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Abstract. For a topological dynamical system we characterize the decom-
position of the state space induced by the fixed space of the corresponding Koop-
man operator. For this purpose, we introduce a hierarchy of generalized orbits
and obtain the finest decomposition of the state space into absolutely Lyapunov
stable sets. Analogously to the measure-preserving case, this yields that the sys-
tem is topologically ergodic if and only if the fixed space of its Koopman operator
is one-dimensional.

1. Introduction

It is a common strategy to decompose a dynamical system into smaller
parts and investigate these instead of the whole system. There exists a vari-
ety of such decompositions, e.g., the Conley decomposition (see [4] or [13]),
the decomposition of the chain-recurrent set into chain components (see,
e.g., [16]) or orbit-closure decompositions in [11] to name a few.

In this paper we study a new decomposition of topological dynamical
systems (K;ϕ), consisting of a compact Hausdorff space K and a continuous
map

ϕ : K → K.

Our approach is based on the corresponding Koopman operator

Tϕf := f ◦ ϕ
on the C∗-algebra C(K) of all continuous complex-valued functions on K.
Its fixed space

fixTϕ :=
{
f ∈ C(K) : Tϕf = f

}
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yields a decomposition of K into disjoint ϕ-invariant and closed sets (see
Section 2). To characterize this decomposition dynamically, we introduce a
transfinite hierarchy of generalized ϕ-orbits. Moreover, we show that fixTϕ
induces the finest decomposition of K into absolutely Lyapunov stable sub-
sets (see Theorem 5.7).

As a consequence, we obtain that this decomposition is trivial, i.e., the
fixed space of Tϕ has dimension 1, if and only if the system (K;ϕ) is topo-
logically ergodic meaning that there exists x ∈ K with generalized orbit
S(x) = K. This is by analogy with a measure-preserving dynamical sys-
tem (Ω,Σ, μ;ϕ) being ergodic (i.e., indecomposable) if and only if the fixed
space

fixTϕ :=
{
f ∈ L1(Ω,Σ, μ) : Tϕf = f

}

of the corresponding Koopman operator on L1(Ω,Σ, μ) is one-dimensional. A
variety of examples demonstrates the complexity of the topological situation.
I thank Nikolai Edeko for providing some of them and Roland Derndinger
for many helpful discussions.

2. The decomposition of K corresponding to fix Tϕ

Since the fixed space fixTϕ is a Tϕ-invariant C
∗-subalgebra of C(K), the

Gelfand–Naimark theorem shows that it is isomorphic to a space C(L) for
some compact Hausdorff space L, called the fixed factor or maximal trivial
factor of K (see [8]). The embedding C(L) ↪→ C(K) is a C∗-algebra ho-
momorphism and hence a Koopman operator Tp for a surjection p : K � L,
called factor map (see, e.g., [9, Theorem 4.13 and Chapter 2.2]). This in-
duces a disjoint splitting

K =
⋃̇

l∈L
p−1({l})

into closed ϕ-invariant sets, hence an equivalence relation ∼ on K with
equivalence classes p−1({l}), l ∈ L. Our problem is the following.

Problem 2.1. Describe this equivalence relation by dynamical and topo-
logical properties of (K;ϕ).

For this purpose we introduce some technical terms.

Definition 2.2. (a) A nonempty setM⊆K is called a level set of fixTϕ
if f |M is constant for all f ∈ fixTϕ.

(b) A level set M is called maximal if for any other level set M ′ ⊆ K
with M ⊆M ′ already M ′ =M .

Remark 2.3. (a) Maximal level sets exist and are closed.

(b) A set M ⊆ K is a maximal level set of fixTϕ if and only if M =
p−1({l}) for some l ∈ L.
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Proof. To show (a), consider the family {M :M level set of fixTϕ}
together with the inclusion “⊆” and use Zorn’s lemma. Clearly, maximal
level sets are closed.

For the proof of (b), take fixTϕ ∼= C(L) for some isomorphism Φ: C(L)
→ fixTϕ and ι : fixTϕ → C(K) the canonical inclusion. Then ι ◦ Φ is a
C∗-algebra homomorphism and hence a Koopman operator ι ◦ Φ = Tp for

the factor map p : K → L. For f ∈ fixTϕ, there is a unique f̂ ∈ C(L) such

that f = Φf̂ . Hence

f = Φf̂ = ι ◦ Φf̂ = Tpf̂ = f̂ ◦ p,
and for l ∈ L and x, y ∈ p−1({l}) we obtain f(x) = f̂(l) = f(y). This shows
that p−1({l}) is a level set of fix Tϕ for all l ∈ L. Now assume that
there is some level set M ⊆ K such that p−1({l1}) ∪ p−1({l2}) ⊆M for
some l1 �= l2 ∈ L. Then for x1 ∈ p−1({l1}) and x2 ∈ p−1({l2}) we have
f(x1) = f(x2) for all f ∈ fixTϕ. This implies

f̂(l1) = f̂(p(x1)) = f̂(p(x2)) = f̂(l2)

for all f̂ ∈ C(L) which is a contradiction. Conversely, it is clear that each
maximal level set M of fixTϕ is of the form M = p−1({l}) for some l ∈ L.
�

Proposition 2.4. Let (K;ϕ) be a topological dynamical system and
identify fixTϕ with C(L). Let ∼ be any equivalence relation on K with
canonical projection π : K → K/∼ satisfying

(i) ϕ(x) ∼ x and

(ii) [x] is a level set of fixTϕ
for all x ∈ K. Then the following are equivalent.

(a) For each x ∈ K the equivalence class [x] is a maximal level set of
fixTϕ.

(b) With respect to the quotient topology K/∼ is Hausdorff.

(c) K/∼ ∼= L.

Proof. (a) ⇒ (c): By assumption we have [x] = p−1({l}) for some
l ∈ L, where p : K → L is the factor map. Hence for x, y ∈ K we have
π(x) = π(y) if and only if p(x) = p(y). By the universal property of the
quotient topology there are unique continuous maps h : K/∼ → L and
g : L→ K/∼ such that h ◦ π = p and g ◦ p = π. Then g = h−1 since

g ◦ h(π(x)) = g(p(x)) = π(x)

and

h ◦ g(p(x)) = h(π(x)) = p(x)

for all x ∈ K. Hence h is a homeomorphism between K/∼ and L.
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(c) ⇒ (b): Since K/∼ is homeomorphic to the space L it is Hausdorff.
(b) ⇒ (a): It suffices to show that p−1(p(x)) ⊆ [x] for all x ∈ K, because

p−1(p(x)) are the maximal level sets of fixTϕ. Assume for a contradiction
there are some y, z ∈ K such that y ∈ p−1(p(z))\[z]. Since K/∼ is Haus-

dorff, [y] and [z] are closed. By Urysohn’s lemma, there is some f̃ ∈ C(K/∼)

such that f̃([y]) �= f̃([z]). Then f := f̃ ◦ π ∈ fixTϕ, since f is continuous and
x ∼ ϕ(x) implies

f(x) = f̃([x]) = f̃([ϕ(x)]) = Tϕf(x)

for all x ∈ K. By the universal property of the quotient topology there is

some f̂ ∈ C(L) such that f = f̂ ◦ p. Since y ∈ p−1(p(z)), we obtain

f(y) = f̂(p(y)) = f̂(p(z)) = f(z)

which contradicts f̃([y]) �= f̃([z]). �
Remark 2.5. For a topological dynamical system (K;ϕ) both condi-

tions (i) and (ii) in Proposition 2.4 are needed. This can be seen by the
following trivial equivalence relations.

(a) x ∼ y for all x, y ∈ K shows that ϕ(x) ∼ x does not imply that [x] is
a level set of fixTϕ for x ∈ K.

(b) x ∼ y only for x = y shows that also the converse implication does
not hold true in general.

3. Equivalence relations induced by generalized orbits

Our goal is to dynamically describe fix Tϕ for a topological dynamical
system (K;ϕ) (see Problem 2.1). To do so, we use Lemma 2.4 and search
for an equivalence relation ∼ on K such that K/∼ is Hausdorff, ϕ(x) ∼ x
and [x] are level sets for all x ∈ K.

A first observation is the following. If we take the closed orbit

orb(x) := {ϕn(x) : n ∈ N0}
for x ∈ K, then f |orb(x) is constant for all f ∈ fixTϕ. Thus, every closed orbit

is a level set of fixTϕ. If K admits a decomposition into mutually disjoint
closed orbits, this clearly induces an equivalence relation ∼ with ϕ(x) ∼ x
for all x ∈ K. But the corresponding quotient space may not be Hausdorff
as the following example shows.

Example 3.1. Let K := D be the closed unit disk in C and

ϕ(x) := re2πi(α+r)
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for x := re2πiα ∈ K with r ∈ [0, 1], α ∈ [0, 1). Denote by T the unit circle
in C. Then the closed orbits

orb(x) =

⎧
⎪⎨

⎪⎩

{re2πi(α+nr) : n = 1, . . . , q − 1} for r = p
q rational,

p and q coprime,

rT for r irrational

form a non-trivial decomposition of K. However, the fixed space of Tϕ is

fixTϕ =
{
f ∈ C(K) : f |cT ≡ const. for all c ∈ [0, 1]

}
,

so the maximal level sets are the circles cT for c ∈ [0, 1]. This shows that
even mutually disjoint closed orbits may induce a quotient space that is not
Hausdorff.

Our approach to obtain the Hausdorff quotient space corresponding to
fixTϕ is based on the following characterization.

Remark 3.2. A topological space X is Hausdorff if and only if each
point is the intersection of its closed neighborhoods, i.e. for all x ∈ X we
have

{x} =
⋂

U∈U(x) closed

U

where U(x) denotes the neighborhood filter of x.

Moreover, we need the following definition.

Definition 3.3. Let (Kx)x∈K be a covering of K satisfying x ∈ Kx for
all x ∈ K. Define an equivalence relation ∼ on K via x ∼ y for x, y ∈ K if
there is some k ∈ N, x1, . . . , xk ∈ K such that x1 = x and xk = y and

Kxi
∩Kxi+1

�= ∅ for i = 1, . . . , k − 1.

We call ∼ the equivalence relation generated by (Kx)x∈K .

Remark 3.4. For the equivalence relation ∼ generated by (Kx)x∈K we
have [x] =

⋃
y∈K,y∼xKy.

We now outline our strategy. Starting from a quotient space K/∼0 we
successively achieve the Hausdorff property by the following steps. We first
build the intersection of closed neighborhoods of each equivalence class (cf.
Remark 3.2). The preimages under the canonical projection of these in-
tersections yield a covering of K. We obtain a new quotient space K/∼1

taking the equivalence relation generated by this covering. We then repeat
the steps above with the new equivalence relation and so forth. We show
that by repeating sufficiently often we arrive at a Hausdorff space.
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Remark 3.5. For a similar approach to a Hausdorffization we refer to
[18]. Here, the author starts from an arbitrary topological space X and con-
structs the smallest equivalence relation ∼ on X such thatX/∼ is Hausdorff.
See also [14] or [12].

3.1. Approximating orbits and superorbits. We apply this strat-
egy to our situation in order to reach the assumptions (i) and (ii) of Propo-
sition 2.4 to characterize the fixed factor of Tϕ.

Definition 3.6. (a) We define the approximating orbit of x for each
x ∈ K as

A(x) :=
⋂

U∈U(x) closed
ϕ(U)⊆U

U .

(b) Let ∼ be the equivalence relation on K generated by (A(x))x∈K . The
superorbit of x is

S(x) := [x] =
⋃

y∈K
y∼x

A(y) .

For this equivalence relation the assumptions (i) and (ii) of Proposi-
tion 2.4 are fulfilled.

Proposition 3.7. For each x ∈ K we have that

(a) ϕ(x) ∼ x and

(b) the superorbit S(x) is a level set of fixTϕ.

Proof. The proof of (a) is clear. For (b), it suffices to show that A(x)
is a level set of fixTϕ for all x ∈ K. For x ∈ K, f ∈ fixTϕ and ε > 0 de-
fine the closed neighborhood U := {y ∈ K : |f(y)− f(x)| ≤ ε} of x which is
ϕ-invariant because f is a fixed function of Tϕ. This implies A(x) ⊆ U by
the definition of the approximating orbit. If z ∈ A(x), then z ∈ U , hence
|f(z)− f(x)| ≤ ε for each ε > 0 showing f(z) = f(x). �

We now give examples for approximating orbits, respectively, superorbits
and analyze the corresponding quotient space.

Example 3.8. Take K := [0, 1] and ϕ(x) := x2 for x ∈ K. Then

A(x) =

{
orb(x) for x ∈ [0, 1),

[0, 1] for x = 1.

By A(1) = K we obtain the trivial decomposition of K. The correspond-
ing quotient space is a singleton and therefore Hausdorff, hence corre-
sponds to the fixed factor L by Proposition 2.4. This is in accordance with
dimfixTϕ = 1.

Analysis Mathematica 47, 2021



DECOMPOSITIONS OF DYNAMICAL SYSTEMS 155

Fig. 1: (K;ϕ)

Example 3.9. Take the compact space

K :=
{
(c, 0) : c ∈ [0, 1]

} ∪̇ {( k
n ,

1
n

)
: n ∈ N, k = 0, . . . , n− 1} ⊆ R

2

and consider on K the continuous dynamics

ϕ(x) :=

⎧
⎪⎨

⎪⎩

x if x = (c, 0) for some c ∈ [0, 1],
(
k+1
n , 1n

)
if x =

(
k
n ,

1
n

)
for some n ∈ N and k ∈ {0, . . . , n− 2},

(
n−1
n , 0

)
if x =

(
n−1
n , 1n

)
for some n ∈ N

(see Fig. 1).

(a) The approximating orbits are

A(x) =

{
{(a, 0) : a ∈ [c, 1]} if x = (c, 0) for some c ∈ [0, 1],

orb(x) otherwise

where

orb(x) = {(k+m
n , 1n) : m = 0, . . . , n− k − 1} ∪ {

(n−1
n , 0)

}

for x = ( kn ,
1
n) with n ∈ N and k ∈ {0, . . . , n− 1}.

(b) If x = ( kn ,
1
n) ∈ K for some n ∈ N and k ∈ {0, . . . , n− 2}, we have

A(x) ∩ A(
n−1
n , 0

)
=

(
n−1
n , 0

) �= ∅.
This implies

A(
n−1
n , 0

) ∩ A(x1, 0) = {(c, 0) : c ∈ [n−1
n , 1]} ∩ {

(c, 0) : c ∈ [x1, 1]
} �= ∅

for all x1 ∈ [0, 1]. Hence x ∼ y for all y ∈ K yielding S(x) = K.
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Therefore, the quotient space induced by the superorbits is a singleton and
hence a Hausdorff space, thus corresponds to the one-dimensional fixed space
of Tϕ.

While the superorbits in the above examples were sufficient to charac-
terize the fixed space of Tϕ, the next example reveals that this is not always
the case.

Example 3.10. Let K := [0,∞] be the one-point compactification of
[0,∞) and

ϕ : K → K, x �→
{
(x− n)2 + n for x ∈ [n, n+ 1), n ∈ N0,

∞ for x = ∞ .

(see Fig. 2). Then the approximating orbits are

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} for x = 0,

[n− 1, n] for x = n ∈ N,

orb(x) =
{
(x−n)2k+n : k∈N0

}∪{n} for x∈(n, n+1), n∈N0,

{∞} for x = ∞.

This yields the superorbits

S(x) =
{
[0,∞) for 0 ≤ x <∞,

{∞} for x = ∞.

However, since dimfixTϕ = 1, the maximal level set of fixTϕ is [0,∞]. Hence
the quotient space induced by the superorbits is not Hausdorff.

3.2. Superorbits of finite degree. To obtain a Hausdorff quotient
space, we iterate the process of building intersections of certain neighbor-
hoods (approximating orbits) and then defining an equivalence relation yield-
ing superorbits.

Definition 3.11. Let n ∈ N0 and x ∈ K.
Base case: For n = 0, define the approximating orbit of x of degree 0 as

A0(x) := A(x)

and the superorbit of x of degree 0 as

S0(x) := S(x)
as in Definition 3.6.
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Fig. 2: (K;ϕ)

Successor case: (i) Let n ≥ 1. The approximating orbit of x of degree n is

An(x) :=
⋂

U∈U(x) open
Sn−1(U)⊆U

U
Sn−1

with Sn−1(U) :=
⋃

y∈U Sn−1(y) for U ⊆ K and

U
Sn−1

:=
⋂

U⊆F closed
Sn−1(F )⊆F

F,

called the Sn−1-closure of U .
(ii) Let ∼n be the equivalence relation generated by (An(x))x∈K . The

superorbit of x of degree n is

Sn(x) := [x]n =
⋃

y∈K,
y∼nx

An(y).

We collect some basic properties of approximating orbits, superorbits
and the Sn-closure.

Proposition 3.12. Let n ∈ N0 and U ⊆ K.
(a) For all x, y ∈ K with y ∼n x we have

An(y) ⊆ Sn(x), Sn(y) ⊆ An+1(x)

and

An(y) ⊆ An+1(x), Sn(y) ⊆ Sn+1(x).

In particular, these inclusions hold true for x = y.
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(b) For all x ∈ K we have that An(x) and Sn(x) are ϕ-invariant.
(c) The following assertions are equivalent.

(i) Sn(U) ⊆ U .
(ii) Sn(U) = U .
(iii) There is some M ⊆ K such that U =

⋃
y∈M Sn(y).

(d) We have

Sn(U
Sn

) = U
Sn

= U
Sn

Sn

= U
Sn

= U◦Sn
.

Proof. (a) is clear by definition. For (b) it suffices to show that Sn(x)
is ϕ-invariant for all x ∈ K and n ∈ N. We give a proof by induction on
n. For n = 0, see Proposition 3.7. If Sn(x) is ϕ-invariant for all x ∈ K and
n ∈ N0, then Sn+1(x) is also ϕ-invariant since Sn(y) ⊆ An+1(y) ⊆ Sn+1(x)
for x, y ∈ K with y ∈ Sn+1(x).

In (c) the implications (i) ⇔ (ii) ⇒ (iii) are trivial. (iii) ⇒ (ii): By
assumption we have U ⊆ ⋃

y∈M Sn(y) and thus for all z ∈ U there is some

y ∈M such that z ∈ Sn(y). Since ∼n is an equivalence relation, we have
Sn(z) = Sn(y), hence Sn(U) =

⋃
y∈U Sn(y) ⊆

⋃
y∈M Sn(y). The converse in-

clusion is clear.
We now show (d). A simple calculation and (c) show

(1) Sn(U
Sn

) = U
Sn
.

From (1) and the closedness of U
Sn

then follows

(2) U
Sn

Sn

=
⋂

U
Sn⊆F closed
Sn−1(F )⊆F

F = U
Sn
.

From U ⊆ U ⊆ U
Sn

and (2) we obtain

(3) U
Sn

= U
Sn
.

Finally, (3) and U◦ = U imply

U◦Sn
= U

Sn
. �

Remark 3.13. Proposition 3.12(c) holds for equivalence classes of any
equivalence relation.

As before, we check assumptions (i) and (ii) in Proposition 2.4.

Proposition 3.14. For each n ∈ N0 and x ∈ K we have that
(a) ϕ(x) ∼n x and
(b) the superorbit Sn(x) of degree n is a level set of fixTϕ.
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Proof. Assertion (a) follows from the ϕ-invariance of Sn(x) for each
n ∈ N0 and x ∈ K shown in Proposition 3.12(b).

We use induction on n to show (b). For n = 0 see Proposition 3.7. For
n ∈ N0 and x ∈ K assume that Sn(x) is a level set of Tϕ. We show that the
assertion holds true for n+ 1. As in the base case, consider U := {y ∈ K :

|f(y)− f(x)| ≤ ε} = f−1(Bε(f(x))) for some f ∈ fixTϕ and some ε > 0. To
prove An+1(x) ⊆ U , we need to find some open V ∈ U(x) with Sn(V ) ⊆ V

such that V
Sn ⊆ U .

Define

V := f−1(Bε(f(x))).

Then V ∈ U(x), V is open and V ⊆ U . By the induction hypothesis we have
for x′ ∈ K with x ∼n x

′ that f(x) = f(x′). Hence by the universal property

of the quotient topology there is some unique continuous function f̂ : K/∼n

→ C such that f = f̂ ◦πn for the canonical projection πn : K → K/∼n. This

implies V = π−1
n

(
f̂−1

(
Bε(f(x))

))
, hence

(4) Sn(V ) = π−1
n (πn(V )) = V.

This yields An+1(x) ⊆ V
Sn

.

We now show that V
Sn ⊆ U . For f ∈ fixTϕ and C ⊆ C, we have

Sn(f
−1(C)) = f−1(C) by the universal property of the quotient topology

as above. Moreover, if Bε(f(x)) ⊆ C then V ⊆ f−1(C) by definition.
Whence we conclude that

U = f−1(Bε(f(x))) =
⋂

C⊆C closed
Bε(f(x))⊆C

f−1(C)

⊇
⋂

C⊆C

f−1(C) closed
f−1(Bε(f(x)))⊆f−1(C)

f−1(C) ⊇
⋂

F⊆K closed
Sn(F )⊆F

V⊆F

F = V
Sn
.

Hence An+1(x) ⊆ V
Sn ⊆ U . This implies that for z ∈ An+1(x) we have

|f(z)− f(x)| ≤ ε by definition of U . Since ε is arbitrary, this implies
f(z) = f(x). �

We now give a concrete example for these new orbits and analyze the
corresponding quotient space.

Example 3.15. (a) Let K := [0,∞] be the one-point compactification
of [0,∞) and ϕ1 : K → K with ϕ1 := ϕ as in Example 3.10. As seen before,
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Fig. 3: ( ˜K; ϕ̃1)

dimfixTϕ1
= 1 and

S0(x) =

{
[0,∞) for 0 ≤ x <∞,

{∞} for x = ∞.

Since [0,∞) is the only S0-invariant open subset of K, we have for all x ∈ K
A1(x) = S1(x) = K.

Next we define an isomorphic system (K̃; ϕ̃1) by K̃ := [0, 1] and

ϕ̃1 : K̃ → K̃, ϕ̃1 := h ◦ ϕ1 ◦ h−1

for a homeomorphism h : K → K̃ with h(0) = 0 and h(∞) = 1. For this

“compressed” system (K̃; ϕ̃1) (see Fig. 3) we still have dimfixTϕ̃1
= 1.

(b) Analogously, we construct a system (K;ϕ2) on K = [0,∞] with
S2(x) = K and S1(x) � K for all x ∈ K via

ϕ2 : K → K, x �→
{
ϕ̃1(x−m) +m for x ∈ [m,m+ 1), m ∈ N0,

∞ for x = ∞.

We iterate this procedure of compressing systems and lining up copies of
these onK = [0,∞] (cf. Fig. 4). By this procedure we obtain systems (K;ϕn)
with Sn−1(x) � K and Sn(x) = K for some n ∈ N and all x ∈ K. Hence the
quotient space K/∼n is a singleton, thus homeomorphic to the fixed factor L
by Proposition 2.4.

This construction leads to an example in which even superorbits of ar-
bitrary degree n ∈ N are not sufficient to characterize the fixed space.

Analysis Mathematica 47, 2021



DECOMPOSITIONS OF DYNAMICAL SYSTEMS 161

Fig. 4: Construction of systems with Sn(x) = K for x ∈ K, n ∈ N

Example 3.16. Let K := [0,∞] and define

ϕ(x) := ϕ̃k(x)

for x ∈ [k − 1, k), k ∈ N, with ϕ̃k as in Example 3.15 (see Fig. 5). Then for
n ∈ N0 the superorbit of degree n is

Sn(x) =

{
[0, n+ 1) for x ∈ [0, n+ 1),

{∞} for x = ∞

and

Sn(x) ⊆ [n+ 1,∞) for x ∈ [n+ 1,∞).

Hence Sn(x) �= K for all x ∈ K and n ∈ N0 which implies that the cor-
responding quotient space K/∼n contains more than one element. Thus,
it does not correspond to the fixed factor L, which is a singleton since
dimfixTϕ = 1.
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Fig. 5: (K;ϕ)

3.3. Superorbits of non-finite degree. Because superorbits of ar-
bitrary finite degree do not, in general, yield a Hausdorff quotient space, we
introduce superorbits of non-finite degree using ordinal numbers. We pro-
pose the following definition, where ω denotes the first non-finite ordinal
number (see, e.g., [7, p. 42, Definition 6.1]).

Definition 3.17. For any x ∈ K the approximating orbit of x of degree
ω is

Aω(x) :=
⋃

n∈N
Sn(x),

and the superorbit of x of degree ω is

Sω(x) := [x]ω =
⋃

y∈K
y∼ωx

Aω(y),

where ∼ω is the equivalence relation generated by (Aω(x))x∈K .

By Proposition 3.14, the assumptions (i) and (ii) of Proposition 2.4 are
satisfied for this equivalence relation.

Proposition 3.18. For each x ∈ K we have that

(a) ϕ(x) ∼ω x and

(b) the superorbit Sω(x) of degree ω is a level set of fixTϕ.

Even superorbits of degree ω do not, in general, yield a Hausdorff quo-
tient space as the following example shows.

Example 3.19. Let againK := [0,∞] be the one-point compactification

of [0,∞) and K̃ := [0, 1]. Consider the system (K;ϕ) as in Example 3.16
and the isomorphic system

ϕ̃ : K̃ → K̃, ϕ̃ := h ◦ ϕ ◦ h−1
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for a homeomorphism h : K → K̃ with h(0) = 0 and h(∞) = 1. Analogously
to Example 3.15, we construct a system (K;ψ) via

ψ : K → K, x �→
{
ϕ̃(x− n) + n for x ∈ [n, n+ 1), n ∈ N0,

∞ for x = ∞,

by putting copies of the compressed system in a row. Then the fixed fac-
tor L is a singleton, while Sω(x) �= K for all x ∈ K, thus the corresponding
quotient space K/∼ω contains more than one point.

4. Characterization of the fixed space via transfinite superorbits

To achieve our goal to characterize the fixed space fix Tϕ dynamically,
we need superorbits for arbitrary ordinal numbers. We define the base case,
successor case and limit case analogously to Definitions 3.11 and 3.17. The
class of ordinal numbers is denoted by Ord.

Definition 4.1. Let x ∈ K.
Base case: (i) The approximating orbit of x of degree 0 is

A0(x) :=
⋂

U∈U(x) closed
ϕ(U)⊆U

U.

(ii) Let ∼0 be the equivalence relation on K generated by (A0(x))x∈K .
The superorbit of x of degree 0 is

S0(x) := [x]0 =
⋃

y∈K
y∼0x

A0(y).

Successor case: (i) Let γ ∈ Ord a successor. Then the approximating
orbit of degree γ is

Aγ(x) :=
⋂

U∈U(x) open
Sγ−1(U)⊆U

U
Sγ−1

where Sγ−1(U) :=
⋃

y∈U Sγ−1(y) and

(5) U
Sγ−1 :=

⋂

U⊆F closed
Sγ−1(F )⊆F

F

denotes the Sγ−1-closure of U .
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(ii) As before let ∼γ be the equivalence relation on K generated by
(Aγ(x))x∈K . Finally, the superorbit of x of degree γ is

Sγ(x) := [x]γ =
⋃

y∈K
y∼γx

Aγ(y).

Limit case: Let 0 �= γ ∈ Ord be a limit ordinal. Then the approximating
orbit of x of degree γ is

Aγ(x) :=
⋃

β<γ

Sβ(x) =
⋃

β<γ
y∈K, y∼βx

Aβ(x) =
⋃

β<γ
y∈K, y∼βx

Sβ(x).

The equivalence relation ∼γ on K and the superorbit Sγ(x) of degree γ are
defined as in the successor case,

Sγ(x) := [x]γ =
⋃

y∈K
y∼γx

Aγ(y).

Before proving that superorbits of arbitrary degree are level sets, we list
some basic properties by analogy with Proposition 3.12.

Proposition 4.2. Let β, γ ∈ Ord with β ≤ γ and U ⊆ K.

(a) For all x, y ∈ K with y ∼γ x we have

Aγ(y) ⊆ Sγ(x), Sγ(y) ⊆ Aγ+1(x)

and

Aβ(y) ⊆ Aγ(x), Sβ(y) ⊆ Sγ(x).

In particular, these inclusions hold true for x = y.

(b) For all x ∈ K we have that Aγ(x) and Sγ(x) are ϕ-invariant.

(c) The following assertions are equivalent.
(i) Sγ(U) ⊆ U .
(ii) Sγ(U) = U .
(iii) There is some M ⊆ K such that U =

⋃
y∈M Sγ(y).

(d) We have

Sγ(U
Sγ
) = U

Sγ
= U

Sγ
Sγ

= U
Sγ

= U◦Sγ
.

Proof. Take x, y ∈ K with x ∼γ y. The inclusions Aγ(y) ⊆ Sγ(x) and
Sγ(y) ⊆ Aγ+1(x) in (a) are clear by definition. We show Sβ(y) ⊆ Sγ(x) for
all β ≤ γ using transfinite induction. For γ = 0 the statement is trivial. For
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γ ∈ Ord assume Sβ(y) ⊆ Sγ(x) for all β ≤ γ. We show Sβ(y) ⊆ Sγ+1(x) for
all β ≤ γ + 1. This follows immediately from

Sγ(y) ⊆ Aγ+1(y) ⊆ Sγ+1(x).

Now let γ be a limit and β < γ. Then Sβ(y) ⊆ Sγ(x) by the definition of
Sγ(x).

Similarly, one can show Aβ(y) ⊆ Aγ(x) for all β ≤ γ.
To show (b) we use again transfinite induction. For γ = 0 or γ ∈ Ord a

successor see the proof of Proposition 3.12. For γ ∈ Ord a limit the assertion
follows by definition directly from the induction hypothesis. (c) and (d) can
be proved by analogy with Proposition 3.12. �

We now show that the properties (i) and (ii) in Proposition 2.4 hold for
all superorbits (of transfinite order).

Proposition 4.3. For each γ ∈ Ord and x ∈ K we have that
(a) ϕ(x) ∼γ x and
(b) the superorbit Sγ(x) of degree γ is a level set of fixTϕ.

Proof. We use transfinite induction. For the base case γ = 0 see Propo-
sition 3.7. If γ ∈ Ord is a successor, the proof works analogously to Propo-
sition 3.14. Let thus γ ∈ Ord be a limit. Clearly, ϕ(x) ∼γ x for all x ∈ K.
Assume that Sβ(x) is a level set of Tϕ for all x ∈ K, β < γ. Then Sγ(x) is
a level set of Tϕ by definition and Proposition 4.2(a). �

The next proposition is crucial for the proof of our Main Theorem 4.6. It
shows that an approximating orbit corresponds to the intersection of closed
neighborhoods in the quotient space.

Proposition 4.4. If x ∈ K, γ ∈ Ord a successor and πγ : K → K/∼γ

the canonical projection, then

πγ(Aγ+1(x)) =
⋂

U∼∈U([x]γ)
closed

U∼ and π−1
γ

( ⋂

U∼∈U([x]γ)
closed

U∼
)

= Aγ+1(x).

Proof. Since πγ is surjective, it suffices to show the following inclusions:

(a) πγ(Aγ+1(x)) ⊆
⋂

U∼∈U([x]γ)
closed

U∼,

(b) π−1
γ

(
⋂

U∼∈U([x]γ)
closed

U∼
)

⊆ Aγ+1(x).
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By the definition of an approximating orbit and the results obtained in
Proposition 4.2, we conclude

πγ
(Aγ+1(x)

)4.2(c)
= πγ

( ⋂

U∈U(x) open
Sγ(U)=U

U
Sγ

)
3.4
=

4.2(d)
πγ

( ⋂

U∈U(x) open
Sγ(U)=U

π−1
γ

(
πγ(U

Sγ
)
)
)

=
⋂

U∈U(x) open
π−1
γ (πγ(U))=U

πγ
(
U

Sγ
) ⊆

⋂

U∼∈U([x]γ) closed

U∼

which proves (a).
To show (b), let

[z]γ ∈
⋂

U∼∈U([x]γ) closed

U∼ .

Since Sγ(z) = [z]γ = π−1
γ ([z]γ), we show Sγ(z) ⊆ Aγ+1(x). By the defini-

tion of Aγ+1(x) it suffices to show Sγ(z) ⊆ U
Sγ

for U ∈ U(x) open with
Sγ(U) ⊆ U .

We now move to the quotient space and define

V∼ := πγ(U
Sγ
) :=

{
πγ(y) : y ∈ U

Sγ
}
.

To show V∼ ∈ U([x]γ), we check the following.
(i) [x]γ ∈ V∼ and
(ii) there is some subsetW∼ ⊆ V∼ which is open in K/∼γ and [x]γ ∈W∼.
We have π−1

γ ([x]γ) = Sγ(x) ⊆ U
Sγ

since x ∈ U
Sγ

and Sγ(U
Sγ
) ⊆ U

Sγ

(see Proposition 4.2(d)). Therefore,

{[x]γ} = πγ(π
−1
γ ([x]γ)) ⊆ πγ(U

Sγ
) = V∼,

hence [x]γ ∈ V∼. This shows (i).
Define W∼ := πγ(U). Then U ⊆ U

Sγ
implies W∼ = πγ(U) ⊆ πγ(U

Sγ
) =

V∼. Furthermore, W∼ is open with respect to the quotient topology since

π−1
γ (W∼) = π−1

γ (πγ(U)) = Sγ(U)
4.2 (c)
= U is open. Clearly, [x]γ ∈W∼. This

shows (ii).

Analogously, we see π−1
γ (V∼) = U

Sγ
. Hence V∼ is closed with respect to

the quotient topology.
Summarizing, we obtain V∼ ∈ U([x]γ) and V∼ closed, hence [z]γ ∈ V∼ by

assumption. This implies Sγ(z) = π−1
γ ([z]γ) ⊆ π−1

γ (V∼) = U
Sγ

which proves
assertion (b). �
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To obtain a Hausdorff quotient space corresponding to the fixed factor L,
the process of building superorbits must become stationary.

Theorem 4.5. There is some ordinal number γ ∈ Ord such that Sγ(x) =
Sγ+1(x) for all x ∈ K.

Proof. For all β ∈ Ord we have
∣
∣{Sα(x) : x ∈ K,α ≤ β}∣∣ ≤ |P(K)| for

the power set P(K) of K. Moreover, by Proposition 4.2(a), if Sα(x) =
Sα+1(x) for some α ∈ Ord and some x ∈ K, then Sα(x) = Sα′(x) for all
α′ ∈ Ord with α ≤ α′. This implies for a γ ∈ Ord with |γ| > |P(K)| that
Sγ(x) = Sγ+1(x) for all x ∈ K. �

We can now describe the fixed space of Tϕ in terms of (K;ϕ).

Main Theorem 4.6. Let fixTϕ ∼= C(L) for a compact Hausdorff space L.
Then L is homeomorphic to K/∼α for some α ∈ Ord.

Proof. Choose α ∈ Ord such that Sα(x) = Sα+1(x) for all x ∈ K (see
Theorem 4.5) and assume, without loss of generality, that α is a succes-
sor. By Proposition 2.2 and Theorem 2.4 it remains to show that K/∼α is
Hausdorff, i.e.,

{
[x]α

}
=

⋂

U∈U([x]α) closed

U

for all x ∈ K (see Lemma 3.2). To do so, let

[z]α ∈
⋂

U∈U([x]α) closed

U.

As seen in the proof of Proposition 4.4 we have Sα(z) ⊆ Aα+1(x). Conse-
quently,

Sα(z) ⊆ Aα+1(x)
4.2(a)

⊆ Sα+1(x) = Sα(x).

This implies Sα(z) ⊆ Sα(x) and hence Sα(z) = Sα(x) since ∼α is an equiv-
alence relation. Therefore, also [z]α = π(Sα(z)) = π(Sα(x)) = [x]α which
shows that K/∼α is Hausdorff. �

From this, we obtain a characterization of a one-dimensional fixed space
of Tϕ in terms of its underlying dynamical system (K;ϕ).

Definition 4.7. We call a topological dynamical system (K;ϕ) topo-
logically ergodic if there is some x ∈ K and γ ∈ Ord such that

K = Sγ(x).

Main Theorem 4.8. The fixed space of Tϕ is one-dimensional if and
only if (K;ϕ) is topologically ergodic.
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Remark 4.9. Topological ergodicity is a global property depending on
the dynamical behavior of ϕ on the entire space K . Recall that a measure-
preserving dynamical system (Ω,Σμ;ϕ) is ergodic if and only if the fixed
space

fixTϕ :=
{
f ∈ L1(Ω,Σ, μ) : Tϕf = f

}

of the corresponding Koopman operator on L1(Ω,Σ, μ) is one-dimensional.
This motivates our choice of terminology even if there exist other meanings
of “topological ergodicity”, compare, e.g., [10, p. 2144], [15, p. 151] or [5,
p. 31].

Remark 4.10. (a) In continuous-time dynamical systems there is a
transfinite construction yielding so-called prolongations (cf., e.g., [2], [3,
Chapters II.4 and VII] or [17]). These are – if adapted to the discrete-
time setting – different from approximating orbits and superorbits as can be
seen from Example 3.9. Here we have for the first prolongation

D1(x) := A0(x) =

{
{(c, 0) : c ∈ [a, 1]} if x = (a, 0) for some a ∈ [0, 1],

orb(x) elsewhere

and for the second prolongation

D2(x) :=
⋂

U∈U(x)

⋃

n∈N
Dn

1 (U) =
⋂

U∈U(x)

D1(U) = D1(x)

for all x ∈ K because D1(D1(U)) = D1(U) and D1(U) is closed for all
U ∈ U(x). This implies that all prolongations of higher degree are equal
to D1(x) for all x ∈ K, while dimfixTϕ = 1. Hence the decomposition in-
duced by fixTϕ is not obtained by the prolongations.

Also chain prolongations (see, e.g., [6]) are in general different from our
superorbits.

(b) By a completely different approach, Akin and Wiseman in [1, Theo-
rem 7.11] also obtain the equivalence relation ∼α but do not relate it to the
fixed space of the Koopman operator.

5. Lyapunov stability of higher order

It is an interesting problem to decompose a topological dynamical sys-
tem (K;ϕ) into disjoint, ϕ-invariant and “stable” sets. We now suggest a
hierarchy of stability notions which are closely linked to the fixed space fixTϕ
of a Koopman operator Tϕ.

We first recall the following standard definition.
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Fig. 6: (K;ϕ)

Definition 5.1. A set M ⊆ K is called Lyapunov stable if it is the in-
tersection of its ϕ-invariant neighborhoods, i.e.,

M =
⋂

U∈U(M)
ϕ(U)⊆U

U.

The maximal level sets of fixTϕ are Lyapunov stable and yield a decom-
position of K. However, it may happen that there exist finer decompositions
into Lyapunov stable sets as the following example shows.

Example 5.2.

K := {( 1n , c) : n ∈ N, c ∈ [0, 1]} ∪ {
(0, c) : c ∈ [0, 1]

}

with the subspace topology of R2 and the dynamics ϕ given for x ∈ K by

ϕ(x) :=

⎧
⎪⎨

⎪⎩

(
1
n , n(c− m

n )
2 + m

n

)
for x = ( 1n , c) with c ∈ [mn ,

m+1
n ]

for some n ∈ N and m ∈ N0,

(0, c) for x = (0, c) with c ∈ [0, 1]

(see Fig. 6). Here, the decomposition ofK induced by the fixed space fixTϕ is

K =
⋃̇

n∈N
{( 1n , c) : c ∈ [0, 1]} ∪̇{(0, c) : c ∈ [0, 1]

}

while a finer decomposition into Lyapunov stable sets is given by

K =
⋃̇

n∈N
{( 1n , c) : c ∈ [0, 1]} ∪̇

⋃̇

c∈[0,1]

{
(0, c)

}
.

To explain the difference between these decompositions, we use our con-
cept of superorbits from Chapters 3 and 4 to generalize Lyapunov stability
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to a hierarchy of stability notions. This can produce decompositions of K
which are coarser than a decomposition into Lyapunov stable sets but finer
than the decomposition induced by fixTϕ.

Definition 5.3. (a) A set M ⊆ K is called Lyapunov stable of degree α
for some α ∈ Ord if

M =
⋂

U∈U(M) open
Sα(U)⊆U

U
Sα
.

(b) A set M ⊆ K is called absolutely Lyapunov stable if M is Lyapunov
stable of degree α for all α ∈ Ord.

Remark 5.4. If a set M is Lyapunov stable of degree α, then it is Lya-
punov stable of degree β for all β ≤ α.

Lemma 5.5. Let M ⊆ K and α ∈ Ord.

(a) For M Lyapunov stable and x ∈M , also A0(x) ⊆M and S0(x) ⊆M .

(b) For M Lyapunov stable of degree α and x ∈M , also Aα+1(x) ⊆M
and Sα+1(x) ⊆M .

Proof. It suffices to show the assertions for the approximating orbits.
We have

A0(x) =
⋂

U∈U(x) closed
ϕ(U)⊆U

U ⊆
⋂

U∈U(M) closed
ϕ(U)⊆U

U =
⋂

U∈U(M)
ϕ(U)⊆U

U =M.

since K is a Hausdorff space yielding (a). Assertion (b) follows by definition
from

Aα+1(x) =
⋂

U∈U(x) open
Sα(U)⊆U

U
Sα ⊆

⋂

U∈U(M) open
Sα(U)⊆U

U
Sα

=M. �

Lemma 5.6. Let x ∈ K, α ∈ Ord such that L ∼= K/∼α for the fixed fac-
tor L and π : K → K/∼α the canonical projection. Then for each closed
V ⊆ K/∼α we have

π−1(V )◦
Sα

= π−1(V ◦)
Sα

.

Proof. The inclusion “⊇” is clear. To prove “⊆” note that for V ⊆
K/∼α there exists some W ⊆ K such that V = π(W ). This implies that
π−1(V ) is Sα-invariant by

Sα(π
−1(V )) = π−1(π(π−1(V ))) = π−1

(
π
(
π−1(π(W ))

))

= π−1(π(W )) = π−1(V ).
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Moreover, π−1(V ) is closed, π−1(V )◦ ⊆ π−1(V ) and π−1(V ◦) ⊆ π−1(V ).
From this we obtain

(6) π−1(V )◦
Sα ⊆ π−1(V )

and

(7) π−1(V ◦)
Sα ⊆ π−1(V )

by definition of the Sα-closure.
If “�” is strict then there is some closed F ⊆ K such that Sα(F ) = F

and π−1(V ◦) ⊆ F but π−1(V )◦ � F . By (6) and (7) we can take F � π−1(V )
without loss of generality. By Sα(F ) = π−1(π(F )) = F we obtain

π−1(V ◦) ⊆ π−1(π(F )) � π−1(V ),

which implies V ◦ ⊆ π(F ) � V . Since V and π(F ) are closed this yields

V ◦ ⊆ π(F ) � V

which contradicts V ◦ = V . �
Remark 5.4 and the Lemmas 5.5 and 5.6 yield the following result.

Theorem 5.7. The finest decomposition into absolutely Lyapunov stable
sets is induced by fixTϕ.

Proof. We first show that the maximal level sets of fix Tϕ are abso-
lutely Lyapunov stable. By Remark 5.4 it suffices to show that a maximal
level set M is Lyapunov stable of degree α where L ∼= K/∼α for the fixed
factor L. Let x ∈ K such that M = π−1([x]) where π : K → K/∼α denotes
the canonical projection. We first show that for all closed V ∈ U([x]) there

is some open U ⊆ K with Sα(U) ⊆ U such that π−1(V ) = U
Sα

.
Take U := π−1(V )◦. Clearly, U is open and Sα(U) = U because of

Sα(U) = π−1(π(U)). We show that π−1(V ) = U
Sα

. By continuity of π,
we have

π−1(V ) ⊆ π−1(V )
Sα 4.2(d)

= π−1(V )◦
Sα 5.6

= π−1(V ◦)
Sα

= U
Sα
.

Conversely,

U
Sα 4.2(d)

= π−1(V )
Sα

=
⋂

F closed
π−1(V )⊆F
Sα(F )⊆F

F
F :=π−1(V )

⊆ π−1(V ).
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From this we obtain that
⋂

U∈U(M) open
Sα(U)⊆U

U
Sα ⊆

⋂

V ∈U([x]) closed

π−1(V )

= π−1

( ⋂

V ∈U([x]) closed

V

)
K/∼α Hausdorff

= π−1([x]) =M.

Together with the converse inclusion

M ⊆
⋂

U∈U(M) open
Sα(U)⊆U

U
Sα

we obtain that M is Lyapunov stable of degree α.
That there is no finer decomposition into absolutely Lyapunov stable

sets follows from Lemma 5.5 because a finer decomposition contradicts
Sα+1(x) ⊆M ′ for x ∈M ′ with M ′ ⊆ K Lyapunov stable of degree α. �

As a final result, we link absolute Lyapunov stability and topological
ergodicity.

Theorem 5.8. A topological dynamical system (K;ϕ) is topologically
ergodic if and only if there is no nontrivial decomposition of K into absolutely
Lyapunov stable sets.
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