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Abstract. A space of universal disposition is a Banach space which has
certain natural extension properties for isometric embeddings of Banach spaces
belonging to a specific class. We study spaces of universal disposition for non-
archimedean Banach spaces. In particular, we introduce the classification of non-
archimedean Banach spaces depending on the cardinality of maximal orthogonal
sets, which can be viewed as a kind of special density and characterize spaces of
universal disposition for each distinguished class.

1. Introduction

We say that a Banach space E is a space of universal (almost univer-
sal) disposition for a given class of Banach spaces U such that {0} ∈ U if for
every linear isometric embedding g : X → Y , where X,Y ∈ U and X is a lin-
ear subspace of E, there exists a linear isometric embedding f : Y → E (for
every ε > 0 there is a linear ε-isometric embedding f : Y → E, i.e. for every
x ∈ Y one has (1 + ε)−1‖x‖ ≤ ‖f(x)‖ ≤ (1 + ε)‖x‖) such that f(g(x)) = x
for all x ∈ X .

The concept of Banach spaces of (almost) universal disposition was intro-
duced by Gurarĭı in [9], who constructed a separable (real) Banach space G

of almost universal disposition for the class of finite-dimensional normed
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spaces. Banach spaces of universal disposition, especially for the class
of finite-dimensional normed spaces F and the class of separable Banach
spaces G, were recently extensively developed by several authors, see [2–4,6,
8] among others. Briefly characterizing the known results, there is no sepa-
rable Banach space of universal disposition for the class F , there are spaces
of universal disposition for the class F that are not of universal disposition
for the class G. A Banach space of universal disposition for the class G must
contain an isometric copy of each Banach space of density ℵ1 or less. Un-
der (CH) there is only one space (up to isometrics) of universal disposition
for the class of separable Banach spaces and density character ℵ1 (Kubís
space K).

This paper deals with non-archimedean normed spaces, i.e. linear spaces
over a non-archimedean complete valued field equipped with the norm sat-
isfying the strong triangle inequality. Non-archimedean Banach spaces of
(almost) universal disposition were studied previously in [11]. Among oth-
ers, for the class of non-archimedean finite-dimensional normed spaces UFNA

two non-isometrically isomorphic spaces of universal disposition were con-
structed (see [11, Theorems 4.6 and 4.7]). The paper continues this line of
research.

Let E be a non-archimedean Banach space. By [16, Theorem 5.4], all
maximal orthogonal sets of elements of E have the same cardinality. Hence,
the cardinality of maximal orthogonal set can be viewed as a kind of special
density and seems to be a good feature to classify non-archimedean Banach
spaces, see Section 2.2. Let ort(E) be a cardinal number defined as ort(E) :=
card(X), where X is a maximal orthogonal set in E. For a given infinite
cardinal number k we denote by UkNA the class of non-archimedean Banach
spaces defined as follows: E ∈ UkNA if and only if ort(E) < k. Then, the
class UkNA contains all non-archimedean Banach spaces with an orthogonal
base with cardinality not bigger than k and all immediate extensions of such
spaces, see Section 2.2.1, in particular spherical completions of such spaces.
Clearly, k1 < k2 follows Uk1NA ⊂ Uk2NA.

In this paper we characterize spaces of universal disposition for the
class UkNA for a given infinite cardinal number k, demonstrating the nec-
essary and sufficient conditions for the non-archimedean Banach space
to be a space of universal disposition for a specific class UkNA (Theo-
rem 3.4). Next, in Theorem 3.10 we construct a space of universal dis-
position for the class Uℵ0NA. We compare spaces of universal disposition for
the class UkNA, where k = ℵ0 or k = ℵ1, with spaces of universal disposi-
tion for the class UFNA and the class of all non-archimedean Banach spaces
of countable type UCNA, respectively. We show that UFNA = Uℵ0NA if and
only if K is spherically complete (Remark 3.12) and UCNA �= Uℵ1NA in gen-
eral, even if K is spherically complete (Remark 3.15). However, under (CH)
spaces of universal disposition for classes UCNA and Uℵ1NA coincide with
each other (Theorem 3.17).
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These results are supplemented by characterization of injectivity, uni-
versality and transitivity of non-archimedean Banach spaces of universal
disposition (see Sections 4 and 5).

2. Preliminaries and notations

2.1. Non-archimedean valued fields. A valuation on a field K is a
map |.| : K →[0,∞), satisfying the following properties:

(1) |λ| = 0 ⇐⇒ λ = 0, λ ∈ K;

(2) |λμ| = |λ| · |μ| for all λ, μ ∈ K;

(3) |λ+ μ| ≤ |λ|+ |μ| for all λ, μ ∈ K.

The pair (K, |.|) is called a valued field. We often will write K instead
of (K, |.|). Then the map (λ, μ) �−→ |λ− μ| is a metric on K which induces
the topology for which K is a topological field.

The valuation |.| is called non-archimedean and K is called a non-
archimedean valued field if |.| satisfies the strong triangle inequality, i.e.

(3′) |λ+ μ| ≤ max
{|λ| , |μ|} for all λ, μ ∈ K.

We say that a valuation |.| is trivial if |λ| = 1 for λ �= 0; otherwise, we
will say that the valuation |.| is non-trivial.

Note that any complete valued field is either non-archimedean or isomet-
rically isomorphic to the field of real or complex numbers, see [15, Theorem
1.2.18].

From now on, by K we will denote a non-archimedean non-trivially val-
ued field, which is commutative and complete under the metric generating
by a non-archimedean valuation.

2.1.1. The value group. Recall that |K×| := {|λ| : λ ∈ K\{0}} is the
value group of K. Set |K| := |K×| ∪ {0}. A valued field K is said to be
discretely valued if 0 is the only accumulation point of |K×|; then, there
exists an uniformizing element : ρ ∈ K with 0 < |ρ| < 1 such that |K×| =
{|ρ|n : n ∈ Z}, where Z denotes the set of integers. Otherwise, we say that
K is densely valued, then, |K×| is a dense subset of (0,∞).

The field of p-adic numbers Qp is an example of non-archimedean val-
ued field, which is discretely valued (see [15, Example 1.2.5]), whereas the
field of p-adic complex numbers Cp (the completion of the algebraic closure
of Qp) is densely valued (see [15, Example 1.2.11]).

Recall that R+, the set of positive real numbers, is a multiplicative group
and |K×| is its normal subgroup. Let

(2.1) πG : R+ → G := R
+/

∣
∣K×∣∣

be the natural quotient map and let S := {sg : g ∈ G} be the set of rep-
resentatives of elements of G in (r, 1], i.e. πG (sg) = g, where r = |ρ| if K

Analysis Mathematica 49, 2023



510 A. KUBZDELA and C. PEREZ-GARCIA

is discretely valued (then ρ ∈ K is an uniformizing element of |K×| with
0 < |ρ| < 1) and r = 1

2 if K is densely valued. Let g0 ∈ G be the identity
element of G. Then, we additionally assume that sg0 = 1.

2.2. Non-archimedean normed spaces. Let E be a linear space
over K. A norm on E is defined as usual, i.e. it is a map ‖.‖ : E→ [0,∞)
such that the following conditions are satisfied:

(1) ‖x‖ = 0 ⇐⇒ x = 0;

(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ K and x ∈ E;

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E.

We say that a norm on E is non-archimedean if it satisfies the strong
triangle inequality, i.e.

(3′) ‖x+ y‖ ≤ max
{‖x‖, ‖y‖} for all x, y ∈ E.

Remark 2.1. Observe that if ‖.‖ is non-archimedean, then ‖x‖ < ‖y‖,
x, y ∈ E implies ‖x+ y‖ = ‖y‖ (see [14, Lemma 1.1.1]).

By a non-archimedean normed space we mean a normed space E over K
equipped with a non-archimedean norm ‖.‖. Note that not every normed
space over K is non-archimedean, for example l1(K), the space of all se-
quences x = (xn) of members of K such that ‖x‖1 :=

∑
n |xn| is finite, is not

non-archimedean and does not even have an equivalent non-archimedean
norm, see [5].

By Ks (s > 0) we will denote the normed space whose underlying linear
space is K itself, normed by the norm ‖x‖s := s · |x|, x ∈ K.

Let ‖E×‖ :=
{‖x‖ : x ∈ E\{0}} and ‖E‖ := ‖E×‖ ∪ {0}. Let X be a

subset of E; by [X] we will denote the linear span generated by elements
of X . Let I be a nonempty set. Let t ∈ (0, 1]. A subset {xi : i ∈ I} ⊂ E is
called t-orthogonal (orthogonal if t = 1) if for each finite subset J ⊂ I and
all {λi}i∈J ⊂ K we have

∥∥
∥
∥
∑

i∈J
λixi

∥∥
∥
∥ ≥ t ·max

i∈J
‖λixi‖ .

An orthogonal set {xi}i∈I in E is said to be an orthogonal base of E if
[{xi}i∈I

]
= E. Then every x ∈ E has an unequivocal expansion

x =
∑

i∈I
λixi (λi ∈ K, i ∈ I).

Every orthogonal set of elements of E can be extended to a maximal orthog-
onal one (see [16, Chapter 5]). By [16, Theorem 5.4], all maximal orthogonal
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sets of elements of E have the same cardinality. Every orthogonal base of E
is a maximal orthogonal set in E, however not every maximal orthogonal
set in E has to be an orthogonal base (see [16, Remark following Theorem
3.16]).

Recall that every closed linear subspace of a non-archimedean Banach
space with an orthogonal base has an orthogonal base (see [16, Theorem
5.9]).

We say that a normed space E over K is of countable type if it contains
a countable set whose linear hull is dense in E. If K is separable, then a
normed space is of countable type if and only if it is separable.

Linear subspacesD1, D2 of a non-archimedean normed space E are called
orthogonal if ‖x+ y‖ = max

{‖x‖ , ‖y‖} for all x ∈ D1 and y ∈ D2; then, we
write D1 ⊥ D2.

For x, y ∈ E\{0} and a linear subspaceD ⊂ E we will write shortly x ⊥ y
instead of [x] ⊥ [y] and x ⊥ D instead of [x] ⊥ D. Let D1 be a closed lin-
ear subspace of E. Then, we say that D1 is orthocomplemented in E if
there is a linear subspace D2 of E such that D1 +D2 = E and D1 ⊥ D2.
Consequently, there exists a surjective projection (called an orthoprojection)
P : E → D with ‖P‖ ≤ 1. Observe that D1 ⊥ D2 implies D1 ∩D2 = {0};
hence, the sum D1 +D2 is direct.

2.2.1. The spherical completion, an immediate extension of a
non-archimedean normed space. Let E be a non-archimedean normed
space. Let r > 0. The closed ball of E is the set B(x, r) :=

{
z ∈ E : ‖x− z‖

≤ r
}
. Note that topologically B(x, r) is both closed and open.
A sequence of balls (Bn)n in E is called nested if Bn+1 ⊂ Bn for all n ∈ N.

A non-archimedean Banach space E is spherically complete (in particular a
non-archimedean valued field K) if every nested sequence of closed balls in E
has a non-empty intersection; otherwise, we say that E is non-spherically
complete. If K is spherically complete, then every non-archimedean Banach
space over K which is of countable type has an orthogonal base (see [15,
Theorem 2.3.25]).

We say that a spherically complete Banach space Ê is a spherical com-
pletion of a non-archimedean normed space E, if there exists an isometric

embedding i : E → Ê and Ê has no proper spherically complete linear sub-
space containing i(E). Applying the natural identification, we will usually
identify E with i(E). Every Banach space (in particular a non-archimedean
valued field K) has a spherical completion and any two spherical completions
of E are isometrically isomorphic, see [16, Theorem 4.43]. Let E, F be non-
archimedean normed spaces such that E ⊆ F . If F is spherically complete,
then F contains a spherical completion of E, see [16, Corollary 4.45].

Let D be a linear subspace of E. E is called an immediate extension
of D (see [16, Chapter 4]) if there is no nonzero element of E that is orthogo-
nal to D; in other words, for every x ∈ E\D we have dist(x,D) < ‖x− d‖ for
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all d ∈ D, where dist(x,D) := infd∈D
{‖x− d‖}. A spherical completion Ê

of E is a maximal immediate extension of E (see [16, Corollary 4.44]). The
set X ⊂ E is a maximal orthogonal set in E if and only if E is an immediate
extension of [X], see [16, page 167].

The spherical completion K̂ of K can be made into a valued field. Then,

K can be viewed as a subfield of K̂ and the valuation of K̂ extends the val-
uation from K, see [16, Theorem 3.19]. Hence, every Banach space over K̂

can be viewed also as a Banach space over K (see [16, p. 162]). Usually we

will consider K̂ as a Banach space over K. Then, K̂ is infinite-dimensional

(see Remark 3.12) and every one-dimensional linear subspace of K̂ is iso-
morphic with K; by K we will denote the one-dimensional linear subspace

of K̂, generated by the element 1 ∈ K̂.

2.2.2. The spaces l∞(I :s,K), c0(I :s,K), �∞(Iuk, K̂), (c0(Iuk, K̂).
Using some ideas of [16, Chapter 3] we define specific non-archimedean
Banach spaces which will be used in the sequel.

Let I be a nonempty set and let s : I → (0,∞), h : I → K be maps. Set

(2.2) ‖h‖s := sup
{|h(i)| · s(i) : i ∈ I

}
.

The maps h : I → K for which ‖h‖s is finite form the linear space l∞(I :s,K),
which is a non-archimedean Banach space under the norm ‖.‖s. By
c0(I :s,K) we will denote the closed linear subspace of l∞(I : s,K), which
consists of all h ∈ l∞(I : s,K) such that for every ε > 0 the set

{
i ∈ I :

|h(i)| ·s(i) ≥ ε
}
is finite. If s(i) = 1 for all i ∈ I , we will write shortly l∞(I,K)

and c0(I,K), respectively.
Usually, when there is no risk of confusion, the ground field will be omit-

ted; then we will write l∞(I : s) and c0(I : s) instead of l∞(I : s,K) and
c0(I : s,K) or l∞(I) and c0(I) instead of l∞(I,K) and c0(I,K).

Let k be an infinite cardinal number and let J be a set such that
card(J) = k. Denote Iuk := G× J , where G is explained in Section 2.1.1.
Define the function suk : Iuk→(r, 1] by suk((g, i)) := sg and the norm on
l∞(Iuk) by

(2.3) ‖x‖uk := sup
p=(g,ip)∈Iuk

{
suk((g, ip)) · |xp|

}
, x = (xp)p∈Iuk

∈ �∞(Iuk).

Let Euk := (c0(Iuk), |.|uk) be the closed linear subspace of (�∞(Iuk),‖.‖uk)
consisting of all (xp)p∈Iuk

, (xp ∈ K, p ∈ Iuk) such that for each ε > 0,
suk(p) ·(xp) > ε only for finitely many indices. We will write shortly Iu,
Eu, su and ‖.‖u instead of Iuℵ0

, Euℵ0
, suℵ0

and‖.‖uℵ0
.

This way the defined space Euk has the useful property: for every g ∈ G,
Euk contains an orthogonal set Xg such that card(Xg) = k and πG(‖x‖) = g
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for all x ∈ Xg (values of norms of elements of Xg are in the same coset of
|K×| in R+).

Let K̂ be the non-archimedean valued field which is a spherical comple-

tion of K. Similarly as above we define the space (�∞(Iuk, K̂), ‖.‖uk), the
Banach space over K of all bounded maps Iuk → K̂ equipped with the norm
‖.‖uk (where ‖.‖uk is defined in the same way as in ( 2.3) and |.| denotes the
valuation defined on K̂ which extends the valuation of K. In the same spirit

we define the space (c0(Iuk, K̂), ‖.‖uk), a Banach space over K.
We refer the reader to the monographs [7], [14] [15] and [16] for more

background on non-archimedean normed spaces.

3. Spaces of universal disposition

We start this section with a few preparing lemmas.

Lemma 3.1. Let E be a non-archimedean Banach space. Then, E is
spherically complete if and only if for every linear subspace of countable type

D ⊂ E there exists a linear subspace D̂ ⊂ E which is a spherical completion
of D.

Proof. “⇒” If E is spherically complete, then, by [16, Corollary 4.45],
it contains a spherical completion of each of its subspaces, in particular every
linear subspace of countable type.

“⇐” Assume that E contains a spherical completion of each of its linear
subspace of countable type. Let (B(xn, rn))n be a nested sequence of closed

balls in E. Then D := [(xn)n] is a linear subspace of E which is of countable

type. Let D̂ ⊂ E be a spherical completion of D. Then, Vn := {x ∈ D̂ :

‖xn − x‖ ≤ rn}, n ∈ N form a nested sequence of closed balls in D̂. Since,

by assumption, D̂ is spherically complete, there exists x0 ∈
⋂

n Vn. Clearly
x0 ∈

⋂
nB(xn, rn); hence, E is spherically complete. �

Lemma 3.2. Let E,F be non-archimedean normed spaces, D be a spheri-
cally complete linear subspace of E. If T : E → F is an isometric embedding,
then T (D) ⊆ F is spherically complete.

Proof. Straightforward. �
Lemma 3.3. Let E, F be non-archimedean normed spaces, D be a linear

subspace of E such that E is an immediate extension of D, F be spherically
complete and T : D → F be an isometric embedding. Then T can be extended
to a linear isometry T ′ : E → F .

Proof. See [11, Lemma 4.2] and [16, Lemma 4.42]. �
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Theorem 3.4. Let k be an infinite cardinal number and Ek be an
infinite-dimensional non-archimedean Banach space. Consider the follow-
ing conditions.

(A) Ek satisfies the following properties:

(i) for every g ∈ G, where G is explained in Section 2.1.1, Ek con-
tains an orthogonal set Xg such that card(Xg) = k and πG(‖x‖) = g for all
x ∈ Xg;

(ii) for every linear subspace F ⊂ Ek such that ort(F ) < k there is a
linear subspace F0 of Ek such that F ⊂ F0 and F0 is a spherical completion
of F .

(B) Ek is a space of universal disposition for the class UkNA.

(C) Ek is spherically complete.

Then, (A) ⇔ (B), (A) ⇒ (C) if k > ℵ0.

Proof. (A) ⇒ (B). Let F,H ∈ UkNA, F ⊂ Ek and let j : F → H be an
isometric embedding. We prove, that there exists an isometric embedding
f : H → Ek such that f(j(x)) = x for all x ∈ F .

First, choose a maximal orthogonal set XF in j(F ) ⊂ H . Next, we ex-
tend XF to a maximal orthogonal set XH in H . Denote YH := XH\XF .
Clearly, YH ∩ j(F ) = ∅, as XF is a maximal orthogonal set in j(F ). Thus,
[XF ] ⊥ [YH ].

We show that j(F ) ⊥ [YH ]. Indeed, take any x ∈ j(F ) and y ∈ [YH ].
If x ∈ [XF ], the conclusion is obvious since [XF ] ⊥ [YH ]. So, assume that
x �∈ [XF ]. Then, since j(F ) is an immediate extension of [XF ] (see [16,
page 167]), there exists x0 ∈ [XF ] such that ‖x‖ = ‖x0‖ and ‖x− x0‖ < ‖x‖.
Thus, as x0 ⊥ y, we obtain

‖x0 + y‖ = max
{‖x0‖, ‖y‖

}
= max

{‖x‖, ‖y‖}.
Hence,

‖x− x0‖ < ‖x‖ ≤ max
{‖x‖, ‖y‖} = ‖x0 + y‖.

Finally, since ‖x− x0‖ < ‖x0 + y‖, using Remark 2.1 we get

‖x+ y‖ = ‖(x− x0) + (x0 + y)‖ = ‖x0 + y‖ = max
{‖x‖, ‖y‖},

concluding x ⊥ y.
For every g ∈ G denote

XF,g :=
{
x ∈ XF : πG(‖x‖) = g

}
and YH,g :=

{
x ∈ YH : πG(‖x‖) = g

}
,

respectively. Then, YH = ∪g∈GYH,g and the components of the union are
disjoint.
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Fix g ∈ G. Since H,F ∈ UkNA, card(YH,g) < k and card(XF,g) < k.
Thus, if X ′

F,g is a maximal orthogonal set in {x ∈ F : πG(‖x‖) = g} then

card(X ′
F,g) < k. Now, we extend X ′

F,g to X ′
g, a maximal orthogonal set in

{x ∈ Ek : πG(‖x‖) = g}. Since, by assumption, Ek contains an orthogonal
set Xg with card(Xg) = k and πG(‖x}) = g for all x ∈ Xg, thus card(X ′

g)
≥ k (note that by [16, Remark following Theorem 5.2] for every fixed s > 0
all maximal orthogonal subsets of {x ∈ Ek : ‖x‖ ∈ s · |K|} have the same
cardinality). Therefore, since YH,g ⊂ YH and [YH ] ⊥ j(F ) we can select an
orthogonal set Y ′

g = {xy : y ∈ YH,g} ⊂ X ′
g\X ′

F,g, such that for every z ∈ Y ′
g ,

z ⊥ F .
Since for every y ∈ YH,g we have πG(y) = g and for every x ∈ Y ′

g ,
πG(x) = g, for every y ∈ YH,g there is λy ∈ K such that ‖λyxy‖ = ‖y‖. Since
the same procedure we can carry out for every g ∈ G, this way we define the
map f : j(F ) + [YH ] → Ek, setting

f

(
x+

∑

y∈YH

μyy

)
:= j−1(x) +

∑

y∈YH

μyλyxy,

where x ∈ j(F ), xy ∈ ⋃
g∈G Y ′

g and μy ∈ K. Since j(F ) ⊥ [YH ] and, as we

showed above, YH and
⋃

g∈G Y ′
g are both orthogonal sets, we obtain

∥
∥
∥∥x+

∑

y∈YH

μyy

∥
∥
∥∥ = max

{
‖x‖,

∥
∥
∥∥
∑

y∈YH

μyy

∥
∥
∥∥

}
= max

{
‖x‖,max

y∈YH

‖μyy‖
}
.

On the other hand, we get
∥∥
∥
∥j

−1(x) +
∑

y∈YH

λyμyxy

∥∥
∥
∥ = max

{
‖j−1(x)‖,

∥∥
∥
∥
∑

y∈YH

λyμyxy

∥∥
∥
∥

}

= max
{
‖j−1(x)‖,max

y∈YH

‖λyμyxy‖
}
= max

{
‖x‖,max

y∈YH

‖μyy‖
}
.

Hence, we conclude that f is isometric.
If j(F ) + [YH ] = H , we are done, f is a required isometry defined on H ;

otherwise, if j (X)+[YH ] �= H then, by [13, Proposition 2.1], H is an immedi-
ate extension of j(F )+ [YH ]. By assumption, Ek contains a spherically com-
plete linear subspace E0 which is a spherical completion of f(j(F ) + [YH ])
such that f(H) ⊂ E0.Thus, applying Lemma 3.3, we can extend f to the
isometry: H → E0 ⊂ Ek.

(B) ⇒ (A). Assume that Ek is a space of universal disposition for the
class UkNA. We show that Ek satisfies the conditions (i) and (ii) of The-
orem 3.4. First, suppose that there is g ∈ G for which the maximal or-
thogonal set Xg of {x ∈ Ek : πG(‖x‖) = g} has a cardinality less then k.
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Let F := [Xg]. Set H := F ⊕Ksg , where Ksg is explained in Section 2.2, and
j : F → H , j(x) = (x,0) be the inclusion map. Then, since by assumption Ek

is a space of universal disposition for the class UkNA and F,H ∈ UkNA, there
exists an isometric embedding f : H → Ek such that f(j(x)) = x for all x
∈ F . Hence, the set Xg ∪ {z0}, where z0 := f((0, 1)), is orthogonal and
πG(‖z0‖) = g. This conclusion contradicts with the maximality of Xg. So,
the assertion (i) is satisfied.

Now, take any linear subspace F ⊂ Ek such that ort(F ) < k. Let F̂ be

a spherical completion of F and i : F → F̂ be the isometric embedding.

Clearly, F, F̂ ∈ UkNA. Then, arguing as above, there is an isometric embed-

ding h : F̂ → Ek such that h(i(x)) = x for all x ∈ F . But, then, by Lemma

3.2, the linear subspace h(F̂ ) of Ek is spherically complete and by [16, Corol-
lary 4.45] it contains a spherical completion of F . Thus, we get (ii).

Finally assume that k > ℵ0. Then, it follows from (A) that every linear
subspace of countable type has a spherical completion contained in Ek. By
Lemma 3.1, we conclude that Ek is spherically complete. �

Remark 3.5. The condition (i) of Theorem 3.4 is equivalent to

(i′) Ek contains an isometric copy of the space Euk, where the space Euk

is explained in Section 2.2.2.

Proof. Assume that Ek satisfies the condition (i), i.e., for every g ∈ G,
Ek contains an orthogonal set Xg such that card(Xg) = k and πG(‖x‖) = g

for all x ∈ Xg. Let X :=
⋃

g∈GXg. Then [X] is isometrically isomorphic

with Euk. The implication (i′) ⇒ (i) is obvious. �

Corollary 3.6. (1) The space Êuk is a space of universal disposition
for the class UkNA.

(2) If Ek is a space of universal disposition for the class UkNA then Ek

contains an isometric copy of the space Euk.

(3) If k > ℵ0, then any space of universal disposition for the class UkNA

contains an isometric copy of Êuk.

(4) Let U1, U2 be classes of infinite-dimensional non-archimedean Banach
spaces such that U1 ⊆ U2. If E is a space of universal disposition for the
class U2 then E is a space of universal disposition for the class U1. In par-
ticular, if k1, k2 are infinite cardinal numbers such that k1 ≤ k2, then, if E
is a space of universal disposition for the class Uk2NA, then E is a space of
universal disposition for the class Uk1NA.

Proof. (1) By Remark 3.5, Êuk satisfies the condition (i) of Theo-

rem 3.4. Since Êuk is spherically complete, by [16, Corollary 4.45] it con-
tains a spherical completion of its every linear subspace; hence, it satisfies
the condition (ii) of Theorem 3.4 and the conclusion follows.
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(2) For the class UkNA the condition (i) of Theorem 3.4 satisfies. Thus,
using Remark 3.5, we conclude that Ek contains an isometric copy of Euk.

(3) Let Ek be a space of universal disposition for the class UkNA. If
k > ℵ0, then by Theorem 3.4, Ek is spherically complete. As we proved
above, Ek contains an isometric copy of the space Euk. Let’s denote it by D.
By [16, Corollary 4.45] Ek contains a linear subspace D0 which is a spherical
completion of D. But, by [16, Theorem 4.43], D0 is isometrically isomorphic

with Êuk.

(4) Let E be a space of universal disposition for the class U2. Take
X,Y ∈ U1 such that X is a linear subspace of E Let g : X → Y be an lin-
ear isometric embedding. Since X,Y ∈ U2 it follows directly from definition
and assumption that there exists a linear isometric embedding f : Y → E.
So, E is a space of universal disposition for the class U1. �

Remark 3.7. Note that the third assertion of Corollary 3.6 is not true if
k = ℵ0. Theorem 3.10 shows that there exists a space of universal disposition
for the class Uℵ0NA which is non-spherically complete and it does not contain

any isometric copy of Êu.

First, we prove two lemmas (see also [16, 4.B]).

Lemma 3.8. Let K be densely valued, I be an infinite set and s : I →
(0,∞) be a map. If there exists a countable J ⊂ I , say J = {k1, k2, . . .}, such
that s(kn) · |λn| ≥ s(kn+1) · |λn+1| and limn s(kn) · |λn| > 0 for some λ1, λ2, . . .
∈ K then the space c0(I : s) is non-spherically complete.

Proof. Recall that the space c0(I : s) is normed by the norm ‖.‖s de-
fined in Section 2.2. Let r = limn s(kn) · |λn|. Set xn :=

∑n
i=1 λieki

and
rn := s(kn+1) · |λn+1| (n ∈ N). Then, the sequence of balls (Brn(xn))n in
c0(I : s) is nested. Indeed, for every n ∈ N we have

‖xn+1 − xn‖s = s(kn+1) · |λn+1| = rn,

thus xn+1 ∈ Brn(xn), n ∈ N and by assumption for every n ∈ N

s(kn+1) · |λn+1| ≥ s(kn+2) · |λn+2|,
hence rn ≥ rn+1.

We prove that the considered sequence of balls has an empty intersec-
tion. Assume the contrary and suppose that there is z ∈ ⋂

nBrn(xn). Then,
we can write z =

∑
i∈I μiei for some μi ∈ K (i ∈ I). On the other hand, since

for each ε > 0, s(i) · |μi| > ε only for finitely many indices, there is p ∈ N such
that s(kj) · |μkj

| < r if j > p. Thus, |μkp+1
| < r

s(kp+1)
. Since |λp+1| = rp

s(kp+1)
,

using Remark 2.1 for n > p we have

‖z − xn‖s ≥ s(kp+1) · |μkp+1
− λp+1| = s(kp+1) · |λp+1| = rp.
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But, by assumption, ‖z − xn‖s = maxi∈I{s(i) · |μi − λi|} ≤ rn for all n ∈ N;
a contradiction. �

Lemma 3.9. Every finite-dimensional linear subspace of (c0(Iu, K̂),‖.‖u)
is spherically complete.

Proof. If K is spherically complete, then K̂ = K and the conclusion
is straightforward, as every finite-dimensional normed space over such K

is spherically complete (see [16, Corollary 4.6]). So, assume that K is
non-spherically complete and let F be a finite-dimensional linear sub-

space of (c0(Iu, K̂), ‖.‖u). Let {v1, . . . , vm}, be an orthogonal base of F ,

m ∈ N. Let vi = (xi1, x
i
2, . . .), x

i
p ∈ K̂, p ∈ Iu, i ∈ {1, . . . ,m}. Then, for ev-

ery i ∈ {1, . . . ,m} there exists pi and sgi ∈ S such that ‖vi‖u = sgi · |xpi
|. For

each i ∈ {1, . . . ,m} define a one-dimensional normed space Hi = (K̂, ‖.‖i),
where ‖.‖i := sgi · |.| and denote H :=

∏n
i=1 Hi. Then, setting

T : λ1v
1 + · · · + λmvm �−→ (λ1, . . . , λm) ∈ H

where λ1, . . . , λm ∈ K, we define the isomorphism T : F → H . Since K̂ is
spherically complete, for every i ∈ {1, . . . , n} the space Hi is spherically
complete. Hence, by [16, 4.A] the product space H =

∏n
i=1 Hi is spheri-

cally complete. Hence, by Lemma 3.2 F is spherically complete. �
Theorem 3.10. For any K the space (c0(Iu, K̂), ‖.‖u) is a space of uni-

versal disposition for the class Uℵ0NA. Furthermore, if K is densely valued

then (c0(Iu, K̂), ‖.‖u) is not spherically complete and it does not contain an

isometric copy of Êu.

Proof. Recall, as we note in Section 2, that (c0(Iu, K̂), ‖.‖u) denotes

the space of all bounded maps h : Iu → K̂ such that for every ε > 0 the
set {i ∈ I : |h(i)| · su(i) ≥ ε} is finite, considered as a Banach space over K,
normed by the norm (2.3).

To prove that (c0(Iu, K̂), ‖.‖u) is a space of universal disposition for the
class Uℵ0NA it is enough to show that it satisfies the conditions (i)-(ii) of
Theorem 3.4. The condition (i) is clear, by the construction of Iu, for ev-

ery g ∈ G the set {ei : i ∈ Iu} ⊂ c0(Iu, K̂) contains an orthogonal countable
subset Xg such that πG(‖x‖) = g for all x ∈ Xg.

By Lemma 3.9, every finite-dimensional linear subspace of (c0(Iu, K̂),‖.‖u)
is spherical complete, hence the condition (ii) is satisfied and this part of
the proof is finished.

Since ‖(c0(Iu, K̂), ‖.‖u)‖u = [0,∞), defining the suitable map s we can

apply Lemma 3.8 and conclude that the space (c0(Iu, K̂), ‖.‖u) is non-
spherically complete.
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Assume now that there is a linear subspace H of (c0(Iu, K̂), ‖.‖u) such

that H is an isometric copy of Êu. Therefore, H is spherically complete.

Since (c0(Iu, K̂), ‖.‖u) has an orthogonal base, by [16, Theorem 5.9] H , as

a closed linear subspace of (c0(Iu, K̂), ‖.‖u) has an orthogonal base. Hence,
H is isometrically isomorphic with c0(I : s) for some infinite I and a map

s : I → (0,∞) (see [16, page 171]). But ‖H‖u ⊆ ‖Êu‖u = ‖Eu‖u = [0,∞).
Therefore, we can apply Lemma 3.8 again and imply that H is finite-
dimensional, a contradiction. �

Lemma 3.11. If K is non-spherically complete then a spherical comple-

tion K̂ considered as a Banach space over K is infinite-dimensional.

Proof. Assume that K̂ is finite-dimensional. Then, by [16, Theorem

3.15] we imply that all linear functionals defined on K̂ are continuous, a
contradiction with [16, Corollary 4.3]. �

Remark 3.12. 1) Note that UFNA ⊂ Uℵ0NA and all known examples of
spaces of universal disposition for UFNA are spaces of universal disposition
for Uℵ0NA (see [11, Theorems 4.6 and 4.7]and Theorem 3.10).

2) If K is spherically complete, then UFNA = Uℵ0NA since every finite-
dimensional normed space over such K is spherically complete by [16, Corol-
lary 4.6]. Hence, in this case all known examples of spaces of universal
disposition for UFNA are spaces of universal disposition for Uℵ0NA (see [11,
Theorems 4.6 and 4.7], Corollary 3.6 and Theorem 3.10).

3) If K is non-spherically complete, then by Lemma 3.11 a spherical

completion K̂ considered as a Banach space over K is infinite-dimensional.

Hence, K̂ �∈ UFNA. On the other hand, K̂ is an immediate extension of its
one-dimensional linear subspace K, thus it is a member of Uℵ0NA. Hence,
for non-spherically complete K we have UFNA �= Uℵ0NA.

However, in this context, it is natural to formulate the following question.

Problem 3.13. Let K be non-spherically complete. Is every space of
universal disposition for the class UFNA, a space of universal disposition for
Uℵ0NA?

Proposition 3.14. A spherical completion of c0(N : s) is not of count-
able type if one of the following conditions satisfies:

• K is discretely valued, s(n) > s(n+1) for all n ∈ N and limn s(n) > 0;

• K is densely valued.

Proof. When the first condition is satisfied, the conclusion follows from
[16, Theorem 4.57]; then �∞(N : s) is a spherical completion of c0(N : s). Re-
call that �∞(N : s) is not of countable type (see [15, Theorem 2.5.15, Corol-
lary 2.3.14 and Remark 2.5.16]).
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Assume that K is densely valued.
Let K be non-spherically complete. The conclusion is straightforward,

as for every spherically complete Banach space E over non-spherically com-
plete K, E∗ = {0} (its topological dual is trivial, see [16, Corollary 4.3]).
Hence, by [15, Theorem 4.2.4] E cannot be of countable type.

Let K be spherically complete. Then, �∞(N : s) is spherically complete
(see [16, Remark below Theorem 4.56]) and by [16, Corollary 4.45] there
exists a spherical completion E0 of c0(N : s) contained in �∞(N : s). We
prove that E0 is not of countable type.

First, we show that if J = {j1, j2, . . .} is a countable subset of N, (pn)n is
a strictly decreasing sequence of reals such that pn

s(n) ∈ |K×| and pn ∈ [1,2] for

every n ∈ N, then there exists y = (y1, y2, . . .) ∈ E0 such that s(jn) · |yjn| = pn
for all n ∈ N and s(k) · |yk| ≤ infn∈N pn if k �∈ J.

Let x = (x1, x2, . . .) ∈ �∞(N : s) be such that s(jn) · |xjn | = pn for all
n ∈ N and xk = 0 if k �∈ J .

If x ∈ E0, then we set y := x and we are done. So, assume that x �∈ E0.
Let zn =

∑n
i=1 xiei, n ∈ N. Then,

dist(x, c0(N : s)) ≤ inf
n∈N

‖x− zn‖ = inf
n∈N

s(jn) · |xjn | ≤ inf
n∈N

pn.

Hence, dist(x,E0) ≤ dist(x, c0(N : s)) ≤ infn∈N pn.
By maximality of E0 (see [16, Corollary 4.44]), E0 + [x] is not an imme-

diate extension of c0(N : s). Hence, by [13, Proposition 2.1], E0 + [x] is not
an immediate extension of E0, therefore, there is y = (y1, y2, . . .) ∈ E0 for
which dist(x,E0) = ‖x− y‖. Thus,

‖x− y‖ ≤ inf
n∈N

pn.

But, on the other hand ‖x− y‖ ≥ supn∈N s(jn) · |xjn − yjn|; hence,
s(jn) · |yjn| = s(jn) · |xjn | = pn

for all n ∈ N. Since xk = 0 if k �∈ J , we imply that for such k we have
s(k) · |yk| ≤ infn∈N pn.

This shows that y, an element of E0, satisfies the required conditions.
Let {Ji}i∈I be an uncountable almost disjoint family of infinite subsets

of N (it is well known fact (see [10] or [1, Lemma 2.5.3]), that there is an un-
countable almost disjoint family of infinite subsets of N, i.e. the intersection
of two members of this family is finite) and let (pn)n be a strictly decreas-
ing sequence of reals such that pn

s(n) ∈ |K×| and pn ∈ [1, 2] for every n ∈ N.

Thus,

(3.1) inf
n∈N

pn ≥ 1.
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Now, using the conclusion of the previous part of the proof, for each
i ∈ I we choose a corresponding yi ∈ E0 as follows. Fix i ∈ I and write
Ji = {j1, j2, . . .}. Then, as we proved above, there is yi = (yi1, y

i
2, . . .) ∈ E0

such that s(jn) · |yijn | = pn for all n ∈ N and s(k) · |yik| ≤ infn∈N pn if k �∈ Ji.

Denote X = {yi : i ∈ I}. We show that an uncountable set X is 1
2 -ortho-

gonal. Take a finite I0 ⊂ I , say I0 = {i1, . . . , im}. Set M := {1, . . . ,m}. Take
λk ∈ K\{0}, k ∈ M.

Since for every k ∈ M

‖yik‖ = sup
n∈N

{s(n) · |yikn |} = sup
n∈N

pn ≤ 2,

we note ‖λky
ik‖ = |λk| · ‖yik‖ ≤ 2 · |λk| and conclude

(3.2) max
k∈M

‖λky
ik‖ ≤ 2 ·max

k∈M
|λk|.

Let k0 ∈ M be such that |λk0
| = maxk∈M |λk|. Then for each k ∈ M\{k0}

we have
∣
∣ λk

λk0

∣
∣ ≤ 1.

Then, as Ji1 , . . . , Jim are pairwise almost disjoint, for every k ∈
{1, . . . ,m} there is nk ∈ N such that s(nk) · |yiknk

| ≥ infn∈N pn and s(nk) · |yilnk
|

≤ infn∈N pn if l �= k. Therefore,

∥∥
∥
∥

m∑

k=1

λky
ik

∥∥
∥
∥ = |λk0

| ·
∥∥
∥
∥y

ik0 +
∑

k∈M\{k0}

λk

λk0

yik
∥∥
∥
∥

≥ |λk0
| · s(nk) ·

∣
∣
∣∣y

ik0
nk +

∑

k∈M\{k0}

λk

λk0

yiknk

∣
∣
∣∣.

Applying Remark 2.1 we have

s(nk) ·
∣
∣
∣
∣y

ik0
nk +

∑

k∈M\{k0}

λk

λk0

yiknk

∣
∣
∣
∣ ≥ s(nk) · |yik0nk | ≥ inf

n∈N
pn.

Thus, using (3.1) and (3.2) we obtain

∥
∥∥
∥

m∑

k=1

λky
ik

∥
∥∥
∥ ≥

(1
2
· 2

)
· max
k=1,...,m

|λk| · inf
n∈N

pn ≥ 1

2
max

k=1,...,m
‖λky

ik‖.

Hence, we get
∥
∥
∥∥

m∑

k=1

λky
ik

∥
∥
∥∥ ≥ 1

2
max

k=1,...,m
‖λky

ik‖

Analysis Mathematica 49, 2023



522 A. KUBZDELA and C. PEREZ-GARCIA

and finally conclude that X is 1
2 -orthogonal. Now, assume the contrary and

suppose that E0 is of countable type. But then, by [15, Theorem 2.3.18]
every 1

2 -orthogonal set of E0 is countable, a contradiction. �
Let UCNA be the class of non-archimedean Banach spaces of countable

type.

Remark 3.15. Clearly, UCNA ⊂ Uℵ1NA. But, UCNA �= Uℵ1NA in general.
Indeed, let c0(N : s), be such that one of the conditions of Proposition 3.14
is satisfied and E0 be its spherical completion. Then, E0 is a member
of Uℵ1NA. But Proposition 3.14 shows that E0 is not of countable type,
hence E0 �∈ UCNA.

However, as the next results show, under (CH) spaces of universal dis-
position for UCNA and Uℵ1NA coincide with each other.

Proposition 3.16. (CH) Let E be a non-archimedean Banach space
which is of universal disposition for the class UCNA. Then, E contains an
isometric copy of Euℵ1

.

Proof. First, by proceeding in the same way as in the proof of the part
(B) ⇒ (A) of Theorem 3.4, we show that for every g ∈ G the maximal
orthogonal set Xg of {x ∈ E : πG(‖x‖) = g} is countable. Assume the con-
trary and suppose that there is g ∈ G for which the maximal orthogonal set
Xg of {x ∈ E : πG(‖x‖) = g} is finite. Let F := [Xg], H := F ⊕Ksg , where
Ksg is explained in Section 2.2, and j : F → H , j(x) = (x, 0) be the inclusion
map. Since, by assumption E is of universal disposition for the class UCNA

and F,H ∈ UCNA, there exists an isometric embedding f : H → E such that
f(j(x)) = x for all x ∈ F . Hence, the set Xg ∪ {z0}, where z0 := f((0, 1)),
is orthogonal and πG(‖z0‖) = g. But, this conclusion contradicts with the

maximality of Xg. Denote X :=
⋃

g∈GXg. Then [X] is isometrically iso-
morphic with Euℵ1

, see Section 2.2.2, and we are done. �
Theorem 3.17. (CH) Let E be a non-archimedean Banach space. Then,

E is a space of universal disposition for the class UCNA if and only if E is a
space of universal disposition for the class Uℵ1NA.

Proof. “⇐” Since UCNA ⊂ Uℵ1NA, the conclusion follows from Corol-
lary 3.6.

“⇒” Observe that, if E is a space of universal disposition for the
class Uℵ1NA then by Theorem 3.4 E is spherically complete.

Now, assume the contrary and suppose that E is a space of universal
disposition for UCNA but not for Uℵ1NA. Hence, by Lemma 3.1 and the above
observation there is a closed linear subspace of countable type D ⊂ E such
that there is no spherical completion of D contained in E.

Let H ⊂ E be a closed linear subspace which is a maximal immediate

extension of D in E. Let Ê be a spherical completion of E and let i : E → Ê
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be the natural isometric embedding. Then, by [16, Corollary 4.45], Ê con-
tains a spherical completion of i(H), which is by [13, Proposition 2.1] a
spherical completion of i(D). Denote this spherical completion by D0. By
assumption, D0 � i(E). Take u0 ∈ D0\i(E). Then, clearly u0 �∈ i(H) and,
as D0 is an immediate extension of i(H), we have

(3.3) r := dist(u0, i(H)) < ‖u0 − i(d)‖
for every d ∈ H . Hence, we can choose a sequence (xn)n ⊂ H such that
‖i(xn)−u0‖ > ‖i(xn+1)−u0‖ for every n ∈ N and limn‖i(xn)−u0‖ = r > 0.
Set rn := ‖i(xn)− u0‖, n ∈ N.

Then the sets Vn := {x ∈ E : ‖xn − x‖ ≤ rn}, n ∈ N form a nested se-
quence of closed balls in E. First, observe that

(3.4)

(⋂

n

Vn

)
∩H = ∅.

Indeed, assume the contrary and suppose that there is z ∈ (
⋂

n Vn) ∩H .
Then, ‖i(z − xn)‖ = ‖z − xn‖ ≤ rn for each n ∈ N, so, using Remark 2.1
we get

‖i(z)− u0‖ = ‖i(z)− i(xn) + i(xn)− u0‖
≤ max

{‖i(z − xn)‖, ‖i(xn)− u0‖
}
= max

{‖z − xn‖, ‖i(xn)− u0‖
} ≤ rn

for each n ∈ N. So, ‖i(z)− u0‖ ≤ r, a contradiction with (3.3).
Assume now that there is z0 ∈ (⋂

n Vn

)\H . But, then H + [z0] is an
immediate extension of H (otherwise, there is h0 ∈ H with ‖z0 − h0‖ =
dist(z0,H) ≤ r since ‖z0 − h0‖ ≤ ‖z− xn‖ ≤ rn for each n ∈ N; thus, for ev-
ery n ∈ N we get ‖h0 − xn‖ = ‖h0 − z0 + z0 − xn‖ ≤ rn, a contradiction with
(3.4). Then, by [13, Proposition 2.1], H + [z0] is an immediate extension
of D, a contradiction with maximality of H . Thus,

(3.5)
⋂

n

Vn = ∅.

Let F := i(D) + [i(x1), i(x2), . . .]. Then F is a Banach space of countable
type. Since, by assumption, E is a space of universal disposition for UCNA

and F ∈ UCNA, the map i−1 : F → D + [x1, x2, . . .] ⊂ E has an isometric

extension j : F + [u0] → E as F + [u0] ∈ UCNA. But then, ‖xn − j(u0)‖ =
‖i(xn)− u0‖ ≤ rn for all n ∈ N; thus, j(u0) ∈

⋂
n Vn, a contradiction with

(3.5) . �
Lemma 3.18. Let K be non-spherically complete and x = (xi)i∈I ∈

�∞(I : s). If there exists p ∈ I such that ‖x‖ = s(p) · (xp), then [x] is or-
thocomplemented in �∞(I : s). Consequently, for every z ∈ �∞(I : s) the
two-dimensional linear subspace [x, z] has an orthogonal base.
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Proof. It is easy to verify that the linear subspace H := {(wi)i∈I
∈ �∞(I : s) : wp = 0} is an orthocomplement of [x] in �∞(I : s). Then, for
z ∈ �∞(I : s) we can choose λz ∈ K such that z = λzx+ (z − λzx). Then
x ⊥ (z − λzx) and {x, z − λzx} is an orthogonal base of [x, z]. �

Recall that if K is non-spherically complete, the space �∞ is not of uni-
versal disposition for the class UFNA (see [11, Remark 4.9]). We get the
following, more general result.

Proposition 3.19. Let K be densely valued, k be a given infinite cardi-
nal number, I be a set with card(I) ≥ k and s : I → (0,∞) be a map. Then,
the space �∞(I : s) is a space of universal disposition for the class UkNA if
and only if K is spherically complete.

Proof. “⇒” Assume that K is non-spherically complete and suppose
that �∞(I : s) is a space of universal disposition for the class UkNA. Recall
(see [16, page 68] and [15, Example 2.3.26]) that if (Brn(cn))n is a nested
sequence of closed balls in K which has an empty intersection, then the
formula

‖(λ1, λ2)‖v := lim
n→∞ |λ1 − λ2cn|, (λ1, λ2) ∈ K

2,

defines a non-archimedean norm on the linear space K
2. The normed space

K2
v := (K2, ‖.‖v) is an immediate extension for each its one-dimensional lin-

ear subspace, therefore it has no two orthogonal elements.
Fix i ∈ I , set X := [ei] ⊂ �∞(I : s), Y := (K2, s(i) · ‖.‖v) and define the

isometric embedding i : X → Y such that i(ei) = (1, 0). Using Lemma 3.18,
we imply that every two-dimensional linear subspace of �∞(I : s) containing
ei has two non-zero orthogonal elements. Thus, as Y has no two non-zero
orthogonal elements, there is no isometric embedding f : Y → �∞(I : s) such
that f(i(x)) = x for all x ∈ X , a contradiction.

“⇐” Suppose that K is spherically complete. Then �∞(I : s) is spheri-
cally complete (see [16, 4.A]). Applying [16, Corollary 4.45], we imply that
�∞(I : s) contains a spherical completion of its every linear subspace which
is a member of UkNA. Thus, the condition (ii) of Theorem 3.4 is satisfied.

We prove that for every g ∈ G, �∞(I : s) contains an orthogonal set Xg

such that card(Xg) = k and πG(‖x‖s) = g for all x ∈ Xg. Then, using The-
orem 3.4, (A) ⇒ (B), we finish the proof. To do it, select an infinite
family {Mj : j ∈ J} of infinite, countable and disjoint subsets of I . Then,

card(J) = card(I). For each j ∈ J write Mj = {ij1, ij2, . . .}. Next, for every

g ∈ G and j ∈ J choose a sequence (λg

ijn
)n in K such that s(ijn) · |λg

ijn
| ≤ sg and

s(ijn) · |λg

ijn
| → sg if n → ∞. Define xjg = (xi)i∈I , setting xi := λg

ijn
if i = ijn

and xi := 0 otherwise. Then, W = {xjg : g ∈ G, j ∈ J} is an orthogonal sub-
set of �∞(I : s) such that for every g ∈ G the set {w ∈ W : πG(‖w‖s) = g}
has cardinality greater or equal to k. Hence, we are done. �
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Proposition 3.20. Let K be discretely valued and k be a given infinite
cardinal number. Then,

• the space �∞(Iuk : suk) is a space of universal disposition for the
class UkNA;

• the space �∞(I) is not a space of universal disposition for the
class UkNA.

Proof. By [16, 4.A], the space �∞(Iuk : suk) is spherically complete. We
show that it satisfies the conditions (i)-(ii) of Theorem 3.4; the condition (i)
is clear, by the construction of Iuk. By [16, Corollary 4.45], �∞(Iuk : suk)
contains a spherical completion of its every linear subspace which is a mem-
ber of UkNA, thus the condition (ii) is satisfied.

Note that ‖�∞(I)‖ = |K| is a countable set. Thus, �∞(I) cannot contain
a copy of the space Euk since‖Euk‖ = [0,∞); hence, by Corollary 3.6, �∞(I)
is not a space of universal disposition for the class UkNA. �

Corollary 3.21. For any densely valued K the space �∞(Iu, K̂) is a
space of universal disposition for the class Uℵ0NA.

Proof. Since by Theorem 3.10 the space c0(Iu, K̂) is a space of uni-
versal disposition for the class Uℵ0NA, thus for every g ∈ G it contains an
orthogonal set Xg such that card(Xg) = k and πG(‖x‖s) = g for all x ∈ Xg.

But c0(Iu, K̂) ⊂ �∞(Iu, K̂) , hence for every g ∈ G the space �∞(Iu, K̂) con-
tains an orthogonal set Xg with the above property and condition (i) of

Theorem 3.4 is satisfied. As K̂ is spherically complete, �∞(Iu, K̂) is spheri-

cally complete (see [16, 4.A]) and by [16, Corollary 4.45], �∞(Iu, K̂) contains
a spherical completion of every its linear subspace H , thus the condition (ii)
of Theorem 3.4 is satisfied. Hence, using Theorem 3.4, (A) ⇒ (B) completes
the proof. �

4. Injectivity and universality of spaces of universal disposition

A Banach space F is injective if for every Banach space E and each linear
subspace D of E, every bounded operator T : D → F can be extended to
a preserving norm operator T ′ : E → F . Let U be a given class of Banach
spaces. A Banach space F is universally U -injective if for every Banach
space E and each linear subspace D of E such that D ∈ U , every bounded
operator T : D → F extends to a preserving norm operator T ′ : E → F .

We say that a Banach space E is isometric U -universal if for every
Banach space D ∈ U there is an isometric embedding D → E.

The almost immediate consequence of Ingleton’s theorem is the following
result.
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Theorem 4.1. If a non-archimedean Banach space F is of universal
disposition for the class UkNA for some infinite cardinal number k then F is
universally UkNA-injective. If k > ℵ0, then F is injective.

Proof. Let E be a non-archimedean Banach space, D be a closed linear
subspace of E such that D ∈ UkNA and T : D → F be a bounded operator.
Then, T (D) ∈ UkNA. Since F is of universal disposition for the class UkNA,
by Theorem 3.4, there exists a spherically complete linear subspace D0 ⊂ F
such that T (D) ⊂ D0. Now, by Ingleton’s theorem (see [16, Theorem 4.10]),
T extends to a preserving norm operator T ′ : E → D0 ⊂ F . If k > ℵ0, then,
by Theorem 3.4, F is spherically complete and the conclusion follows directly
from Ingleton’s theorem (see [16, Theorem 4.10]). �

Let k be a given infinite cardinal number. By U+
kNA we will denote the

class of non-archimedean Banach spaces over K satisfying: E ∈ U+
kNA if and

only if ort(E) ≤ k.

Proposition 4.2. Let E be a space of universal disposition for the
class UkNA. If k > ℵ0 then E is isometric U+

kNA-universal.

Proof. If k > ℵ0, then, by Theorem 3.4 E is spherically complete.
Take a non-archimedean Banach space D ∈ U+

kNA. Let W be a maximal
orthogonal set in D. Then, card(W ) ≤ k. By Theorem 3.4, for every g ∈ G,
E contains an orthogonal set Xg such that card(Xg) = k and πG(‖x‖s) = g
for all x ∈ Xg. Hence, we can establish an isometric map i : [W ] → E. Then,
D is an immediate extension of [W ] (see [16, page 167]). By assumption, E
is spherically complete. So, we can apply Lemma 3.3 and extend i to the
required isometry D → E. �

Corollary 4.3. Every non-archimedean Banach space E can be iso-

metrically embedded into the space Êuk for some cardinal number k.

Proof. Choose a cardinal number k, k > ℵ0 such that E ∈ U+
kNA. By

Corollary 3.6, Êuk is a space of universal disposition for the class UkNA. Now,
the conclusion follows directly from Proposition 4.2. �

Lemma 4.4. Let K be densely valued and spherically complete. Then,
the space ĉ0, a spherical completion of c0 has no orthogonal base and
ort(ĉ0) = ℵ0.

Proof. First, extend the set of unit vectors {ei}i∈N ⊂ c0, which is an
orthogonal base of c0 (see [15, Theorem 2.3.25]) to a maximal orthogonal
set {yi}i∈Im in ĉ0. Since ĉ0 is an immediate extension of c0 (see [16, p. 167]),
we imply that Im is countable. Now, assume the contrary and suppose
that ĉ0 has an orthogonal base {xi}i∈I . Then, by [16, Theorem 5.9] I is
countable. But by Proposition 3.14 the space ĉ0 is not of countable type, a
contradiction. �
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Remark 4.5. Note that the assumption k > ℵ0 cannot be removed in
Proposition 4.2. Let K be spherically complete and densely valued. Then, by
Theorem 3.10, c0(Iu,K) is a space of universal disposition for the class Uℵ0NA.
Consider ĉ0, a spherical completion of c0. Then, by Lemma 4.4 ĉ0 ∈ U+

ℵ0NA.
Now, assume that there exists an isometric embedding T : ĉ0 → c0(Iu,K).
Then, by [16, Theorem 5.9], T (ĉ0) as a linear subspace of c0(Iu, K) has
an orthogonal base; hence, we conclude that ĉ0 has an orthogonal base, a
contradiction with Lemma 4.4.

5. Transitivity and universal disposition

Let E be a non-archimedean Banach space and let U be a given class of
Banach spaces. Recall (see [3, Definition 3.40]) that E is U -transitive if the
following property satisfies:

(TR) for any X,Y ∈ U , linear subspaces of E, and a surjective isometry
i : X → Y there exists a surjective isometry i′ : E → E which extends i.

We get the following result.

Theorem 5.1. Let k be an infinite cardinal number. If E is a space of
universal disposition for the class UkNA then E is UkNA-transitive.

Lemma 5.2. Let E, F be Banach spaces, Ê, F̂ be their spherical comple-
tions and i : E → F be a surjective isometry. Then, there exists a surjective

isometry i′ : Ê → F̂ such that i′|E = i.

Proof. Applying Lemma 3.3, we can extend i to the isometric embed-

ding i0 : Ê → F̂ . Since F = i(E), i0(Ê), as an isometric range of Ê, is a
spherical completion of F . By [16, Theorem 4.43], there exists an isomet-

ric isomorphism j : i0(Ê) → F̂ . Now, the operator i′ := j ◦ i0 is a required
surjective isometry. �

Proof of Theorem 5.1. Let X,Y ∈ UkNA and i : X → Y be a surjec-
tive isometry. Let D = X +Y . Then, D ∈ UkNA. Since, by assumption, E is
a space of universal disposition for UkNA, by Theorem 3.4, there exist linear

subspaces X̂ , Ŷ , D̂ of E such that X̂ is a spherical completion of X , Ŷ is

a spherical completion of Y and D̂ is a spherical completion of D, respec-

tively. Obviously, X̂, Ŷ ⊂ D̂. Applying Lemma 5.2, we can extend i to the

bijective isometry i′ : X̂ → Ŷ .
Let WX be a maximal orthogonal set in X and WY be a maximal or-

thogonal set in Y , respectively. Select orthogonal sets ZX , ZY ⊂ D̂ such

that WX ∪ ZX and WY ∪ ZY are maximal orthogonal sets in D̂. Clearly,

ZX ∩ X̂ = ∅ and ZY ∩ Ŷ = ∅. By [16, Theorems 5.2 and 5.4], ZX and ZY

have the same cardinality, so we can define the isometric isomorphism
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j : [ZX ] → [ZY ]. Then, since [ZX ] ⊥ X̂ and [ZY ] ⊥ Ŷ , we can define a sur-

jective isometry T : [ZX ] + X̂ → [ZY ] + Ŷ by setting

T (zx + x) := j(zx) + i′(x) (zx ∈ [ZX ], x ∈ X̂).

Since D̂ is a spherical completion of [ZX ] + X̂ and [ZY ] + Ŷ , using Lemma

5.2 again, we can establish the surjective isometry T ′ : D̂ → D̂ such that

T ′|[ZX ]+ ̂X = T . Thus, T ′(X) = Y . But D̂, as a spherically complete linear

subspace of E, is orthocomplemented in E (see [16, Exercise 4.H]), so we

can find an orthogonal decomposition E = D̂ ⊕E0 and extend T ′ to the

surjective isometry T ′′ : E → E setting T ′′(d+ x) := T ′(d) + x, where d ∈ D̂
and x ∈ E0. Then, T

′′(X) = Y and the proof is finished. �
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