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Abstract. Let f(z) be a transcendental meromorphic function, whose zeros
have multiplicity at least 3. Set a(z) := B(z) exp (v(z)), where 5(z) is a noncon-
stant elliptic function and v(z) is an entire function. If o(f(2)) > o(a(z)), then
f'(2) = a(z) has infinitely many solutions in the complex plane.

1. Introduction

Hayman [1] proved the following result.

THEOREM A. Let f be a transcendental meromorphic function and « be
a finite nonzero complex number. If f(z) # 0 for each z, then ' = « has
nfinitely many solutions in C.

A meromorphic function a(z) is called a small function with respect to
f(2) provided that T'(r,a(z)) = o{T(r, f(2))} as r — oo outside of a possible
exceptional set of r of finite linear measure.

Naturally, we ask that whether Theorem A is valid or not if the finite
non-zero complex number « is replaced by a small function a(z) related to
7(2).

The defect relation for small functions [10, Corollary 2] due to Yamanoi
directly implies the following two theorems.

THEOREM B. Let f be a transcendental meromorphic function, and let «
be a small meromorphic functions with respect to f. Assume that all but
finitely many zeros of f' have multiplicity at least 3. Then f'(z) = «(z) has
nfinitely many solutions in C.
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THEOREM C. Let f be a transcendental meromorphic function, and let
a1 and ao be two small meromorphic functions with respect to f. Then either
f'(2) = a1(2) or f'(2) = as(2) has infinitely many solutions in C.

In 2008, Theorem A was generalized by Pang, Nevo and Zalcman.

THEOREM D [5]. Let f be a transcendental meromorphic function, whose
zeros are multiple, and let o (£ 0) be a rational function. Then f' = « has
infinitely many solutions in C.

We wonder if Theorem D still holds provided that «(z) is a transcenden-
tal meromorphic function. In this direction, we proved the following result.

THEOREM E [12]. Let f(z) be a transcendental meromorphic function,
whose poles are multiple and whose zeros have multiplicity at least 3. Set
a(z) == p(z) exp (7(2)), where 5(z) is a nonconstant elliptic function and
v(z) is an entire function. If o(f(z)) > o(a(z)), then f'(z) = a(z) has in-
finitely many solutions in C.

In this paper we show the assumption that all poles of f are multiple in
Theorem E is unnecessary. We extend Theorem E as follows.

THEOREM 1.1. Let f(z) be a transcendental meromorphic function, all
but finitely many of whose zeros have multiplicity at least 3. Set a(z) :=
B(z) exp (v(2)), where 5(z) is a nonconstant elliptic function and v(z) is an
entire function. If o(f(2)) > o(a(z)), then f'(z) = a(z) has infinitely many
solutions in C (including the possibility of infinitely many common poles of

f(z) and a(z)).

2. Notation and preliminary lemmas

Let C be the complex plane and D be a domain in C. For zyg € C
and r >0, we write A(zo,7):={z ||z — 20| <71}, A(z0,7) :={z ||z — 20
<r}, Al(zo,r) i ={2]|0<|z—2z| <r}, A:=A(0,1) and A" := A’(0,1). Let
n(r, f) denote the number of poles of f(z) in A(0,r) (counting multiplicity).
We write f, = f in D to indicate that the sequence {fn} converges to f in
the spherical metric uniformly on compact subsets of D and f, = f in D
if the convergence is in the Euclidean metric. For f meromorphic in D, we
write

(2.) = T

S(D, f) = i//D[f#(z)Fdxdy and S(r, f) = S(A(0,7), f).
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The Ahlfors-Shimizu characteristic is defined by T'(r, ) = [; S(tt’f ) dt. The
order p(f) and the hyper-order o( f) of a meromorphic function f are defined
as follows:

log T loglog T
p(f) = limsup ogT(r, f) and o(f) := limsup oglogT(r, f)
r—00 logr r—00 logr

LEMMA 2.1 [9]. Let m be a positive integer and R be a rational function.
If R'(2) # 2z=™ for each z, then R is a constant function.

LEMMA 2.2 [8]. Let R(2) = apz" +an_ 12" 1+ +ag+ ggz;, where ag,
ai, ..., a, are constants with a,, # 0, P(z) and Q(z) are two coprime poly-
nomials with deg Q(z) < deg P(z). If R'(z) # 1, then R(z) =z+a+ (z—bc)m’

where a, b(# 0), ¢ are constants and m is a positive integer.

LEMMA 2.3 [8]. Let f be a nonconstant meromorphic function of finite
order in C, whose zeros are multiple. If f'(z) # 1 for each z, then f(z) =

(ZZ__ab)2 for some a and b(# a).

LEMMA 2.4. Let F be a family of meromorphic functions in D, all of
whose zeros have multiplicity at least k, and suppose that there exists A > 1
such that |f¥)(2)| < A whenever f(z) =0. If F is not normal at z, then
there exist

(a) points zy, zn — 20;

(b) functions f, € F; and

(c) positive numbers p, — 0

such that p7* fu(zn + puC) = gn(C) 2 g(¢) in C, where g is a nonconstant
meromorphic function in C such that g7 () < g7 (0) = kA+1. In particular,
g has order at most 2.

This is the local version of [6, Lemma 2] (cf. [3, Lemma 1]; [13, pp. 216~
217]). The proof consists of a simple change of variable in the result cited
from [6] (cf. [4, pp. 299-300]).

LEMMA 2.5 [2]. Let k be a positive integer and let {f,} be a family of
meromorphic functions in A, all of whose zeros have multiplicity at least
k+1. If ap — 0 and fi (a,) — oo, then there exist

(a) points z, — 0;

(b) a subsequence of {fn} (still denoted by {f,}); and

(c) positive numbers p, < . M where M is a constant which is in-
R (an)

dependent on n, such that gn(C) = p;* fu(zn + pnC) = g(C) in C, where g is
a nonconstant meromorphic function in C such that g7 (¢) < g7 (0) = k + 1.
In particular, g has order at most 2.
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LEMMA 2.6 [7]. Let f be a meromorphic function in A, and let a1, asg,
as be three distinct complex numbers. Assume that the number of zeros of
T2, (f(2) — a;) in A is < n, where multiple zeros are counted only once.
Then

A
Strfysn+ . 0<r<l,

where A > 0 is a constant, which depends on a1, as, ag only.

LEMMA 2.7 [11]. Let f be a meromorphic function in C and « be a
nonzero constant. Then (af ) (z) < max{|al,1/|a|}f#(2).

LEMMA 2.8 [12]. Let f(z) be a meromorphic function of hyper-order
o(f) >0, and let € € (0,0(f)) denote a fized constant. Then there exist ay,
— o0 and 6,, — 0 such that

S(A(an, 0,), f) > exp (|an| 7)),
F#(an) > exp (lan| " %) and 6, < exp (—|an|")~9).

LEMMA 2.9 [12]. Let f(2), g(z) be meromorphic functions in A(0, p) and
let r, R be positive numbers satisfying r < R < p. Then

S(r, fg) < S(R, f) + S(R,g)

1 R\-1 [T : :
+ (108; ) / log(|g(re™)| + [g(re®)|~") d6.
r 0

27
LEMMA 2.10. Assume that the conditions of Theorem 1.1 are satisfied,
f'(2) — a(z) has at most finitely many solutions, and (z) = zmg(z), where
B(2) (#0) is holomorphic in A and m is an integer. Let an — co and
b, — 0 be sequences of complex numbers such that 5(z + a, — b,) = 5(2).
Let {t,} be a sequence of positive numbers such that t, < exp (—|a,|?*), where

Ae(o(a),o(f)). Set T,,(C) := wﬂgigr(‘;(z:‘:tbﬁztnc)). Then {T,,(¢)} is normal
in C\ {0}.

Using the same argument as in the proof of [12, Lemma 3.4], we can
show Lemma 2.10 holds. In fact, the condition that all poles of f(z) are
multiple is not necessary in the proof of [12, Lemma 3.4].

3. Auxiliary lemmas
LEMMA 3.1. Let f be a nonconstant meromorphic function, whose zeros
have multiplicity at least 3. Then for any finite nonzero complex number c,

f' — ¢ has at least one zero in C.
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PROOF. Suppose that there exists a finite non-zero complex number ¢
such that f” — ¢ has no zeros in C. By Theorem D and Lemma 2.3, f(z) =
c(z—a)?

~_y for some a and b(# a). This contradicts the fact that all zeros of f
have multiplicity at least 3. [

LEMMA 3.2. Let n be a positive integer, and R(z) be a rational function,
whose zeros have multiplicity at least 3. If R'(z) # 2" for each z, thenn =1

— )3
and R(z) = (22(2_32), where ¢ is a nonzero constant.

PRrROOF. We consider the following two cases.
Case 1: R(z)is a polynomial. Clearly, we have R(z) = 2:11 +az+bin C,

where a # 0 and b are constant. However R'(z) = 2™ + a which contradicts
that all zeros of R(z) have multiplicity at least 3.
Case 2: R(z) is not a polynomial. Since R'(z) # 2", we have (R(z) —

Zn+1

el T z)/ # 1 for each z € C. By Lemma 2.2,

R(z): Ll ot b _ Z"+1(Z_C)m+a(n+l)(z—c)m—|—b(n+1)’
n+tl (z—c)™ (n+1)(z—c)m
where a, b(# 0) and c¢ are constant, m is a positive integer. Then we have
bm
/ _.n
(3.1) R(2) ="~ it
1 bm(m+1)
!/ _ n—1
(3.2) R'(z) =nz"""+ (2~ 2

By (3.1) and (3.2), we see that R(z) has a unique (multiple) zero zy =

m~+n+1 c.

We claim that ¢ # 0. Otherwise, substituting ¢ = 0 into (3.1), we obtain
R'(z) = ijﬁl—l’m which contradicts that all zeros of R(z) have multiplicity
at least 3.

Set
P(z):=2""Yz =)™ +a(n+1)(z —c)™ +b(n+1).
A simple calculation shows that
Tz =)™ +a(n+1)(z — )™ +b(n +1) P(z)

R(z) = (n+1)(z—c)m - (n+1)(z—c)m’

Clearly, P(z) and R(z) have the same zeros with the same multiplicities.
Then we have
(3.3)

P() ="z a(nt Do) tbn 1) = (s T )"

Cm4n+1

Analysis Mathematica 47, 2021



248 P. YANG and S. WANG

Comparing the coefficients of the term 2™%", we obtain m = n. Take the

derivative of both sides of the equation (3.3), we obtain

(3.4) (z=)" H(n+1)2"(z — ¢) + n2"" + an(n + 1)]
cno \2n
:(2n+1)<z—2n+1) .

Comparing the constant terms of both sides in (3.4), we see that (z —¢)"™!

¢ and R(z) = (=)

must be constant and thus m =n=1. Then 2o = § 2(z—e) !

where c is a constant. [J

LEMMA 3.3. Let R(z) (#0) be a rational function, having a zero of or-
der 2 at the point z = 0. If R'(2) # z for each z € C\ {0}, then R(z) = cz?,
where ¢ (# 1/2) is a nonzero constant.

ProOF. Clearly, R(z) — Z; is not a constant. We assume that z = 0 is
a zero of R(z) — 222 of order A\ (> 2). Set Z(z) = R(z) — 222, where p(z) and

(2)
q(z) are two coprime polynomials.

Case 1: degp(z) # degq(z).

(3.5) Rl(2)—2= (q(z) )/ = 7(2)p(z) — v (2)a(z) # 0 for each z € C\ {0}.

p(z) p*(2)
Let ¢(2) = amz™ + am_12™ 1 + -+ ag and p(z) = bp2" + bp_12" 1 +
-+« + by, where a,, (#0), ..., a1, ag and b, (#0), ..., by, by are constants.

Clearly, m > A > 2,
q¢'(2)p(2) = P'(2)4(2) = (M = n)amb, 2™ + -+ (a1by — aghy)

and z = 0 is a zero of order A — 1 of ¢/(2)p(z) — p'(2)q(z). We denote non-
zero zeros of ¢'(2)p(z) — p'(2)q(2) by ¢1, c2, ..., ¢, and the related orders
denote by n1, no, ..., ny.

We deduce from (3.5) that the nonzero zeros of ¢'(z)p(z) —p'(2)q(z)
are the zeros of p?(z). Since q(z) and p(z) are coprime, we can see
from (3.5) that ¢; is the zero of p(z) with order n; +1 (i=1,2,...,1).
Then ny+ne+---+nm+A—1=m+n—1and 2(n; +na+---+n;+1)
< 2n. It is easily obtained that (m — ) +1<0. We have [ =0, m =},
q(2) = amz™ and ¢ (2)p(z) — p'(2)q(2) = (m — n)amb,z™ ™ 1. We also
have ¢'(2)p(2) — p'(2)a(2) = amz™ " (mp(2) — 2p'(2)). If degp(2) # 0, then
[mp(z) — zp'(2)] ‘z:O = 0 and thus p(0) = 0 which contradicts the fact z =0

is a zero of gg% Now degp(z) =0 and R(z) = ¢z, where ¢(# 0) is a con-
stant. By (3.5), em2™2 —1#0 for each z € C\ {0}. Then R(z) = c2?,
where ¢ (# 1/2) is a nonzero constant.
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Case 2: degp(z) = degq(z). Write R(z) — 222 =c+ ;EZ%, where ¢ (# 0)
is a constant, p(z) and r(z) are two coprime polynomials and degp(z) >

degr(z). Now, we have

(3.6) (c+ T(Z))/: (r(z) >/: 7(2)p(z) =p'(2)a(2) # 0 for each zeC\ {0}.

p(z) p(z) p*(2)
Let 7(2) = amz™ + am_12™" 1+ +ag and p(z) = by2" + by_12" L +
-+« =+ by, where a,, (#0), ..., a1, ap and b, (£ 0), ..., by, by are constants.

Since z =0 is a zero of R(z) — 222 of order A (> 2), we have 7(0) =ag # 0
and p(0) = by # 0. Using the same argument presented in Case 1, we can
show that 7/(2)p(z) — p'(2)7(2) = (M — n)am,b,z™+ " 1. Then

(3.7)  (m = n)amby 2™ 4 - 4 (arby — aght) = (m — n)amb, 21

Comparing the coefficients of the term z¢ in (3.7) for i = 0,1,2,...,m — 1,
we obtain

al_bl ag_bQ am_bm

ag N bo’ ag N bo’ Y ag N bo '
Comparing the coefficients of the term 2% in (3.7) fori = m,m+1,...,n—1,
we obtain b,,41 = bp4o = --- = b, =0, a contradiction. O

4. Proof of Theorem 1.1

We assume that f’(z) = a(z) has at most finitely many solutions and
derive a contradiction. In the following part, let € € (0, (o(f) — o(«))/8)
denote a fixed constant.

By our assumptions,

f'(2)
a(z)
Set F(z) := (J;Ezg Clearly, o(F') = o(f). Noting that a(z) = B(z) exp (7(2)),

we have o(F) = o(f) > o(«)
lation we have

(4.1) f(2) # a(z) and # 1 for sufficiently large |z|.

(exp (7)) = p(). By an elementary calcu-

f'(2) — Fl(s . B'(2) /(5
(4:2) ol = FE@+EE(p0 +7@).

By Lemma 2.8, there exist a,, — oo and J,, — 0 such that
(43) S(A(anaén)vF) Z eXp(|an|o(f)_€)>

F#(an) > eXP(|an|0(f)—a) and 5n < exp (_‘an‘a(f)—a).
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Let wy, wy be the two fundamental periods of 3(z) and P be a fundamen-
tal parallelogram of 5(z). There exist integers i,, and j, such that b, € P,
where b, = a,, — inw1 — jpwe. Taking a subsequence and renumbering, we
may assume that b, — b* as n — oo.

Without loss of generality, we may assume that b* =0, A C ‘P, and

B(z) = zmg(z) for z € A, where B(O) =1, g(z) # 0,00 in A, and m is an
integer. For convenience, we set

(4.4) Fo.(z) = F(ap, — b, +2) for z€ A, fo(z) = flan — by + 2),
(4.5)  an(2) :=alay, — b, +2) and v,(2) :=y(an — by + z) for z € A.

Taking a subsequence and renumbering if necessary, we may assume that
(al) fr(2) # an(z) = B(2)m(2) in A,
(a2) S(A(by,d,), Fp) > exp (|an| ) ~¢) and F#(bn) > exp (|a, |7 =e),

(43) 14 [10) = Fi(2) + Fu(2) (53 +70(2)) in A,

In fact, It follows from (4.1) and (4.5) that (al) holds. Noting that
S(A(bp,6,), Fy) = S(A(an, 8,), F) and Ff (b,) = F#(a,), we see that (a2)
holds by (4.3) and (4.4). Substituting z = a,, — b, + z into (4.2), we get that
(a3) holds by (4.1) and (4.5).

We claim that 5(0) =0 or 5(0) = co. On the contrary, suppose that
B(0) # 0,00. Clearly, all zeros F;, have multiplicity at least 3 for sufficiently
large n in A. By (a2) and Marty’s criterion, {F,} is not normal at 0. Us-
ing Lemma 2.5 for k = 1, there exist points z, — 0, a subsequence of {F),}

(still denoted by {F,}) and positive numbers p,, < \/F]:;[ , where M is a

n n

constant which is independent on n, such that

(4.6) Gn(C) = pp  Fu(zn + pnC) 2 G(¢) in C,

where GG is a nonconstant meromorphic function in C, whose zeros have
multiplicity at least 3. By (a2), we see that

(47) pn < Mexp (a0 < exp (~lan70~)

for sufficiently large n. For any given R > 0, we have
(4.8) V' (an = bn + 20 + puQ)| < M (|2an],7")
< exp(|2an /%) < exp(|an|7( )
for sufficiently large n in A(0, R). By (4.7) and (4.8), we see that
(4.9) oY (an — by + 2 + pp¢) = 0 in C.
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Then
B (n+ puC) _ B(0)
B(zn +pnC) — B(0)
Substituting z = z, + p,( into (a3), we have

on(2n + pnC)

ﬂ,(zn + pnC)

(4.10) B(zn + pnC)

in C, and thus p, = 0in C.

(4.11) 14

B/(Zn + ,OnO

= GulQ) |pn B(zn + pnC)

+ pn')/(an — by + 2y + pnC)] Gn(C)

By (4.9)-(4.11),

an(zn + pnC)

By Hurwitz’s theorem, either G'({) =1 or G'({) # 1 in C. This contradicts
to Lemma 3.1.

Next, we consider the cases 5(0) = 0 and 5(0) = co. We claim that b, <
exp (—|an|7)=3%) for sufficiently large n. Otherwise, taking a subsequence
and renumbering, we may assume that b, > exp (—|a,|”)=3). Set

(4.12) = G'(¢) in C\ G !(o0).

(4.13) N = exp(—|an|0(f)_2€),
F n n Fn n n
B, (z) == (a 77+ ) = (b 77+ ) for z € A.

Noting that 1, — 0, b, — 0 and 7, /b, — 0 as n — oo, we see that
(4.14) by, +nuz € A and b, + 1,z # 0 for sufficiently large n in A,

and hence all zeros of B,,(z) have multiplicity at least 3 for sufficiently large n
in A. By (a2), for sufficiently large n we have

7 (b))

4.15 Bty =2, Tnlbn

9 O =g 4 1R
F,(bn)]

> 12 | n\n — 2 # by, na(f)—?a‘

2 ) o = ) > exp (o] 10)

Clearly, Bjf (0) = co. By Marty’s criterion, {B,(z)} is not normal at 0. Us-

ing Lemma 2.4 for k = 1, there exist points z, — 0, a subsequence of { B,,(z)}

(still denoted by {B,(z)}) and positive numbers p,, — 0 such that

Pn Pnlln
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where G is a nonconstant meromorphic function in C whose zeros have mul-
tiplicity at least 3. Noting that b, /n, — oo as n — 0o, we obtain

o /Bl(bn + (20 + pn())
" B(bn + (20 + pn())

b/ + 20+ pnC " B(bn + Nz + puC))

(4.17)

=0 in C.

For any given R > 0, we see that

[ (an+71 (20 + n))| < M(|12a5],7) < exp(|2a,[*P*) < exp(|an|”*+2)
for sufficiently large n in A(0, R). Then

(4.18) Y (an + M (20 + pn¢)) = 0 in C.

Substituting z = b, + 1y, (2, + pnC) into (a3), for sufficiently large n we have

T2 (bn 4 1 (20 + pnC))
(4.19) 1# (b + (20 + prC))
)
)

ﬂ/(bn + ﬁn(zn + ,Ono ,
B(bn + nn(zn + ,OnQ) 7 (an t nn(zn + PnC))>Gn(C)

By (4.16)—(4.19), we obtain

=G0+ pnnn<

frlz(bn+77n(zn + pn()) / . -1
1+# (bt ot o)) X G'(¢) in C\ G ().

By Hurwitz’s theorem, either G'({) =1 or G'({) # 1 in C. This contradicts
to Lemma 3.1.

Set o, = exp(—|an|"(f)_5£), Ap = exp (—|an|°'(f)_6€), Sn(z) == F"Z(Z)
and S,,(2) := Sp(Anz). We claim that

(4.20) S(1,5,(2)) > exp (Jan| 7 73%) for sufficiently large n.

Clearly, A(by, d,) C A(0,0,) and S(A(0,0,,), Fy) > S(A(by, 0y), Fy,) for suf-
ficiently large n. Since {* — 0 as n — oo, for sufficiently large n we have

On

(4.21) S(;,Fn()\nz)) > S(An

Fa(0n2)) = S(00, Fal2)) > exp (jan| 7).
It follows from Lemma 2.9 that

(4.22) S(l Fn()\nz)) - S(

. 1 Fo(\2) z)

2’ z

Analysis Mathematica 47, 2021



ON THE DISTRIBUTION OF MEROMORPHIC FUNCTIONS 253

Fo(An log 5 — log 2
<s(1, (z Z)) L S(1,2)+ 08 logZOg

for sufficiently large n. (4.21) and (4.22) imply

Fn()\nz)>

(4.23) S(l, > exp (|an,| 7 7%) for sufficiently large n.

By (2.1) and Lemma 2.7, for sufficiently large n we have

F,(Anz)

F,(\n2) _
> 2 n n > O'(f) 3e
A2 ) > )\nS<1, 8 ) > exp (|ay,| ).

S(1,8(2)) = 5 (1,
We consider the following two cases.

Case 1: 5(0) =0. Set D, :={z | |Sn(2)| =3, |z]| < 2\,}. We claim that

D,, is non-empty set for sufficiently large n. Otherwise, taking a subse-

quence and renumbering, we may assume that ID,, is empty set. Noting that

5,(0) = oo, we see that |S,(z)| > 3 in A(0,2). Thus we have

n<2, _ ! _ ) — 0.
(Sn(2) = 1)(Sn(z) —2)(Sn(z) —3)

By Lemma 2.6, there exists M > 0 such that S(1,S,(z)) < M. This contra-
dicts (4.20).
Set

(20) Q= 0O e 68,00,

n o exp(Yn(tn())
where t,, is one of an element of ID,, of smallest modulus. Now, we have
(bl) t, # 0 and |t,,| < 2\, for sufficiently large n, and
(b2) |Sp(tn¢)| > 3 and T,,(C) # 0 for sufficiently large n in A.

Noting that S,(0) = oo, we see that t, # 0. By the definition of D,,,
[tn] < 2\, for sufficiently large n. Thus (b1) holds. Since ¢, is one of an ele-
ment of D, of smallest modulus and 0 is a pole of S,,(z), we have |.S,, (t,{)| > 3
in A. By (4.24), T,,(¢) # 0 for sufficiently large n in A’. By (al), f,(0) # 0
and hence T,,(0) # 0 for sufficiently large n. Thus (b2) holds.

By Lemma 2.10, {7},} is normal in C\ {0}. Taking a subsequence and

renumbering, we may assume that 7,,(¢) = T'(¢) in C \ {0}. By (4.24),
IT(1)| = nh—{go T (1)| = nh_{gO 1B(tn)Sn(tn)| = 3.

Thus 7-1(¢) is a meromorphic function in C\ {0}. By (b2) and the maxi-
mum principle, T, (¢) = T~'(¢) in A. Then we have T,,(¢) = T(¢) in C,
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where T'(¢) is a meromorphic function in C, whose zeros have multiplicity
at least 3.

We claim that either 7"(¢) — (™ =0 or T'({) — (™ # 0 in C. For any
R > 0, we have

7 (E Q) = 1 (an = bn + tnC)| < M(|2an],7)
< exp(|2an /%) < exp(|an|7 )
for sufficiently large n in A(0, R). Thus we have
(4.25) tnyh (tnC) = 0 in C.
An elementary calculation shows that

/ _ frlz(tnC) . / fn(tnC)
Tl = i exp(rn(tn0)) ~ ) gt enn (820))

and then, by (4.25),

(426, T = THO+ 0 OTO = T in €V T )
Set
(4.27) Un(() = f;l(tng) - Oé(tnC) _ frlz(tng) _ IB(t’I’LC) )

tm exp(yn(tnC)) B tm exp(Vn(tn()) tn

By (4.26) and (4.27), we see that

(4.28) Un(Q) = T'(¢) —¢™ in C\ T} (c0).
By (al), it is easy to see that

(4.29) Un(¢) # 0 for sufficiently large n.

By (4.28), (4.29) and Hurwitz’s theorem, either 7(¢) — (™ =0 or T'({) — ¢™
#01in C.
Assume that 7"(¢) —¢™ = 0 in C. Since all zeros of T'(¢) have multiplicity

at least 3, we obtain 7'(¢) = 1(;:11 which contradicts the fact that |7°(1)| = 3.

Thus 77({) — (™ # 0 in C. By Lemma 3.2, m = 1 and T'({) = (Zc(z_il);, where
c1 is a nonzero constant. Then

RO 5 €-9)
(4.30) Tn(C) = £2 exp (Y (tn()) > 2(¢ —361)
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By Hurwitz’s theorem, there exist sequences (o, — 031 and (o n — €1 SUCh

that T(Go) = 0 and T(Goon) = 00. Set Tn(C) = (") - Tu(C). By the

maximum principle,

_ ~ Con 1,
Tnl0) = <<<— <§:n>3 Ta(Q) =, nC.

Set Ey, := {2 | [Sn(2)| = 3, Altn| < |2] < 2X,}, where

A=max{[¢]: [To(Q)] =1, |Tu(¢)] = 2 or |T(¢)] = 3}.

We claim that E, is non-empty set for sufficiently large n. Otherwise,
taking a subsequence and renumbering, we may assume that E,, is empty
set. By (4.30) and Hurwitz’s theorem,

n<2, ~ ~ 1 ~ ) =9.
(Sn(z) = 1)(Sn(2) = 2)(Sn(2) = 3)

By Lemma 2.6, there exists M > 0 such that S(1,S,(z)) < M. This contra-
dicts (4.20).
Set

(4.31) R, (€) = In(rn€)

— 27
= e ) = E B8 (a6),

where r,, is one of an element of E,, of smallest modulus.
We claim that
(cl) |rn] < 2A, for sufficiently large n,
(c2) j» — oo as n — oo, and
(¢3) Rn(€) has a unique (multiple) zero '
in A.
By the definition of E,,, (c1) holds. By (4.30) and Hurwitz’s theorem,
(c2) and (c3) holds.
By Lemma 2.10, {R,(£)} is normal in C\ {0}. Taking a subsequence

and renumbering, we may assume that R, (¢) = R(¢) in C\ {0}. By (4.31),

- Co,n for sufficiently large n

n

[R()| = lim |Ry(1)] = lim [5(ta)Ra(r)| = 3.

Thus R(§) is a nonzero meromorphic function in C\ {0}. Using the method
of dealing with {7}, }, we can show either R'(§) —{=0or R'(§) —{#0 in

C\ {0}.

Analysis Mathematica 47, 2021



256 P. YANG and S. WANG

Set ﬁn(g) = (f__;zzci):)s : Rn(g) Then
(4.32) R 2 O e o

€2
Clearly, R, (&) has no zeros for sufficiently large n in A. By the maximum

principle, {R,(€)} converges in the spherical metric uniformly on A(0,1/2).
Then we can assume that

(4.33) Ro(&) 2 R(¢) inC.

(4.32) and (4.33) imply that R() can be extended to meromorphic function
€2R(¢) in C. Noting that

= - - 1
(4.34) R(0) = lim R,(0) = lim T,(0) =,
we see that & = 0 is a zero of order 2 of R(§) and R"(0) = 1.

Suppose that R'(§) — &£ =0in C\ {0}. Then R'(§) — ¢ =0 in C. Noting
that £ = 0 is a zero of order 2 of R(£), we have R(§) = 522 which contradicts
the fact that |R(1)] =3. Thus R'(§) —€¢#0 in C\ {0}. By Lemma 3.3,
R(€) = c1£2, where c1 (# 1/2) is a nonzero constant. A simple calculation
shows R"(0) = R"(&)|¢=0 = 2¢1 # 1, a contradiction.

Case 2: [3(0) = co. Taking a subsequence and renumbering, we may
assume that S, (0) — ¢y as n — oo, where ¢ is a finite complex number or
Cop = OQ.

Subcase 2.1: co =0. Set P, := {z||Sn(2)] =3, |2| <2\,}. We claim
that P, is non-empty set for sufficiently large n. Otherwise, taking a subse-
quence and renumbering, we may assume that P, is empty set, and hence
|Sn(2)] < 3 in A(0,2). Thus we have

n(2, _ ! _ ) —0.
(Sn(2) = 3)(Sn(2) —4)(Sn(z) —5)

By Lemma 2.6, there exists M > 0 such that S(1, 5, (z)) < M. This contra-
dicts (4.20).

Set
fn(tnC)
exp(n(tn())

where t, is one of an element of P, of smallest modulus. Using a similar
argument presented in Case 1, we can get that

(4.35) Tu(Q) = 0 = (" B(00) S (taC),
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(d1) t, # 0 and |t,,| < 2\, for sufficiently large n, and
(d2) |Sn(tn¢)] < 3 and |T,,(¢)| < 4 for sufficiently large n in A.

By Lemma 2.10, {T,,} is normal in C\ {0}. Taking a subsequence and
renumbering, we may assume that 7,(¢) = T(¢) in C\ {0}. By (4.35),
IT(1)] = limp o0 [T5(1)] = limp o0 |B(tn)Sn(tn)| = 3. Thus T(¢) is a mero-
morphic function in C\ {0}. By (d2) and the maximum principle, 7,,(¢)
= T(¢) in A. Then we have T;,(¢) = T(¢) in C. where T(¢) is a meromor-
phic function in C, whose zeros have multiplicity at least 3. By (d2), we see
that T'(z) # oo in A. The same argument presented in Case 1 show that
either 77(¢) =™ =0or T"(() — (™ # 0 in C.

We claim that T'(¢) # ¢™ in C. Suppose that 7"(¢) —¢"™ =0 in C. It
is easy to see that m # —1. (Otherwise, T'(¢) is a multivalued function.)

Noting that all zeros of T'(¢) have multiplicity at least 3, we have T'(¢) =
(1+m)1<,m,1 which contradicts the fact that |7°(1)| = 3. Thus 7(¢) — ¢"™ #0
in C. Since T(¢) # oo in A, we have T'(¢) # ("™ in C.

By Theorem D and Lemma 2.1, we may assume that 7(¢) = 3¢, where
0 is a constant. Thus we have

(4.36) T,(O) 2 T(¢) =3e", S,(tnl) = <) X 3e"¢™™1 inC.

¢ B(tnC)
Set@n.—{zHS )| =3, Altn| < |2| <8\, }, where
A =max{[¢| [ ITa(¢)| =1, [T.(Q)] = 2 or |TW(¢)| = 3}

We claim that Q,, is non-empty set for sufficiently large n. Otherwise, taking
a subsequence and renumbering, we may assume that Q,, is empty set. By
(4.36) and Hurwitz’s theorem, we see that

n(7, ~ ! _ >:—3(m+1).
(Sn(z) = 1)(Sn(z) — 2)(Sn(z) — 3)

By Lemma 2.6, there exists M > 0 such that S(1,S,(z)) < M. This contra-
dicts (4.20).

Set

fa(rng)
rp exp(Vn(rn())

where r,, is one of an element of Q,, of smallest modulus. We claim that
(el) || < 8\, for sufficiently large n,
(e2) j* — oo as n — 00, and

(e3) V, (C) # 0 in A for sufficiently large n.

(4'37) Vn(C) = = <m+1,§(7“ng)5n(7“n<),
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By the definition of @Q,, (el) holds. By (4.36) and Hurwitz’s theorem,
(€2) holds. Since T,,(¢) = 3¢ in C, we see that f,,(z) # 0 in A(0,4t,]) for
sufficiently large n. By (4.36) and the definition of Q,,, we have |S,(z)] > 2
and hence f,(z) # 0 in A(0, |r,|) \ A(0,3]|t,|) for sufficiently large n. Now,
fn(2) # 0 in A(O, |ry|) for sufficiently large n. Thus (e3) holds by (4.37).

By Lemma 2.10, {V,,} is normal in C\ {0}. Taking a subsequence and

renumbering, we may assume that V,,(¢) = V(¢) in C\ {0}. By (4.37),
|V(1)| = nh—{go |Vn(1)| = nh—{Ic}o |5(rn)sn(rn)| =3.

Thus V(¢) and V~1(¢) are meromorphic functions in C\ {0}. By (d3) and

the maximum principle, V,7'(¢) = V=(¢) in A. Then V,,(¢) 2 V(¢) in C,
where V(() is a meromorphic function in C, whose zeros have multiplicity at
least 3. The same argument presented in Case 1 show that either V'(¢{) — (™
=0or V'({()—¢™#0in C.
We claim that V'(¢) —¢™ # 0 in C. Suppose that V'({)—¢™ =0 in C.
Since all zeros of V(¢) have multiplicity at least 3, we have V(() =
L which contradicts the fact that |V(1)| = 3.

(I+m)¢-—m=1
By an elementary calculation we have
Fr(rng) / '
4.38 =V, () + rn¥n (rnC) Vi (Q).
(135) e cy) = VAQ T (e OVa(©)

Using the same argument presented in Case 1, we can show that
(4.39) Ty (rn¢) = 0 in C.
By (4.38) and (4.39), we have

Fa(rn€) — an(ra() _ fa(rn()) _(MB(r
A0 b (ra(ra0)) — P exp(a(rac)) ~ . Pn(nC)

= V'(¢)—¢™ inC\ V(o).
By (al), we see that

Fr(rn€) — an(rnd)

(4.41) i exp(Yn(rnd))

# 0 for sufficiently large n.

By (4.41) and the maximum principle,

[ Farad) = ()]

= [V'(¢)=¢™™" inC.
exp(u(rC) |~ HOZ WO e

(4.42)  Ln(C)
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By (4.35), (4.37) and (e2), we have

V(0) = lim V,(0) = lim RO Tn(O)C")_m_l = .

n—00 n—00 7{{""'1 eXp(Vn(O)) n—00

We assume that 0 is a pole of V(() of order k. Clearly, 0 is a zero of L(()
order at most max{k + 1, —m}. By Hurwitz’ theorem, V,(¢) has k poles
¢; — 0 and hence f,(r,() has k poles ¢; — 0, where i = 1,2,..., k. By (al),
we have f,,(0) # oo. Thus (; # 0 for i =1,2,...,k. By (4.42), L,(¢{) has at
least k + 1 non-zero zeros (; — 0 and a zero ( = 0 of order —m. By Hurwitz’
theorem, 0 is a zero of L(() of order at least k + 1 —m. Thus we must have
kE+1—m <max{k+ 1,—m}. This is a contradiction.

Subcase 2.2: ¢y # 0. In this case, we must have m = —1. In fact, 0 is a
zero of order —m — 1 of S, (2) provided that m < —2, and hence ¢y = 0.

Set

leol /2 for ¢y # oo,

Y, = {Z ‘ |Sn(z)| = Czkb |Z| < ZA”}’ where Ca - {1 for Cop = OO

We claim that Y,, is non-empty set for sufficiently large n. Otherwise,
taking a subsequence and renumbering, we may assume that Y, is empty
set. Thus we have

1
n(2, . ~ ~
( (Sn(2) = [€51/2) (Sn(2) = [€51/3) (Sn(z) — |CE§|/4))

By Lemma 2.6, there exists M > 0 such that S(1,S,(z)) < M. This contra-
dicts (4.20).
Set

(4.43) Ta(C) = exiny(z?&))

where t,, is one of an element of Y,, of smallest modulus. Using a similar
argument presented in Case 1, we can get that

(f1) t,, # 0 and [t,| < 2\, for sufficiently large n, and
(£2) [Sn(tnQ)| > ¢ and |T,,(C)| > /2 for sufficiently large n in A.

Using the same argument presented in Subcase 2.1, we may assume
that 7,(¢) = T(¢) in C. Clearly, all zeros of T(¢) have multiplicity at
least 3. By (4.43), |T'(1)| = limy— 00 |70 (1)] = limy 00 |B(tn)5n(tn)| = ¢}
and T(0) = limy 00 Ty (0) = limp,_y00 B(0)S,(0) = ¢o. Thus T(¢) is a non-
constant meromorphic function.

The same argument presented in Case 1 show that either 77(¢) — (1
=0or T'(¢) — ¢t # 0 in C. Suppose that 7"(¢) — ¢~ =0 in C. Then T(¢)

= B\(tng)sn(tng)a
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is a multivalued function. A contradiction. Thus 7"(¢) — ¢! # 0 in C. Sup-
pose that ¢y # oo. Noting that T'(0) = ¢, we have T"(¢) # ¢~ in C. By
Theorem D and Lemma 2.1, T'({) is a constant function. This is a contra-
diction. Then we have ¢o = co. It follows from (4.43) that 7,,(¢) — oo and
T(0) = co. Using the method of dealing with {V,,} in Subcase 2.1, we can
obtain a contradiction.
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