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Abstract. Let b be a locally integrable function and M be the bilinear
maximal function

M(f, g)(x) = sup
Q�x

1

|Q|
∫
Q

|f(y)g(2x− y)|dy.

In this paper, characterization of the BMO function in terms of commutator M
(1)
b

is established. Also, we obtain the necessary and sufficient conditions for the
boundedness of the commutator [b,M]1. Moreover, some new characterizations of
Lipschitz and non-negative Lipschitz functions are obtained.

1. Introduction

The commutator operators play an important role in studying the reg-
ularity of solutions of elliptic and parabolic partial differential equations of
second order, and the boundedness results are used to characterize certain
function spaces [2,3,5,7,8,12,20]. Due to its interest, the singular integral
operators were replaced by maximal operators as an object of study.
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2 H. ZHAO and D. WANG

In this paper, we will be concerned with the following family of bilinear
maximal operators in R

n. Define

M(f, g)(x) = sup
r>0

1
|B(O, r)|

∫
B(O,r)

|f(x− y)g(x+ y)| dy(1.1)

= sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)g(2x− y)| dy,

where x ∈ R
n and O = (0, 0, . . . , 0) ∈ R

n. More general,

M(f, g)(x) = sup
Q�x

1
|Q|

∫
Q
|f(y)g(2x− y)| dy.

The maximal functions Mf of f and Mf are obviously pointwise equivalent
each other. In 2000, Lacey in the remarkable paper [15] showed that the
family of one-dimensional bilinear maximal operators defined by (1.1) maps
Lp × Lq into Lr provided 1 < p, q < ∞, 1/p+ 1/q = 1/r and 2/3 < r ≤ 1,
solving a conjecture posed by A. Calderón in 1964.

An interesting question is raised. Is b ∈ BMO necessary and sufficient
for the boundedness of commutators of the bilinear maximal operator M.

We briefly summarize some classical and recent works in the literature.
A locally integrable function b belongs to the BMO space if b satisfies

‖b‖BMO := sup
Q

1
|Q|

∫
Q
|b(x)− bQ| dx < ∞,

where bQ := 1
|Q|

∫
Q b(x)dx and the supremum is taken over all cubes (or balls)

Q in R
n. There is a number of classical results which demonstrate that BMO

functions are the right collections to do harmonic analysis on the bound-
edness of commutators. A well-known result of Coifman, Rochberg and
Weiss [4] states that the commutator [b, T ](f) = bT (f)− T (bf) is bounded
on some Lp, 1 < p < ∞, if and only if b ∈ BMO, where T be the classical
Calderón–Zygmund operator. The theory was then extended and general-
ized to several directions. In 1991, Garćıa-Cuerva, Harboure, Segovia and
Torrea [9] showed that the maximal commutator

Mb(f)(x) = sup
Q�x

1
|Q|

∫
Q
|b(x)− b(y)| |f(y)| dy

is bounded on Lp, 1 < p < ∞, if and only if b ∈ BMO. In 2000, Bastero,
Milman and Ruiz [1] studied the necessary and sufficient conditions for the
boundedness of commutator of Hardy–Littlewood maximal function on Lp
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 3

spaces when 1 < p < ∞, where the Hardy–Littlewood maximal function is
defined by

M(f)(x) = sup
Q�x

1
|Q|

∫
Q
|f(y)| dy.

They proved that the commutator [b,M ] is bounded on Lp, 1 < p < ∞, if
and only if b ∈ BMO with b− ∈ L∞, where b−(x) = −min{b(x),0}. We note
that the operators Mb and [b,M ] essentially differ from each other. For
example, Mb is positive and sublinear in each entry, but [b,M ] is neither
positive nor sublinear. In the past ten years, Zhang and his collaborators
studied the boundedness of different commutators of maximal operators and
the necessity of the symbol [25–30]. Recently, the further research about the
functions of BMO with bounded negative part were given in [11,21].

In this paper, we show that the question above has an affirmative so-
lution. Now, we give the definitions of commutators of the bilinear maxi-
mal function. Let b be a locally integrable function and M be the bilinear
maximal function. The commutators of the bilinear maximal function are
defined by

[b,M]1(f, g)(x) = b(x)M(f, g)(x)−M(bf, g)(x)

and

[b,M]2(f, g)(x) = b(x)M(f, g)(x)−M(f, bg)(x).

The maximal commutators of the bilinear maximal function are defined by

M
(1)
b (f, g)(x) := sup

Q�x
1
|Q|

∫
Q
|b(x)− b(y)||f(y)g(2x− y)| dy

and

M
(2)
b (f, g)(x) := sup

Q�x
1
|Q|

∫
Q
|b(x)− b(y)||f(2x− y)g(y)| dy.

Now, we show the necessary and sufficient conditions for the bounded
commutators of M as follows. We note that by symmetry, it is enough to
prove this for M(1)

b and [b,M]1.

Theorem 1.1. Let 1 < p, p1, p2 < ∞, 1
p1

+ 1
p2

= 1
p and b ∈ L1

loc(R
n).

Then the following statements are equivalent :
(1) b ∈ BMO;

(2) M(1)
b is bounded from Lp1 × Lp2 to Lp;

(3) M(1)
b is bounded from Lp1 × Lp2 to Lp,∞.
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4 H. ZHAO and D. WANG

Theorem 1.2. Let 1 < p, p1, p2 < ∞, 1
p1

+ 1
p2

= 1
p and b ∈ L1

loc(R
n).

Then the following statements are equivalent :
(1) b ∈ BMO and b− ∈ L∞;
(2) [b,M]1 is bounded from Lp1 × Lp2 to Lp;
(3) [b,M]1 is bounded from Lp1 × Lp2 to Lp,∞.

Let 0 < q < ∞ and −n/q < α < n. A locally integrable function f is
said to belong to the Campanato space Cα,q if there exists a constant C > 0
such that for any cube Q ⊂ R

n we have

1
|Q|α/n

(
1
|Q|

∫
Q
|f(x)− fQ|q dx

)1/q

≤ C,

where fQ = 1
|Q|

∫
Q f(x) dx and the minimal constant C is defined by ‖f‖Cα,q

.
The Lipschitz (Hölder) and Campanato spaces are related by the equiv-

alences

‖f‖Lipα
:= sup

x,h∈Rn,h �=0

|f(x+ h)− f(x)|
|h|α ≈ ‖f‖Cα,q

, 0 < α < 1.

The equivalence can be found in [6] for q = 1, [13] for 1 < q < ∞ and [23]
for 0 < q < 1.

Specially, C0,q = BMO, the spaces of bounded mean oscillation. The
crucial property of BMO functions is the John–Nirenberg inequality [14],

∣∣{x ∈ Q : |f(x)− fQ| > λ}∣∣ ≤ c1|Q|e−
c2λ

‖f‖BMO ,

where c1 and c2 depend only on the dimension. A well-known immediate
corollary of the John–Nirenberg inequality reads as follows:

‖f‖BMO ≈ sup
Q

1
|Q|

(∫
Q
|f(x)− fQ|p dx

)1/p

for all 1 < p < ∞. In fact, the equivalence also holds for 0 < p < 1. See, for
example, the work of Strömberg [19] (or [10] and [24] for the general case).

Theorem 1.3. Let 0 < α < 1, 1 < q, p1, p2 < ∞, 1
p1

+ 1
p2

− 1
q = α

n and

b ∈ L1
loc(R

n). Then the following statements are equivalent :
(1) b ∈ Lipα;

(2) M(1)
b is bounded from Lp1 × Lp2 to Lq;

(3) M(1)
b is bounded from Lp1 × Lp2 to Lq,∞.
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 5

Theorem 1.4. Let 0 < α < 1, 1 < q, p1, p2 < ∞, 1
p1

+ 1
p2

− 1
q = α

n and

b ∈ L1
loc(R

n). Then the following statements are equivalent :
(1) b ∈ Lipα with b ≥ 0;
(2) [b,M]1 is bounded from Lp1 × Lp2 to Lq;
(3) [b,M]1 is bounded from Lp1 × Lp2 to Lq,∞.

Let |E| denote the Lebesgue measure of a measurable set E ⊂ R
n.

Throughout this paper, the letter C denotes constants which are indepen-
dent of main variables and may change from one occurrence to another.
Q(x, r) denotes a cube centered at x, with side length r, and sides parallel
to the axes.

2. Main lemmas

To prove Theorems 1.1–1.4, we need the following results.

Lemma 2.1. Let b be a locally integral function. Then, for any cube
Q0 = Q(x0, r0),

M(χQ0
, χ3

√
nQ0

)(x) ≡ 1,(2.1)

M(bχQ0
, χ3

√
nQ0

)(x) = MQ0
(b)(x),(2.2)

where MQ0
(b)(x) = supQ0⊃Q�x

1
|Q|

∫
Q |b(y)| dy.

Proof. We only give the proof of the equality (2.2), since the equality
(2.1) follows from (2.2) for b ≡ 1. For any Q ⊂ Q0, it follows from x ∈ Q
and y ∈ Q0 that

|2x− y − x0| ≤ 2|x− x0|+ |y − x0| ≤ 3
√
nr0

and 2x− y ∈ 3
√
nQ0, one has χ3

√
nQ0

(2x− y) ≡ 1 and

1
|Q|

∫
Q
|b(y)|χQ0

(y) · χ3
√
nQ0

(2x− y) dy =
1
|Q|

∫
Q
|b(y)| dy.

According to the arbitrariness of the cube Q, we arrive at

M(bχQ0
, χ3

√
nQ0

)(x) ≥ MQ0
(b)(x).

For any cube Q ⊂ R
n, we can construct a cube Q1 such that

Q0 ⊃ Q1 ⊃ Q0 ∩Q

and |Q1| ≤ |Q|. Therefore, for x ∈ Q,

1
|Q|

∫
Q∩Q0

|b(y)| dy ≤ 1
|Q1|

∫
Q1

|b(y)| dy ≤ MQ0
(b)(x).
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Using the fact that χ3
√
nQ0

(2x− y) ≤ 1, we get

M(bχQ0
, χ3

√
nQ0

)(x) ≤ MQ0
(b)(x).

Then (2.2) is proved. �
Bastero, Milman and Ruiz proved that

Lemma 2.2 [1]. Let 1 ≤ p < ∞ and b be a locally integrable function.
Then the following statements are equivalent :

(1) b ∈ BMO with b− ∈ L∞;
(2) ‖b‖BMO−

p
:= sup

Q

1
|Q|

∫
Q |b(x)−MQ(b)(x)|p dx < ∞.

Furthermore, we can obtain the following result.

Lemma 2.3. Let 1 < p < ∞ and b be a locally integrable function. Then
the following statements are equivalent :

(1) b ∈ BMO with b− ∈ L∞;

(2) ‖b‖BMO−
p,∞

:= sup
Q

sup
λ>0

λ
|Q|1/p

∣∣{x ∈ Q : |b(x)−MQ(b)(x)| > λ}∣∣1/p < ∞.

Proof. By a direct computation, we arrive at ‖ · ‖BMO−
p,∞

≤ ‖ · ‖BMO−
p
.

By Lemma 2.2, we need only to prove that ‖ · ‖BMO−
q
� ‖ · ‖BMO−

p,∞
with

1 ≤ q < p < ∞.
Let b ∈ BMO−

p,∞. Given a fixed cube Q ⊂ R
n and for any λ > 0, one has

λ

|Q|1/p
∣∣{x ∈ Q : |b(x)−MQ(b)(x)| > λ

}∣∣1/p ≤ ‖b‖BMO−
p,∞

;

that is, ∣∣{x ∈ Q : |f(x)−MQ(b)(x)| > λ
}∣∣ ≤ ‖b‖pBMO−

p,∞
λ−p|Q|.

It follows that∫
Q
|b(x)−MQ(b)(x)|q dx = q

∫ ∞

0
λq−1∣∣{x ∈ Q : |b(x)−MQ(b)(x)|>λ}∣∣ dλ

≤ q

∫ N

0
λq−1|Q| dλ+ q

∫ ∞

N
λq−1‖b‖pBMO−

p,∞
λ−p|Q| dλ

= |Q|N q +
q

p− q
‖b‖pBMO−

p,∞
|Q|N q−p.

Choose

N = ‖b‖BMO−
p,∞

( q

p− q

)1/p
,
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 7

which gives

(
1
|Q|

∫
Q
|b(y)−MQ(b)(x)|q dy

)1/q

≤ 2
( q

p− q

)1/p‖b‖BMO−
p,∞

.

Then

‖b‖BMO−
q
≤ 2

( q

p− q

)1/p‖b‖BMO−
p,∞

and the lemma follows. �
Similarly, we can obtain the result for non-negative Lipschitz functions

as follows.

Lemma 2.4. Let 0 < α < 1, 1 < p < ∞ and b be a locally integrable func-
tion. Then the following statements are equivalent :

(1) b ∈ Lipα with b ≥ 0;

(2) ‖b‖Lip−
α,p,∞

:= sup
Q

sup
λ>0

λ
|Q|1/p−α

∣∣{x ∈ Q : |b(x)−MQ(b)(x)|> λ}∣∣ 1

p < ∞.

Standard real analysis tools as the maximal function M(f), the sharp
maximal function M �(f) carries over to this context, namely,

M(f)(x) = sup
Q�x

1
|Q|

∫
Q
|f(y)| dy,

M �(f)(x) = sup
Q�x

inf
c

1
|Q|

∫
Q
|f(y)− c| dy ≈ sup

Q�x
1
|Q|

∫
Q
|f(y)− fQ| dy.

A variant of maximal function and sharp maximal operator Ms(f)(x) =(
M(|f |s))1/s and M �

δ(f)(x) =
(
M �(|f |s)(x))1/s with 0 < s < ∞, which will

become the main tool in our scheme. Let 1 < s < ∞ and b be a locally
integrable function. The operator Mb,s is defined by

Mb,s(f)(x) = sup
Q�x

(
1
|Q|

∫
Q
|b(x)− b(y)|s|f(y)|s dy

)1/s

.

Lemma 2.5. Let 0 < δ < ε < 1 < s < s̄ < ∞ and b ∈ BMO. Then

M �
δ

(
Mb,s(f)

)
(x) � ‖b‖BMO(Mε(Ms(f))(x) +Ms̄(f)(x)),

for the bounded compact supported function f .

Proof. First of all, we give the definition of the following auxiliary max-
imal function, which has been studied in [17] and [18] for the linear case.
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8 H. ZHAO and D. WANG

Let ϕ(x) ≥ 0 be a smooth function such that ϕε(t) = ε−nϕ( tε), |ϕ′(t)| � t−1

and χ[0,1](t) ≤ ϕ(t) ≤ χ[0,2](t). Then

M(f)(x) ≈ Φ(f)(x) := sup
ε>0

∫
Rn

ϕε(|x− y|)|f(y)| dy.

Define Φs(f)(x) =
(
Φ(|f |s)(x))1/s and

Φb,s(f)(x) = sup
ε>0

(∫
Rn

ϕε(|x− y|)|b(x)− b(y)|s|f(y)|s dy
)1/s

.

Obviously, Φb,s(f)(x) ≈ Mb,s(f)(x). In fact, let Bε = {y ∈ R
n : |x− y| ≤ ε}.

The bounded compact supported condition of ϕ gives

Φs
b,s(f)(x) = sup

ε>0

∫
Rn

ϕε(|x− y|)|b(x)− b(y)|s|f(y)|s dy

≤ sup
ε>0

1
εn

∫
Bε

ϕ
( |x− y|

ε

)
|b(x)− b(y)|s|f(y)|s dy � M s

b,s(f)(x)

and

Φs
b,s(f)(x) ≥ sup

ε>0

1
εn

∫
B ε

2

ϕ
( |x− y|

ε

)
|b(x)− b(y)|s|f(y)|s dy � M s

b,s(f)(x).

Now, we shall estimate the sharp maximal function of the auxiliary max-
imal function. Let Q be a cube and x ∈ Q. For any z ∈ Q, we have

∣∣Φb,s(f)(z)− cQ
∣∣

�
∣∣b(z)− bQ|Φs(|f |)(z) +

∣∣Φs(|b− bQ||f0|)(z)∣∣+ ∣∣Φs(|b− bQ||f∞|)(z)− cQ
∣∣

=: AQ
1 (z) + AQ

2 (z) +AQ
3 (z),

where cQ =
(
Φs(|b− bQ||f∞|))

Q
and f = f0 + f∞ with f0 = fχ2Q. There-

fore,
(

1
|Q|

∫
Q
|∣∣Φb,s(f)(z)

∣∣δ − |cQ|δ| dz
)1/δ

�
(

1
|Q|

∫
Q
|Φb,s(f)(z)− cQ|δ|

)1/δ

� A1 +A2 + A3,

where Aj =
( 1
|Q|

∫
Q

(
AQ

j (z)
)δ

dz
)1/δ , j = 1, 2, 3.
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 9

Let us consider first the term A1. By averaging AQ
1 over Q, we get

A1 =
(

1
|Q|

∫
Q
(
∣∣b(z)− bQ|Φs(f)(z))

δ
dz

)1/δ

� ‖b‖BMOMε

(
Ms(f)

)
(x),

where 0 < δ < ε < 1. To estimate A2, by Kolmogorov’s inequality and the
weak (1, 1) boundedness of M , we have

A2 � |Q|−1/s‖Ms((b− bQ)f0‖Ls,∞ � |Q|−1/s‖M(|b− bQ|s|f0|s‖1/s
L1,∞

� |Q|−1/s‖|b− bQ|s|f0|s‖1/s
L1 � ‖b‖BMOMs̄(f)(x)

for 1 < s < s̄ < ∞. Now, we consider the term A3. For |z− z′| ≤ 1
2 max{|z−

y1|, |z − y2|} we have

∣∣ϕε(|z − y|)− ϕε(|z′ − y|)∣∣ � |z − z′|
|z − y|n+1 .

Therefore,
∣∣Φs((b− bQ)f∞)(z)− Φs((b− bQ)f∞)(z′)

∣∣s

� sup
ε>0

∫
Rn\2Q

|ϕε(|z − y|)− ϕε(|z′ − y|)||b(y)− bQ|s|f(y)|s dy

�
∫
Rn\2Q

|z − z′|
|z − y|n+1 |b(y)− bQ|s|f(y)|s dy

�
∞∑
k=1

−2kn

|2kQ|
∫

2kQ
|b(y)− bQ|s|f(y)|s dy � ‖b‖sBMOM

s
s̄ (f)(x).

Collecting our estimates, we have shown that

M �
δ

(
Mb,s(f)

)
(x) � ‖b‖BMO(Mε(Ms(f))(x) +Ms̄(f)(x))

for the bounded compact supported functions f . �
Lemma 2.6. Let 0 < δ < 1 < s < s̄ < p < ∞ and b ∈ BMO. Then Mb,s

is a bounded operator from Lp to Lp.

Proof. We observe that to use the Fefferman–Stein inequality, one
needs to verify that certain terms in the left-hand side of the inequalities
are finite. Applying a similar argument as in [16, pp. 32-33], the bounded-
ness properties of M and Fatou’s lemma, one gets the desired result.
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Using Lemma 2.5 and the condition 0 < δ < ε < 1 < s < s̄ < p < ∞, from
a standard argument that we can obtain

‖Mb,s(f)‖Lp �
∥∥Mδ(Mb,s(f))

∥∥
Lp �

∥∥M �
δ(Mb,s(f))

∥∥
Lp

� ‖b‖BMO(
∥∥Mε(Ms(f))

∥∥
Lp +

∥∥Ms̄(f)
∥∥
Lp

)
� ‖b‖BMO‖f‖Lp.

Thus, the proof of Lemma 2.6 is completed. �

3. Proofs of Theorems 1.1–1.4

Proof of Theorem 1.1. (1) ⇒ (2). For any pair of conjugate expo-
nents 1/r + 1/s = 1, Hölder’s inequality yields

M
(1)
b (f, g)(x) ≤ Mb,s(f)(x)Mr(g)(x).

If we let r = p1/p and s = p2/p, then r, s > 1 and 1/r + 1/s = 1. Using the
fact that Mr : Lp2 → Lp2 and Lemma 2.6, we arrive at

(∫
Rn

M
(1)
b (f, g)(x)p dx

)1/p

≤
(∫

Rn

M
(|b(x)− b|s|f |s)(x)p/sM(|g|r)(x)p/r dx

)1/p

≤
(∫

Rn

M
(|b(x)− b|s|f |s)(x)p dx

)1/sp(∫
Rn

M(|g|r)(x)p dx
)1/rp

= ‖Mb,s(f)‖Lp1‖Mr(g)‖Lp2 � ‖b‖BMO‖f‖Lp1‖g‖Lp2 .

Then, M(1)
b is bounded from Lp1 ×Lp2 to Lp. Moreover, (2)⇒ (3) is obvious.

(3) ⇒ (1). Let Q = Q(xQ, rQ) be any fixed cube. For any x, y ∈ Q, we
have

|2x− y − xQ| ≤ 2|x− xQ|+ |y − xQ| ≤ 3
√
nrQ.

it follows that for any x ∈ Q,

|b(x)− bQ| ≤ 1
|Q|

∫
Q
|b(x)− b(y)|χQ(y)χ3

√
nQ(2x− y) dy

� Mb(χQ, 3
√
nχQ)(x).

Suppose that M(1)
b is bounded from Lp1 × Lp2 into Lp,∞. Then

∥∥M(1)
b (χQ, 3

√
nχQ)

∥∥
Lp,∞ � ‖χQ‖Lp1‖χQ‖Lp2 � |Q|1/p,

H. ZHAO and D. WANG10
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 11

which implies that for any λ > 0,

λ

|Q|1/p
∣∣{x ∈ Q : |b(x)− bQ| > λ

}∣∣1/p(3.1)

� λ

|Q|1/p
∣∣{x ∈ Q : M(1)

b (χQ, 3
√
nχQ) > λ

}∣∣1/p

� ‖M(1)
b (χQ, 3

√
nχQ)‖Lp,∞ � 1.

In [22], Wang and Zhou proved that b ∈ BMO if and only if

sup
Q

sup
λ

λ

|Q|1/q
∣∣{x ∈ Q : |b(x)− bQ| > λ

}∣∣1/q

for any 0 < q < ∞. Therefore, the inequality (3.1) implies that b ∈ BMO.
�

Proof of Theorem 1.2. (1)⇒ (2). By the definitions of M(1)
b , [b,M]1

and
∣∣|a| − |c|∣∣ ≤ |a− c| for any real numbers a and c, we have

∣∣[|b|,M]1(f, g)(x)
∣∣ ≤ M

(1)
b (f, g)(x)

and ∣∣[b,M]1(f, g)(x)− [|b|,M]1(f, g)(x)
∣∣

� |b(x)M(f, g)(x)−M(bf)(x)− |b(x)|M(f, g)(x) +M(bf, g)(x)|
� b−(x)M(f, g)(x).

This shows that

(3.2)
∣∣[b,M]1(f, g)(x)

∣∣ � M
(1)
b (f, g)(x) + b−(x)M(f, g)(x).

Applying (3.2) and Theorem 1.1 we have
∥∥[b,M]1(f, g)

∥∥
Lp �

∥∥M(1)
b (f, g)

∥∥
Lp +

∥∥b−M(f, g)
∥∥
Lp

�
(‖b−‖L∞ + ‖b‖BMO

)‖f‖Lp1‖g‖Lp2 .

Therefore, b ∈ BMO with b− ∈ L∞ implies that [b,M]1 is bounded from
Lp1 × Lp2 to Lp.

(2) ⇒ (3) is obvious.
(3) ⇒ (1). Let Q0 be any fixed cube. By Lemma 2.1, for any x ∈ Q0,

b(x) = b(x)M(χQ0
, 3
√
nχQ0

)(x), MQ0
(b)(x) = M(bχQ0

, 3
√
nχQ0

)(x),
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Then,

|b(x)−MQ0
(b)(x)| = ∣∣[b,M]1(χQ0

, 3
√
nχQ0

)(x)
∣∣

and

λ

|Q0|1/p
∣∣{x ∈ Q0 : |b(x) −MQ0

(b)(x)| > λ
}∣∣1/p

� 1
|Q0|1/p

∥∥[b,M]1(χQ0
, 3
√
nχQ0

)
∥∥
Lp,∞ � ‖[b,M]1‖Lp1×Lp2→Lp,∞,

which implies that b ∈ BMO by Lemma 2.3. �
Proof of Theorem 1.3. (1) ⇒ (2). Let b ∈ Lipα. For any pair of

conjugate exponents 1/r+ 1/s = 1, Hölder’s inequality yields1/r+ 1/s = 1,
we get

M
(1)
b (f, g)(x) ≤ ‖b‖Lipα

∫
Rn

|f(x− y)||g(x+ y)|
|y|n−α

dy

≤ ‖b‖Lipα

(
Iα(|f |r)(x)

)1/r(
Iα(|g|s)(x)

)1/s
,

where

Iα(f)(x) =
∫
Rn

f(y)
|x− y|n−α

dy.

Using the fact that Iα : Lp → Lq and set p1 = q/r, p2 = q/s, we have

‖M(1)
b (f, g)‖Lq ≤ ‖b‖Lipα

‖Iα(|f |r)‖1/r
Lq ‖Iα(|g|s)‖1/s

Lq � ‖b‖Lipα
‖f‖Lp1‖g‖Lp2 .

The implications (2) ⇒ (3) follows directly.
Next, we give the proof of (3) ⇒ (1). Similar to the proof of Theorem

1.1, one has

|b(x)− bQ| ≤ M
(1)
b

(
χQ, 3

√
nχQ

)
(x),

for any Q and x ∈ Q. Suppose that M
(1)
b is bounded from Lp1 × Lp2 into

Lq,∞, then
∥∥M(1)

b (χQ, 3
√
nχQ)

∥∥
Lq,∞ � ‖χQ‖Lp1‖χQ‖Lp2 � |Q|1/p,

which implies that for any λ > 0,

λ

|Q|1/q
∣∣{x ∈ Q : |b(x)− bQ| > λ

}∣∣1/q

� λ

|Q|1/q
∣∣{x ∈ Q : M(1)

b (χQ, 3
√
nχQ) > λ

}∣∣1/q
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� ‖M(1)
b (χQ, 3

√
nχQ)‖Lq,∞ � |Q|α/n.

We conclude that b ∈ Lipα. �
Proof of Theorem 1.4. By the same arguments as in Theorem 1.2,

the desired result is obtained by Lemma 2.4. We omit the details. �

Acknowledgement. I would like to thank the referee for the helpful
comment which improved the presentation of this paper.
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