ON THE DISTRIBUTION OF MEROMORPHIC FUNCTIONS OF POSITIVE HYPER-ORDER

P. YANG* and S. WANG

College of Applied Mathematics, Chengdu University of Information Technology,
Chengdu 610225, China

e-mails: yangpai2009@foxmail.com, ws.cuit@foxmail.com

(Received February 13, 2020; revised June 27, 2020; accepted July 1, 2020)

Abstract. Let f(z) be a transcendental meromorphic function, whose zeros have multiplicity at least 3. Set $\alpha(z) := \beta(z) \exp{(\gamma(z))}$, where $\beta(z)$ is a nonconstant elliptic function and $\gamma(z)$ is an entire function. If $\sigma(f(z)) > \sigma(\alpha(z))$, then $f'(z) = \alpha(z)$ has infinitely many solutions in the complex plane.

1. Introduction

Hayman [1] proved the following result.

Theorem A. Let f be a transcendental meromorphic function and α be a finite nonzero complex number. If $f(z) \neq 0$ for each z, then $f' = \alpha$ has infinitely many solutions in \mathbb{C} .

A meromorphic function $\alpha(z)$ is called a small function with respect to f(z) provided that $T(r,\alpha(z)) = o\{T(r,f(z))\}$ as $r \to \infty$ outside of a possible exceptional set of r of finite linear measure.

Naturally, we ask that whether Theorem A is valid or not if the finite non-zero complex number α is replaced by a small function $\alpha(z)$ related to f(z).

The defect relation for small functions [10, Corollary 2] due to Yamanoi directly implies the following two theorems.

THEOREM B. Let f be a transcendental meromorphic function, and let α be a small meromorphic functions with respect to f. Assume that all but finitely many zeros of f' have multiplicity at least 3. Then $f'(z) = \alpha(z)$ has infinitely many solutions in \mathbb{C} .

^{*} Corresponding author.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11671191, 11871216.

 $[\]label{lem:keywords} \textit{Key words and phrases:} \ \text{meromorphic function, characteristic function, normal family.} \\ \textit{Mathematics Subject Classification:} \ 30\text{D}35, \ 30\text{D}45.$

THEOREM C. Let f be a transcendental meromorphic function, and let α_1 and α_2 be two small meromorphic functions with respect to f. Then either $f'(z) = \alpha_1(z)$ or $f'(z) = \alpha_2(z)$ has infinitely many solutions in \mathbb{C} .

In 2008, Theorem A was generalized by Pang, Nevo and Zalcman.

THEOREM D [5]. Let f be a transcendental meromorphic function, whose zeros are multiple, and let $\alpha (\not\equiv 0)$ be a rational function. Then $f' = \alpha$ has infinitely many solutions in \mathbb{C} .

We wonder if Theorem D still holds provided that $\alpha(z)$ is a transcendental meromorphic function. In this direction, we proved the following result.

THEOREM E [12]. Let f(z) be a transcendental meromorphic function, whose poles are multiple and whose zeros have multiplicity at least 3. Set $\alpha(z) := \beta(z) \exp{(\gamma(z))}$, where $\beta(z)$ is a nonconstant elliptic function and $\gamma(z)$ is an entire function. If $\sigma(f(z)) > \sigma(\alpha(z))$, then $f'(z) = \alpha(z)$ has infinitely many solutions in \mathbb{C} .

In this paper we show the assumption that all poles of f are multiple in Theorem E is unnecessary. We extend Theorem E as follows.

THEOREM 1.1. Let f(z) be a transcendental meromorphic function, all but finitely many of whose zeros have multiplicity at least 3. Set $\alpha(z) := \beta(z) \exp(\gamma(z))$, where $\beta(z)$ is a nonconstant elliptic function and $\gamma(z)$ is an entire function. If $\sigma(f(z)) > \sigma(\alpha(z))$, then $f'(z) = \alpha(z)$ has infinitely many solutions in \mathbb{C} (including the possibility of infinitely many common poles of f(z) and $\alpha(z)$).

2. Notation and preliminary lemmas

Let \mathbb{C} be the complex plane and D be a domain in \mathbb{C} . For $z_0 \in \mathbb{C}$ and r > 0, we write $\Delta(z_0, r) := \{z \mid |z - z_0| < r\}$, $\overline{\Delta}(z_0, r) := \{z \mid |z - z_0| \le r\}$, $\Delta'(z_0, r) := \{z \mid 0 < |z - z_0| < r\}$, $\Delta := \Delta(0, 1)$ and $\Delta' := \Delta'(0, 1)$. Let n(r, f) denote the number of poles of f(z) in $\Delta(0, r)$ (counting multiplicity). We write $f_n \stackrel{\chi}{\Rightarrow} f$ in D to indicate that the sequence $\{f_n\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_n \Rightarrow f$ in D if the convergence is in the Euclidean metric. For f meromorphic in D, we write

(2.1)
$$f^{\#}(z) := \frac{|f'(z)|}{1 + |f(z)|^2},$$

$$S(D, f) := \frac{1}{\pi} \iint_D [f^{\#}(z)]^2 \, \mathrm{d}x \, \mathrm{d}y \text{ and } S(r, f) := S(\Delta(0, r), f).$$

The Ahlfors–Shimizu characteristic is defined by $T(r, f) = \int_0^r \frac{S(t, f)}{t} dt$. The order $\rho(f)$ and the hyper-order $\sigma(f)$ of a meromorphic function f are defined as follows:

$$\rho(f) := \limsup_{r \to \infty} \frac{\log T(r,f)}{\log r} \ \text{ and } \ \sigma(f) := \limsup_{r \to \infty} \frac{\log \log T(r,f)}{\log r}.$$

LEMMA 2.1 [9]. Let m be a positive integer and R be a rational function. If $R'(z) \neq z^{-m}$ for each z, then R is a constant function.

LEMMA 2.2 [8]. Let $R(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0 + \frac{Q(z)}{P(z)}$, where a_0 , a_1, \ldots, a_n are constants with $a_n \neq 0$, P(z) and Q(z) are two coprime polynomials with $\deg Q(z) < \deg P(z)$. If $R'(z) \neq 1$, then $R(z) = z + a + \frac{b}{(z-c)^m}$, where $a, b \neq 0$, c are constants and m is a positive integer.

LEMMA 2.3 [8]. Let f be a nonconstant meromorphic function of finite order in \mathbb{C} , whose zeros are multiple. If $f'(z) \neq 1$ for each z, then $f(z) = \frac{(z-a)^2}{z-b}$ for some a and $b \neq a$.

LEMMA 2.4. Let \mathcal{F} be a family of meromorphic functions in D, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0. If \mathcal{F} is not normal at z_0 , then there exist

- (a) points $z_n, z_n \to z_0$;
- (b) functions $f_n \in \mathcal{F}$; and
- (c) positive numbers $\rho_n \to 0$

such that $\rho_n^{-k} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \stackrel{\times}{\Rightarrow} g(\zeta)$ in \mathbb{C} , where g is a nonconstant meromorphic function in \mathbb{C} such that $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$. In particular, g has order at most 2.

This is the local version of [6, Lemma 2] (cf. [3, Lemma 1]; [13, pp. 216–217]). The proof consists of a simple change of variable in the result cited from [6] (cf. [4, pp. 299–300]).

LEMMA 2.5 [2]. Let k be a positive integer and let $\{f_n\}$ be a family of meromorphic functions in Δ , all of whose zeros have multiplicity at least k+1. If $a_n \to 0$ and $f_n^{\#}(a_n) \to \infty$, then there exist

- (a) points $z_n \to 0$;
- (b) a subsequence of $\{f_n\}$ (still denoted by $\{f_n\}$); and
- (c) positive numbers $\rho_n \leq \frac{M}{k+1\sqrt{f_n^\#(a_n)}}$, where M is a constant which is in-

dependent on n, such that $g_n(\zeta) = \rho_n^{-k} f_n(z_n + \rho_n \zeta) \stackrel{\chi}{\Rightarrow} g(\zeta)$ in \mathbb{C} , where g is a nonconstant meromorphic function in \mathbb{C} such that $g^{\#}(\zeta) \leq g^{\#}(0) = k + 1$. In particular, g has order at most g.

LEMMA 2.6 [7]. Let f be a meromorphic function in Δ , and let a_1 , a_2 , a_3 be three distinct complex numbers. Assume that the number of zeros of $\prod_{i=1}^{3} (f(z) - a_i)$ in Δ is $\leq n$, where multiple zeros are counted only once. Then

$$S(r, f) \le n + \frac{A}{1 - r}, \quad 0 \le r < 1,$$

where A > 0 is a constant, which depends on a_1 , a_2 , a_3 only.

LEMMA 2.7 [11]. Let f be a meromorphic function in \mathbb{C} and α be a nonzero constant. Then $(\alpha f)^{\#}(z) \leq \max\{|\alpha|, 1/|\alpha|\}f^{\#}(z)$.

LEMMA 2.8 [12]. Let f(z) be a meromorphic function of hyper-order $\sigma(f) > 0$, and let $\varepsilon \in (0, \sigma(f))$ denote a fixed constant. Then there exist $a_n \to \infty$ and $\delta_n \to 0$ such that

$$S(\Delta(a_n, \delta_n), f) \ge \exp(|a_n|^{\sigma(f) - \varepsilon}),$$

$$f^{\#}(a_n) \ge \exp(|a_n|^{\sigma(f) - \varepsilon}) \quad and \quad \delta_n \le \exp(-|a_n|^{\sigma(f) - \varepsilon}).$$

LEMMA 2.9 [12]. Let f(z), g(z) be meromorphic functions in $\Delta(0, \rho)$ and let r, R be positive numbers satisfying $r < R < \rho$. Then

$$\begin{split} S(r,fg) &\leq S(R,f) + S(R,g) \\ &+ \frac{1}{2\pi} \Bigl(\log \frac{R}{r}\Bigr)^{-1} \int_0^{2\pi} \log \bigl(|g(r\mathrm{e}^{i\theta})| + |g(r\mathrm{e}^{i\theta})|^{-1}\bigr) \,\mathrm{d}\theta. \end{split}$$

LEMMA 2.10. Assume that the conditions of Theorem 1.1 are satisfied, $f'(z) - \alpha(z)$ has at most finitely many solutions, and $\beta(z) = z^m \widehat{\beta}(z)$, where $\widehat{\beta}(z) (\neq 0)$ is holomorphic in Δ and m is an integer. Let $a_n \to \infty$ and $b_n \to 0$ be sequences of complex numbers such that $\beta(z + a_n - b_n) = \beta(z)$. Let $\{t_n\}$ be a sequence of positive numbers such that $t_n \leq \exp(-|a_n|^{\lambda})$, where $\lambda \in (\sigma(\alpha), \sigma(f))$. Set $T_n(\zeta) := \frac{f(a_n - b_n + t_n \zeta)}{t_n^{m+1} \exp(\gamma(a_n - b_n + t_n \zeta))}$. Then $\{T_n(\zeta)\}$ is normal in $\mathbb{C} \setminus \{0\}$.

Using the same argument as in the proof of [12, Lemma 3.4], we can show Lemma 2.10 holds. In fact, the condition that all poles of f(z) are multiple is not necessary in the proof of [12, Lemma 3.4].

3. Auxiliary lemmas

Lemma 3.1. Let f be a nonconstant meromorphic function, whose zeros have multiplicity at least 3. Then for any finite nonzero complex number c, f'-c has at least one zero in \mathbb{C} .

PROOF. Suppose that there exists a finite non-zero complex number c such that f'-c has no zeros in \mathbb{C} . By Theorem D and Lemma 2.3, $f(z)=\frac{c(z-a)^2}{z-b}$ for some a and $b \neq a$. This contradicts the fact that all zeros of f have multiplicity at least 3. \square

LEMMA 3.2. Let n be a positive integer, and R(z) be a rational function, whose zeros have multiplicity at least 3. If $R'(z) \neq z^n$ for each z, then n = 1 and $R(z) = \frac{(z-\frac{c}{3})^3}{2(z-c)}$, where c is a nonzero constant.

PROOF. We consider the following two cases.

Case 1: R(z) is a polynomial. Clearly, we have $R(z) = \frac{z^{n+1}}{n+1} + az + b$ in \mathbb{C} , where $a \neq 0$ and b are constant. However $R'(z) = z^n + a$ which contradicts that all zeros of R(z) have multiplicity at least 3.

Case 2: R(z) is not a polynomial. Since $R'(z) \neq z^n$, we have $\left(R(z) - \frac{z^{n+1}}{n+1} + z\right)' \neq 1$ for each $z \in \mathbb{C}$. By Lemma 2.2,

$$R(z) = \frac{z^{n+1}}{n+1} + a + \frac{b}{(z-c)^m} = \frac{z^{n+1}(z-c)^m + a(n+1)(z-c)^m + b(n+1)}{(n+1)(z-c)^m},$$

where $a, b \neq 0$ and c are constant, m is a positive integer. Then we have

(3.1)
$$R'(z) = z^n - \frac{bm}{(z-c)^{m+1}},$$

(3.2)
$$R''(z) = nz^{n-1} + \frac{bm(m+1)}{(z-c)^{m+2}}.$$

By (3.1) and (3.2), we see that R(z) has a unique (multiple) zero $z_0 = \frac{n}{m+n+1}c$.

We claim that $c \neq 0$. Otherwise, substituting c = 0 into (3.1), we obtain $R'(z) = \frac{z^{m+n+1}-bm}{z^{m+1}}$ which contradicts that all zeros of R(z) have multiplicity at least 3.

Set

$$P(z) := z^{n+1}(z-c)^m + a(n+1)(z-c)^m + b(n+1).$$

A simple calculation shows that

$$R(z) = \frac{z^{n+1}(z-c)^m + a(n+1)(z-c)^m + b(n+1)}{(n+1)(z-c)^m} = \frac{P(z)}{(n+1)(z-c)^m}.$$

Clearly, P(z) and R(z) have the same zeros with the same multiplicities. Then we have (3.3)

$$P(z) = z^{n+1}(z-c)^m + a(n+1)(z-c)^m + b(n+1) = \left(z - \frac{cn}{m+n+1}\right)^{m+n+1}.$$

Comparing the coefficients of the term z^{m+n} , we obtain m=n. Take the derivative of both sides of the equation (3.3), we obtain

(3.4)
$$(z-c)^{n-1} \left[(n+1)z^n(z-c) + nz^{n+1} + an(n+1) \right]$$
$$= (2n+1) \left(z - \frac{cn}{2n+1} \right)^{2n}.$$

Comparing the constant terms of both sides in (3.4), we see that $(z-c)^{n-1}$ must be constant and thus m=n=1. Then $z_0=\frac{c}{3}$ and $R(z)=\frac{(z-\frac{c}{3})^3}{2(z-c)}$, where c is a constant. \square

LEMMA 3.3. Let $R(z) (\not\equiv 0)$ be a rational function, having a zero of order 2 at the point z=0. If $R'(z) \neq z$ for each $z \in \mathbb{C} \setminus \{0\}$, then $R(z)=cz^2$, where $c \neq 1/2$ is a nonzero constant.

PROOF. Clearly, $R(z) - \frac{z^2}{2}$ is not a constant. We assume that z = 0 is a zero of $R(z) - \frac{z^2}{2}$ of order $\lambda \ (\geq 2)$. Set $\frac{q(z)}{p(z)} := R(z) - \frac{z^2}{2}$, where p(z) and q(z) are two coprime polynomials.

Case 1: $\deg p(z) \neq \deg q(z)$.

(3.5)
$$R'(z) - z = \left(\frac{q(z)}{p(z)}\right)' = \frac{q'(z)p(z) - p'(z)q(z)}{p^2(z)} \neq 0 \text{ for each } z \in \mathbb{C} \setminus \{0\}.$$

Let $q(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_0$ and $p(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_0$, where $a_m (\neq 0), \dots, a_1, a_0$ and $b_n (\neq 0), \dots, b_1, b_0$ are constants. Clearly, $m \geq \lambda \geq 2$,

$$q'(z)p(z) - p'(z)q(z) = (m-n)a_m b_n z^{m+n-1} + \dots + (a_1b_0 - a_0b_1)$$

and z = 0 is a zero of order $\lambda - 1$ of q'(z)p(z) - p'(z)q(z). We denote non-zero zeros of q'(z)p(z) - p'(z)q(z) by c_1, c_2, \ldots, c_l , and the related orders denote by n_1, n_2, \ldots, n_l .

We deduce from (3.5) that the nonzero zeros of q'(z)p(z)-p'(z)q(z) are the zeros of $p^2(z)$. Since q(z) and p(z) are coprime, we can see from (3.5) that c_i is the zero of p(z) with order n_i+1 $(i=1,2,\ldots,l)$. Then $n_1+n_2+\cdots+n_l+\lambda-1=m+n-1$ and $2(n_1+n_2+\cdots+n_l+l)\leq 2n$. It is easily obtained that $(m-\lambda)+l\leq 0$. We have $l=0,\ m=\lambda,\ q(z)=a_mz^m$ and $q'(z)p(z)-p'(z)q(z)=(m-n)a_mb_nz^{m+n-1}$. We also have $q'(z)p(z)-p'(z)q(z)=a_mz^{m-1}(mp(z)-zp'(z))$. If $\deg p(z)\neq 0$, then $[mp(z)-zp'(z)]\big|_{z=0}=0$ and thus p(0)=0 which contradicts the fact z=0 is a zero of $\frac{q(z)}{p(z)}$. Now $\deg p(z)=0$ and $R(z)=cz^m$, where $c\neq 0$ is a constant. By (3.5), $cmz^{m-2}-1\neq 0$ for each $z\in \mathbb{C}\setminus\{0\}$. Then $R(z)=cz^2$, where $c\neq 1/2$ is a nonzero constant.

Case 2: $\deg p(z) = \deg q(z)$. Write $R(z) - \frac{z^2}{2} = c + \frac{r(z)}{p(z)}$, where $c \neq 0$ is a constant, p(z) and r(z) are two coprime polynomials and $\deg p(z) > \deg r(z)$. Now, we have

$$(3.6) \left(c + \frac{r(z)}{p(z)}\right)' = \left(\frac{r(z)}{p(z)}\right)' = \frac{q'(z)p(z) - p'(z)q(z)}{p^2(z)} \neq 0 \text{ for each } z \in \mathbb{C} \setminus \{0\}.$$

Let $r(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_0$ and $p(z) = b_n z^n + b_{n-1} z^{n-1} + \cdots + b_0$, where $a_m (\neq 0), \ldots, a_1, a_0$ and $b_n (\neq 0), \ldots, b_1, b_0$ are constants. Since z = 0 is a zero of $R(z) - \frac{z^2}{2}$ of order $\lambda (\geq 2)$, we have $r(0) = a_0 \neq 0$ and $p(0) = b_0 \neq 0$. Using the same argument presented in Case 1, we can show that $r'(z)p(z) - p'(z)r(z) = (m-n)a_m b_n z^{m+n-1}$. Then

$$(3.7) \quad (m-n)a_mb_nz^{m+n-1} + \dots + (a_1b_0 - a_0b_1) = (m-n)a_mb_nz^{m+n-1}.$$

Comparing the coefficients of the term z^i in (3.7) for i = 0, 1, 2, ..., m - 1, we obtain

$$\frac{a_1}{a_0} = \frac{b_1}{b_0}, \quad \frac{a_2}{a_0} = \frac{b_2}{b_0}, \quad \dots, \quad \frac{a_m}{a_0} = \frac{b_m}{b_0}.$$

Comparing the coefficients of the term z^i in (3.7) for $i = m, m+1, \ldots, n-1$, we obtain $b_{m+1} = b_{m+2} = \cdots = b_n = 0$, a contradiction. \square

4. Proof of Theorem 1.1

We assume that $f'(z) = \alpha(z)$ has at most finitely many solutions and derive a contradiction. In the following part, let $\varepsilon \in (0, (\sigma(f) - \sigma(\alpha))/8)$ denote a fixed constant.

By our assumptions,

(4.1)
$$f'(z) \neq \alpha(z)$$
 and $\frac{f'(z)}{\alpha(z)} \neq 1$ for sufficiently large $|z|$.

Set $F(z) := \frac{f(z)}{\alpha(z)}$. Clearly, $\sigma(F) = \sigma(f)$. Noting that $\alpha(z) = \beta(z) \exp{(\gamma(z))}$, we have $\sigma(F) = \sigma(f) > \sigma(\alpha) \ge \sigma(\exp{(\gamma)}) = \rho(\gamma)$. By an elementary calculation we have

(4.2)
$$\frac{f'(z)}{\alpha(z)} = F'(z) + F(z) \left(\frac{\beta'(z)}{\beta(z)} + \gamma'(z) \right).$$

By Lemma 2.8, there exist $a_n \to \infty$ and $\delta_n \to 0$ such that

(4.3)
$$S(\Delta(a_n, \delta_n), F) \ge \exp(|a_n|^{\sigma(f) - \varepsilon}),$$

$$F^{\#}(a_n) \ge \exp(|a_n|^{\sigma(f) - \varepsilon}) \text{ and } \delta_n \le \exp(-|a_n|^{\sigma(f) - \varepsilon}).$$

Let ω_1 , ω_2 be the two fundamental periods of $\beta(z)$ and \mathfrak{P} be a fundamental parallelogram of $\beta(z)$. There exist integers i_n and j_n such that $b_n \in \mathfrak{P}$, where $b_n = a_n - i_n \omega_1 - j_n \omega_2$. Taking a subsequence and renumbering, we may assume that $b_n \to b^*$ as $n \to \infty$.

Without loss of generality, we may assume that $b^* = 0$, $\Delta \subset \mathfrak{P}$, and $\beta(z) = z^m \widehat{\beta}(z)$ for $z \in \Delta$, where $\widehat{\beta}(0) = 1$, $\widehat{\beta}(z) \neq 0$, ∞ in Δ , and m is an integer. For convenience, we set

$$(4.4) F_n(z) := F(a_n - b_n + z) for z \in \Delta, f_n(z) := f(a_n - b_n + z),$$

$$(4.5) \quad \alpha_n(z) := \alpha(a_n - b_n + z) \quad \text{and} \quad \gamma_n(z) := \gamma(a_n - b_n + z) \quad \text{for } z \in \Delta.$$

Taking a subsequence and renumbering if necessary, we may assume that

(a1)
$$f'_n(z) \neq \alpha_n(z) = \beta(z)\gamma_n(z)$$
 in Δ ,

(a2)
$$S(\Delta(b_n, \delta_n), F_n) \ge \exp(|a_n|^{\sigma(f)-\varepsilon})$$
 and $F_n^{\#}(b_n) \ge \exp(|a_n|^{\sigma(f)-\varepsilon})$,

(a3)
$$1 \neq \frac{f'_n(z)}{\alpha_n(z)} = F'_n(z) + F_n(z) \left(\frac{\beta'(z)}{\beta(z)} + \gamma'_n(z)\right)$$
 in Δ .

In fact, It follows from (4.1) and (4.5) that (a1) holds. Noting that $S(\Delta(b_n, \delta_n), F_n) = S(\Delta(a_n, \delta_n), F)$ and $F_n^{\#}(b_n) = F^{\#}(a_n)$, we see that (a2) holds by (4.3) and (4.4). Substituting $z = a_n - b_n + z$ into (4.2), we get that (a3) holds by (4.1) and (4.5).

We claim that $\beta(0) = 0$ or $\beta(0) = \infty$. On the contrary, suppose that $\beta(0) \neq 0, \infty$. Clearly, all zeros F_n have multiplicity at least 3 for sufficiently large n in Δ . By (a2) and Marty's criterion, $\{F_n\}$ is not normal at 0. Using Lemma 2.5 for k = 1, there exist points $z_n \to 0$, a subsequence of $\{F_n\}$ (still denoted by $\{F_n\}$) and positive numbers $\rho_n \leq \frac{M}{\sqrt{F_n^\#(b_n)}}$, where M is a constant which is independent on n, such that

(4.6)
$$G_n(\zeta) = \rho_n^{-1} F_n(z_n + \rho_n \zeta) \stackrel{\chi}{\Rightarrow} G(\zeta) \text{ in } \mathbb{C},$$

where G is a nonconstant meromorphic function in \mathbb{C} , whose zeros have multiplicity at least 3. By (a2), we see that

(4.7)
$$\rho_n \le M \exp\left(-\frac{1}{2}|a_n|^{\sigma(f)-\varepsilon}\right) \le \exp\left(-|a_n|^{\sigma(f)-2\varepsilon}\right)$$

for sufficiently large n. For any given R > 0, we have

$$(4.8) |\gamma'(a_n - b_n + z_n + \rho_n \zeta)| \le M(|2a_n|, \gamma')$$

$$\le \exp(|2a_n|^{\rho(\gamma) + \varepsilon}) \le \exp(|a_n|^{\sigma(\alpha) + 2\varepsilon})$$

for sufficiently large n in $\Delta(0, R)$. By (4.7) and (4.8), we see that

(4.9)
$$\rho_n \gamma'(a_n - b_n + z_n + \rho_n \zeta) \Rightarrow 0 \text{ in } \mathbb{C}.$$

Then

$$(4.10) \quad \frac{\beta'(z_n + \rho_n \zeta)}{\beta(z_n + \rho_n \zeta)} \Rightarrow \frac{\beta'(0)}{\beta(0)} \text{ in } \mathbb{C}, \text{ and thus } \rho_n \frac{\beta'(z_n + \rho_n \zeta)}{\beta(z_n + \rho_n \zeta)} \Rightarrow 0 \text{ in } \mathbb{C}.$$

Substituting $z = z_n + \rho_n \zeta$ into (a3), we have

$$(4.11) 1 \neq \frac{f'_n(z_n + \rho_n \zeta)}{\alpha_n(z_n + \rho_n \zeta)}$$

$$= G'_n(\zeta) + \left[\rho_n \frac{\beta'(z_n + \rho_n \zeta)}{\beta(z_n + \rho_n \zeta)} + \rho_n \gamma'(a_n - b_n + z_n + \rho_n \zeta)\right] G_n(\zeta).$$

By (4.9)-(4.11),

$$(4.12) 1 \neq \frac{f'_n(z_n + \rho_n \zeta)}{\alpha_n(z_n + \rho_n \zeta)} \Rightarrow G'(\zeta) \text{ in } \mathbb{C} \setminus G^{-1}(\infty).$$

By Hurwitz's theorem, either $G'(\zeta) \equiv 1$ or $G'(\zeta) \neq 1$ in \mathbb{C} . This contradicts to Lemma 3.1.

Next, we consider the cases $\beta(0) = 0$ and $\beta(0) = \infty$. We claim that $b_n \le \exp(-|a_n|^{\sigma(f)-3\varepsilon})$ for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that $b_n > \exp(-|a_n|^{\sigma(f)-3\varepsilon})$. Set

(4.13)
$$\eta_n := \exp\left(-|a_n|^{\sigma(f)-2\varepsilon}\right),$$

$$B_n(z) := \frac{F(a_n + \eta_n z)}{\eta_n} = \frac{F_n(b_n + \eta_n z)}{\eta_n} \text{ for } z \in \Delta.$$

Noting that $\eta_n \to 0$, $b_n \to 0$ and $\eta_n/b_n \to 0$ as $n \to \infty$, we see that

(4.14)
$$b_n + \eta_n z \in \Delta$$
 and $b_n + \eta_n z \neq 0$ for sufficiently large n in Δ ,

and hence all zeros of $B_n(z)$ have multiplicity at least 3 for sufficiently large n in Δ . By (a2), for sufficiently large n we have

(4.15)
$$B_n^{\#}(0) = \eta_n^2 \frac{|F_n'(b_n)|}{\eta_n^2 + |F_n(b_n)|^2}$$
$$\geq \eta_n^2 \frac{|F_n'(b_n)|}{1 + |F_n(b_n)|^2} = \eta_n^2 F_n^{\#}(b_n) > \exp(|a_n|^{\sigma(f) - 2\varepsilon}).$$

Clearly, $B_n^{\#}(0) \to \infty$. By Marty's criterion, $\{B_n(z)\}$ is not normal at 0. Using Lemma 2.4 for k=1, there exist points $z_n \to 0$, a subsequence of $\{B_n(z)\}$ (still denoted by $\{B_n(z)\}$) and positive numbers $\rho_n \to 0$ such that

$$(4.16) G_n(\zeta) = \frac{B_n(z_n + \rho_n \zeta)}{\rho_n} = \frac{F_n(b_n + \eta_n(z_n + \rho_n \zeta))}{\rho_n \eta_n} \stackrel{\chi}{\Rightarrow} G(\zeta) in \mathbb{C},$$

where G is a nonconstant meromorphic function in \mathbb{C} whose zeros have multiplicity at least 3. Noting that $b_n/\eta_n \to \infty$ as $n \to \infty$, we obtain

(4.17)
$$\eta_n \frac{\beta'(b_n + \eta_n(z_n + \rho_n\zeta))}{\beta(b_n + \eta_n(z_n + \rho_n\zeta))}$$

$$= \frac{m}{b_n/\eta_n + z_n + \rho_n\zeta} + \eta_n \frac{\widehat{\beta}'(b_n + \eta_n(z_n + \rho_n\zeta))}{\widehat{\beta}(b_n + \eta_n(z_n + \rho_n\zeta))} \Rightarrow 0 \text{ in } \mathbb{C}.$$

For any given R > 0, we see that

$$|\gamma'(a_n + \eta_n(z_n + \rho_n\zeta))| \le M(|2a_n|, \gamma') \le \exp(|2a_n|^{\rho(\gamma) + \varepsilon}) \le \exp(|a_n|^{\sigma(\alpha) + 2\varepsilon})$$

for sufficiently large n in $\Delta(0,R)$. Then

(4.18)
$$\eta_n \gamma'(a_n + \eta_n(z_n + \rho_n \zeta)) \Rightarrow 0 \text{ in } \mathbb{C}.$$

Substituting $z = b_n + \eta_n(z_n + \rho_n \zeta)$ into (a3), for sufficiently large n we have

$$(4.19) 1 \neq \frac{f'_n(b_n + \eta_n(z_n + \rho_n\zeta))}{\alpha_n(b_n + \eta_n(z_n + \rho_n\zeta))}$$

= $G'_n(\zeta) + \rho_n\eta_n \Big(\frac{\beta'(b_n + \eta_n(z_n + \rho_n\zeta))}{\beta(b_n + \eta_n(z_n + \rho_n\zeta))} + \gamma'(a_n + \eta_n(z_n + \rho_n\zeta))\Big)G_n(\zeta).$

By (4.16)-(4.19), we obtain

$$1 \neq \frac{f_n'(b_n + \eta_n(z_n + \rho_n\zeta))}{\alpha_n(b_n + \eta_n(z_n + \rho_n\zeta))} \stackrel{\chi}{\Rightarrow} G'(\zeta) \text{ in } \mathbb{C} \setminus G^{-1}(\infty).$$

By Hurwitz's theorem, either $G'(\zeta) \equiv 1$ or $G'(\zeta) \neq 1$ in \mathbb{C} . This contradicts to Lemma 3.1.

Set $\sigma_n := \exp(-|a_n|^{\sigma(f)-5\varepsilon})$, $\lambda_n := \exp(-|a_n|^{\sigma(f)-6\varepsilon})$, $S_n(z) := \frac{F_n(z)}{z}$ and $\widehat{S}_n(z) := S_n(\lambda_n z)$. We claim that

(4.20)
$$S(1, \widehat{S}_n(z)) \ge \exp(|a_n|^{\sigma(f)-3\varepsilon})$$
 for sufficiently large n .

Clearly, $\Delta(b_n, \delta_n) \subset \Delta(0, \sigma_n)$ and $S(\Delta(0, \sigma_n), F_n) > S(\Delta(b_n, \delta_n), F_n)$ for sufficiently large n. Since $\frac{\sigma_n}{\lambda_n} \to 0$ as $n \to \infty$, for sufficiently large n we have

$$(4.21) S\left(\frac{1}{2}, F_n(\lambda_n z)\right) > S\left(\frac{\sigma_n}{\lambda_n}, F_n(\lambda_n z)\right) = S(\sigma_n, F_n(z)) \ge \exp\left(|a_n|^{\sigma(f) - \varepsilon}\right).$$

It follows from Lemma 2.9 that

(4.22)
$$S\left(\frac{1}{2}, F_n(\lambda_n z)\right) = S\left(\frac{1}{2}, \frac{F_n(\lambda_n z)}{z} \cdot z\right)$$

Analysis Mathematica 47, 2021

$$\leq S\left(1, \frac{F_n(\lambda_n z)}{z}\right) + S(1, z) + \frac{\log 5 - \log 2}{\log 2}$$

for sufficiently large n. (4.21) and (4.22) imply

$$(4.23) S\left(1, \frac{F_n(\lambda_n z)}{z}\right) \ge \exp\left(|a_n|^{\sigma(f) - 2\varepsilon}\right) \text{for sufficiently large } n.$$

By (2.1) and Lemma 2.7, for sufficiently large n we have

$$S(1,\widehat{S}_n(z)) = S\left(1, \frac{F_n(\lambda_n z)}{\lambda_n z}\right) \ge \lambda_n^2 S\left(1, \frac{F_n(\lambda_n z)}{z}\right) \ge \exp\left(|a_n|^{\sigma(f) - 3\varepsilon}\right).$$

We consider the following two cases.

Case 1: $\beta(0) = 0$. Set $\mathbb{D}_n := \{z \mid |S_n(z)| = 3, |z| \leq 2\lambda_n\}$. We claim that \mathbb{D}_n is non-empty set for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that \mathbb{D}_n is empty set. Noting that $S_n(0) = \infty$, we see that $|\widehat{S}_n(z)| > 3$ in $\Delta(0,2)$. Thus we have

$$n\left(2, \frac{1}{(\widehat{S}_n(z)-1)(\widehat{S}_n(z)-2)(\widehat{S}_n(z)-3)}\right) = 0.$$

By Lemma 2.6, there exists M > 0 such that $S(1, \widehat{S}_n(z)) \leq M$. This contradicts (4.20).

Set

$$(4.24) T_n(\zeta) := \frac{f_n(t_n\zeta)}{t_n^{m+1} \exp(\gamma_n(t_n\zeta))} = \zeta^{m+1} \widehat{\beta}(t_n\zeta) S_n(t_n\zeta),$$

where t_n is one of an element of \mathbb{D}_n of smallest modulus. Now, we have

- (b1) $t_n \neq 0$ and $|t_n| \leq 2\lambda_n$ for sufficiently large n, and
- (b2) $|S_n(t_n\zeta)| \geq 3$ and $T_n(\zeta) \neq 0$ for sufficiently large n in Δ .

Noting that $S_n(0) = \infty$, we see that $t_n \neq 0$. By the definition of \mathbb{D}_n , $|t_n| \leq 2\lambda_n$ for sufficiently large n. Thus (b1) holds. Since t_n is one of an element of \mathbb{D}_n of smallest modulus and 0 is a pole of $S_n(z)$, we have $|S_n(t_n\zeta)| \geq 3$ in Δ . By (4.24), $T_n(\zeta) \neq 0$ for sufficiently large n in Δ' . By (a1), $f_n(0) \neq 0$ and hence $T_n(0) \neq 0$ for sufficiently large n. Thus (b2) holds.

By Lemma 2.10, $\{T_n\}$ is normal in $\mathbb{C} \setminus \{0\}$. Taking a subsequence and renumbering, we may assume that $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in $\mathbb{C} \setminus \{0\}$. By (4.24),

$$|T(1)| = \lim_{n \to \infty} |T_n(1)| = \lim_{n \to \infty} |\widehat{\beta}(t_n)S_n(t_n)| = 3.$$

Thus $T^{-1}(\zeta)$ is a meromorphic function in $\mathbb{C} \setminus \{0\}$. By (b2) and the maximum principle, $T_n^{-1}(\zeta) \Rightarrow T^{-1}(\zeta)$ in Δ . Then we have $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in \mathbb{C} ,

where $T(\zeta)$ is a meromorphic function in \mathbb{C} , whose zeros have multiplicity at least 3.

We claim that either $T'(\zeta) - \zeta^m \equiv 0$ or $T'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} . For any R > 0, we have

$$|\gamma'_n(t_n\zeta)| = |\gamma'(a_n - b_n + t_n\zeta)| \le M(|2a_n|, \gamma')$$

$$\le \exp(|2a_n|^{\rho(\gamma) + \varepsilon}) \le \exp(|a_n|^{\sigma(\alpha) + 2\varepsilon})$$

for sufficiently large n in $\Delta(0,R)$. Thus we have

$$(4.25) t_n \gamma'_n(t_n \zeta) \Rightarrow 0 \text{ in } \mathbb{C}.$$

An elementary calculation shows that

$$T'_n(\zeta) = \frac{f'_n(t_n\zeta)}{t_n^m \exp(\gamma_n(t_n\zeta))} - t_n\gamma'_n(t_n\zeta) \frac{f_n(t_n\zeta)}{t_n^{m+1} \exp(\gamma_n(t_n\zeta))},$$

and then, by (4.25),

$$(4.26) \frac{f_n'(t_n\zeta)}{t_n^m \exp(\gamma_n(t_n\zeta))} = T_n'(\zeta) + t_n\gamma_n'(t_n\zeta)T_n(\zeta) \Rightarrow T'(\zeta) \text{ in } \mathbb{C} \setminus T^{-1}(\infty).$$

Set

$$(4.27) U_n(\zeta) := \frac{f'_n(t_n\zeta) - \alpha(t_n\zeta)}{t_n^m \exp(\gamma_n(t_n\zeta))} = \frac{f'_n(t_n\zeta)}{t_n^m \exp(\gamma_n(t_n\zeta))} - \frac{\beta(t_n\zeta)}{t_n^m}.$$

By (4.26) and (4.27), we see that

$$(4.28) U_n(\zeta) \Rightarrow T'(\zeta) - \zeta^m \text{ in } \mathbb{C} \setminus T^{-1}(\infty).$$

By (a1), it is easy to see that

(4.29)
$$U_n(\zeta) \neq 0$$
 for sufficiently large n .

By (4.28), (4.29) and Hurwitz's theorem, either $T'(\zeta) - \zeta^m \equiv 0$ or $T'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} .

Assume that $T'(\zeta) - \zeta^m \equiv 0$ in \mathbb{C} . Since all zeros of $T(\zeta)$ have multiplicity at least 3, we obtain $T(\zeta) = \frac{\zeta^{m+1}}{m+1}$ which contradicts the fact that |T(1)| = 3. Thus $T'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} . By Lemma 3.2, m = 1 and $T(\zeta) = \frac{(\zeta - \frac{c_1}{3})^3}{2(\zeta - c_1)}$, where c_1 is a nonzero constant. Then

(4.30)
$$T_n(\zeta) = \frac{f_n(t_n\zeta)}{t_n^2 \exp(\gamma_n(t_n\zeta))} \stackrel{\chi}{\Rightarrow} \frac{\left(\zeta - \frac{c_1}{3}\right)^3}{2(\zeta - c_1)} \text{ in } \mathbb{C}.$$

Analysis Mathematica 47, 2021

By Hurwitz's theorem, there exist sequences $\zeta_{0,n} \to \frac{c_1}{3}$ and $\zeta_{\infty,n} \to c_1$ such that $T(\zeta_{0,n}) = 0$ and $T(\zeta_{\infty,n}) = \infty$. Set $\widehat{T}_n(\zeta) := \frac{\zeta - \zeta_{0,n}}{(\zeta - \zeta_{\infty,n})^3} \cdot T_n(\zeta)$. By the maximum principle,

$$\widehat{T}_n(\zeta) := \frac{\zeta - \zeta_{0,n}}{(\zeta - \zeta_{\infty,n})^3} \cdot T_n(\zeta) \Rightarrow \frac{1}{2} \text{ in } \mathbb{C}.$$

Set $\mathbb{E}_n := \{z \mid |S_n(z)| = 3, A|t_n| < |z| \le 2\lambda_n\}$, where

$$A = \max\{|\zeta| : |T_n(\zeta)| = 1, |T_n(\zeta)| = 2 \text{ or } |T_n(\zeta)| = 3\}.$$

We claim that \mathbb{E}_n is non-empty set for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that \mathbb{E}_n is empty set. By (4.30) and Hurwitz's theorem,

$$n\left(2, \frac{1}{(\widehat{S}_n(z) - 1)(\widehat{S}_n(z) - 2)(\widehat{S}_n(z) - 3)}\right) = 9.$$

By Lemma 2.6, there exists M > 0 such that $S(1, \widehat{S}_n(z)) \leq M$. This contradicts (4.20).

Set

(4.31)
$$R_n(\xi) := \frac{f_n(r_n \xi)}{r_n^2 \exp(\gamma_n(r_n \xi))} = \xi^2 \,\widehat{\beta}(r_n \xi) S_n(r_n \xi),$$

where r_n is one of an element of \mathbb{E}_n of smallest modulus.

We claim that

- (c1) $|r_n| \leq 2\lambda_n$ for sufficiently large n,
- (c2) $\frac{r_n}{t_n} \to \infty$ as $n \to \infty$, and
- (c3) $R_n(\xi)$ has a unique (multiple) zero $\frac{t_n}{r_n} \cdot \zeta_{0,n}$ for sufficiently large n in Δ .

By the definition of \mathbb{E}_n , (c1) holds. By (4.30) and Hurwitz's theorem, (c2) and (c3) holds.

By Lemma 2.10, $\{R_n(\xi)\}$ is normal in $\mathbb{C}\setminus\{0\}$. Taking a subsequence and renumbering, we may assume that $R_n(\xi) \stackrel{\chi}{\Rightarrow} R(\xi)$ in $\mathbb{C}\setminus\{0\}$. By (4.31),

$$|R(1)| = \lim_{n \to \infty} |R_n(1)| = \lim_{n \to \infty} |\widehat{\beta}(t_n)R_n(r_n)| = 3.$$

Thus $R(\xi)$ is a nonzero meromorphic function in $\mathbb{C} \setminus \{0\}$. Using the method of dealing with $\{T_n\}$, we can show either $R'(\xi) - \xi \equiv 0$ or $R'(\xi) - \xi \neq 0$ in $\mathbb{C} \setminus \{0\}$.

Set
$$\widehat{R}_n(\xi) := \frac{\xi - \frac{t_n}{r_n} \cdot \zeta_{0,n}}{(\xi - \frac{t_n}{r_n} \cdot \zeta_{\infty,n})^3} \cdot R_n(\xi)$$
. Then

(4.32)
$$\widehat{R}_n(\xi) \stackrel{\chi}{\Rightarrow} \frac{R(\xi)}{\xi^2} \text{ in } \mathbb{C} \setminus \{0\}.$$

Clearly, $\widehat{R}_n(\xi)$ has no zeros for sufficiently large n in Δ . By the maximum principle, $\{\widehat{R}_n(\xi)\}$ converges in the spherical metric uniformly on $\overline{\Delta}(0,1/2)$. Then we can assume that

$$\widehat{R}_n(\xi) \stackrel{\chi}{\Rightarrow} \widehat{R}(\xi) \text{ in } \mathbb{C}.$$

(4.32) and (4.33) imply that $R(\xi)$ can be extended to meromorphic function $\xi^2 \widehat{R}(\xi)$ in \mathbb{C} . Noting that

$$\widehat{R}(0) = \lim_{n \to \infty} \widehat{R}_n(0) = \lim_{n \to \infty} \widehat{T}_n(0) = \frac{1}{2},$$

we see that $\xi = 0$ is a zero of order 2 of $R(\xi)$ and R''(0) = 1.

Suppose that $R'(\xi) - \xi \equiv 0$ in $\mathbb{C} \setminus \{0\}$. Then $R'(\xi) - \xi \equiv 0$ in \mathbb{C} . Noting that $\xi = 0$ is a zero of order 2 of $R(\xi)$, we have $R(\xi) = \frac{\xi^2}{2}$ which contradicts the fact that |R(1)| = 3. Thus $R'(\xi) - \xi \neq 0$ in $\mathbb{C} \setminus \{0\}$. By Lemma 3.3, $R(\xi) = c_1 \xi^2$, where $c_1 (\neq 1/2)$ is a nonzero constant. A simple calculation shows $R''(0) = R''(\xi)|_{\xi=0} = 2c_1 \neq 1$, a contradiction.

Case 2: $\beta(0) = \infty$. Taking a subsequence and renumbering, we may assume that $S_n(0) \to c_0$ as $n \to \infty$, where c_0 is a finite complex number or $c_0 = \infty$.

Subcase 2.1: $c_0 = 0$. Set $\mathbb{P}_n := \{z \mid |S_n(z)| = 3, |z| \leq 2\lambda_n\}$. We claim that \mathbb{P}_n is non-empty set for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that \mathbb{P}_n is empty set, and hence $|\widehat{S}_n(z)| < 3$ in $\Delta(0,2)$. Thus we have

$$n\left(2, \frac{1}{(\widehat{S}_n(z) - 3)(\widehat{S}_n(z) - 4)(\widehat{S}_n(z) - 5)}\right) = 0.$$

By Lemma 2.6, there exists M > 0 such that $S(1, \widehat{S}_n(z)) \leq M$. This contradicts (4.20).

Set

$$(4.35) T_n(\zeta) := \frac{f_n(t_n\zeta)}{t_n^{m+1} \exp(\gamma_n(t_n\zeta))} = \zeta^{m+1} \widehat{\beta}(t_n\zeta) S_n(t_n\zeta),$$

where t_n is one of an element of \mathbb{P}_n of smallest modulus. Using a similar argument presented in Case 1, we can get that

- (d1) $t_n \neq 0$ and $|t_n| \leq 2\lambda_n$ for sufficiently large n, and
- (d2) $|S_n(t_n\zeta)| \leq 3$ and $|T_n(\zeta)| < 4$ for sufficiently large n in Δ .

By Lemma 2.10, $\{T_n\}$ is normal in $\mathbb{C}\setminus\{0\}$. Taking a subsequence and renumbering, we may assume that $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in $\mathbb{C}\setminus\{0\}$. By (4.35), $|T(1)| = \lim_{n\to\infty} |T_n(1)| = \lim_{n\to\infty} |\widehat{\beta}(t_n)S_n(t_n)| = 3$. Thus $T(\zeta)$ is a meromorphic function in $\mathbb{C}\setminus\{0\}$. By (d2) and the maximum principle, $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in Δ . Then we have $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in \mathbb{C} . where $T(\zeta)$ is a meromorphic function in \mathbb{C} , whose zeros have multiplicity at least 3. By (d2), we see that $T(z) \neq \infty$ in Δ . The same argument presented in Case 1 show that either $T'(\zeta) - \zeta^m \equiv 0$ or $T'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} .

We claim that $T'(\zeta) \neq \zeta^m$ in \mathbb{C} . Suppose that $T'(\zeta) - \zeta^m \equiv 0$ in \mathbb{C} . It is easy to see that $m \neq -1$. (Otherwise, $T(\zeta)$ is a multivalued function.)

Noting that all zeros of $T(\zeta)$ have multiplicity at least 3, we have $T(\zeta) = \frac{1}{(1+m)\zeta^{-m-1}}$ which contradicts the fact that |T(1)| = 3. Thus $T'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} . Since $T(\zeta) \neq \infty$ in Δ , we have $T'(\zeta) \neq \zeta^m$ in \mathbb{C} .

By Theorem D and Lemma 2.1, we may assume that $T(\zeta) \equiv 3e^{i\theta}$, where θ is a constant. Thus we have

$$(4.36) T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta) = 3e^{i\theta}, S_n(t_n\zeta) = \frac{T_n(\zeta)}{\zeta^{m+1}\widehat{\beta}(t_n\zeta)} \stackrel{\chi}{\Rightarrow} 3e^{i\theta}\zeta^{-m-1} \text{ in } \mathbb{C}.$$

Set $\mathbb{Q}_n := \{z \mid |S_n(z)| = 3, A|t_n| < |z| \le 8\lambda_n\}$, where

$$A = \max\{|\zeta| \mid |T_n(\zeta)| = 1, |T_n(\zeta)| = 2 \text{ or } |T_n(\zeta)| = 3\}.$$

We claim that \mathbb{Q}_n is non-empty set for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that \mathbb{Q}_n is empty set. By (4.36) and Hurwitz's theorem, we see that

$$n\left(7, \frac{1}{(\widehat{S}_n(z) - 1)(\widehat{S}_n(z) - 2)(\widehat{S}_n(z) - 3)}\right) = -3(m+1).$$

By Lemma 2.6, there exists M > 0 such that $S(1, \widehat{S}_n(z)) \leq M$. This contradicts (4.20).

Set

$$(4.37) V_n(\zeta) := \frac{f_n(r_n\zeta)}{r_n^{m+1} \exp(\gamma_n(r_n\zeta))} = \zeta^{m+1} \widehat{\beta}(r_n\zeta) S_n(r_n\zeta),$$

where r_n is one of an element of \mathbb{Q}_n of smallest modulus. We claim that

- (e1) $|r_n| \le 8\lambda_n$ for sufficiently large n,
- (e2) $\frac{r_n}{t_n} \to \infty$ as $n \to \infty$, and
- (e3) $V_n(\zeta) \neq 0$ in Δ for sufficiently large n.

By the definition of \mathbb{Q}_n , (e1) holds. By (4.36) and Hurwitz's theorem, (e2) holds. Since $T_n(\zeta) \stackrel{>}{\Rightarrow} 3e^{i\theta}$ in \mathbb{C} , we see that $f_n(z) \neq 0$ in $\Delta(0, 4|t_n|)$ for sufficiently large n. By (4.36) and the definition of \mathbb{Q}_n , we have $|S_n(z)| \geq 2$ and hence $f_n(z) \neq 0$ in $\Delta(0, |r_n|) \setminus \overline{\Delta}(0, 3|t_n|)$ for sufficiently large n. Now, $f_n(z) \neq 0$ in $\Delta(0, |r_n|)$ for sufficiently large n. Thus (e3) holds by (4.37).

By Lemma 2.10, $\{V_n\}$ is normal in $\mathbb{C}\setminus\{0\}$. Taking a subsequence and renumbering, we may assume that $V_n(\zeta) \stackrel{\chi}{\Rightarrow} V(\zeta)$ in $\mathbb{C}\setminus\{0\}$. By (4.37),

$$|V(1)| = \lim_{n \to \infty} |V_n(1)| = \lim_{n \to \infty} |\widehat{\beta}(r_n)S_n(r_n)| = 3.$$

Thus $V(\zeta)$ and $V^{-1}(\zeta)$ are meromorphic functions in $\mathbb{C} \setminus \{0\}$. By (d3) and the maximum principle, $V_n^{-1}(\zeta) \Rightarrow V^{-1}(\zeta)$ in Δ . Then $V_n(\zeta) \stackrel{\chi}{\Rightarrow} V(\zeta)$ in \mathbb{C} , where $V(\zeta)$ is a meromorphic function in \mathbb{C} , whose zeros have multiplicity at least 3. The same argument presented in Case 1 show that either $V'(\zeta) - \zeta^m \equiv 0$ or $V'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} .

We claim that $V'(\zeta) - \zeta^m \neq 0$ in \mathbb{C} . Suppose that $V'(\zeta) - \zeta^m \equiv 0$ in \mathbb{C} . Since all zeros of $V(\zeta)$ have multiplicity at least 3, we have $V(\zeta) = \frac{1}{(1+m)\zeta^{-m-1}}$ which contradicts the fact that |V(1)| = 3.

By an elementary calculation we have

(4.38)
$$\frac{f_n'(r_n\zeta)}{r_n^m \exp(\gamma_n(r_n\zeta))} = V_n'(\zeta) + r_n\gamma_n'(r_n\zeta)V_n(\zeta).$$

Using the same argument presented in Case 1, we can show that

$$(4.39) r_n \gamma'_n(r_n \zeta) \Rightarrow 0 \text{ in } \mathbb{C}.$$

By (4.38) and (4.39), we have

$$(4.40) \qquad \frac{f'_n(r_n\zeta) - \alpha_n(r_n\zeta)}{r_n^m \exp(\gamma_n(r_n\zeta))} = \frac{f'_n(r_n\zeta)}{r_n^m \exp(\gamma_n(r_n\zeta))} - \zeta^m \widehat{\beta}_n(r_n\zeta)$$
$$\Rightarrow V'(\zeta) - \zeta^m \text{ in } \mathbb{C} \setminus V^{-1}(\infty).$$

By (a1), we see that

(4.41)
$$\frac{f'_n(r_n\zeta) - \alpha_n(r_n\zeta)}{r_n^m \exp(\gamma_n(r_n\zeta))} \neq 0 \text{ for sufficiently large } n.$$

By (4.41) and the maximum principle,

$$(4.42) \quad L_n(\zeta) = \left[\frac{f'_n(r_n\zeta) - \alpha_n(r_n\zeta)}{r_n^m \exp(\gamma_n(r_n\zeta))} \right]^{-1} \Rightarrow L(\zeta) = \left[V'(\zeta) - \zeta^m \right]^{-1} \quad \text{in } \mathbb{C}.$$

Analysis Mathematica 47, 2021

By (4.35), (4.37) and (e2), we have

$$V(0) = \lim_{n \to \infty} V_n(0) = \lim_{n \to \infty} \frac{f_n(0)}{r_n^{m+1} \exp(\gamma_n(0))} = \lim_{n \to \infty} T_n(0) \left(\frac{r_n}{t_n}\right)^{-m-1} = \infty.$$

We assume that 0 is a pole of $V(\zeta)$ of order k. Clearly, 0 is a zero of $L(\zeta)$ order at most $\max\{k+1,-m\}$. By Hurwitz' theorem, $V_n(\zeta)$ has k poles $\zeta_i \to 0$ and hence $f_n(r_n\zeta)$ has k poles $\zeta_i \to 0$, where $i=1,2,\ldots,k$. By (a1), we have $f_n(0) \neq \infty$. Thus $\zeta_i \neq 0$ for $i=1,2,\ldots,k$. By (4.42), $L_n(\zeta)$ has at least k+1 non-zero zeros $\zeta_i \to 0$ and a zero $\zeta = 0$ of order -m. By Hurwitz' theorem, 0 is a zero of $L(\zeta)$ of order at least k+1-m. Thus we must have $k+1-m \leq \max\{k+1,-m\}$. This is a contradiction.

Subcase 2.2: $c_0 \neq 0$. In this case, we must have m = -1. In fact, 0 is a zero of order -m-1 of $S_n(z)$ provided that $m \leq -2$, and hence $c_0 = 0$. Set

$$\mathbb{Y}_n := \big\{ z \; \big| \; |S_n(z)| = c_0^*, \; |z| \leq 2\lambda_n \big\}, \quad \text{where} \quad c_0^* = \begin{cases} |c_0|/2 & \text{for } c_0 \neq \infty, \\ 1 & \text{for } c_0 = \infty. \end{cases}$$

We claim that \mathbb{Y}_n is non-empty set for sufficiently large n. Otherwise, taking a subsequence and renumbering, we may assume that \mathbb{Y}_n is empty set. Thus we have

$$n\left(2, \frac{1}{(\widehat{S}_n(z) - |c_0^*|/2)(\widehat{S}_n(z) - |c_0^*|/3)(\widehat{S}_n(z) - |c_0^*|/4)}\right) = 0.$$

By Lemma 2.6, there exists M > 0 such that $S(1, \widehat{S}_n(z)) \leq M$. This contradicts (4.20).

Set

(4.43)
$$T_n(\zeta) := \frac{f_n(t_n\zeta)}{\exp(\gamma_n(t_n\zeta))} = \widehat{\beta}(t_n\zeta)S_n(t_n\zeta),$$

where t_n is one of an element of \mathbb{Y}_n of smallest modulus. Using a similar argument presented in Case 1, we can get that

- (f1) $t_n \neq 0$ and $|t_n| \leq 2\lambda_n$ for sufficiently large n, and
- (f2) $|S_n(t_n\zeta)| \ge c_0^*$ and $|T_n(\zeta)| > c_0^*/2$ for sufficiently large n in Δ .

Using the same argument presented in Subcase 2.1, we may assume that $T_n(\zeta) \stackrel{\chi}{\Rightarrow} T(\zeta)$ in \mathbb{C} . Clearly, all zeros of $T(\zeta)$ have multiplicity at least 3. By (4.43), $|T(1)| = \lim_{n \to \infty} |T_n(1)| = \lim_{n \to \infty} |\widehat{\beta}(t_n) S_n(t_n)| = c_0^*$ and $T(0) = \lim_{n \to \infty} T_n(0) = \lim_{n \to \infty} \widehat{\beta}(0) S_n(0) = c_0$. Thus $T(\zeta)$ is a nonconstant meromorphic function.

The same argument presented in Case 1 show that either $T'(\zeta) - \zeta^{-1} \equiv 0$ or $T'(\zeta) - \zeta^{-1} \neq 0$ in \mathbb{C} . Suppose that $T'(\zeta) - \zeta^{-1} \equiv 0$ in \mathbb{C} . Then $T(\zeta)$

is a multivalued function. A contradiction. Thus $T'(\zeta) - \zeta^{-1} \neq 0$ in \mathbb{C} . Suppose that $c_0 \neq \infty$. Noting that $T(0) = c_0$, we have $T'(\zeta) \neq \zeta^{-1}$ in \mathbb{C} . By Theorem D and Lemma 2.1, $T(\zeta)$ is a constant function. This is a contradiction. Then we have $c_0 = \infty$. It follows from (4.43) that $T_n(\zeta) \to \infty$ and $T(0) = \infty$. Using the method of dealing with $\{V_n\}$ in Subcase 2.1, we can obtain a contradiction.

Acknowledgement. The author would like to thank the referees for valuable remarks and suggestions.

References

- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9–42.
- [2] X. J. Liu, S. Nevo and X. C. Pang, On the kth derivative of meromorphic functions with zeros of multiplicity at least k + 1, J. Math. Anal. Appl., 348 (2008), 516–529.
- [3] S. Nevo, On theorems of Yang and Schwick, Complex Var. Elliptic Equ., 46 (2001), 315–321.
- [4] S. Nevo, Applications of Zalcman's lemma to Qm-normal families, Analysis (Munich), 21 (2001), 289–325.
- [5] X. C. Pang, S. Nevo and L. Zalcman, Derivatives of meromorphic functions with multiple zeros and rational functions, Comput. Methods Funct. Theory, 8 (2008), 483–491.
- [6] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc., 32 (2000), 325–331.
- [7] M. Tsuji, On Borel's directions of meromorphic functions of finite order. II, Kodai Math. Sem. Rep., 2 (1950), 96–100.
- [8] Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sin., 14 (1998), 17–26.
- [9] Y. Xu, Normal families and exceptional functions, J. Math. Anal. Appl., 329 (2007), 1343–1354.
- [10] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294.
- [11] P. Yang, Quasinormal criterion and Picard type theorem, *Acta Math. Sci. (Ser. A)*, **35A** (2015), 1089–1105.
- [12] P. Yang, P. Y. Niu and X. C. Pang, A Picard type theorem concerning meromorphic functions of hyper-order, Sci. Sin. Math., 47 (2017), 357–370 (in Chinese).
- [13] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc., 35 (1998), 215–230.