 8;‘[(0 as

95 Kol ) < 3_ler()] < 2m)7 3 [[€*0() ¢ + Dl 1
lez lez.
where the last inequality comes from the above inequality.

Since £%¢p,1p € W22 we can use the integration by parts (o + 2)-times
for each cp(l) in 9y Ko(w,y) = )y cr(l). This gives another estimation for
the absolute value of 8;”K0 as

1
I |£17 _ y|oc+2 :

Therefore, for each 0 < a < Np + 1, we conclude that

oKt < (|1 W (CEEE

Kol )] < min{o(, ), V0L 0

Tz — ylot?

Based on the estimation on 8;K0(w,y) shown in Proposition 2.3, we
prove Theorem 2.1 by additionally using Lemmas A.1, A.3 and A.4 in Ap-
pendix A.

PRrROOF OF THEOREM 2.1. We first show that, for each fixed 0 < a <
N +1,if,¢,...,6% € W2l and ), €99 € Wt22 then for all = # v,
Ca(¥), )

o
|8y Kw,¢(33>y)‘ < |z — ylotl

To see this, we first 1nvoke Lemma A.1 and obtain the decay conditions
(@)l ()], -, ¢! (2)] S 1/(1+||*"?) and the continuity of ¢, ¢, ...,

@ from the assumptlons V..., 6% € Wt Then, by Lemma A4,
0y Ky ¢(,y) exists and can be written as

09 Ky p(x,y) =Y AT (AT, Aly).
JEZ
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Next, we use Proposition 2.3 to get

09 Ko(2,y)| < min{oa(y,d), Ta(t, ¢)/|z — y|* T2}

from the assumptions 1, £%¢ € W22 By taking o = ooV, 0), T = To (1, d)
and [ = o in Lemma A.3, we obtain the above bound for |[0f Ky ¢(,y)|.

Now, since the given regularity assumptions of Theorem 2.1 imply the
above regularity assumptions for every 0 < a < N + 1, the desired bound
of Theorem 2.1 is obtained by taking the maximum value of C, (¢, ¢) over
0 < a <N +1, and this completes the proof. [

2.3. Auxiliary results and proof of Theorem 2.2. In this subsec-
tion, we present Propositions 2.7 and 2.8, and prove Theorem 2.2 using them.
A more technical lemma for showing Proposition 2.8 is in Appendix A.

We start by defining some spaces and operators and by stating proposi-
tions. Let 0 < p <1 and N, = |1/p — 1] as before. Let us define the space
KNet12 \which can be thought of as the Fourier transform of the Sobolev
space WMo 1.2 a5 follows:

KN t12 = {f € L% || fllnpsre i= /(1 + 2Nt f(2) P d < oo}.
We further define the space Kiv »i12 with the vanishing moment condition

K}{\/PHQ = {f e gNot1h2 . /f(a:)a:o‘ de =0, forall 0 < a < /\/'p},

le+1,2

and the corresponding sequence space as the set of all sequences ¢ =

{¢;i} such that

el Py o= Z (1+ A_2j(N”+1)(1 + k2(NP+1)))c§k < 0o
jkEZ

for A > 1. These spaces are the generalization of the corresponding spaces
studied in [4] for the case when N, = 0.

We now recall the wavelet analysis and synthesis operators for L? and
12:=12Zx17).

DEFINITION 2.4. Let 1, ¢ € L? satisfy the decay condition (1.3).

(a) The (wavelet) analysis operator t :=ty4: L* — [? (associated with an
analyzer ¢) is a bounded linear map defined by

f=t(f) = {{f, djk) }jker
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(b) The (wavelet) synthesis operator s := sy: 1> — L? (associated with a
synthesizer 1) is a bounded linear map defined by

c={ep} = s(c) = ) et

J,kEZL

The boundedness of these operators is proved in [3,4], used in our proof
of Propositions 2.7 and 2.8 below, and stated separately in the following
lemmas for a clearer presentation.

LEMMA 2.5 [3,4]. Assume that ® € L? satisfies the decay condition (1.3).

Let ¢(x) = ®(—x). Then the analysis operator t : L?> — I is bounded and
linear.

LEMMA 2.6 [3,4]. Assume that W € L? satisfies the decay condition (1.3).

Let ¢(x) = U(—x). Then the synthesis operator s: 12 — L? is bounded and
linear, with unconditional convergence of the series.

The following proposition shows the synthesis operator s restricted to
Ve 12 is well-defined. It is proved using Lemma 2.6.

PROPOSITION 2.7. Let 0 < p <1 be fized and let N := N,,. Assume that
W € L? satisfies the following conditions:

(a) » € WNHL2 gnd [Y(z)2xPdz =0, for all 0 < B < N,

(b) \$<N+l><s>|s{:g_;_N_w’ 950 Jorsome e >0

Then the restriction $|n+iz2: N2 Kivﬂgof the synthesis operator is
well-defined, bounded and linear, with unconditional convergence of the se-

ri€es.

PROOF. Let ¢ € IN*12. In order to show s(c) € KN*T12 it suffices to
show that [|s(c)||z2, 2N T1s(c)||r: < co. Let W(—&) :=(¢). Then, since
U € L? and it has the decay condition (1.3), we get s(c) € L? by Lemma 2.6
immediately. Next, since 2V t1 = A=TNV+1) Zé\fgl (N;H) (Alg — k)N,
we have

N+1 N + 1 ) )
M) =Y < i > D (AN ) () ju (),
=0 J,keZ

where n; := x%t). By taking ¥ in Lemma 2.6 as () and noting that U() = 7;,
we have

5 “A_j(N+1)kN+1_iCjk|‘l2.

Z (A_j(N+1)kN+1_iCjk) (ni)jkz
L

J,kEZ
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Since the right-hand side of the above inequality is bounded by ||c|[jx+1.2, we
get |2V s(0) |2 S llellovsra.

Finally, fix 0 <a <N. Then, since [[z*s(c)|;. S [Is(e)]lgarie < 00
from the assumption that [ (z)z’dz =0 for all 0 < 8 <N, we see that

[ s(c)(z)z*dx = 0. Therefore, s(c) € KN*12 which completes the proof.
t

The next proposition shows the analysis operator t restricted to K '* Npt1,2

is well-defined. It is proved by using Lemma 2.5, and Lemma A.6 in Ap-
pendix A.

PROPOSITION 2.8. Let 0 < p <1 be fired and let N := N,. Assume that
¢ € L? satisfies the following conditions:
(a) € WNTL2 gnd [é(z)x’ dx =0, for all 0 < B < N,
Y €%, gl <1
(b) [N V()] £ e ON— " for some e > 0.
‘§| 2N 5/27 ‘§| > 1,

KN+1’2 _y INH12

Then the restriction t|KN+1 2 of the analysis operator is

well-defined, bounded and linear.

PROOF. Let f € KN*12 To show tf)={(f. k) } € INHL2 it suffices
to show

(2.5) S UL ¢ P S NI
7,kE€Z
(2.6) S ABNEf P S N2
J,keZ
(2.7) ST ATHOHDREWID f g2 < A,
J,keZ

Let ®(—¢) := ¢(£). Since ® € L? with the decay condition (1.3), the inequal-
ity (2.5) is immediate from Lemma 2.5.

Next, let F(€) := f(£). Since F € WNHL2 || F/eNHL|| 12 < ¢y || FNV )| 1
by Lemma A.6, and this implies F/¢V+! € L2, Then, we have g := (F/&N+1)
€ L? and gVt = f holds weakly. From

ATNED (F 6y = (=1 g, (W) 1)

and by Lemma 2.5 with ® there as V1@, we get the inequality (2.6) since

> ATIWEVE 65017 < eallglie < cleallaM T |7
J,kEZ
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Finally, from

. . N+l N+1 . . . ,
PN+ (A]x_(A]x_k))N—i-l _ Z < . >(A]x)N+1—z(_(A]m_k))7,7
=0
to get the inequality (2.7), it suffices to show that for any fixed 0 <i <
N+1,

Z A—2j(/\/+1)(ij)2(N+1—i)(ij _ k)2i| (f, bix) ‘2 < Ez'Hﬂ?NHinz
k€T
for some ¢ > 0. For i = 0, since ® € L? and it has the decay condition (1.3),

the above inequality holds due to Lemma 2.5. So, we may assume that 0 < ¢
<N +1 and fix i. Note that

ATTNID W N (AT — k) (f, ggr) = A9 (NI (W — k) ).

Also, note that 2V 1= f € K2, Let F(ﬁ) (xN+1=if)(€). Then F € Wh?
and by Lemma A6, |F/€ 1> < c3]|FD| 2. Thus, F/& € L?. Then, we

have g := F/{Z € L? and ¢ = aNH1- ' f holds weakly. Let 7 := a:lqﬁ Then,
AT (NI (A = k) ) = A9 (gD i) = (=1 (g, (/D) 1.)-

Thus, by Lemma 2.5 with ® there as £&'®() and by noting that @) = (i),
we see that the left-hand side of (2.8) is bounded by

> g: (n * <allgllie < Gealld T f 7
J,kE€Z

Therefore, we have the inequality (2.8) for fixed i, with ¢; = c3c4. This com-
pletes the proof. [

By using Propositions 2.7 and 2.8, let us prove Theorem 2.2.

PROOF OF THEOREM 2.2. Let ¢ and ¢ satisfy all the assumptions in
Theorem 2.2. Since all assumptions are the union of all the assumptions
in Propositions 2.7 and 2.8, we see that the composition sot is bounded
and linear on Kiv 12 Gince the wavelet frame operator U satisfies U f =
(sot)(f) for every f € KN*12 U s bounded on KV 2.

Let f be a function in L? with compact support, satisfying [ fx)zYdz=0

for every 0 <~ < N. Then f € Ki\/H’Q, and thus U f € Ki\/H’Q as well. Let
0 < a <N be fixed. Since

x2a 1/2
leU fllr < ( R df”) IV1+22X420 f|| L S U f oo < o,
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by the assumption that [ Y(z)z? dx =0 for all 0 < 8 < N, we have

Jvstas = [ s (

which completes the proof. [J

ST A g(ATy—k) / W( ATz — k)z® da:) dy = 0,

J,kEZ

3. Boundedness of Calder6n—Zygmund operator on HP(R) with
an explicit bound

3.1. Main result. Among the known equivalent definitions of Hardy
space HP = HP(R), we adopt the definition of Hardy space with the building
block called “atom” [14,15,17,24]. Recall that N, = [1/p — 1].

DEFINITION 3.1. For 0 < p < 1, a real-valued function h € L? is called
a (p,2)-atom (or simply, an atom) if it satisfies the following conditions:

(a) supp h C I for some bounded interval I,

(b) [l g2 < [I[/277, and

(¢) [h(z)x*dx =0 for all 0 < a < N,

DEFINITION 3.2. For 0 < p <1, the (atomic) Hardy space HP is de-
fined by

H? .= {f €S : f= > M\hyi (in the sense of tempered distribution)
k=0

[ee]
for some (p, 2)-atoms hy and Y |\x|P < oo},
k=0

and the quasi-norm || f||z» is defined as inf { (327 | e |?) 1/p}7 where the in-
fimum is taken over all possible atomic decompositions of f € HP.

The Hardy space H? is a complete space with |- || g» for 0 < p <1 [1,17].
We will show that the Calderén—Zygmund operator Z (see Definition 1.3)
has a bounded extension to HP. This is an extension of the result in H!
space studied in [5].

Before stating our H? extension result, we introduce some numbers used
in its statement and throughout the paper. Let 0 < p <1 be fixed and let
N :=N,. Let b denote any number larger than 2/p and let ¢ be defined as

(3.1) §:=8(b) := 0.5+ ((2N +3)/(2b) + /4 + (2N +3)/(2b))2).
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We also reserve the letter G to denote

(3.2) G:=GWN):= max G,

0<a<N

where G, are the values described in the following lemma from [14], with

N=WN.

LeEMMmA 3.3 [14]. Let N € N and R > 0 be fized. Let 0 <a < N be a
fized integer. For each k € Ny, there exists a unique polynomial g*(x) of
degree at most N such that

o (w)a” di = {1’ e

(3.3) 0, O0<B<N, B#a,

| Ek| JE,
where Ey = {x € R: |z| < R} and
(3.4) E,={zeR:2"'R< 2| <2*R}, k=1,2,....

Furthermore, for GX(z) := g% (x)xg, (%), there exists a constant G, indepen-
dent of k and R such that

(3.5) |GE ()| < Go(2FR)™®,  for every x € R.

Clearly, G depends on N, and is independent of other parameters in-
cluding R in Lemma 3.3 when N is fixed. Some more details about values
G, and G are given via an example in Appendix B.

THEOREM 3.4. Let 0 <p <1 be fized and let N := N,,. Suppose Z is
a Calderon—Zygmund operator with a constant Z. Then for any fized b >
2/p and ¢ > 6 with 6 = 6(b) as in (3.1), Z has a bounded extension to HP
satisfying

||ZHZI){17_>HP é CICP(I/p_1/2) ||ZH€2—>L2 + CQZP>
where Cy and Cy := Cy(b, () are given as follows:
Cr:=(1+GWN+1)P,

oN+3 }P

Calb,) = {(N+ D)IV2N +3

1 1 1 2\ P?
X {2<(C+ 1)2V+3 + (¢ - 1)2N+3><p }

2427 \p

. _1)"P/2 P

x{2 (2b-1)72C +3¢7 (b_a_1> }
0<a<N

Here, G is a constant defined as in (3.2).
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REMARK 1. In Theorem 3.4, when p, " and G are fixed, the constant C;
is a fixed number containing no variables, and Cy = C5(b, () depends only
on parameters b and (. Hence, the above bound

C1 PP Z| Lo + Ca 2P

can be improved by taking sufficiently large b. To see this, note that as
the parameter b increases (and ( is fixed), the value of Cy decreases, so the
second term, i.e. CoZP, decreases, whereas the first term stays the same.

3.2. Auxiliary results and proof of Theorem 3.4. In this subsec-
tion, we present two propositions and the proof of Theorem 3.4 based on
these.

To show the boundedness of a Calderéon—Zygmund operator on HP for
any fixed 0 < p <1, we follow a classical approach for the atomic Hardy
space [1,14]. This approach consists of three steps. First, one shows that
the operator maps atoms to “molecules” and then, in the second step, shows
that every “molecule” belongs to the Hardy space. In the final step, by
using the results from the previous steps and an atomic decomposition, it
is shown that a Calderén—Zygmund operator is bounded on H?. We follow
this approach in such a way that a bound of the operator norm from HP?
to HP is a computable number. For a restricted case of p = 1, similar results
are obtained in [5].

The following proposition corresponds to the first step, which shows that
a Calderén—Zygmund operator maps an atom to the function, with the spe-
cific conditions given below. This function is the so-called “molecule” [14,
20].

PROPOSITION 3.5. Let 0 <p <1 be firzed and N :=N,,. Let Z be a
Calderon—Zygmund operator with a constant Z. Also, let h be an atom sup-

ported in a bounded interval I centered at yo € R. Then for any fixred b > 2/p
and ¢ > § with § = §(b) as in (3.1), we have Zh € L? and

C3Z|1|>-1/P

zn@< T

, T &,
where Cg := C5(b, () is the constant defined by
(3.6)

oN+3
03(b> () =

(N+1)!¢2N+3{21g <(<+11)2N+3 + (§—11)2N+3>}1/2(g>b'

PrOOF. Fix x € (I. Since Z is a Calderén—Zygmund operator defined
with kernel K and since h € L? is an atom having vanishing moments, we
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have

[ Zh(x)] =

[k 3 0 g o)

0<a<N
Then,

[ Zh(x)] < (1/(N + 1)!)/I|3$/+1/C(33,§)Ily— yol N A(y)| dy

for some § between y and yg. From the condition (1.5) of the Calderén—
Zygmund operator and the fact that |z —y| < 2|x — g|, we have, with the
constant Z,

2N+2Z |y—yo|N+1
\Zh()| < /1

oN+2 z |y y0|2N+1 1/2
d hll7-=.
—<N+1>!< o — y200) y) Il

Let w=2(x —yo)/|I] and z = 2(y — yo)/|I|]. Then by using the change of
variable t = w — z, the integral in the last term of the above inequality is
computed as

|y_y0|2N+2 / 2N+2 i ) 92 g(|w|)
; |$ _y|2N+4 |[| _ z 2N+4 |I| IN +3

where g(Jw]) == (1/(Jw| + 1)V *3 4 1/(Jw| — 1)*V+3)/2|w|. From this and
the fact that ||h||z> < |I|'/271/?, we have the estimation

N+2 21|~/ % 1
|Zh(z)| < 2 Z(N+1W2N+3\/w g(\w\)|w|b-

Since = ¢ (I, from the definition of w, we have |w| > (¢ > 4. Also, since

s —+ s20g(s) is decreasing for s > 4, it follows that /w?g(|jw|) < /¢%g(¢).
By using this inequality, we obtain the stated bound for |Zh(x)|.

The following proposition corresponds to the second step, which shows
that if the function has a sufficient decay with sufficient vanishing moments
as given below, it belongs to the HP space. The proof uses lemmas in Ap-
pendix C.

PROPOSITION 3.6. Let 0 < p <1 be fized and N :=N,. Suppose M €
L? and I is a bounded interval centered at yo € R. For any ﬁxed b>2/pand
¢ > 0 where § = §(b) is defined in (3.1), if

Chs|I10—1/p
(3.7) ()] < ] T

|z =y
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for some Cyr > 0 and
(3.8) / M(z)z%dx =0, forall 0 <a <N,
R

then M € HP with
M5, < CLCIPAP= 12 M, + CF Cy

where C1 = (14+G(N +1))P, as before, with G as in (3.2), and Cy := Cy(b, ()
1s defined by

bp ~1—b —p/2 2427 \p
(3.9) Ca(b,¢) :=27¢"" (2 (2b—1)P2Cy +3g7 Y ( ) .
b—a—1
0<a<N

PrROOF. We may assume that yp =0 in (3.7) by using an appropri-
ate translation. We use collections of sets {Ej}ren, and of functions
{G*}oca<n ken, as in Lemma 3.3, with N and R chosen as A and (|I|/2,
respectively. Let M € L? satisfy all the assumptions in the proposition. For
each k € Ng, we define two functions needed for the proof by using the set
E}, and functions {G% }o<a<n as follows:

(3.10) Mg(z) == M(z)xE, (),
(3.11) Py(x) :== Z mEGE (x)
0<a<N

where mk = (1/|Ey|) [ My (z)x® dx.
Slnce Mk and Py, are supported in Fj, for each k € Ny, and the sets { £}, }
are disjoint, M can be written as

ZMk = (My(x) - +Zpk
k=0

Since || M5, < || X0lo(My — o5y, + || Xorto Pellyy,» to obtain [[M]7,,
we will calculate || Y32 (M — Pr)| ?ﬁ and || 3°0% Pyl

them as (p, 2)-atoms.
For k € Ny, let A\, satisfy

(14 G + 1) (NP2 M || e, k=0,
Crur(1+GW + 1)1V (5 )% k> 1,

Then since (M}, — Pk)/)\k is a (p,2)-atom by Lemma C.2, we have

Z M — P Z)\k(Mk)\k Pk) <Z‘)\k‘p
k= Hpr
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Since Y2, 27P)F = 1/(1 — 217) < 2 for b > 2/p, with (3.12), this gives

(3.13) > (M — Py) !
k=0 Hr

< (L4 GW +D))P((CHN P2 M |17 + 207,¢' 2" (26 — 1)7P/2).

From the fact that G’; is supported in Ej and the definition of P in
(3.11), we have

ng(x)=i< > mEGE(w) ) > Z mk| ) <|E‘Gk( ))

k=0 »0<a<N 0<a<N k=0
> (X wlis) (6@, Gh)
0<a<N k=0 °j—k+1 k+1 k

where the last equality holds due to » 22, mb|Ej| = 0. For 0 < a <A and
k € Ny, let us define

(3.14) N} := mi|E;| and hE(z):= GFHl(z) — Gk (2),
j=zk-i:-1 ' | Bl |Ek\

and let p* satisfy

(315) 0< ,Uz]g; < 31/Pg(1 + 2—06—1)(2k—1<-‘[‘)1/p—a—1'

Then, since h¥ /uk is a (p,2)-atom by Lemma C.3,

gjp’“ p S S k) k[

He 0<a<N k=0

<Y S

Hr O<a<N k=0

Using the assumption (3.7), with Ey = U3 1B, we have

Z/M )zt dx| <

j=k+1

Nl =

_ M (2)||2[" da
By

<1l [ Jap ol da.
Ey,
Since b > 2/p, 0 < a <N =|1/p—1], we get b—a—1 > 0 and, by definition
of E]’,

|N§| < CM( )(Qk—lg)—b+a+1|l|a+1—1/p'

b—a—-1
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Using the bound for p”, and the estimation Yo 2(1=bp)k < 9 again, this
gives

2427 );D

1
(3.16) b—a—1

<300 2r¢!trgr N (

p
Hr 0<a<N

>_ P
k=0

Combining the bounds in (3.13) and (3.16) gives the stated bound for
M5 O

The following proof of Theorem 3.4 corresponds to the final step, which
combines the previous propositions to show that the Calderén—Zygmund op-
erator Z is bounded on H”. In the proof, we use an argument from [1].

PROOF OF THEOREM 3.4. Let Z be the Calderén—Zygmund operator
with a constant Z.

For each (p,2)-atom h supported in an interval I centered at ygy, by
Proposition 3.5, we see that Zh € L? and

C3 Z|I|b-1/p
|7 — yol®

(Zh)(x)] < , forx e (CI)°

where C3 = C3(b, () is as in (3.6), and b > 2/p and { > § = §(b) are fixed.

Since h is an atom with sufficient vanishing moments, Zh satisfies the
vanishing moment condition [, Zh(x)2*dz =0 for all 0 < a <N by the
condition (1.6) of the Calderén—Zygmund operator. Hence, by Proposi-
tion 3.6 with M := Zh, and Cy; := C3Z, we have Zh € HP with

(3.17) 1Zhlf < O PPN ZI, e + CECuZP,

where the size condition of the atom h is used to replace ||Zh| 2 by
| Z||l 212 By cancelling out the terms ((/2)% in C% and (2/¢)% in Cy,
we see that C9 in the statement of Theorem 3.4 is in fact the same as C’g Cy.

To extend the bound of || Zh| g» in (3.17) to that of ||Z f||g», for any
f € HP, we consider the function space

On = {f € L? : f has a compact support,
and [ f(z)z%dz =0, for all 0 < a < N}

This is a well-known dense subspace of the Hardy space H? [1,14,26]. Let
f € O Since f € HP, for any fixed € > 0, there exists an atomic decom-
position such that f = >"77 , Aghy, where hy are (p,2)-atoms and

Dol < (L)l f I < oo
k=0

Analysis Mathematica 50, 2024



584 Y. HUR and H. LIM

Let fy = Z]kvzo Aehy, and let gy := Z(fn). For Ny < Na, by using the
bound in (3.17) with CYC} replaced by Cs, we have

HgNz _9N1pr = HZ(sz - le)Hp P

N2 ~ N2
< 3 PUZRNG <C Y I,

with C := ¢y ¢p(t/p=1/2) 1Z][52 ;2 + CaZP. Since > 27| AP < 00, gn is a
Cauchy sequence in H?, and thus converges to some element in HP.

Also, since Zf = > 727 \(Zhy) converges in HP, for example, by the
argument in Theorem 9.8 of [1], we conclude that gn converges to Z f in HP.
Thus, using (3.17) again as above, we get

N p
121V = || S~ rezs
k=0

<O P < CA+e)lfI5
Hr k=0

Since this holds for any arbitrary e > 0, | Zf|[2, < C||f|[%,, for all f € O

Furthermore, since GO, is dense in HP, we have the same bound for any
feH? ie.,

1Zf %0 < Cllf |, for all f € HP.
This completes the proof. [J

4. Boundedness and invertibility of wavelet frame operator on
the Hardy space HP(R)

This section consists of proofs of Theorems 1.6 and 1.7. Recall that The-
orem 1.6 gives sufficient conditions for the wavelet frame operator U to be
a Calderén—Zygmund operator, and have a bounded extension to HP. Suffi-
cient conditions for the wavelet frame operator U to be invertible are given
in Theorem 1.7.

PROOF OF THEOREM 1.6. Let 1, ¢ € L? satisfy all the assumptions in
Theorem 1.6. Then the wavelet frame operator U = Uy, 4 is a Calderén—
Zygmund operator by Theorems 1.2, 2.1, and 2.2 with a constant

(4.1) CY,¢) = max Cu(¢),0)

0<a<N+1

where Cy (1), ¢) is defined as in (2.3). Thus, by Theorem 3.4, U is a bounded
operator on H,, with the operator norm satisfying

Uy o < CLPYPTYNU Lo, 1o + CoC (3, 0)P
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Here, the values C; and Cy = C5(b, () are the same as in Theorem 3.4:

(4.2) C1=(1+gWN+1))P,
2N+3 D
(43) Calb,¢) = {(N+ 1)!\/2/\/+3}

1 1 1 P2
X {2<(C+ 1)2N+3 + (¢ — 1)2N+3>CP }

x{2-(2b—1)‘p/201+3gp > (52—+a2:a1)p}’

0<a<N

and they are finite for any fixed b > 2/p and ¢ > d(b), with d(b) and G
given as in (3.1) and (3.2), respectively. Hence, the above upper bound for
U0 gy» is finite for any fixed b and ¢, and this completes the proof. [

PROOF OF THEOREM 1.7. Let v, ¢, 9%, ¢* € L? satisfy all the assump-
tions of Theorem 1.7. Since 1, ¢ satisfy the decay condition (1.3), we see
that U = sy, oty in L? from Definition 2.4. Also, since 1*, ¢* € L? are ex-
act duals in L?, Sy oty = Id in L?. Then, by linearity of the operators, we
have

U—-1d= Sy © t¢ — Sy © t(z)* = Sqh—qp* O t¢ + Sqpe © t¢_¢*
=Uyp—yr ¢ + Uy -9

Since ¥, ¥*, ¢, ¢* satisfy the decay condition (1.3) and the regularity condi-
tion, U — Id is a bounded operator on L? by Theorem 1.2. Moreover, since
they satisfy all the conditions in Theorem 1.6, the operator U — Id has a
bounded extension to H? with the following bound on the operator norm:

WU — 1015 S e < NUp—g 0 5o g0 + 100 =g 5oy 17
< CL PPN Uy e gl2, s + Ca (b, O)C (Y — 47, §)P
+ Oy VP Uy g e P, s+ Oa(byn)C(0*, ¢ — ¢¥)P,

where C(-,-) denotes the constant defined as in (4.1), and the constants C
and Cy(b,-) are the same as in the proof of Theorem 1.6 (cf. (4.2) and (4.3))
for b > 2/p and ¢,n > §(b), with §(b) given as in (3.1).

Now, let b > p/2 be arbitrary but fixed. Then, §(b) is fixed as well and,
by taking the infimum over all {,n7 > 4(b) in the above bound, we get

HU - IdHZ]?{P—}HP S Mp(¢7 ¢; ¢*7 ¢*))

with M, (1, ¢;9*, ¢*) defined as the resulting infimum value. The given as-
sumption My (v, ¢;9*, ¢*) < 1 implies that ||U — Id||gr—m» < 1, i.e., ¢ and
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¢ are approximate duals in HP. Thus, the wavelet frame operator U is bi-
jective on HP by the Neumann series expansion [22,25], and this completes
the proof of Theorem 1.7. [

5. Wavelet series expansion in HP(R)

In this section, we will show Theorem 1.8 by using the previous results
such as the boundedness and the invertibility of the wavelet frame operator
U, and two additional results. One of these additional results is Theorem 5.2,
and it says that each of the synthesis operator and the analysis operator has
a bounded extension to the space related with HP. This is a generalization
of the result for the dyadic case with A = 2 by Frazier and Jawerth [12], and
this generalization is proved in [2] for an arbitrary dilation factor A € R,
A > 1. The other additional result is Theorem 5.3, and it gives the equiv-
alence of the (non-dyadic) Triebel-Lizorkin space FZE)Q and the Hardy space
HP? using a generalized Littlewood—Paley theory. One can show this result
simply by adjusting the well-known assumptions for the dyadic case to the
non-dyadic settings. )

Below is the definition of the (non-dyadic) Triebel-Lizorkin space FZE)Q
and the (non-dyadic) Triebel-Lizorkin sequence space f£2. Here, we use the
notation &’ /P for the space of tempered distributions modulo polynomials.

DEerFINITION 5.1. Let 0 < p < 1.
(a) The (non-dyadic) Triebel-Lizorkin space FI?Q = FSQ(R, A) is the col-
lection of all f € §'/P such that

1/2
1155 1= (15 +pasl?)

JEZ

< 00,

Lr

where pa j(-) = A7p(A7-) and p is a Schwartz function with its Fourier trans-
form p supported in the annulus 1/v/A < |¢] < A, and [p| > C > 0 on the
annulus 1 < |¢] < VA.

(b) The (non-dyadic) Triebel-Lizorkin sequence space f£2 = f192(A) is
the collection of all complex-valued sequences ¢ = {Cjk}j,kez such that

' 1/2
el = | (52 tenlv1,?)

J,kEZ

< o0,
Lr

with the characteristic function x7,, on the interval I, = [A™7k, A~ (k+1)).
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In [2, Definition 5.1, Theorems 5.5 and 5.6], Bownik and Ho define func-
tions such as the smooth synthesis molecule, say ¥ g, and the smooth anal-
ysis molecule, say ¢pr. With these functions, they show that each of the
synthesis operator s, ,, and the analysis operator t4,, has a bounded ex-
tension. We also remark that these results are initially proved in [12] under
the dyadic setting (i.e., A = 2).

Under the assumptions given to our synthesizer ¢ and analyzer ¢ in
Theorem 1.6, if we add one more assumption (namely, §zﬁ e wN 21 we
can easily show that these are precisely the smooth synthesis and analysis
molecules of Bownik and Ho. Therefore, we obtain the following theorem by
using the results in [2]. We omit the proof of this theorem as it is straight-
forward.

THEOREM 5.2. Let 0 < p <1 be fized, and recall N}, = |1/p—1]. As-
sume that @ZJ,QSAE L? satisfy all the conditions in Theorem 1.6, and further

assume that & € WNet21 Then

(a) the wavelet analysis operator ty: FZE)Q — f£2 is a bounded operator,
and

(b) the wavelet synthesis operator s : fz?z — FZE)Q s a bounded operator.

In the dyadic setting, it is well-known that the Hardy space and the
dyadic Triebel-Lizorkin space are equivalent [17,26]. In the following theo-
rem, we state that the Hardy space H? in Definition 3.2 and the non-dyadic
Triebel-Lizorkin space FpO2, 0 < p <1, are equivalent. It can be shown by
using the Littlewood-Paley theory under the non-dyadic setting. We omit

the proof of this theorem as well because it results from simple modifications
of the known techniques.

THEOREM 5.3. Let p be a Schwartz function whose Fourier transform is
supported in the annulus 1/v/A < |€] < A, equals to 1 on the smaller annulus

1 < |¢] < VA, and satisfies
D AT =1 forall £ #0.
JEZ
Let 0 < p <1 be fizred. Then, the following statements hold true.
(a) For all f € HP, we have || f|| oo S || f || Ev-

(b) Conversely, if a tempered distribution f satisfies || f|| 0. < 00, then
P

there exists a unique polynomial g such that f —g € HP and satisfies || f — g|| m»
S 1/l

By using Theorems 5.2 and 5.3, let us show Theorem 1.8.

PRrROOF OF THEOREM 1.8. Let 1, ¢ € L? be functions satifying all the
conditions in the theorem. Then the wavelet frame operator U = Uy, 4 is a
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bounded operator from the Hardy space H? to itself by Theorem 1.6, and
the operator is invertible by Theorem 1.7. Let f € H? be fixed. Then, U~ ! f
is in H? and thus in F*> by Theorem 5.3(a). By Theorem 5.2(a), we have
to(UT1f) = {<U_1f, ¢jk>}j,kez S ng. Subsequently, by applying the syn-
thesis operator s, to the sequence t4(U~!f) and by using Theorem 5.2(b),

we have sy (t,(U1f)) € FZE)Q. Then, by Theorem 5.3(b), there is a unique
polynomial g such that

sy(te(U"f)) — g € HP.

However, by definition of wavelet frame operator U and from the fact that
U™lf e HP, we see that U(U ' f) = sy(t,(U"1f)). Since U is bounded
from H? to HP, we have U(U~! f) € HP, which in turn implies sy (t5(U "1 f))
€ HP. Therefore, we conclude that the unique polynomial g must be 0 and
that

[ = Z (U, dji )i
k€T
In particular, for any f € HP, there exists {cji} = {<U‘1f, ¢jk>}j ez € f;)z
such that f =3, 7 ciptjn. O

6. Example for HP with 1/2 <p <1

In this section we show that the Mexican hat function used for the space
H' in [5] can also be used for the space HP with 1/2 < p < 1. It will serve
as an example illustrating our main results.

Let () = (1 —22)e~*"/2 be the Mexican hat function, which will be our
synthesizer. Let A =2 and 1/2 < p <1 be fixed. Then N, = [1/p—1] =0.

We follow the setting of [5, Chapter 6] in choosing the corresponding
analyzer ¢, and the exact duals ¥* and ¢* required in Theorem 1.7. In
particular, the two functions ¢ and ¢* are chosen to be the same.

Then, since ¥, ¥*, ¢, ¢* satisfy all the assumptions in Theorem 1.7, and
since ¢* = ¢, the wavelet frame operator Uy, 4 satisfies

(61) HUquﬁ - Id”?’—[z'_)Hp < ||U1li—w*,¢||;l])'—[r'_>Hp < Clé-p(l/p—l/Q)up + CQCpa

with ¢ > § where & = 3/(4b) + /1 +9/(16b2) for b > 2/p, as seen from its
proof, U := ||Uyp—y+ ¢|l12— 12 and C := C(¢ — ¥*, ¢). Here, C1 = (1 + Go)?,

cmcino= (LT (e (B

where Gy is a constant satisfying (3.5) with av = 0.
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Since, for each k € Ny, the constant function g§(z) = 1 and the sets E},
defined in (3.4) satisfy

1
\Ex| JE,

we can take Gy = 1. For this choice of Gy, C7 = 2P.
Now using Cy = 2P and Gy = 1, we see that the right-hand side of (6.1)
is bounded by

ipap( U 4 (G432 2.4l 3.6l/p
(62) 2+ pC p<<—1/2+\/3(<2_1)3/2 (2b—1)1/2+ b1 C).

The estimation ¢ < 0.00026 is given in [5, p.405]. Since N, =0 and A = 2,
from (4.1) and (2.3), we see that

glg(ac) de =1,

¢ = —o*,6) = max{4(oo) /2, ") (1)},

where 0; := 0;(¢ —¢*, ¢) and 7; := 7 (¢ — *, @) for i = 0,1. The estimation
for o; and 7;, i = 0,1, can be found in [5, p.403-404], and we have

op < 0.000045, o1 < 0.00022, 79 < 0.00086, 71 < 0.036,

which results in C < 0.022.
Hence, for any ¢ > & = 3/(4b) ++/1 + 9/(16b2) with b > 2/p, the number
in (6.2) is bounded by

Q1 H1/pcp 0.00026+4~O.022(C2+3)1/2 2. 41/p +3-61/P
¢1/2 V3 (@-132\(26-1)Y2 0 b—1 )

Let ¢ =5 and b = 250. Then the required conditions ¢ > § and b > 2/p are
satisfied for all 1/2 < p < 1. Once we substitute these values to the above
estimation, the only variable in the resulting expression is p and this expres-
sion can be bounded by the value with p = 1/2. Therefore, we see that for
all 1/2 <p <1, ||Upg —1d||gr—pm» is bounded by

g5z (0:00026  4-0.022 (5% 4 3)1/2 2. 42 N 362 -
51/2 V3 (52 —1)32(2-250 — 1)1/2 " 250 — 1 ‘

We conclude that Uy, 4 is bijective on H?, and since the Mexican hat func-

tion satisfies the additional regularity condition §z/p\ € W2! in Theorem 1.8
as well, every element in Hardy space HP has a wavelet series expansion with
a wavelet system {11} using the Mexican hat function ¢ for all 1/2 < p < 1.
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Appendix A. Lemmas for Section 2

In this section, we place some lemmas needed in Section 2. Every result
is straightforward from each mentioned reference, so we omit the proof.

The following lemma is an immediate extension of [5, Lemma 4.3] for
the case [ > 2.

LEMMA A.1. Let [ € N. If ¥ € W, then o is continuous and |1(z)]
S1/(1+ |z]).

The following lemma shows sufficient conditions to make the a-th par-
tial derivative Oy Ko(r,y) of Ko(z,y) absolutely convergent and continuous

for any fixed o € Ny. The restricted cases, « = 0 and 1, of this lemma are
proved in [5].

LEMMA A.2. Let o € Ny. Assume that v, ¢ satisfy the following condi-
tions:

(a) ¢ and all derivatives of ¢ up to the a-th order (that is, ¢\, ..., ()
exist and are bounded,

(b) [t(2)] S 1/(1+ |2).
Then 0y Ko(z,y) = > pep ¥(x — k) (@) (y — k) converges absolutely for each

x,y € R. Moreover, if we further assume the continuity of ¥ and ¢(®, then
Oy Ko(x,y) is continuous.

The next lemma is a generalization of [5, Lemma A.1]. There, it is proved
for [ = 0,1 and we extend the result to the case [ > 2. We write our lemma
for all [ € N.

LEMMA A.3. Letl € Ng, A> 1 and o,7 > 0. If g(z) < min{o,7/|2|"*?}
for all z # 0, then

o 1/(+2) 1 (1+1)/(142)

Z |ATEHD g(A72)] < ky(A) =

JEZ

where ky(A) = A(2A!+ 3070 AF) /(AT = 1), with 32,2, A* interpreted as 0.
The next lemma shows sufficient conditions to make the a-th partial
derivative 0 K (z,y) of K (x,y) absolutely convergent and continuous, where

we set K (x,y) := Ky ¢(x,y). For the restricted cases of & =0 and 1, this
result is proved in [5]. Here, we state the lemma for all cases o € N.

LEMMA A.4. Let a« € Ny and A > 1 be a dilation factor. Assume that
W, ¢ satisfy the following conditions:

(a) ¢ and all derivatives of ¢ up to the a-th order (that is, ¢, ... ¢(@))
exist and are bounded,
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(b) [9(2)], |6\ ()] S 1/(1 + [2|*+2).
Then

9, K (z,y) ZZA](O‘H V(A x — k)@ (Aly — k)

JEL kEZ

converges absolutely and uniformly on {(z,y) : x # y} with |0y K (z,y)| S

1/|z — y|*tY. If we further assume the continuity of ¥ and ¢\®), then oy K
is continuous on {(x,y) : x # y}.

The next lemma is a generalization (cf. [6,7]) of the well-known Hardy’s
inequality in [18].

LEMMA A.5 [6,7]. Let f be differentiable, f(0) =0, and [|f'(z)*/|z|*dz
< 00 for some k> 0. Then

/If(:v)|2/lfﬂl'“+2 da < (4/(k + 1)2)/|f/(:v)|2/lﬂflkdw-

We can simply apply the above result repeatedly for higher-order deriva-
tives to obtain the following lemma.

LEMMA A.6. For any fized | € N, assume that
(a) fO ezists and O belongs to L?, and

(b) f(0) = f'(0) =--- = f=D(0) = 0.

Then we have ||f/z!| 1> < ||fY|| .

Appendix B. Example for Lemma 3.3

We depict a simple and explicit example of Lemma 3.3 in case of N =1
and fixed R > 0. Specifically, for each fixed 0 < oo < 1, we can easily find the
unique polynomial gg (z) for every k € Ny, and a constant G,. Afterwards,
we can also find the constant G defined as in (3.2) by taking maximum value
among {ga}ogagl.

(a) Let a = 0 and let gf(z) = iz + ro satisfy

/ (riz +ry)dx = |Ey|, / (r12® + rox) dz = 0.

Since FEj is symmetric, integral of odd-order term on Fj vanishes in the
above equations. Then we have ro = 1 from the ﬁrst equation and r; =0
from the second one regardless of k. That is, 90 is uniquely determined
by 1 for every k € Ny. Afterwards, we can define GE(z) = xg, (x) for every
k € Np, and find Gy = 1 such that |G0( )| < Go holds for every =z € R.
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(b) Similarly for a = 1, by setting g¥(x) = 712 + ro with

/ (riz +ro)dx =0, / (7“1332 + rox)dr = |E|,

we can get g0 (x) = (3/R2)ZE and g¥(z) = (12/(7(2*R)? ))33 for k € N. Then
we can define G¥(x) = g% (z)x g, with each polynomial g¥(z) for k € Ny, and
find G; = 3 such that |G%(z)| < G1/(2*R) holds. Especially note that G is
a constant independent of k.

From the above, we can determine G = max{Gy, G} = 3.

Appendix C. Lemmas for Proposition 3.6

In this section, we use the same notation and work under the same set-
tings as in the proof of Proposition 3.6. The following lemma is used to
prove Lemma C.2.

LEemmA C.1. For any fived k € Ny, let My, be the function defined as in
(3.10) and Py be the polynomial defined in (3.11). Then we have

My, = Pellze < (1+ GV + 1)) [[ M| 2

where G and N are constants in Proposition 3.6.

PROOF. Recall that for each 0 < o < N, there is a constant G, such that
|GE ()] < G (2871¢|T]) = for every 2 € R from Lemma 3.3 with N = A and
R = (|I|/2. By the definition of m® and the estimation of |G ()|, we have

[Pe(x) < ) Imil|Gale

0<a<N

/Mk(x) % dx

Since the support of My is Ej, by the definition of Ej, we have |z|*
< (281¢|1|) for any x € Ej,. Therefore, the integral in the right-hand side
of the above inequality satisfies

‘ / Mi(2)2® dz

Then, with G = maxg<a<n Ga, the absolute value of Py satisfies

GN +1)
‘Ek‘1/2

(Ga(2"1CIIN) ™).

5>

0<a<N

| By

< @1¢|T)e /E 1M (o) da.

|Pp(2)] <G Z \Mk(w)\dw < | M| 2

0<a<./\/
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where the last inequality holds due to the Holder’s inequality. Since the
support of Py is Ej, we have || Pyll;. < GWN + 1) || Mgl ;- . Thus, the stated
bound is obtained as

[My = Ppllr> < [[Millzz + 1| Pell2 < (14 GN + 1))[| M| 2,
and this completes the proof. [J

LemMA C.2. For any fized k € Ny, let My be a function defined as in
(3.10) and Py be a polynomial defined in (3.11). If A\, > 0 satisfies (3.12),
then (My, — Py)/ Mg is a (p,2)-atom.

PROOF. Since the support of My, and Py is in Ej, the support of My — P
is contained in E. Fix 0 < 8 < N. By the definition of P, we have

/(Mk — P2l dx = M (z) 2P dx — Z m’;/ GE (x) 2P dz.
28 0<a<A Ex

The definition of mg, together with (3.3), gives

Z mk G (x) 2z dx = mg|Ek| = /Mk(il?)itﬁ dzx.
0<a<N Br

Thus, we see that [ (M — Py) 28 dx = 0 for every 0 < 8 < N. This proves
the vanishing moment condition for My — Py. Finally, we aim to find the
range of )\ satisfying

(M, = Pr)/Aellze < |Ex|/>71P.

Let A\, = | My, — Pyl|p2|Ex|~(/2=1/P) For k =0, by using Lemma C.1 and
the fact that ||[My||;. < ||M]|r>, we have

X < (1+ G + 1))[|M]| 2| Eo|~ /2717

= (L+GW + )NV~ M| e

where the last equality holds since |Ey| = (|I|.
Since M satisfies the condition (3.7) (recall that yo = 0), for each k € N,
|| Mp|| ;- is bounded by

B 1 1/2 B B B 22b _ 9\ 1/2
CulI° 1/p</E o dm) = Cu(2"1Q) 20 )2 1/p(2b_1) .

With Lemma C.1 and the above estimation of || My||zz2, for each k € N, we
have
2% — 2

1/2
Qb_1> (14 G +1)).

||Mk - Pk||L2 < CM(Qk_1<)1/2_b|I|1/2—1/;D <
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Thus, since |Ey| < 2871¢|I|, we conclude that

22

1/2
2b_1) (1+GW +1)). O

N < Oy (
LeEMMA C.3. For any fired 0 < a < N and k € Ny, let h¥ be a function
defined as in (3.14). If u¥ satisfies (3.15), then h% /uk is a (p,2)-atom.

ProOF. Recall that b (2) = (1/|Exi1|)GET (2) — (1/|ER|)GE (). Since
the support of G**! is in Ej,; and the support of GX is in Ej, the support
of h’; is contained in Ej U Fy,q. For any fixed 0 < 8 < N, we have

1 1
/h';(a:)a:ﬁ dr = By /Ggﬂ(az)ajﬁ dx — B /Gg(:z):zﬁ dx =0,
k+1 k

where the last equality holds due to (3.3). This shows the vanishing moment
condition for 2¥. Next, we will find the range of p” satisfying

IRE/uE L2 < [Be U B [V2717.

Let pf = ||hE| 12| Ey U Ejy 1|~ (/27 1/P) Then since there is a constant G such
that |GE (z)] < G(2F~1¢|I])~® for every k € Ny and 0 < o < N, we have

P < (G @+ IGh@ < 60+ 2 ) @)

Using the fact that the support of h’; is contained in Fj U Ej1, we obtain
|hE Nz < G(1 + 272 1) (28 1¢|T]) = Y By U Egy1)'/? and conclude that uf
< 3VPG(1 42702k ¢ Veemt O
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