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Abstract. Let b be a locally integrable function and 90t be the bilinear
maximal function

M. g)(x) = sup |§2| /Q F()g(2z — y)\dy.

In this paper, characterization of the BMO function in terms of commutator Emél)
is established. Also, we obtain the necessary and sufficient conditions for the
boundedness of the commutator [b, M];. Moreover, some new characterizations of
Lipschitz and non-negative Lipschitz functions are obtained.

1. Introduction

The commutator operators play an important role in studying the reg-
ularity of solutions of elliptic and parabolic partial differential equations of
second order, and the boundedness results are used to characterize certain
function spaces [2,3,5,7,8,12,20]. Due to its interest, the singular integral
operators were replaced by maximal operators as an object of study.
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In this paper, we will be concerned with the following family of bilinear
maximal operators in R". Define

r>0

1
Ay M@ =sp o et )i
1

|f(y)g(2x — y)| dy,

= sup
r>0 |B($, T)| B(z,r)

where € R" and O = (0,0,...,0) € R". More general,

The maximal functions M f of f and M f are obviously pointwise equivalent
each other. In 2000, Lacey in the remarkable paper [15] showed that the
family of one-dimensional bilinear maximal operators defined by (1.1) maps
LP x L7 into L™ provided 1 < p,q < oo, 1/p+1/qg=1/r and 2/3 <r <1,
solving a conjecture posed by A. Calderén in 1964.

An interesting question is raised. Is b € BMO necessary and sufficient
for the boundedness of commutators of the bilinear maximal operator 9.

We briefly summarize some classical and recent works in the literature.
A locally integrable function b belongs to the BMO space if b satisfies

1
bl =sup o [ [oe) ol do < .
Q Q| Q

where bg = | Q| J,b 0 x) dz and the supremum is taken over all cubes (or balls)
Q@ in R™. There is a number of classical results which demonstrate that BMO
functions are the right collections to do harmonic analysis on the bound-
edness of commutators. A well-known result of Coifman, Rochberg and
Weiss [4] states that the commutator [b, T|(f) = bT(f) — T'(bf) is bounded
on some LP, 1 < p < oo, if and only if b € BMO, where T be the classical
Calderén—Zygmund operator. The theory was then extended and general-
ized to several directions. In 1991, Garcia-Cuerva, Harboure, Segovia and
Torrea [9] showed that the maximal commutator

My(f)(a —%gg@/w 1)l dy

is bounded on LP, 1 < p < oo, if and only if b € BMO. In 2000, Bastero,
Milman and Ruiz [1] studied the necessary and sufficient conditions for the
boundedness of commutator of Hardy—Littlewood maximal function on L?
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spaces when 1 < p < oo, where the Hardy—Littlewood maximal function is
defined by

M@ = o [ 1wy
Q3z Q|

They proved that the commutator [b, M] is bounded on LP, 1 < p < oo, if
and only if b € BMO with b~ € L*>, where b~ (z) = —min{b(x),0}. We note
that the operators M; and [b, M] essentially differ from each other. For
example, M, is positive and sublinear in each entry, but [b, M] is neither
positive nor sublinear. In the past ten years, Zhang and his collaborators
studied the boundedness of different commutators of maximal operators and
the necessity of the symbol [25-30]. Recently, the further research about the
functions of BMO with bounded negative part were given in [11,21].

In this paper, we show that the question above has an affirmative so-
lution. Now, we give the definitions of commutators of the bilinear maxi-
mal function. Let b be a locally integrable function and 91 be the bilinear
maximal function. The commutators of the bilinear maximal function are

defined by
[0, M1 (f, 9)(x) = b(x)M(f, g)(x) — M(bS, g)(x)

and

[0, M2 (f, 9)(x) = b(x)M(f, g)(x) — M(f, bg) ().

The maximal commutators of the bilinear maximal function are defined by

(1) = su T —
Y (1, g)(x Q93|Q|/\b DI @)g(2z — y)| dy
and
M) (. g)(x) = sup / Ib(x) — b)||f 22 — 1)g(y)| dy.
QSx‘Q|

Now, we show the necessary and sufficient conditions for the bounded
commutators of MM as follows. We note that by symmetry, it is enough to

prove this for i)ﬁl()l) and [b, M.

THEOREM 1.1. Let 1< p,pi,py <oo, ) +

Then the following statements are equivalent:
(1) b € BMO;
(2) ‘.)JTI(,I) is bounded from LP* x LP> to LP;
(3) Dﬁl(,l) is bounded from LP* x LP> to LP>°

b =5 and be Li (R").
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THEOREM 1.2. Let 1< p,pi,ps <00, ) +
Then the following statements are equivalent:
(1) b € BMO and b~ € L*;
(2) [b,9M); is bounded from LP* x LP> to LP;
(3) [b,M]; is bounded from LP* x LP> to LP*°.

o = and be Lj (R").

Let 0 < g< oo and —n/q < a <n. A locally integrable function f is
said to belong to the Campanato space C, g if there exists a constant C' > 0
such that for any cube @ C R™ we have

1 1 g >l/q
- d C
g (joy [0 sattas) " <

where fo = |é| fQ f(x) dz and the minimal constant C' is defined by || f|lc.. .-

The Lipschitz (Holder) and Campanato spaces are related by the equiv-
alences

i, =  sup M@ FTH=I@)

eibig e Ml Oa<d
z,hER™,

The equivalence can be found in [6] for ¢ =1, [13] for 1 < ¢ < oo and [23]
for0<qg<1.

Specially, Co, = BMO, the spaces of bounded mean oscillation. The
crucial property of BMO functions is the John—Nirenberg inequality [14],

{z e Q:|f(@)— fol > A} < a|Qle” Hfi;?vlo7

where ¢; and ¢y depend only on the dimension. A well-known immediate
corollary of the John—Nirenberg inequality reads as follows:

N 1 o 1/p
||fHBMO~Sgp 0| </Q|f(x) fol da:>

for all 1 < p < co. In fact, the equivalence also holds for 0 < p < 1. See, for

example, the work of Stromberg [19] (or [10] and [24] for the general case).
THEOREM 1.3. Let 0 <a <1, 1 <g,pi,pp <00, ) + ) — . =0

be Ll (R™). Then the following statements are equivalent:

loc

(1) b € Lip,;
(2) ‘.)JTI(,I) is bounded from LP* x LP> to LY,
(3) Dﬁl(,l) is bounded from LP* x LP*> to L.
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THEOREM 1.4. Let 0 < <1, 1<gq,pi,pp <oo, | + | — 1= and

be L}OC(R”). Then the following statements are equivalent:
(1) b € Lip, with b > 0;
(2) [b, ]y is bounded from LP* x LP> to LY,
(3) [b,M]; is bounded from LP* x LP> to L.

Let |E| denote the Lebesgue measure of a measurable set E C R™.
Throughout this paper, the letter C' denotes constants which are indepen-
dent of main variables and may change from one occurrence to another.
Q(z,r) denotes a cube centered at x, with side length r, and sides parallel
to the axes.

2. Main lemmas

To prove Theorems 1.1-1.4, we need the following results.

LEMMA 2.1. Let b be a locally integral function. Then, for any cube

Qo = Q(z0,70),

(2.1) M(XQos X3,/n0,) (T) = 1,
(2.2) MUbX Qo> X3y/m@o) (%) = Mg, (b)(@),
where Mg, (b)(x) = supg,~gsa o/ Jo b()| dy.

PrOOF. We only give the proof of the equality (2.2), since the equality
(2.1) follows from (2.2) for b= 1. For any @ C Qo, it follows from = € Q
and y € Qo that

120 —y — zo| < 2|z — 20| + |y — 20| < 3V

and 2z —y € 3y/nQ, one has x3 /0, (22 —y) =1 and

1 / 1
)0 Xaynau 22 = ) dy = o [ bl dy:
Q| Jo T Asvna QI Jq
According to the arbitrariness of the cube @, we arrive at

m(bXQwXB\/nQO)(m) > MQo(b)(x)
For any cube @ C R", we can construct a cube (1 such that
QoDOQ1DQNA
and |@1] < |Q|. Therefore, for z € @,

1

1
@l Jora PWldy <5 /Ql [b(y)| dy < Mg, (b)(2).
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Using the fact that x3, /0, (22 —y) < 1, we get

m(bXQmeS\/nQo)(x) < MQo(b)(x)
Then (2.2) is proved. O
Bastero, Milman and Ruiz proved that

LEMMA 2.2 [1]. Let 1 <p < oo and b be a locally integrable function.
Then the following statements are equivalent:

(1) b € BMO with b~ € L*>;
(2) lIbllBno; = Sgp ‘é‘ Jo [b(z) = Mq(b)(2)|P dz < cc.

Furthermore, we can obtain the following result.

LEMMA 2.3. Let 1 < p < oo and b be a locally integrable function. Then
the following statements are equivalent:

(1) b € BMO with b~ € L*;

(2) Iellmo; .. += supsup O [{ € Q1 b() — Mg (b) ()] > A} < oo,

PROOF. By a direct computation, we arrive at || - [[gyo- . < || - [[Bmo; -
By Lemma 2.2, we need only to prove that || - ||BMO; < HBMO;OO with
1<g<p<oo.

Let b € BMO,, . Given a fixed cube () C R" and for any A > 0, one has

|Q\A1/p‘{”” € Q: [blx) ~ Mo()(@)| > A}V < [Iblmo;..
that is,
{z € Q: 17(x) ~ Mo®)(@)] > A}| < [bllyy0- A PIQL

It follows that

/ |b(x) = Mq(b)()|* dx = q/qu‘ll{x € Q : [b(z) = Mq(b)(x)| > A}| dA
Q 0

N 9]
<o [ NQuanta [N by, ATIQIN
q _
1IN+ bl _IQINT.

Choose

qg \/r
N = [|bl|pro- ( ) ,
[bllBMmo; b—q
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which gives

(1 ) = Moo ”qdy)l/q <2 )" bl -

Then
q \/r
Bllpato- gz( ) Bllpato-
16l Mo, bq 1bllBMmo;

and the lemma follows. [

Similarly, we can obtain the result for non-negative Lipschitz functions
as follows.

LEMMA 2.4. Let0<a<1,1 <p<ooandb be a locally integrable func-
tion. Then the following statements are equivalent:

(1) b € Lip, with b > 0;
(2) bl = supsup g . (o € @+ o) — Mq(b)(x)
o Q >0

Standard real analysis tools as the maximal function M(f), the sharp
maximal function MF(f) carries over to this context, namely,

- ) d
M(f)(z) = g;@\/'f )| dy,

# — ~ .
M(f) (x) = Z%Emfm/'f ~cldy ~ sup |Q|/|f ~ foldy

A variant of maximal function and sharp maximal operator M(f)(z) =

(M(|f]%))"* and ME(f)(x) = (MA(|£]*)(x))"* with 0 < s < oo, which will
become the main tool in our scheme. Let 1 < s < oo and b be a locally
integrable function. The operator M, ¢ is defined by

My (f)() Z‘?i(l@i | 1) =156 >|8dy)”8.

LEMMA 2.5. Let 0 <d<e<1l<s<s5<ooand b€ BMO. Then
ME(My () (z) < [Ibllpavo (Me(M,(f))(z) + Ms(f)(2)),

for the bounded compact supported function f.

PRrOOF. First of all, we give the definition of the following auxiliary max-
imal function, which has been studied in [17] and [18] for the linear case.
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724 H. ZHAO and D. WANG

Let ¢(z) > 0 be a smooth function such that . (t) = E‘”(p(z), ' ()| Sttt
and Xxo,1)(t) < () < Xjo,2)(t). Then

M(f)(z) = @(f)(x) = Sup/n pe(lz = yDIf (y)l dy.

e>0 JR

Define @, (f)(x) = (®(|f]*)(x))"* and
1/s
0w =sp ([ el = Do) = b1 )
Obviously, @y s(f)(x) = M s(f)(x). In fact, let B. = {y e R" : [x —y| < e}.

The bounded compact supported condition of ¢ gives

(D) =sup [z = s)e) — )P IF ) dy

e>0

<sw [ Eso(':”;y')w(:c) —b)PIF )1 dy < M) (@)

e>0 "

and

L@ 2w o)) - b Pl by 2 M50

€
2

Now, we shall estimate the sharp maximal function of the auxiliary max-
imal function. Let @ be a cube and x € Q). For any z € ), we have

|55 (f)(2) — col
< [6(2) = bol®@s(If)(2) + [@4(1b — bollF2))(2)]| + | @b — bollf<I)(2) — co|
= AP (2) + AT (2) + A9 (2),

where ¢ = (P,(|b— bQ||f°°|))Q and f = fO+ f°° with f0 = fxag. There-

fore,
<K12| /Q 1205 (N = leal’| dZ> B

< 7‘ g / < A +A +A
<I>b8 Z)—CQ ~ 9
N<‘Q| /()‘ 7( )( ) “ | ‘> ! 2 3

where A; = (‘é‘ fQ (A?(z))édz)l/(s, ji=1,2,3.

Analysis Mathematica 50, 202/



ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 725
Let us consider first the term A;. By averaging A? over (), we get

1/8

—( z) — )’ dz x
A= <|Q| /QW) bol®:(/)(2)) d) < [bllmaioM: (M (1) (@),

where 0 < § < e < 1. To estimate Ay, by Kolmogorov’s inequality and the
weak (1,1) boundedness of M, we have

Ay S1QIY ML (b — bo) Ol o < 1QITYSIM (b — bol*| £ |1¥2
—1/s s sil/s
<1QIY2 b — b P 21111 < IIbllsMoMs(f)(x)

for 1 < s < 5 < oco. Now, we consider the term As. For [z — 2/| < ) max{|z —
y1l, 12 — ya|} we have

|2 = 2|

/
[pelle —uD) —eells —oDl S| i

Therefore,
|@((b— @) f)(2) — @s((b—bg) f¥) ()|

S Sup/ |pe(l2 = yl) = we(12" =y Ib(y) — bal*|f ()] dy
e>0 JR"\2Q

</ == 21 ) — bol*l () dy
~ Jrmag |2 =y N

_2kn
< b(y) — bol® Sdy < ||b||E s .
S ; 1240 Qle () = bol*f (WI° dy < [[bllsno ME(f) ()

Collecting our estimates, we have shown that

ME(Mys(£)) (@) < lIbllsmo(Me(My(f)) () + Ms(f)())
for the bounded compact supported functions f. [J

LEMMA 2.6. Let 0<d<1<s<5<p<ooandbe BMO. Then M,
is a bounded operator from LP to LP.

PrROOF. We observe that to use the Fefferman—Stein inequality, one
needs to verify that certain terms in the left-hand side of the inequalities
are finite. Applying a similar argument as in [16, pp. 32-33|, the bounded-
ness properties of M and Fatou’s lemma, one gets the desired result.
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726 H. ZHAO and D. WANG

Using Lemma 2.5 and the condition 0 < d <e <1< s < § < p < 00, from
a standard argument that we can obtain
1M (e S || Ms(Mys(£)]] 0 S (| ME(Mys(£))]

< Wllso (ML, + [M5()]) < Iblsaoll e

Lr

Thus, the proof of Lemma 2.6 is completed. [

3. Proofs of Theorems 1.1-1.4

PrROOF OF THEOREM 1.1. (1) = (2). For any pair of conjugate expo-
nents 1/r 4+ 1/s = 1, Hélder’s inequality yields

MY (f,9) () < Myo(f)(2) M, (g) ().

If we let » = p1/p and s = py/p, then r,s > 1 and 1/r + 1/s = 1. Using the
fact that M, : LP> — LP*> and Lemma 2.6, we arrive at

([ mrowra)”

1/p
) — bl® smp/s T’xp/rx
< ([ Moo~ 0171) bl o) o

= [[M,s ()| o [Mr(9)l| Lr= S [1bllBMol| flI o1 Nl 2o

Then, Dﬁl(,l) is bounded from LP* x LP?> to LP. Moreover, (2) = (3) is obvious.

(3) = (1). Let Q@ = Q(zq,rg) be any fixed cube. For any z,y € Q, we
have

22 —y — 2q| < 2z — 2| + |y — 2| < 3Vnrg.
it follows that for any = € Q,

) el < g [ 1)~ bx@ )y (2 — )
S M(x@,3vnxe)(x).
Suppose that Dﬁl()l) is bounded from LP* x LP? into LP-°°. Then

97 (xq. 3v/n xq)|

Analysis Mathematica 50, 202/
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ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 727

which implies that for any A > 0,
A ) 1/p
(3.1) |Q‘1/p‘{x€Q. b(z) — bg| > A}

A
N Q[P Hre@: ml()l)(XQag\/nXQ) > A}!l/p

< 191 (x0, 3v/nxQ) | Lo < 1.

In [22], Wang and Zhou proved that b € BMO if and only if

[{z € Q:|b(x) —bo| > A}

A
sup sup
Q A |Q|Va

for any 0 < ¢ < co. Therefore, the inequality (3.1) implies that b € BMO.
]

PROOF OF THEOREM 1.2. (1) = (2). By the definitions of smg”, [b, My
and ||a| - |C|‘ < la — ¢| for any real numbers a and ¢, we have

1161, 901 (£, 9) ()] < MV (£, 9) ()
and
[0, 91 (£, 9) () — [1B], M1 (. 9) ()]
< [b(a)M(Ff, 9) () — M(bf) () — [b(2)|[IM(f, g) () + M(bS, 9) ()|
< b (2)M(f, 9)(2).
This shows that
(3.2) 6,91 (£, 9) ()] S MV (£, 9)(x) + b~ ()9M(f, 9) ().

Applying (3.2) and Theorem 1.1 we have

1B, M1 (£, 9|l S 1987 (£ 9)|, + [0S 9)
S (167 N1z + 1bleao) £ 1 2ot gl -

Therefore, b € BMO with b~ € L*™ implies that [b,0]; is bounded from
LPr x LP? to LP.

(2) = (3) is obvious.

(3) = (1). Let Qo be any fixed cube. By Lemma 2.1, for any = € Qo,

b(w) = b(x)M(xQ,» 3VNXQ,) (), Mq,(b)(x) = M(bxq,, 3vnxQ,) (),

Analysis Mathematica 50, 202/
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Then,
|b(z) — Mg, (b)(z)| = | [b, M1 (xqo: 3v/1XQ,) (2)]
and
o | (€ Q0 B@) = Mo, B)w)] > A
5 |Q01|1/pH[b’ Dﬁ]l(XQO’:g\/nXQO)HLPm 5 ||[ba9:n]1||LP1 X L2 — [P0,

which implies that b € BMO by Lemma 2.3. [

PrROOF OF THEOREM 1.3. (1) = (2). Let b € Lip,. For any pair of
conjugate exponents 1/r 4+ 1/s = 1, Holder’s inequality yieldsl/r +1/s =1,
we get

M7, 9)(e) < ol [ 17 1)

< [bllwin, (Ta(1£17) @) " (Lalgl) (),

dy

where

f(y)

e

L(h@ = [

Using the fact that I, : LP — L7 and set py = q/r,p2 = q/s, we have

1/r 1/s
195" (£, 9) | 2o < [1bllLip,, ol £ Zallgl) 1 < NbllLip, 1LF 2o gl -

The implications (2) = (3) follows directly.
Next, we give the proof of (3) = (1). Similar to the proof of Theorem
1.1, one has

b(z) — bol < MY (xq. 3v/nxq) (@),

for any @ and x € Q. Suppose that smg” is bounded from LP* x LP2 into
L%%° then

27" (x@: 3vn Q)

which implies that for any A > 0,

e S Ixallzm Ixelie S1QIM7,

el (7€ Q3 bt —tal > 231"

< \Q|1/‘1Hx€ Q: MM (xg,3vnxag) > A} /e

Analysis Mathematica 50, 202/



ON FUNCTIONS OF BOUNDED MEAN OSCILLATION 729

1 a/n
< 9 (v 3vn xQ) e~ < 1QI™.
We conclude that b € Lip,. U

PrROOF OF THEOREM 1.4. By the same arguments as in Theorem 1.2,
the desired result is obtained by Lemma 2.4. We omit the details. [

Acknowledgement. I would like to thank the referee for the helpful
comment which improved the presentation of this paper.
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