NON-ARCHIMEDEAN BANACH SPACES OF UNIVERSAL DISPOSITION

A. $\mathrm{KUBZDELA}^{1,*}$ and C. $\mathrm{PEREZ}\text{-}\mathrm{GARCIA}^2$

¹Institute of Civil Engineering, Poznań University of Technology, Ul. Piotrowo 5, 61-138 Poznań, Poland

e-mail: albert.kubzdela@put.poznan.pl

²Department of Mathematics, Facultad de Ciencias, Universidad de Cantabria, Avda. de los Castros s/n, 39071, Santander, Spain e-mail: perezmc@unican.es

(Received March 7, 2022; revised July 24, 2022; accepted September 30, 2022)

Abstract. A space of universal disposition is a Banach space which has certain natural extension properties for isometric embeddings of Banach spaces belonging to a specific class. We study spaces of universal disposition for non-archimedean Banach spaces. In particular, we introduce the classification of non-archimedean Banach spaces depending on the cardinality of maximal orthogonal sets, which can be viewed as a kind of special density and characterize spaces of universal disposition for each distinguished class.

1. Introduction

We say that a Banach space E is a space of universal (almost universal) disposition for a given class of Banach spaces \mathcal{U} such that $\{0\} \in \mathcal{U}$ if for every linear isometric embedding $g: X \to Y$, where $X, Y \in \mathcal{U}$ and X is a linear subspace of E, there exists a linear isometric embedding $f: Y \to E$ (for every $\varepsilon > 0$ there is a linear ε -isometric embedding $f: Y \to E$, i.e. for every $x \in Y$ one has $(1 + \varepsilon)^{-1} ||x|| \leq ||f(x)|| \leq (1 + \varepsilon) ||x||$) such that f(g(x)) = x for all $x \in X$.

The concept of Banach spaces of (almost) universal disposition was introduced by Gurarii in [9], who constructed a separable (real) Banach space \mathbb{G} of almost universal disposition for the class of finite-dimensional normed

0133-3852 © 2023 Akadémiai Kiadó, Budapest

^{*} Corresponding author.

The research was supported partially by Ministerio de Economía y Competitividad, Grant MTM2013-45643-C2-2-P and partially by Poznań University of Technology, Grant No. 0213/SIGR/2154.

 $Key\ words\ and\ phrases:$ non-archimedean Banach space, isometric embedding, universal disposition.

Mathematics Subject Classification: 46S10, 47S10.

spaces. Banach spaces of universal disposition, especially for the class of finite-dimensional normed spaces \mathcal{F} and the class of separable Banach spaces \mathcal{G} , were recently extensively developed by several authors, see [2–4,6, 8] among others. Briefly characterizing the known results, there is no separable Banach space of universal disposition for the class \mathcal{F} , there are spaces of universal disposition for the class \mathcal{F} that are not of universal disposition for the class \mathcal{G} . A Banach space of universal disposition for the class \mathcal{G} must contain an isometric copy of each Banach space of density \aleph_1 or less. Under (CH) there is only one space (up to isometrics) of universal disposition for the class of separable Banach spaces and density character \aleph_1 (Kubiś space \mathcal{K}).

This paper deals with non-archimedean normed spaces, i.e. linear spaces over a non-archimedean complete valued field equipped with the norm satisfying the strong triangle inequality. Non-archimedean Banach spaces of (almost) universal disposition were studied previously in [11]. Among others, for the class of non-archimedean finite-dimensional normed spaces \mathcal{U}_{FNA} two non-isometrically isomorphic spaces of universal disposition were constructed (see [11, Theorems 4.6 and 4.7]). The paper continues this line of research.

Let E be a non-archimedean Banach space. By [16, Theorem 5.4], all maximal orthogonal sets of elements of E have the same cardinality. Hence, the cardinality of maximal orthogonal set can be viewed as a kind of special density and seems to be a good feature to classify non-archimedean Banach spaces, see Section 2.2. Let $\operatorname{ort}(E)$ be a cardinal number defined as $\operatorname{ort}(E) :=$ $\operatorname{card}(X)$, where X is a maximal orthogonal set in E. For a given infinite cardinal number k we denote by \mathcal{U}_{kNA} the class of non-archimedean Banach spaces defined as follows: $E \in \mathcal{U}_{kNA}$ if and only if $\operatorname{ort}(E) < k$. Then, the class \mathcal{U}_{kNA} contains all non-archimedean Banach spaces with an orthogonal base with cardinality not bigger than k and all immediate extensions of such spaces, see Section 2.2.1, in particular spherical completions of such spaces. Clearly, $k_1 < k_2$ follows $\mathcal{U}_{k,NA} \subset \mathcal{U}_{k_2NA}$.

In this paper we characterize spaces of universal disposition for the class \mathcal{U}_{kNA} for a given infinite cardinal number k, demonstrating the necessary and sufficient conditions for the non-archimedean Banach space to be a space of universal disposition for a specific class \mathcal{U}_{kNA} (Theorem 3.4). Next, in Theorem 3.10 we construct a space of universal disposition for the class \mathcal{U}_{kNA} , where $k = \aleph_0$ or $k = \aleph_1$, with spaces of universal disposition for the class \mathcal{U}_{KNA} , and the class of all non-archimedean Banach spaces of countable type \mathcal{U}_{CNA} , respectively. We show that $\mathcal{U}_{FNA} = \mathcal{U}_{\aleph_0NA}$ if and only if \mathbb{K} is spherically complete (Remark 3.12) and $\mathcal{U}_{CNA} \neq \mathcal{U}_{\aleph_1NA}$ in general, even if \mathbb{K} is spherically complete (Remark 3.15). However, under (CH) spaces of universal disposition for classes \mathcal{U}_{CNA} and \mathcal{U}_{\aleph_1NA} coincide with each other (Theorem 3.17).

These results are supplemented by characterization of injectivity, universality and transitivity of non-archimedean Banach spaces of universal disposition (see Sections 4 and 5).

2. Preliminaries and notations

2.1. Non-archimedean valued fields. A valuation on a field \mathbb{K} is a map $|.|: \mathbb{K} \to [0, \infty)$, satisfying the following properties:

(1) $|\lambda| = 0 \iff \lambda = 0, \lambda \in \mathbb{K};$

(2) $|\lambda \mu| = |\lambda| \cdot |\mu|$ for all $\lambda, \mu \in \mathbb{K}$;

(3) $|\lambda + \mu| \le |\lambda| + |\mu|$ for all $\lambda, \mu \in \mathbb{K}$.

The pair $(\mathbb{K}, |.|)$ is called a *valued field*. We often will write \mathbb{K} instead of $(\mathbb{K}, |.|)$. Then the map $(\lambda, \mu) \mapsto |\lambda - \mu|$ is a metric on \mathbb{K} which induces the topology for which \mathbb{K} is a topological field.

The valuation |.| is called *non-archimedean* and \mathbb{K} is called a *non-archimedean valued field* if |.| satisfies the strong triangle inequality, i.e.

(3')
$$|\lambda + \mu| \le \max\{|\lambda|, |\mu|\} \text{ for all } \lambda, \mu \in \mathbb{K}.$$

We say that a valuation |.| is *trivial* if $|\lambda| = 1$ for $\lambda \neq 0$; otherwise, we will say that the valuation |.| is *non-trivial*.

Note that any complete valued field is either non-archimedean or isometrically isomorphic to the field of real or complex numbers, see [15, Theorem 1.2.18].

From now on, by \mathbb{K} we will denote a non-archimedean non-trivially valued field, which is commutative and complete under the metric generating by a non-archimedean valuation.

2.1.1. The value group. Recall that $|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$ is the value group of \mathbb{K} . Set $|\mathbb{K}| := |\mathbb{K}^{\times}| \cup \{0\}$. A valued field \mathbb{K} is said to be discretely valued if 0 is the only accumulation point of $|\mathbb{K}^{\times}|$; then, there exists an uniformizing element: $\rho \in \mathbb{K}$ with $0 < |\rho| < 1$ such that $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}$, where \mathbb{Z} denotes the set of integers. Otherwise, we say that \mathbb{K} is densely valued, then, $|\mathbb{K}^{\times}|$ is a dense subset of $(0, \infty)$.

The field of *p*-adic numbers \mathbb{Q}_p is an example of non-archimedean valued field, which is discretely valued (see [15, Example 1.2.5]), whereas the field of *p*-adic complex numbers \mathbb{C}_p (the completion of the algebraic closure of \mathbb{Q}_p) is densely valued (see [15, Example 1.2.11]).

Recall that \mathbb{R}^+ , the set of positive real numbers, is a multiplicative group and $|\mathbb{K}^{\times}|$ is its normal subgroup. Let

(2.1)
$$\pi_G \colon \mathbb{R}^+ \to G \coloneqq \mathbb{R}^+ / |\mathbb{K}^\times|$$

be the natural quotient map and let $S := \{s_g : g \in G\}$ be the set of representatives of elements of G in (r, 1], i.e. $\pi_G(s_g) = g$, where $r = |\rho|$ if K

is discretely valued (then $\rho \in \mathbb{K}$ is an uniformizing element of $|\mathbb{K}^{\times}|$ with $0 < |\rho| < 1$) and $r = \frac{1}{2}$ if \mathbb{K} is densely valued. Let $g_0 \in G$ be the identity element of G. Then, we additionally assume that $s_{g_0} = 1$.

2.2. Non-archimedean normed spaces. Let E be a linear space over \mathbb{K} . A norm on E is defined as usual, i.e. it is a map $\|.\|: E \to [0, \infty)$ such that the following conditions are satisfied:

- (1) $||x|| = 0 \iff x = 0;$
- (2) $\|\lambda x\| = |\lambda| \cdot \|x\|$ for all $\lambda \in \mathbb{K}$ and $x \in E$;
- (3) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in E$.

We say that a norm on E is *non-archimedean* if it satisfies the strong triangle inequality, i.e.

(3')
$$||x + y|| \le \max\{||x||, ||y||\}$$
 for all $x, y \in E$.

REMARK 2.1. Observe that if ||.|| is non-archimedean, then ||x|| < ||y||, $x, y \in E$ implies ||x + y|| = ||y|| (see [14, Lemma 1.1.1]).

By a non-archimedean normed space we mean a normed space E over \mathbb{K} equipped with a non-archimedean norm $\|.\|$. Note that not every normed space over \mathbb{K} is non-archimedean, for example $l_1(\mathbb{K})$, the space of all sequences $x = (x_n)$ of members of \mathbb{K} such that $\|x\|_1 := \sum_n |x_n|$ is finite, is not non-archimedean and does not even have an equivalent non-archimedean norm, see [5].

By \mathbb{K}_s (s > 0) we will denote the normed space whose underlying linear space is \mathbb{K} itself, normed by the norm $||x||_s := s \cdot |x|, x \in \mathbb{K}$.

Let $||E^{\times}|| := \{||x|| : x \in E \setminus \{0\}\}$ and $||E|| := ||E^{\times}|| \cup \{0\}$. Let X be a subset of E; by [X] we will denote the linear span generated by elements of X. Let I be a nonempty set. Let $t \in (0, 1]$. A subset $\{x_i : i \in I\} \subset E$ is called *t*-orthogonal (orthogonal if t = 1) if for each finite subset $J \subset I$ and all $\{\lambda_i\}_{i \in J} \subset \mathbb{K}$ we have

$$\left\|\sum_{i\in J}\lambda_i x_i\right\| \ge t \cdot \max_{i\in J} \left\|\lambda_i x_i\right\|.$$

An orthogonal set $\{x_i\}_{i \in I}$ in E is said to be an *orthogonal base* of E if $\overline{[\{x_i\}_{i \in I}]} = E$. Then every $x \in E$ has an unequivocal expansion

$$x = \sum_{i \in I} \lambda_i x_i \quad (\lambda_i \in \mathbb{K}, \ i \in I).$$

Every orthogonal set of elements of E can be extended to a maximal orthogonal one (see [16, Chapter 5]). By [16, Theorem 5.4], all maximal orthogonal

sets of elements of E have the same cardinality. Every orthogonal base of E is a maximal orthogonal set in E, however not every maximal orthogonal set in E has to be an orthogonal base (see [16, Remark following Theorem 3.16]).

Recall that every closed linear subspace of a non-archimedean Banach space with an orthogonal base has an orthogonal base (see [16, Theorem 5.9]).

We say that a normed space E over \mathbb{K} is of *countable type* if it contains a countable set whose linear hull is dense in E. If \mathbb{K} is separable, then a normed space is of countable type if and only if it is separable.

Linear subspaces D_1 , D_2 of a non-archimedean normed space E are called *orthogonal* if $||x + y|| = \max\{||x||, ||y||\}$ for all $x \in D_1$ and $y \in D_2$; then, we write $D_1 \perp D_2$.

For $x, y \in E \setminus \{0\}$ and a linear subspace $D \subset E$ we will write shortly $x \perp y$ instead of $[x] \perp [y]$ and $x \perp D$ instead of $[x] \perp D$. Let D_1 be a closed linear subspace of E. Then, we say that D_1 is orthocomplemented in E if there is a linear subspace D_2 of E such that $D_1 + D_2 = E$ and $D_1 \perp D_2$. Consequently, there exists a surjective projection (called an orthoprojection) $P: E \rightarrow D$ with $||P|| \leq 1$. Observe that $D_1 \perp D_2$ implies $D_1 \cap D_2 = \{0\}$; hence, the sum $D_1 + D_2$ is direct.

2.2.1. The spherical completion, an immediate extension of a non-archimedean normed space. Let E be a non-archimedean normed space. Let r > 0. The *closed ball* of E is the set $B(x,r) := \{z \in E : ||x - z|| \le r\}$. Note that topologically B(x,r) is both closed and open.

A sequence of balls $(B_n)_n$ in E is called *nested* if $B_{n+1} \subset B_n$ for all $n \in \mathbb{N}$. A non-archimedean Banach space E is *spherically complete* (in particular a non-archimedean valued field \mathbb{K}) if every nested sequence of closed balls in E has a non-empty intersection; otherwise, we say that E is *non-spherically complete*. If \mathbb{K} is spherically complete, then every non-archimedean Banach space over \mathbb{K} which is of countable type has an orthogonal base (see [15, Theorem 2.3.25]).

We say that a spherically complete Banach space \widehat{E} is a *spherical completion* of a non-archimedean normed space E, if there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E). Applying the natural identification, we will usually identify E with i(E). Every Banach space (in particular a non-archimedean valued field \mathbb{K}) has a spherical completion and any two spherical completions of E are isometrically isomorphic, see [16, Theorem 4.43]. Let E, F be non-archimedean normed spaces such that $E \subseteq F$. If F is spherically complete, then F contains a spherical completion of E, see [16, Corollary 4.45].

Let D be a linear subspace of E. E is called an *immediate extension* of D (see [16, Chapter 4]) if there is no nonzero element of E that is orthogonal to D; in other words, for every $x \in E \setminus D$ we have dist(x, D) < ||x - d|| for

all $d \in D$, where $\operatorname{dist}(x, D) := \inf_{d \in D} \{ \|x - d\| \}$. A spherical completion \widehat{E} of E is a maximal immediate extension of E (see [16, Corollary 4.44]). The set $X \subset E$ is a maximal orthogonal set in E if and only if E is an immediate extension of [X], see [16, page 167].

The spherical completion $\widehat{\mathbb{K}}$ of \mathbb{K} can be made into a valued field. Then, \mathbb{K} can be viewed as a subfield of $\widehat{\mathbb{K}}$ and the valuation of $\widehat{\mathbb{K}}$ extends the valuation from \mathbb{K} , see [16, Theorem 3.19]. Hence, every Banach space over $\widehat{\mathbb{K}}$ can be viewed also as a Banach space over \mathbb{K} (see [16, p. 162]). Usually we will consider $\widehat{\mathbb{K}}$ as a Banach space over \mathbb{K} . Then, $\widehat{\mathbb{K}}$ is infinite-dimensional (see Remark 3.12) and every one-dimensional linear subspace of $\widehat{\mathbb{K}}$ is isomorphic with \mathbb{K} ; by \mathbb{K} we will denote the one-dimensional linear subspace of $\widehat{\mathbb{K}}$, generated by the element $1 \in \widehat{\mathbb{K}}$.

2.2.2. The spaces $l^{\infty}(I:s,\mathbb{K})$, $c_0(I:s,\mathbb{K})$, $\ell^{\infty}(I_{uk},\widehat{\mathbb{K}})$, $(c_0(I_{uk},\widehat{\mathbb{K}})$. Using some ideas of [16, Chapter 3] we define specific non-archimedean Banach spaces which will be used in the sequel.

Let I be a nonempty set and let $s: I \to (0, \infty), h: I \to \mathbb{K}$ be maps. Set

(2.2)
$$||h||_s := \sup\{|h(i)| \cdot s(i) : i \in I\}.$$

The maps $h: I \to \mathbb{K}$ for which $||h||_s$ is finite form the linear space $l^{\infty}(I:s, \mathbb{K})$, which is a non-archimedean Banach space under the norm $||.||_s$. By $c_0(I:s, \mathbb{K})$ we will denote the closed linear subspace of $l^{\infty}(I:s, \mathbb{K})$, which consists of all $h \in l^{\infty}(I:s, \mathbb{K})$ such that for every $\varepsilon > 0$ the set $\{i \in I : |h(i)| \cdot s(i) \ge \varepsilon\}$ is finite. If s(i) = 1 for all $i \in I$, we will write shortly $l^{\infty}(I, \mathbb{K})$ and $c_0(I, \mathbb{K})$, respectively.

Usually, when there is no risk of confusion, the ground field will be omitted; then we will write $l^{\infty}(I:s)$ and $c_0(I:s)$ instead of $l^{\infty}(I:s,\mathbb{K})$ and $c_0(I:s,\mathbb{K})$ or $l^{\infty}(I)$ and $c_0(I)$ instead of $l^{\infty}(I,\mathbb{K})$ and $c_0(I,\mathbb{K})$.

Let k be an infinite cardinal number and let J be a set such that $\operatorname{card}(J) = k$. Denote $I_{uk} := G \times J$, where G is explained in Section 2.1.1. Define the function $s_{uk} : I_{uk} \to (r, 1]$ by $s_{uk}((g, i)) := s_g$ and the norm on $l^{\infty}(I_{uk})$ by

(2.3)
$$||x||_{uk} := \sup_{p=(g,i_p)\in I_{uk}} \{s_{uk}((g,i_p)) \cdot |x_p|\}, \quad x = (x_p)_{p\in I_{uk}} \in \ell^{\infty}(I_{uk}).$$

Let $E_{uk} := (c_0(I_{uk}), |.|_{uk})$ be the closed linear subspace of $(\ell^{\infty}(I_{uk}), ||.||_{uk})$ consisting of all $(x_p)_{p \in I_{uk}}$, $(x_p \in \mathbb{K}, p \in I_{uk})$ such that for each $\varepsilon > 0$, $s_{uk}(p) \cdot (x_p) > \varepsilon$ only for finitely many indices. We will write shortly I_u , E_u , s_u and $||.||_u$ instead of $I_{u\aleph_0}$, $E_{u\aleph_0}$, $s_{u\aleph_0}$ and $||.||_{u\aleph_0}$.

This way the defined space E_{uk} has the useful property: for every $g \in G$, E_{uk} contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||) = g$

for all $x \in X_g$ (values of norms of elements of X_g are in the same coset of $|\mathbb{K}^{\times}|$ in \mathbb{R}^+).

Let $\widehat{\mathbb{K}}$ be the non-archimedean valued field which is a spherical completion of \mathbb{K} . Similarly as above we define the space $(\ell^{\infty}(I_{uk},\widehat{\mathbb{K}}), \|.\|_{uk})$, the Banach space over \mathbb{K} of all bounded maps $I_{uk} \to \widehat{\mathbb{K}}$ equipped with the norm $\|.\|_{uk}$ (where $\|.\|_{uk}$ is defined in the same way as in (2.3) and |.| denotes the valuation defined on $\widehat{\mathbb{K}}$ which extends the valuation of \mathbb{K} . In the same spirit we define the space $(c_0(I_{uk},\widehat{\mathbb{K}}), \|.\|_{uk})$, a Banach space over \mathbb{K} .

We refer the reader to the monographs [7], [14] [15] and [16] for more background on non-archimedean normed spaces.

3. Spaces of universal disposition

We start this section with a few preparing lemmas.

LEMMA 3.1. Let E be a non-archimedean Banach space. Then, E is spherically complete if and only if for every linear subspace of countable type $D \subset E$ there exists a linear subspace $\widehat{D} \subset E$ which is a spherical completion of D.

PROOF. " \Rightarrow " If *E* is spherically complete, then, by [16, Corollary 4.45], it contains a spherical completion of each of its subspaces, in particular every linear subspace of countable type.

" \Leftarrow " Assume that E contains a spherical completion of each of its linear subspace of countable type. Let $(B(x_n, r_n))_n$ be a nested sequence of closed balls in E. Then $D := \overline{[(x_n)_n]}$ is a linear subspace of E which is of countable type. Let $\widehat{D} \subset E$ be a spherical completion of D. Then, $V_n := \{x \in \widehat{D} :$ $\|x_n - x\| \leq r_n\}, n \in \mathbb{N}$ form a nested sequence of closed balls in \widehat{D} . Since, by assumption, \widehat{D} is spherically complete, there exists $x_0 \in \bigcap_n V_n$. Clearly $x_0 \in \bigcap_n B(x_n, r_n)$; hence, E is spherically complete. \Box

LEMMA 3.2. Let E, F be non-archimedean normed spaces, D be a spherically complete linear subspace of E. If $T: E \to F$ is an isometric embedding, then $T(D) \subseteq F$ is spherically complete.

PROOF. Straightforward. \Box

LEMMA 3.3. Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$.

PROOF. See [11, Lemma 4.2] and [16, Lemma 4.42]. \Box

THEOREM 3.4. Let k be an infinite cardinal number and E_k be an infinite-dimensional non-archimedean Banach space. Consider the following conditions.

(A) E_k satisfies the following properties:

(i) for every $g \in G$, where G is explained in Section 2.1.1, E_k contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||) = g$ for all $x \in X_g$;

(ii) for every linear subspace $F \subset E_k$ such that $\operatorname{ort}(F) < k$ there is a linear subspace F_0 of E_k such that $F \subset F_0$ and F_0 is a spherical completion of F.

(B) E_k is a space of universal disposition for the class \mathcal{U}_{kNA} .

(C) E_k is spherically complete.

Then, (A) \Leftrightarrow (B), (A) \Rightarrow (C) if $k > \aleph_0$.

PROOF. (A) \Rightarrow (B). Let $F, H \in \mathcal{U}_{kNA}, F \subset E_k$ and let $j: F \to H$ be an isometric embedding. We prove, that there exists an isometric embedding $f: H \to E_k$ such that f(j(x)) = x for all $x \in F$.

First, choose a maximal orthogonal set X_F in $j(F) \subset H$. Next, we extend X_F to a maximal orthogonal set X_H in H. Denote $Y_H := X_H \setminus X_F$. Clearly, $Y_H \cap j(F) = \emptyset$, as X_F is a maximal orthogonal set in j(F). Thus, $[X_F] \perp [Y_H]$.

We show that $j(F) \perp [Y_H]$. Indeed, take any $x \in j(F)$ and $y \in [Y_H]$. If $x \in [X_F]$, the conclusion is obvious since $[X_F] \perp [Y_H]$. So, assume that $x \notin [X_F]$. Then, since j(F) is an immediate extension of $[X_F]$ (see [16, page 167]), there exists $x_0 \in [X_F]$ such that $||x|| = ||x_0||$ and $||x - x_0|| < ||x||$. Thus, as $x_0 \perp y$, we obtain

$$||x_0 + y|| = \max\{||x_0||, ||y||\} = \max\{||x||, ||y||\}.$$

Hence,

$$||x - x_0|| < ||x|| \le \max\{||x||, ||y||\} = ||x_0 + y||.$$

Finally, since $||x - x_0|| < ||x_0 + y||$, using Remark 2.1 we get

$$||x + y|| = ||(x - x_0) + (x_0 + y)|| = ||x_0 + y|| = \max\{||x||, ||y||\},\$$

concluding $x \perp y$.

For every $g \in G$ denote

$$X_{F,g} := \left\{ x \in X_F : \pi_G(\|x\|) = g \right\} \text{ and } Y_{H,g} := \left\{ x \in Y_H : \pi_G(\|x\|) = g \right\},$$

respectively. Then, $Y_H = \bigcup_{g \in G} Y_{H,g}$ and the components of the union are disjoint.

Fix $g \in G$. Since $H, F \in \mathcal{U}_{kNA}$, $\operatorname{card}(Y_{H,g}) < k$ and $\operatorname{card}(X_{F,g}) < k$. Thus, if $X'_{F,g}$ is a maximal orthogonal set in $\{x \in F : \pi_G(||x||) = g\}$ then $\operatorname{card}(X'_{F,g}) < k$. Now, we extend $X'_{F,g}$ to X'_g , a maximal orthogonal set in $\{x \in E_k : \pi_G(||x||) = g\}$. Since, by assumption, E_k contains an orthogonal set X_g with $\operatorname{card}(X_g) = k$ and $\pi_G(||x|) = g$ for all $x \in X_g$, thus $\operatorname{card}(X'_g) \ge k$ (note that by [16, Remark following Theorem 5.2] for every fixed s > 0 all maximal orthogonal subsets of $\{x \in E_k : ||x|| \in s \cdot ||K|\}$ have the same cardinality). Therefore, since $Y_{H,g} \subset Y_H$ and $[Y_H] \perp j(F)$ we can select an orthogonal set $Y'_g = \{x_y : y \in Y_{H,g}\} \subset X'_g \setminus X'_{F,g}$, such that for every $z \in Y'_g$, $z \perp F$.

Since for every $y \in Y_{H,g}$ we have $\pi_G(y) = g$ and for every $x \in Y'_g$, $\pi_G(x) = g$, for every $y \in Y_{H,g}$ there is $\lambda_y \in \mathbb{K}$ such that $\|\lambda_y x_y\| = \|y\|$. Since the same procedure we can carry out for every $g \in G$, this way we define the map $f: j(F) + [Y_H] \to E_k$, setting

$$f\left(x + \sum_{y \in Y_H} \mu_y y\right) := j^{-1}(x) + \sum_{y \in Y_H} \mu_y \lambda_y x_y,$$

where $x \in j(F)$, $x_y \in \bigcup_{g \in G} Y'_g$ and $\mu_y \in \mathbb{K}$. Since $j(F) \perp [Y_H]$ and, as we showed above, Y_H and $\bigcup_{g \in G} Y'_g$ are both orthogonal sets, we obtain

$$\left\| x + \sum_{y \in Y_H} \mu_y y \right\| = \max\left\{ \|x\|, \left\| \sum_{y \in Y_H} \mu_y y \right\| \right\} = \max\left\{ \|x\|, \max_{y \in Y_H} \|\mu_y y\| \right\}.$$

On the other hand, we get

$$\left\| j^{-1}(x) + \sum_{y \in Y_H} \lambda_y \mu_y x_y \right\| = \max \left\{ \| j^{-1}(x) \|, \left\| \sum_{y \in Y_H} \lambda_y \mu_y x_y \right\| \right\}$$
$$= \max \left\{ \| j^{-1}(x) \|, \max_{y \in Y_H} \| \lambda_y \mu_y x_y \| \right\} = \max \left\{ \| x \|, \max_{y \in Y_H} \| \mu_y y \| \right\}.$$

Hence, we conclude that f is isometric.

If $j(F) + [Y_H] = H$, we are done, f is a required isometry defined on H; otherwise, if $j(X) + [Y_H] \neq H$ then, by [13, Proposition 2.1], H is an immediate extension of $j(F) + [Y_H]$. By assumption, E_k contains a spherically complete linear subspace E_0 which is a spherical completion of $f(j(F) + [Y_H])$ such that $f(H) \subset E_0$. Thus, applying Lemma 3.3, we can extend f to the isometry: $H \to E_0 \subset E_k$.

(B) \Rightarrow (A). Assume that E_k is a space of universal disposition for the class \mathcal{U}_{kNA} . We show that E_k satisfies the conditions (i) and (ii) of Theorem 3.4. First, suppose that there is $g \in G$ for which the maximal orthogonal set X_g of $\{x \in E_k : \pi_G(||x||) = g\}$ has a cardinality less then k.

Let $F := \overline{[X_g]}$. Set $H := F \oplus \mathbb{K}_{s_g}$, where \mathbb{K}_{s_g} is explained in Section 2.2, and $j: F \to H, j(x) = (x, 0)$ be the inclusion map. Then, since by assumption E_k is a space of universal disposition for the class \mathcal{U}_{kNA} and $F, H \in \mathcal{U}_{kNA}$, there exists an isometric embedding $f: H \to E_k$ such that f(j(x)) = x for all $x \in F$. Hence, the set $X_g \cup \{z_0\}$, where $z_0 := f((0, 1))$, is orthogonal and $\pi_G(||z_0||) = g$. This conclusion contradicts with the maximality of X_g . So, the assertion (i) is satisfied.

Now, take any linear subspace $F \subset E_k$ such that $\operatorname{ort}(F) < k$. Let \widehat{F} be a spherical completion of F and $i: F \to \widehat{F}$ be the isometric embedding. Clearly, $F, \widehat{F} \in \mathcal{U}_{kNA}$. Then, arguing as above, there is an isometric embedding $h: \widehat{F} \to E_k$ such that h(i(x)) = x for all $x \in F$. But, then, by Lemma 3.2, the linear subspace $h(\widehat{F})$ of E_k is spherically complete and by [16, Corollary 4.45] it contains a spherical completion of F. Thus, we get (ii).

Finally assume that $k > \aleph_0$. Then, it follows from (A) that every linear subspace of countable type has a spherical completion contained in E_k . By Lemma 3.1, we conclude that E_k is spherically complete. \Box

REMARK 3.5. The condition (i) of Theorem 3.4 is equivalent to

(i') E_k contains an isometric copy of the space E_{uk} , where the space E_{uk} is explained in Section 2.2.2.

PROOF. Assume that E_k satisfies the condition (i), i.e., for every $g \in G$, E_k contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||) = g$ for all $x \in X_g$. Let $X := \bigcup_{g \in G} X_g$. Then $\overline{[X]}$ is isometrically isomorphic with E_{uk} . The implication (i') \Rightarrow (i) is obvious. \Box

COROLLARY 3.6. (1) The space $\widehat{E_{uk}}$ is a space of universal disposition for the class \mathcal{U}_{kNA} .

(2) If E_k is a space of universal disposition for the class \mathcal{U}_{kNA} then E_k contains an isometric copy of the space E_{uk} .

(3) If $k > \aleph_0$, then any space of universal disposition for the class \mathcal{U}_{kNA} contains an isometric copy of $\widehat{E_{uk}}$.

(4) Let $\mathcal{U}_1, \mathcal{U}_2$ be classes of infinite-dimensional non-archimedean Banach spaces such that $\mathcal{U}_1 \subseteq \mathcal{U}_2$. If E is a space of universal disposition for the class \mathcal{U}_2 then E is a space of universal disposition for the class \mathcal{U}_1 . In particular, if k_1, k_2 are infinite cardinal numbers such that $k_1 \leq k_2$, then, if Eis a space of universal disposition for the class \mathcal{U}_{k_2NA} , then E is a space of universal disposition for the class \mathcal{U}_{k_2NA} .

PROOF. (1) By Remark 3.5, $\widehat{E_{uk}}$ satisfies the condition (i) of Theorem 3.4. Since $\widehat{E_{uk}}$ is spherically complete, by [16, Corollary 4.45] it contains a spherical completion of its every linear subspace; hence, it satisfies the condition (ii) of Theorem 3.4 and the conclusion follows. (2) For the class \mathcal{U}_{kNA} the condition (i) of Theorem 3.4 satisfies. Thus, using Remark 3.5, we conclude that E_k contains an isometric copy of E_{uk} .

(3) Let E_k be a space of universal disposition for the class \mathcal{U}_{kNA} . If $k > \aleph_0$, then by Theorem 3.4, E_k is spherically complete. As we proved above, E_k contains an isometric copy of the space E_{uk} . Let's denote it by D. By [16, Corollary 4.45] E_k contains a linear subspace D_0 which is a spherical completion of D. But, by [16, Theorem 4.43], D_0 is isometrically isomorphic with $\widehat{E_{uk}}$.

(4) Let E be a space of universal disposition for the class \mathcal{U}_2 . Take $X, Y \in \mathcal{U}_1$ such that X is a linear subspace of E Let $g: X \to Y$ be an linear isometric embedding. Since $X, Y \in \mathcal{U}_2$ it follows directly from definition and assumption that there exists a linear isometric embedding $f: Y \to E$. So, E is a space of universal disposition for the class \mathcal{U}_1 . \Box

REMARK 3.7. Note that the third assertion of Corollary 3.6 is not true if $k = \aleph_0$. Theorem 3.10 shows that there exists a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$ which is non-spherically complete and it does not contain any isometric copy of \widehat{E}_u .

First, we prove two lemmas (see also [16, 4.B]).

LEMMA 3.8. Let \mathbb{K} be densely valued, I be an infinite set and $s: I \to (0,\infty)$ be a map. If there exists a countable $J \subset I$, say $J = \{k_1, k_2, \ldots\}$, such that $s(k_n) \cdot |\lambda_n| \ge s(k_{n+1}) \cdot |\lambda_{n+1}|$ and $\lim_{n \to \infty} s(k_n) \cdot |\lambda_n| > 0$ for some $\lambda_1, \lambda_2, \ldots \in \mathbb{K}$ then the space $c_0(I:s)$ is non-spherically complete.

PROOF. Recall that the space $c_0(I:s)$ is normed by the norm $\|.\|_s$ defined in Section 2.2. Let $r = \lim_n s(k_n) \cdot |\lambda_n|$. Set $x_n := \sum_{i=1}^n \lambda_i e_{k_i}$ and $r_n := s(k_{n+1}) \cdot |\lambda_{n+1}| \ (n \in \mathbb{N})$. Then, the sequence of balls $(B_{r_n}(x_n))_n$ in $c_0(I:s)$ is nested. Indeed, for every $n \in \mathbb{N}$ we have

$$||x_{n+1} - x_n||_s = s(k_{n+1}) \cdot |\lambda_{n+1}| = r_n,$$

thus $x_{n+1} \in B_{r_n}(x_n)$, $n \in \mathbb{N}$ and by assumption for every $n \in \mathbb{N}$

$$s(k_{n+1}) \cdot |\lambda_{n+1}| \ge s(k_{n+2}) \cdot |\lambda_{n+2}|,$$

hence $r_n \ge r_{n+1}$.

We prove that the considered sequence of balls has an empty intersection. Assume the contrary and suppose that there is $z \in \bigcap_n B_{r_n}(x_n)$. Then, we can write $z = \sum_{i \in I} \mu_i e_i$ for some $\mu_i \in \mathbb{K}$ $(i \in I)$. On the other hand, since for each $\varepsilon > 0$, $s(i) \cdot |\mu_i| > \varepsilon$ only for finitely many indices, there is $p \in \mathbb{N}$ such that $s(k_j) \cdot |\mu_{k_j}| < r$ if j > p. Thus, $|\mu_{k_{p+1}}| < \frac{r}{s(k_{p+1})}$. Since $|\lambda_{p+1}| = \frac{r_p}{s(k_{p+1})}$, using Remark 2.1 for n > p we have

$$||z - x_n||_s \ge s(k_{p+1}) \cdot |\mu_{k_{p+1}} - \lambda_{p+1}| = s(k_{p+1}) \cdot |\lambda_{p+1}| = r_p$$

But, by assumption, $||z - x_n||_s = \max_{i \in I} \{s(i) \cdot |\mu_i - \lambda_i|\} \le r_n$ for all $n \in \mathbb{N}$; a contradiction. \Box

LEMMA 3.9. Every finite-dimensional linear subspace of $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is spherically complete.

PROOF. If \mathbb{K} is spherically complete, then $\widehat{\mathbb{K}} = \mathbb{K}$ and the conclusion is straightforward, as every finite-dimensional normed space over such \mathbb{K} is spherically complete (see [16, Corollary 4.6]). So, assume that \mathbb{K} is non-spherically complete and let F be a finite-dimensional linear subspace of $(c_0(I_u,\widehat{\mathbb{K}}), \|.\|_u)$. Let $\{v^1, \ldots, v^m\}$, be an orthogonal base of F, $m \in \mathbb{N}$. Let $v^i = (x_1^i, x_2^i, \ldots), x_p^i \in \widehat{\mathbb{K}}, p \in I_u, i \in \{1, \ldots, m\}$. Then, for every $i \in \{1, \ldots, m\}$ there exists p_i and $s_{g_i} \in S$ such that $\|v^i\|_u = s_{g_i} \cdot |x_{p_i}|$. For each $i \in \{1, \ldots, m\}$ define a one-dimensional normed space $H_i = (\widehat{\mathbb{K}}, \|.\|_i)$, where $\|.\|_i := s_{g_i} \cdot |.|$ and denote $H := \prod_{i=1}^n H_i$. Then, setting

$$T: \lambda_1 v^1 + \dots + \lambda_m v^m \longmapsto (\lambda_1, \dots, \lambda_m) \in H$$

where $\lambda_1, \ldots, \lambda_m \in \mathbb{K}$, we define the isomorphism $T: F \to H$. Since $\widehat{\mathbb{K}}$ is spherically complete, for every $i \in \{1, \ldots, n\}$ the space H_i is spherically complete. Hence, by [16, 4.A] the product space $H = \prod_{i=1}^n H_i$ is spherically complete. Hence, by Lemma 3.2 F is spherically complete. \Box

THEOREM 3.10. For any \mathbb{K} the space $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$. Furthermore, if \mathbb{K} is densely valued then $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is not spherically complete and it does not contain an isometric copy of \widehat{E}_u .

PROOF. Recall, as we note in Section 2, that $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ denotes the space of all bounded maps $h: I_u \to \widehat{\mathbb{K}}$ such that for every $\varepsilon > 0$ the set $\{i \in I : |h(i)| \cdot s_u(i) \ge \varepsilon\}$ is finite, considered as a Banach space over \mathbb{K} , normed by the norm (2.3).

To prove that $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$ it is enough to show that it satisfies the conditions (i)-(ii) of Theorem 3.4. The condition (i) is clear, by the construction of I_u , for every $g \in G$ the set $\{e_i : i \in I_u\} \subset c_0(I_u, \widehat{\mathbb{K}})$ contains an orthogonal countable subset X_g such that $\pi_G(\|x\|) = g$ for all $x \in X_g$.

By Lemma 3.9, every finite-dimensional linear subspace of $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is spherical complete, hence the condition (ii) is satisfied and this part of the proof is finished.

Since $\|(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)\|_u = [0, \infty)$, defining the suitable map s we can apply Lemma 3.8 and conclude that the space $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ is non-spherically complete.

Assume now that there is a linear subspace H of $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ such that H is an isometric copy of \widehat{E}_u . Therefore, H is spherically complete. Since $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ has an orthogonal base, by [16, Theorem 5.9] H, as a closed linear subspace of $(c_0(I_u, \widehat{\mathbb{K}}), \|.\|_u)$ has an orthogonal base. Hence, H is isometrically isomorphic with $c_0(I:s)$ for some infinite I and a map $s: I \to (0, \infty)$ (see [16, page 171]). But $\|H\|_u \subseteq \|\widehat{E}_u\|_u = \|E_u\|_u = [0, \infty)$. Therefore, we can apply Lemma 3.8 again and imply that H is finite-dimensional, a contradiction. \Box

LEMMA 3.11. If \mathbb{K} is non-spherically complete then a spherical completion $\widehat{\mathbb{K}}$ considered as a Banach space over \mathbb{K} is infinite-dimensional.

PROOF. Assume that $\widehat{\mathbb{K}}$ is finite-dimensional. Then, by [16, Theorem 3.15] we imply that all linear functionals defined on $\widehat{\mathbb{K}}$ are continuous, a contradiction with [16, Corollary 4.3]. \Box

REMARK 3.12. 1) Note that $\mathcal{U}_{FNA} \subset \mathcal{U}_{\aleph_0 NA}$ and all known examples of spaces of universal disposition for \mathcal{U}_{FNA} are spaces of universal disposition for $\mathcal{U}_{\aleph_0 NA}$ (see [11, Theorems 4.6 and 4.7] and Theorem 3.10).

2) If K is spherically complete, then $\mathcal{U}_{FNA} = \mathcal{U}_{\aleph_0 NA}$ since every finitedimensional normed space over such K is spherically complete by [16, Corollary 4.6]. Hence, in this case all known examples of spaces of universal disposition for \mathcal{U}_{FNA} are spaces of universal disposition for $\mathcal{U}_{\aleph_0 NA}$ (see [11, Theorems 4.6 and 4.7], Corollary 3.6 and Theorem 3.10).

3) If \mathbb{K} is non-spherically complete, then by Lemma 3.11 a spherical completion $\widehat{\mathbb{K}}$ considered as a Banach space over \mathbb{K} is infinite-dimensional. Hence, $\widehat{\mathbb{K}} \notin \mathcal{U}_{FNA}$. On the other hand, $\widehat{\mathbb{K}}$ is an immediate extension of its one-dimensional linear subspace \mathbb{K} , thus it is a member of \mathcal{U}_{\aleph_0NA} . Hence, for non-spherically complete \mathbb{K} we have $\mathcal{U}_{FNA} \neq \mathcal{U}_{\aleph_0NA}$.

However, in this context, it is natural to formulate the following question.

PROBLEM 3.13. Let \mathbb{K} be non-spherically complete. Is every space of universal disposition for the class \mathcal{U}_{FNA} , a space of universal disposition for $\mathcal{U}_{\aleph_0 NA}$?

PROPOSITION 3.14. A spherical completion of $c_0(\mathbb{N}:s)$ is not of countable type if one of the following conditions satisfies:

- \mathbb{K} is discretely valued, s(n) > s(n+1) for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} s(n) > 0$;
- K is densely valued.

PROOF. When the first condition is satisfied, the conclusion follows from [16, Theorem 4.57]; then $\ell^{\infty}(\mathbb{N}:s)$ is a spherical completion of $c_0(\mathbb{N}:s)$. Recall that $\ell^{\infty}(\mathbb{N}:s)$ is not of countable type (see [15, Theorem 2.5.15, Corollary 2.3.14 and Remark 2.5.16]).

Assume that \mathbb{K} is densely valued.

Let \mathbb{K} be non-spherically complete. The conclusion is straightforward, as for every spherically complete Banach space E over non-spherically complete \mathbb{K} , $E^* = \{0\}$ (its topological dual is trivial, see [16, Corollary 4.3]). Hence, by [15, Theorem 4.2.4] E cannot be of countable type.

Let \mathbb{K} be spherically complete. Then, $\ell^{\infty}(\mathbb{N}:s)$ is spherically complete (see [16, Remark below Theorem 4.56]) and by [16, Corollary 4.45] there exists a spherical completion E_0 of $c_0(\mathbb{N}:s)$ contained in $\ell^{\infty}(\mathbb{N}:s)$. We prove that E_0 is not of countable type.

First, we show that if $J = \{j_1, j_2, \ldots\}$ is a countable subset of \mathbb{N} , $(p_n)_n$ is a strictly decreasing sequence of reals such that $\frac{p_n}{s(n)} \in |\mathbb{K}^{\times}|$ and $p_n \in [1, 2]$ for every $n \in \mathbb{N}$, then there exists $y = (y_1, y_2, \ldots) \in E_0$ such that $s(j_n) \cdot |y_{j_n}| = p_n$ for all $n \in \mathbb{N}$ and $s(k) \cdot |y_k| \leq \inf_{n \in \mathbb{N}} p_n$ if $k \notin J$.

Let $x = (x_1, x_2, \ldots) \in \ell^{\infty}(\mathbb{N} : s)$ be such that $s(j_n) \cdot |x_{j_n}| = p_n$ for all $n \in \mathbb{N}$ and $x_k = 0$ if $k \notin J$.

If $x \in E_0$, then we set y := x and we are done. So, assume that $x \notin E_0$. Let $z^n = \sum_{i=1}^n x_i e_i$, $n \in \mathbb{N}$. Then,

$$\operatorname{dist}(x, c_0(\mathbb{N}:s)) \le \inf_{n \in \mathbb{N}} ||x - z^n|| = \inf_{n \in \mathbb{N}} s(j_n) \cdot |x_{j_n}| \le \inf_{n \in \mathbb{N}} p_n.$$

Hence, $\operatorname{dist}(x, E_0) \leq \operatorname{dist}(x, c_0(\mathbb{N}:s)) \leq \inf_{n \in \mathbb{N}} p_n$.

By maximality of E_0 (see [16, Corollary 4.44]), $E_0 + [x]$ is not an immediate extension of $c_0(\mathbb{N}:s)$. Hence, by [13, Proposition 2.1], $E_0 + [x]$ is not an immediate extension of E_0 , therefore, there is $y = (y_1, y_2, \ldots) \in E_0$ for which dist $(x, E_0) = ||x - y||$. Thus,

$$||x - y|| \le \inf_{n \in \mathbb{N}} p_n.$$

But, on the other hand $||x - y|| \ge \sup_{n \in \mathbb{N}} s(j_n) \cdot |x_{j_n} - y_{j_n}|$; hence,

$$s(j_n) \cdot |y_{j_n}| = s(j_n) \cdot |x_{j_n}| = p_n$$

for all $n \in \mathbb{N}$. Since $x_k = 0$ if $k \notin J$, we imply that for such k we have $s(k) \cdot |y_k| \leq \inf_{n \in \mathbb{N}} p_n$.

This shows that y, an element of E_0 , satisfies the required conditions.

Let $\{J_i\}_{i \in I}$ be an uncountable almost disjoint family of infinite subsets of \mathbb{N} (it is well known fact (see [10] or [1, Lemma 2.5.3]), that there is an uncountable almost disjoint family of infinite subsets of \mathbb{N} , i.e. the intersection of two members of this family is finite) and let $(p_n)_n$ be a strictly decreasing sequence of reals such that $\frac{p_n}{s(n)} \in |\mathbb{K}^{\times}|$ and $p_n \in [1, 2]$ for every $n \in \mathbb{N}$. Thus,

(3.1)
$$\inf_{n \in \mathbb{N}} p_n \ge 1.$$

Now, using the conclusion of the previous part of the proof, for each $i \in I$ we choose a corresponding $y_i \in E_0$ as follows. Fix $i \in I$ and write $J_i = \{j_1, j_2, \ldots\}$. Then, as we proved above, there is $y^i = (y_1^i, y_2^i, \ldots) \in E_0$ such that $s(j_n) \cdot |y_{j_n}^i| = p_n$ for all $n \in \mathbb{N}$ and $s(k) \cdot |y_k^i| \leq \inf_{n \in \mathbb{N}} p_n$ if $k \notin J_i$. Denote $X = \{y^i : i \in I\}$. We show that an uncountable set X is $\frac{1}{2}$ -orthogonal. Take a finite $I_0 \subset I$, say $I_0 = \{i_1, \ldots, i_m\}$. Set $M := \{1, \ldots, m\}$. Take $\lambda_k \in \mathbb{K} \setminus \{0\}, k \in M$.

Since for every $k \in M$

$$||y^{i_k}|| = \sup_{n \in \mathbb{N}} \{s(n) \cdot |y^{i_k}_n|\} = \sup_{n \in \mathbb{N}} p_n \le 2,$$

we note $\|\lambda_k y^{i_k}\| = |\lambda_k| \cdot \|y^{i_k}\| \le 2 \cdot |\lambda_k|$ and conclude

(3.2)
$$\max_{k \in M} \|\lambda_k y^{i_k}\| \le 2 \cdot \max_{k \in M} |\lambda_k|.$$

Let $k_0 \in M$ be such that $|\lambda_{k_0}| = \max_{k \in M} |\lambda_k|$. Then for each $k \in M \setminus \{k_0\}$ we have $\left|\frac{\lambda_k}{\lambda_{k_0}}\right| \leq 1$.

Then, as J_{i_1}, \ldots, J_{i_m} are pairwise almost disjoint, for every $k \in \{1,\ldots,m\}$ there is $n_k \in \mathbb{N}$ such that $s(n_k) \cdot |y_{n_k}^{i_k}| \ge \inf_{n \in \mathbb{N}} p_n$ and $s(n_k) \cdot |y_{n_k}^{i_l}| \le \inf_{n \in \mathbb{N}} p_n$ if $l \neq k$. Therefore,

$$\left\|\sum_{k=1}^{m} \lambda_k y^{i_k}\right\| = |\lambda_{k_0}| \cdot \left\|y^{i_{k_0}} + \sum_{k \in M \setminus \{k_0\}} \frac{\lambda_k}{\lambda_{k_0}} y^{i_k}\right\|$$
$$\geq |\lambda_{k_0}| \cdot s(n_k) \cdot \left|y^{i_{k_0}}_{n_k} + \sum_{k \in M \setminus \{k_0\}} \frac{\lambda_k}{\lambda_{k_0}} y^{i_k}_{n_k}\right|.$$

Applying Remark 2.1 we have

$$s(n_k) \cdot \left| y_{n_k}^{i_{k_0}} + \sum_{k \in M \setminus \{k_0\}} \frac{\lambda_k}{\lambda_{k_0}} y_{n_k}^{i_k} \right| \ge s(n_k) \cdot |y_{n_k}^{i_{k_0}}| \ge \inf_{n \in \mathbb{N}} p_n.$$

Thus, using (3.1) and (3.2) we obtain

$$\left\|\sum_{k=1}^{m} \lambda_k y^{i_k}\right\| \ge \left(\frac{1}{2} \cdot 2\right) \cdot \max_{k=1,\dots,m} |\lambda_k| \cdot \inf_{n \in \mathbb{N}} p_n \ge \frac{1}{2} \max_{k=1,\dots,m} \|\lambda_k y^{i_k}\|.$$

Hence, we get

$$\left\|\sum_{k=1}^{m} \lambda_k y^{i_k}\right\| \ge \frac{1}{2} \max_{k=1,\dots,m} \|\lambda_k y^{i_k}\|$$

and finally conclude that X is $\frac{1}{2}$ -orthogonal. Now, assume the contrary and suppose that E_0 is of countable type. But then, by [15, Theorem 2.3.18] every $\frac{1}{2}$ -orthogonal set of E_0 is countable, a contradiction. \Box

Let \mathcal{U}_{CNA} be the class of non-archimedean Banach spaces of countable type.

REMARK 3.15. Clearly, $\mathcal{U}_{CNA} \subset \mathcal{U}_{\aleph_1NA}$. But, $\mathcal{U}_{CNA} \neq \mathcal{U}_{\aleph_1NA}$ in general. Indeed, let $c_0(\mathbb{N}:s)$, be such that one of the conditions of Proposition 3.14 is satisfied and E_0 be its spherical completion. Then, E_0 is a member of \mathcal{U}_{\aleph_1NA} . But Proposition 3.14 shows that E_0 is not of countable type, hence $E_0 \notin \mathcal{U}_{CNA}$.

However, as the next results show, under (CH) spaces of universal disposition for \mathcal{U}_{CNA} and \mathcal{U}_{\aleph_1NA} coincide with each other.

PROPOSITION 3.16. (CH) Let E be a non-archimedean Banach space which is of universal disposition for the class \mathcal{U}_{CNA} . Then, E contains an isometric copy of $E_{u\aleph_1}$.

PROOF. First, by proceeding in the same way as in the proof of the part (B) \Rightarrow (A) of Theorem 3.4, we show that for every $g \in G$ the maximal orthogonal set X_g of $\{x \in E : \pi_G(||x||) = g\}$ is countable. Assume the contrary and suppose that there is $g \in G$ for which the maximal orthogonal set X_g of $\{x \in E : \pi_G(||x||) = g\}$ is finite. Let $F := \overline{[X_g]}, H := F \oplus \mathbb{K}_{s_g}$, where \mathbb{K}_{s_g} is explained in Section 2.2, and $j : F \to H, j(x) = (x, 0)$ be the inclusion map. Since, by assumption E is of universal disposition for the class \mathcal{U}_{CNA} and $F, H \in \mathcal{U}_{CNA}$, there exists an isometric embedding $f : H \to E$ such that f(j(x)) = x for all $x \in F$. Hence, the set $X_g \cup \{z_0\}$, where $z_0 := f((0, 1))$, is orthogonal and $\pi_G(||z_0||) = g$. But, this conclusion contradicts with the maximality of X_g . Denote $X := \bigcup_{g \in G} X_g$. Then $\overline{[X]}$ is isometrically isomorphic with $E_{u\aleph_1}$, see Section 2.2.2, and we are done. \Box

THEOREM 3.17. (CH) Let E be a non-archimedean Banach space. Then, E is a space of universal disposition for the class \mathcal{U}_{CNA} if and only if E is a space of universal disposition for the class $\mathcal{U}_{\aleph_1 NA}$.

PROOF. " \Leftarrow " Since $\mathcal{U}_{CNA} \subset \mathcal{U}_{\aleph_1 NA}$, the conclusion follows from Corollary 3.6.

"⇒" Observe that, if E is a space of universal disposition for the class $\mathcal{U}_{\aleph_1 NA}$ then by Theorem 3.4 E is spherically complete.

Now, assume the contrary and suppose that E is a space of universal disposition for \mathcal{U}_{CNA} but not for \mathcal{U}_{\aleph_1NA} . Hence, by Lemma 3.1 and the above observation there is a closed linear subspace of countable type $D \subset E$ such that there is no spherical completion of D contained in E.

Let $H \subset E$ be a closed linear subspace which is a maximal immediate extension of D in E. Let \widehat{E} be a spherical completion of E and let $i: E \to \widehat{E}$

be the natural isometric embedding. Then, by [16, Corollary 4.45], \hat{E} contains a spherical completion of i(H), which is by [13, Proposition 2.1] a spherical completion of i(D). Denote this spherical completion by D_0 . By assumption, $D_0 \not\subseteq i(E)$. Take $u_0 \in D_0 \setminus i(E)$. Then, clearly $u_0 \notin i(H)$ and, as D_0 is an immediate extension of i(H), we have

(3.3)
$$r := \operatorname{dist}(u_0, i(H)) < ||u_0 - i(d)||$$

for every $d \in H$. Hence, we can choose a sequence $(x_n)_n \subset H$ such that $||i(x_n) - u_0|| > ||i(x_{n+1}) - u_0||$ for every $n \in \mathbb{N}$ and $\lim_n ||i(x_n) - u_0|| = r > 0$. Set $r_n := ||i(x_n) - u_0||, n \in \mathbb{N}$.

Then the sets $V_n := \{x \in E : ||x_n - x|| \le r_n\}, n \in \mathbb{N}$ form a nested sequence of closed balls in E. First, observe that

(3.4)
$$\left(\bigcap_{n} V_{n}\right) \cap H = \varnothing.$$

Indeed, assume the contrary and suppose that there is $z \in (\bigcap_n V_n) \cap H$. Then, $||i(z - x_n)|| = ||z - x_n|| \le r_n$ for each $n \in \mathbb{N}$, so, using Remark 2.1 we get

$$\|i(z) - u_0\| = \|i(z) - i(x_n) + i(x_n) - u_0\|$$

$$\leq \max\{\|i(z - x_n)\|, \|i(x_n) - u_0\|\} = \max\{\|z - x_n\|, \|i(x_n) - u_0\|\} \leq r_n$$

for each $n \in \mathbb{N}$. So, $||i(z) - u_0|| \leq r$, a contradiction with (3.3).

Assume now that there is $z_0 \in (\bigcap_n V_n) \setminus H$. But, then $H + [z_0]$ is an immediate extension of H (otherwise, there is $h_0 \in H$ with $||z_0 - h_0|| = \text{dist}(z_0, H) \leq r$ since $||z_0 - h_0|| \leq ||z - x_n|| \leq r_n$ for each $n \in \mathbb{N}$; thus, for every $n \in \mathbb{N}$ we get $||h_0 - x_n|| = ||h_0 - z_0 + z_0 - x_n|| \leq r_n$, a contradiction with (3.4). Then, by [13, Proposition 2.1], $H + [z_0]$ is an immediate extension of D, a contradiction with maximality of H. Thus,

$$(3.5)\qquad\qquad \bigcap_n V_n = \varnothing$$

Let $F := \overline{i(D) + [i(x_1), i(x_2), \ldots]}$. Then F is a Banach space of countable type. Since, by assumption, E is a space of universal disposition for \mathcal{U}_{CNA} and $F \in \mathcal{U}_{CNA}$, the map $i^{-1} \colon F \to D + [x_1, x_2, \ldots] \subset E$ has an isometric extension $j \colon \overline{F + [u_0]} \to E$ as $\overline{F + [u_0]} \in \mathcal{U}_{CNA}$. But then, $||x_n - j(u_0)|| =$ $||i(x_n) - u_0|| \leq r_n$ for all $n \in \mathbb{N}$; thus, $j(u_0) \in \bigcap_n V_n$, a contradiction with (3.5). \Box

LEMMA 3.18. Let \mathbb{K} be non-spherically complete and $x = (x_i)_{i \in I} \in \ell^{\infty}(I:s)$. If there exists $p \in I$ such that $||x|| = s(p) \cdot (x_p)$, then [x] is orthocomplemented in $\ell^{\infty}(I:s)$. Consequently, for every $z \in \ell^{\infty}(I:s)$ the two-dimensional linear subspace [x, z] has an orthogonal base.

PROOF. It is easy to verify that the linear subspace $H := \{(w_i)_{i \in I} \in \ell^{\infty}(I:s) : w_p = 0\}$ is an orthocomplement of [x] in $\ell^{\infty}(I:s)$. Then, for $z \in \ell^{\infty}(I:s)$ we can choose $\lambda_z \in \mathbb{K}$ such that $z = \lambda_z x + (z - \lambda_z x)$. Then $x \perp (z - \lambda_z x)$ and $\{x, z - \lambda_z x\}$ is an orthogonal base of [x, z]. \Box

Recall that if K is non-spherically complete, the space ℓ^{∞} is not of universal disposition for the class \mathcal{U}_{FNA} (see [11, Remark 4.9]). We get the following, more general result.

PROPOSITION 3.19. Let \mathbb{K} be densely valued, k be a given infinite cardinal number, I be a set with $\operatorname{card}(I) \geq k$ and $s: I \to (0, \infty)$ be a map. Then, the space $\ell^{\infty}(I:s)$ is a space of universal disposition for the class \mathcal{U}_{kNA} if and only if \mathbb{K} is spherically complete.

PROOF. " \Rightarrow " Assume that K is non-spherically complete and suppose that $\ell^{\infty}(I:s)$ is a space of universal disposition for the class \mathcal{U}_{kNA} . Recall (see [16, page 68] and [15, Example 2.3.26]) that if $(B_{r_n}(c_n))_n$ is a nested sequence of closed balls in K which has an empty intersection, then the formula

$$\|(\lambda_1,\lambda_2)\|_v := \lim_{n \to \infty} |\lambda_1 - \lambda_2 c_n|, \quad (\lambda_1,\lambda_2) \in \mathbb{K}^2,$$

defines a non-archimedean norm on the linear space \mathbb{K}^2 . The normed space $\mathbb{K}^2_v := (\mathbb{K}^2, \|.\|_v)$ is an immediate extension for each its one-dimensional linear subspace, therefore it has no two orthogonal elements.

Fix $i \in I$, set $X := [e_i] \subset \ell^{\infty}(I:s)$, $Y := (\mathbb{K}^2, s(i) \cdot ||.||_v)$ and define the isometric embedding $i: X \to Y$ such that $i(e_i) = (1, 0)$. Using Lemma 3.18, we imply that every two-dimensional linear subspace of $\ell^{\infty}(I:s)$ containing e_i has two non-zero orthogonal elements. Thus, as Y has no two non-zero orthogonal elements, there is no isometric embedding $f: Y \to \ell^{\infty}(I:s)$ such that f(i(x)) = x for all $x \in X$, a contradiction.

" \Leftarrow " Suppose that \mathbb{K} is spherically complete. Then $\ell^{\infty}(I:s)$ is spherically complete (see [16, 4.A]). Applying [16, Corollary 4.45], we imply that $\ell^{\infty}(I:s)$ contains a spherical completion of its every linear subspace which is a member of \mathcal{U}_{kNA} . Thus, the condition (ii) of Theorem 3.4 is satisfied.

We prove that for every $g \in G$, $\ell^{\infty}(I:s)$ contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||_s) = g$ for all $x \in X_g$. Then, using Theorem 3.4, (A) \Rightarrow (B), we finish the proof. To do it, select an infinite family $\{M_j: j \in J\}$ of infinite, countable and disjoint subsets of I. Then, $\operatorname{card}(J) = \operatorname{card}(I)$. For each $j \in J$ write $M_j = \{i_1^j, i_2^j, \ldots\}$. Next, for every $g \in G$ and $j \in J$ choose a sequence $(\lambda_{i_n^j}^g)_n$ in \mathbb{K} such that $s(i_n^j) \cdot |\lambda_{i_n^j}^g| \leq s_g$ and $s(i_n^j) \cdot |\lambda_{i_n^j}^g| \to s_g$ if $n \to \infty$. Define $x_g^j = (x_i)_{i \in I}$, setting $x_i := \lambda_{i_n^j}^g$ if $i = i_n^j$ and $x_i := 0$ otherwise. Then, $W = \{x_g^j: g \in G, j \in J\}$ is an orthogonal subset of $\ell^{\infty}(I:s)$ such that for every $g \in G$ the set $\{w \in W: \pi_G(||w||_s) = g\}$ has cardinality greater or equal to k. Hence, we are done. \Box

PROPOSITION 3.20. Let \mathbb{K} be discretely valued and k be a given infinite cardinal number. Then,

• the space $\ell^{\infty}(I_{uk}:s_{uk})$ is a space of universal disposition for the class \mathcal{U}_{kNA} ;

• the space $\ell^{\infty}(I)$ is not a space of universal disposition for the class \mathcal{U}_{kNA} .

PROOF. By [16, 4.A], the space $\ell^{\infty}(I_{uk}:s_{uk})$ is spherically complete. We show that it satisfies the conditions (i)-(ii) of Theorem 3.4; the condition (i) is clear, by the construction of I_{uk} . By [16, Corollary 4.45], $\ell^{\infty}(I_{uk}:s_{uk})$ contains a spherical completion of its every linear subspace which is a member of \mathcal{U}_{kNA} , thus the condition (ii) is satisfied.

Note that $\|\ell^{\infty}(I)\| = |\mathbb{K}|$ is a countable set. Thus, $\ell^{\infty}(I)$ cannot contain a copy of the space E_{uk} since $\|E_{uk}\| = [0, \infty)$; hence, by Corollary 3.6, $\ell^{\infty}(I)$ is not a space of universal disposition for the class \mathcal{U}_{kNA} . \Box

COROLLARY 3.21. For any densely valued \mathbb{K} the space $\ell^{\infty}(I_u, \widehat{\mathbb{K}})$ is a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$.

PROOF. Since by Theorem 3.10 the space $c_0(I_u, \widehat{\mathbb{K}})$ is a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$, thus for every $g \in G$ it contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||_s) = g$ for all $x \in X_g$. But $c_0(I_u, \widehat{\mathbb{K}}) \subset \ell^{\infty}(I_u, \widehat{\mathbb{K}})$, hence for every $g \in G$ the space $\ell^{\infty}(I_u, \widehat{\mathbb{K}})$ contains an orthogonal set X_g with the above property and condition (i) of Theorem 3.4 is satisfied. As $\widehat{\mathbb{K}}$ is spherically complete, $\ell^{\infty}(I_u, \widehat{\mathbb{K}})$ is spherically complete (see [16, 4.A]) and by [16, Corollary 4.45], $\ell^{\infty}(I_u, \widehat{\mathbb{K}})$ contains a spherical completion of every its linear subspace H, thus the condition (ii) of Theorem 3.4 is satisfied. Hence, using Theorem 3.4, (A) \Rightarrow (B) completes the proof. \Box

4. Injectivity and universality of spaces of universal disposition

A Banach space F is *injective* if for every Banach space E and each linear subspace D of E, every bounded operator $T: D \to F$ can be extended to a preserving norm operator $T': E \to F$. Let \mathcal{U} be a given class of Banach spaces. A Banach space F is *universally* \mathcal{U} -*injective* if for every Banach space E and each linear subspace D of E such that $D \in \mathcal{U}$, every bounded operator $T: D \to F$ extends to a preserving norm operator $T': E \to F$.

We say that a Banach space E is *isometric* \mathcal{U} -universal if for every Banach space $D \in \mathcal{U}$ there is an isometric embedding $D \to E$.

The almost immediate consequence of Ingleton's theorem is the following result.

THEOREM 4.1. If a non-archimedean Banach space F is of universal disposition for the class \mathcal{U}_{kNA} for some infinite cardinal number k then F is universally \mathcal{U}_{kNA} -injective. If $k > \aleph_0$, then F is injective.

PROOF. Let E be a non-archimedean Banach space, D be a closed linear subspace of E such that $D \in \mathcal{U}_{kNA}$ and $T: D \to F$ be a bounded operator. Then, $T(D) \in \mathcal{U}_{kNA}$. Since F is of universal disposition for the class \mathcal{U}_{kNA} , by Theorem 3.4, there exists a spherically complete linear subspace $D_0 \subset F$ such that $T(D) \subset D_0$. Now, by Ingleton's theorem (see [16, Theorem 4.10]), T extends to a preserving norm operator $T': E \to D_0 \subset F$. If $k > \aleph_0$, then, by Theorem 3.4, F is spherically complete and the conclusion follows directly from Ingleton's theorem (see [16, Theorem 4.10]). \Box

Let k be a given infinite cardinal number. By \mathcal{U}_{kNA}^+ we will denote the class of non-archimedean Banach spaces over \mathbb{K} satisfying: $E \in \mathcal{U}_{kNA}^+$ if and only if $\operatorname{ort}(E) \leq k$.

PROPOSITION 4.2. Let E be a space of universal disposition for the class \mathcal{U}_{kNA} . If $k > \aleph_0$ then E is isometric \mathcal{U}_{kNA}^+ -universal.

PROOF. If $k > \aleph_0$, then, by Theorem 3.4 *E* is spherically complete.

Take a non-archimedean Banach space $D \in \mathcal{U}_{kNA}^+$. Let W be a maximal orthogonal set in D. Then, $\operatorname{card}(W) \leq k$. By Theorem 3.4, for every $g \in G$, E contains an orthogonal set X_g such that $\operatorname{card}(X_g) = k$ and $\pi_G(||x||_s) = g$ for all $x \in X_g$. Hence, we can establish an isometric map $i: [W] \to E$. Then, D is an immediate extension of [W] (see [16, page 167]). By assumption, E is spherically complete. So, we can apply Lemma 3.3 and extend i to the required isometry $D \to E$. \Box

COROLLARY 4.3. Every non-archimedean Banach space E can be isometrically embedded into the space $\widehat{E_{uk}}$ for some cardinal number k.

PROOF. Choose a cardinal number $k, k > \aleph_0$ such that $E \in \mathcal{U}_{kNA}^+$. By Corollary 3.6, $\widehat{E_{uk}}$ is a space of universal disposition for the class \mathcal{U}_{kNA} . Now, the conclusion follows directly from Proposition 4.2. \Box

LEMMA 4.4. Let \mathbb{K} be densely valued and spherically complete. Then, the space $\hat{c_0}$, a spherical completion of c_0 has no orthogonal base and $\operatorname{ort}(\hat{c_0}) = \aleph_0$.

PROOF. First, extend the set of unit vectors $\{e_i\}_{i\in\mathbb{N}} \subset c_0$, which is an orthogonal base of c_0 (see [15, Theorem 2.3.25]) to a maximal orthogonal set $\{y_i\}_{i\in I_m}$ in $\hat{c_0}$. Since $\hat{c_0}$ is an immediate extension of c_0 (see [16, p. 167]), we imply that I_m is countable. Now, assume the contrary and suppose that $\hat{c_0}$ has an orthogonal base $\{x_i\}_{i\in I}$. Then, by [16, Theorem 5.9] I is countable. But by Proposition 3.14 the space $\hat{c_0}$ is not of countable type, a contradiction. \Box

REMARK 4.5. Note that the assumption $k > \aleph_0$ cannot be removed in Proposition 4.2. Let K be spherically complete and densely valued. Then, by Theorem 3.10, $c_0(I_u, \mathbb{K})$ is a space of universal disposition for the class $\mathcal{U}_{\aleph_0 NA}$. Consider $\hat{c_0}$, a spherical completion of c_0 . Then, by Lemma 4.4 $\hat{c_0} \in \mathcal{U}_{\aleph_0 NA}^+$. Now, assume that there exists an isometric embedding $T: \hat{c_0} \to c_0(I_u, \mathbb{K})$. Then, by [16, Theorem 5.9], $T(\hat{c_0})$ as a linear subspace of $c_0(I_u, \mathbb{K})$ has an orthogonal base; hence, we conclude that $\hat{c_0}$ has an orthogonal base, a contradiction with Lemma 4.4.

5. Transitivity and universal disposition

Let E be a non-archimedean Banach space and let \mathcal{U} be a given class of Banach spaces. Recall (see [3, Definition 3.40]) that E is \mathcal{U} -transitive if the following property satisfies:

(TR) for any $X, Y \in \mathcal{U}$, linear subspaces of E, and a surjective isometry $i: X \to Y$ there exists a surjective isometry $i': E \to E$ which extends i.

We get the following result.

THEOREM 5.1. Let k be an infinite cardinal number. If E is a space of universal disposition for the class U_{kNA} then E is U_{kNA} -transitive.

LEMMA 5.2. Let E, F be Banach spaces, \widehat{E}, \widehat{F} be their spherical completions and $i: E \to F$ be a surjective isometry. Then, there exists a surjective isometry $i': \widehat{E} \to \widehat{F}$ such that $i'|_E = i$.

PROOF. Applying Lemma 3.3, we can extend i to the isometric embedding $i_0: \widehat{E} \to \widehat{F}$. Since F = i(E), $i_0(\widehat{E})$, as an isometric range of \widehat{E} , is a spherical completion of F. By [16, Theorem 4.43], there exists an isometric isomorphism $j: i_0(\widehat{E}) \to \widehat{F}$. Now, the operator $i' := j \circ i_0$ is a required surjective isometry. \Box

PROOF OF THEOREM 5.1. Let $X, Y \in \mathcal{U}_{kNA}$ and $i: X \to Y$ be a surjective isometry. Let D = X + Y. Then, $D \in \mathcal{U}_{kNA}$. Since, by assumption, E is a space of universal disposition for \mathcal{U}_{kNA} , by Theorem 3.4, there exist linear subspaces $\hat{X}, \hat{Y}, \hat{D}$ of E such that \hat{X} is a spherical completion of X, \hat{Y} is a spherical completion of Y and \hat{D} is a spherical completion of D, respectively. Obviously, $\hat{X}, \hat{Y} \subset \hat{D}$. Applying Lemma 5.2, we can extend i to the bijective isometry $i': \hat{X} \to \hat{Y}$.

Let W_X be a maximal orthogonal set in X and W_Y be a maximal orthogonal set in Y, respectively. Select orthogonal sets $Z_X, Z_Y \subset \widehat{D}$ such that $W_X \cup Z_X$ and $W_Y \cup Z_Y$ are maximal orthogonal sets in \widehat{D} . Clearly, $Z_X \cap \widehat{X} = \emptyset$ and $Z_Y \cap \widehat{Y} = \emptyset$. By [16, Theorems 5.2 and 5.4], Z_X and Z_Y have the same cardinality, so we can define the isometric isomorphism $j: [Z_X] \to [Z_Y]$. Then, since $[Z_X] \perp \widehat{X}$ and $[Z_Y] \perp \widehat{Y}$, we can define a surjective isometry $T: [Z_X] + \widehat{X} \to [Z_Y] + \widehat{Y}$ by setting

$$T(z_x + x) := j(z_x) + i'(x) \quad (z_x \in [Z_X], \ x \in \widehat{X}).$$

Since \widehat{D} is a spherical completion of $[Z_X] + \widehat{X}$ and $[Z_Y] + \widehat{Y}$, using Lemma 5.2 again, we can establish the surjective isometry $T' \colon \widehat{D} \to \widehat{D}$ such that $T'|_{[Z_X]+\widehat{X}} = T$. Thus, T'(X) = Y. But \widehat{D} , as a spherically complete linear subspace of E, is orthocomplemented in E (see [16, Exercise 4.H]), so we can find an orthogonal decomposition $E = \widehat{D} \oplus E_0$ and extend T' to the surjective isometry $T'' \colon E \to E$ setting $T''(d+x) \coloneqq T'(d) + x$, where $d \in \widehat{D}$ and $x \in E_0$. Then, T''(X) = Y and the proof is finished. \Box

References

- [1] F. Albiac and N. Kalton, Topics in Banach Space Theory, Springer (New York, 2006).
- [2] A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. González and Y. Moreno, Banach spaces of universal disposition, J. Funct. Anal., 261 (2011), 2347–2361.
- [3] A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. González and Y. Moreno, Separably Injective Banach Spaces, Lecture Notes in Mathematics, Springer (2016).
- [4] C. Bargetz, J. Kakol and W. Kubiś, A separable Fréchet space of almost universal disposition, J. Funct. Anal., 272 (2017), 1876–1891.
- J. M. Bayod, The space ℓ¹(K) is not ultrametrizable, in: *p-adic Functional Analysis*, Proc. Int. Conf. (Laredo/Spain, 1990), Lect. Notes Pure Appl. Math., vol. 137 Dekker (New York, 1992), pp. 221–225.
- [6] J. M. F. Castillo and M. A. Simões, On Banach spaces of universal disposition, New York J. Math., 22 (2016), 605–613.
- [7] T. Diagana and F. Ramaroson, Non-Archimedean Operator Theory, Springer (New York, 2016).
- [8] J. Garbulińska and W. Kubiś, Remarks on Gurariĭ spaces, Extracta Math., 26 (2011), 235–269.
- [9] V.I. Gurariĭ, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, *Sibirsk. Mat. Z.*, 7 (1966), 1002–1013 (in Russian).
- [10] E. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland (Amsterdam, 1984).
- [11] J. Kąkol, W. Kubiś and A. Kubzdela, On non-archimedean Guariĭ spaces, J. Math. Anal. Appl., 450 (2017), 969–981.
- [12] A. Kubzdela, The Hahn–Banach subspaces of Banach spaces with base, Contemp. Math., 319 (2003), 179–189.
- [13] A. Kubzdela, On non-Archimedean Hilbertian spaces, Indag. Math. (N.S.), 19 (2008), 601–610.
- [14] A. Kubzdela, Selected Topics in non-Archimedean Banach Spaces, Lecture Notes in Nonlinear Analysis, vol. 17. Juliusz Schauder Center for Nonlinear Studies (Toruń, 2018).
- [15] C. Perez-Garcia and W. H. Schikhof, Locally Convex Spaces over Non-Archimedean Valued Fields, Cambridge University Press (Cambridge, 2010).
- [16] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker (New York, 1978).