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Abstract. We prove a Hille–Yosida type theorem for relatively uniformly
continuous positive semigroups on vector lattices. We introduce the notions of
relatively uniformly continuous, differentiable, and integrable functions on R+.
These notions allow us to study the generators of relatively uniformly continu-
ous semigroups. Our main result provides sufficient and necessary conditions for
an operator to be the generator of an exponentially order bounded, relatively
uniformly continuous, positive semigroup.

1. Introduction

The Hille–Yosida Theorem is a milestone in the theory of one-parameter
semigroups of operators and was originally proved in 1948 by E. Hille in [4]
and K. Yosida [14], independently. It enables the identification of a strongly
continuous operator semigroup on a Banach space through the resolvents of
its generator. Our main goal here is to prove a counterpart of the Hille–
Yosida Theorem for relatively uniformly continuous positive semigroups.

The presented paper can be viewed as a companion paper to [5] where
the notion of a relatively uniformly continuous semigroup on vector lattices is
introduced. This notion is motivated by various examples such as the heat
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semigroup, the (left) translation semigroup, and Koopman semigroups on
the space of continuous functions on the real line C(R) and on its sublattices
such as the space of uniformly continuous functions UC(R), Lipschitz con-
tinuous functions Lip(R), and continuous functions with compact support
Cc(R). It is shown that many basic results from the strongly continuous op-
erator semigroup theory on Banach spaces can be translated in an analogous
way to this setting and foundations are laid for further studies. We build
upon these results and focus on generation properties of such semigroups.

The paper is structured as follows. In Section 2 we recall some basic no-
tions and facts about relative uniform convergence. In Section 3 we introduce
the notions of relatively uniformly continuous, differentiable, and integrable
functions. We develop the appropriate calculus fitting to this context and
show a version of the Fundamental Theorem of Calculus. In Section 4 we
use these concepts to study the generators of relatively uniformly continuous
positive semigroups. There we introduce the notions of an ru-closed and ru-
densely defined operator on a vector lattice and show that every generator of
a relatively uniformly continuous positive semigroup is such. The proofs pre-
sented here have similarities to the C0-semigroup case, see e.g. [3], however,
due to convergence with respect to a regulator, dealing with ru-continuous
semigroups is more difficult. While the orbit maps of strongly continuous
semigroups on Banach spaces grow at most exponentially in norm, relatively
uniformly continuous semigroups a priori do not experience such a behavior.
Hence, we introduce the notion of exponentially order bounded semigroups.
In Section 5 we prove that the resolvent of the generator of such a semigroup
is its Laplace transform and that it satisfies a certain property related to the
exponential growth of the semigroup. The rest of this section is devoted to
the proof of our main result, Theorem 5.4, using the so called Yosida approx-
imations. We conclude by showing that every exponentially order bounded,
relatively uniformly continuous, positive semigroup is uniquely determined
by its generator, see Proposition 5.8.

2. Preliminaries

A net (xα)α in a vector lattice X converges relatively uniformly to x ∈ X
if one can find a (non-unique) regulator u ∈ X such that for each ε > 0 there
exists α0 such that

|xα − x| ≤ ε · u holds for all α ≥ α0.

In this case we write xα
ru−→ x (with respect to u) and ru- limα xα := x. We

call x the relative uniform limit (or ru-limit, for short) of (xα)α.
A vector lattice is said to be Archimedean if for each x, y ∈ X from

0 ≤ nx ≤ y for all n ∈ N it follows that x = 0. Throughout this paper we
denote by X an Archimedean vector lattice.
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The following properties for relatively convergent nets in X are easy to
verify; see e.g. [8, Theorem 16.2].

Lemma 2.1. Let X be an Archimedean vector lattice.

(i) If (xα)α converges relatively uniformly to x as well as to y, then x = y.

(ii) If xα
ru−→ x with respect to ux, yα

ru−→ y with respect to uy and a, b ∈ R,
then

• axα + byα
ru−→ ax+ by with respect to |a|ux + |b|uy ,

• xα ∨ yα
ru−→ x ∨ y with respect to ux + uy,

• xα ∧ yα
ru−→ x ∧ y with respect to ux + uy,

• x+α
ru−→ x+ with respect to ux,

• |xα| ru−→ |x| with respect to ux, and
• if xα is positive for all α, then x is positive.

It is evident that relative uniform convergence implies order convergence
and, by [10, Ch.1, Proposition 5.9], the converse is true for sequences if the
vector lattice is σ-order complete and has the diagonal property.

For vector latticesX and Y a map T : X → Y preserves ru-convergence if

for every xα
ru−→ x inX one has Txα

ru−→ Tx in Y . By [12, Theorem 5.1], a lin-
ear operator between Archimedean vector lattices preserves ru-convergence
if and only if it is order bounded. In particular, if T : X �→ X is a positive

operator and xα
ru−→ x with respect to a regulator u, then Txα

ru−→ Tx with
respect to regulator Tu.

A subset S of X is called relatively uniformly closed whenever (xn)n∈N
⊂ S and xn

ru−→ x imply x ∈ S. By [6, Section 3], the relatively uniformly
closed sets are exactly the closed sets of a certain topology in X , the relative
uniform topology which we denote by τru. The relative uniform topology
has been first studied by W. A. J. Luxemburg and L. C. Moore in [6]; see
also [9]. It is evident that relative uniform convergence implies convergence
in the relative uniform topology.

Example 2.2. On a vector lattice X with an order unit u ∈ X the rel-
ative uniform topology τru is generated by the norm

‖x‖u := inf
{
λ > 0 : |x| ≤ λ · u},

since xα
ru−→ x if and only if xα

‖·‖u−−→ x. It is well-known that in a completely
metrizable, locally solid vector lattice (X, τ) every convergent sequence has
a subsequence which converges relatively uniformly to the same limit, see [1,
Lemma 2.30]. This immediately yields that a subset of X is relatively uni-
formly closed if and only if it is τ -closed, so that topologies τru and τ agree.
In particular, if X is a Banach lattice, then τru agrees with norm topology.
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For 0 < p < 1 the vector lattice Lp(R) equipped with the topology τ induced
by the metric

dp(f1, f2) :=

∫

R

|f1(x)− f2(x)|p dx
is a completely metrizable, locally solid vector lattice which is not locally
convex. Hence, the relative uniform topology need not be locally convex in
general.

As mentioned above, a linear operator is order bounded if and only if it
preserves ru-convergence. For convergence in the relative uniform topology
we have the following result.

Lemma 2.3. Let X and Y be Archimedean vector lattices. If a linear
operator T : X → Y preserves ru-convergence, then T : (X, τru) → (Y, τru) is
continuous.

Proof. It suffices to show that for a fixed relatively uniformly closed
set V ⊂ Y the set T−1(V ) is relatively uniformly closed in X . Pick (xn)n∈N
⊂ T−1(V ) and x ∈ X such that xn

ru−→ x. By assumption, Txn
ru−→ Tx and,

since V is relatively uniformly closed in Y , we have Tx ∈ V , i.e., x ∈ T−1(V ).
�

Note, that we even obtain an equivalence in the lemma above if the
space Y has an order unit. In the rest of this paper we focus on relative
uniform convergence.

We say that a sequence (xn)n∈N ⊂ X is a relatively uniform Cauchy se-
quence (or ru-Cauchy sequence, for short) if one can find a regulator u ∈ X
such that for each ε > 0 there exists N ∈ N such that |xn − xm| ≤ ε · u holds
for all n,m ≥ N . We call X relatively uniformly complete (or ru-complete,
for short) if each relatively uniform Cauchy sequence in X converges rela-
tively uniformly in X .

It is known that a vector lattice X is ru-complete if and only if its every
principal ideal is ru-complete and hence, also every ideal of X is ru-complete;
see e.g. [8, Exercise 59.5].

Example 2.4. By [8, Theorem 42.5], every Dedekind σ-complete vector
lattice is ru-complete and hence, for each 0 < p < ∞ the vector lattice Lp(R)
is ru-complete. By [8, Theorem 43.1], the vector lattice C(R) is ru-complete
and hence, its ideals Cc(R) and the space of continuous functions vanishing
at infinity C0(R) are also ru-complete. Furthermore, it is easy to see that
the space of uniformly continuous bounded functions UCB(R) and the space
of continuous bounded functions Cb(R) are ru-complete.

For the unexplained terminology and basic results on vector lattices and
relative uniform convergence we refer to [8, Ch. 9], [10, Sec. 1.5 and 4.1] and
[13].
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3. Relative uniform calculus

In this section we introduce the concepts of continuity, differentiability,
and integrability of a function from R+ to X in terms of relative uniform
convergence and discuss their relationships.

A function f : R+ → X is called relatively uniformly continuous (or
ru-continuous, or ruc, for short) if one can find a continuity regulator
u : R+ → X such that for each ε > 0 there exists δ > 0 such that

|f(h+ t)− f(t)| ≤ ε · u(t)
holds for all t ≥ 0 and h ∈ [−min{δ, t}, δ]. In this case we write

f(h+ t)
ru−→ f(t) as h → 0 or ru- lim

h→0
f(h+ t) = f(t).

A function f : R+ → X is called relatively uniformly differentiable (or
ru-differentiable, for short) if one can find a function f ′ : R+ → X and a
differentiation regulator u : R+ → X such that for each ε > 0 there exists
δ > 0 such that

∣
∣
∣
f(h+ t)− f(t)

h
− f ′(t)

∣
∣
∣ ≤ ε · u(t)

holds for all t ≥ 0 and h ∈ [−min{δ, t}, δ]. We call f ′ the ru-derivative of f .

Remark 3.1. (i) By Lemma 2.1, if f : R+ → X and g : R+ → X are
two ru-differentiable functions with ru-derivatives f ′, g′ and differentiation
regulators uf , ug , respectively, and a, b ∈ R, then the function af + bg is
ru-differentiable with ru-derivative af ′ + bg′ and differentiation regulator
|a|uf + |b|ug .

(ii) If X is a Banach lattice, then ru-differentiability implies differentia-
bility with respect to the norm.

Proposition 3.2. Every ru-differentiable function is also ru-continuous.

Proof. Let f : R+ → X be an ru-differentiable function with differenti-
ation regulator u : R+ → X . Then for each ε > 0 there exists 0 < δ < ε such
that

|f(h+t)−f(t)| ≤ |h| ·
∣
∣
∣
f(h+t)−f(t)

h
−f ′(t)

∣
∣
∣+ |h| · |f ′(t)| ≤ ε ·(u(t)+ |f ′(t)|)

holds for all t ≥ 0 and h ∈ [−min{δ, t}, δ]. �
Let s ≥ 0. A function f : R+ → X is called relatively uniformly integrable

on the interval [0, s] if one can find Is ∈ X and a regulator us ∈ X such that
for each ε > 0 there exists δ > 0 such that

∣
∣
∣
∣

n∑

i=1

(si − si−1)f(ti)− Is

∣
∣
∣
∣ ≤ ε · us
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holds for every partition {s0, s1, . . . , sn} of the interval [0, s] with

max
1≤i≤n

|si − si−1| ≤ δ and ti ∈ [si−1, si], 1 ≤ i ≤ n.

Since Is is defined as an ru-limit, by Lemma 2.1.(i), it is unique and we
write

∫ s
0 f(t) dt := Is. We say that f : R+ → X is relatively uniformly inte-

grable (or ru-integrable, for short) if it is relatively uniformly integrable on
the interval [0, s] for all s ≥ 0 and call the map s �→ ∫ s

0 f(t) dt the ru-integral
of f .

The following proposition states some important properties of ru-integrals
which we shall use later on.

Proposition 3.3. Let f : R+ → X and g : R+ → X be ru-integrable
functions, a, b ∈ R, x, s ∈ R+, and T a positive linear operator on X . Then
the following assertions hold.

(i) The function af + bg is ru-integrable and we have

∫ s

0
(af(t) + bg(t)) dt = a

∫ s

0
f(t) dt+ b

∫ s

0
g(t) dt.

(ii) We have

∫ s

0
f(x+ t) dt =

∫ x+s

0
f(t) dt−

∫ x

0
f(t) dt.

(iii) If |f(t)| ≤ g(t) for each 0 ≤ t ≤ s, then

∣
∣∣
∣

∫ s

0
f(t) dt

∣
∣∣
∣ ≤

∫ s

0
g(t) dt.

(iv) We have

T

∫ s

0
f(t) dt =

∫ s

0
Tf(t) dt.

If, in addition,

ru- lim
s→∞

∫ s

0
f(t) dt =:

∫ ∞

0
f(t) dt and ru- lim

s→∞

∫ s

0
g(t) dt =:

∫ ∞

0
g(t) dt

exist, then the above results also hold for s = ∞.

Proof. Assertion (i) follows directly from Lemma 2.1.(ii).
In order to show (ii), take any partitions {s0, s1, . . . , sn}, {x0, x1, . . . , xm}

of the intervals [0, s], [0, x], respectively, ti ∈ [si−1, si] for 1 ≤ i ≤ n, and
yj ∈ [xj−1, xj ] for 1 ≤ j ≤ m. Then, choosing ri := xi for 0 ≤ i ≤ m and
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ri := x+ si for m+ 1 ≤ i ≤ m+ n we obtain a partition {r0, r1, . . . , rm+n}
of the interval [0, x+ s] and

n∑

i=1

(si − si−1)f(ti + x) =
m+n∑

i=1

(ri − ri−1)f(τi)−
m∑

i=1

(xi − xi−1)f(yi)

where τi := yi for 1 ≤ i ≤ m and τi := x+ ti for m+ 1 ≤ i ≤ m+ n. This
proves (ii).

We now verify assertion (iii). By assumption, there exist regulator func-
tions uf , ug : R+ →X such that for each ε > 0 and each appropriate partition
{s0, s1, . . . , sn} of the interval [0, s] and ti ∈ [si−1, si], 1 ≤ i ≤ n, we have

∣
∣
∣
∣

n∑

i=1

(si − si−1)f(ti)−
∫ s

0
f(t) dt

∣
∣
∣
∣ ≤ ε · uf (s)

and
∣
∣
∣∣

n∑

i=1

(si − si−1)g(ti)−
∫ s

0
g(t) dt

∣
∣
∣∣ ≤ ε · ug(s).

Hence,

∣∣
∣
∣

∫ s

0
f(t) dt

∣∣
∣
∣ ≤

∣∣
∣
∣

∫ s

0
f(t) dt−

n∑

i=1

(si − si−1)f(ti)

∣∣
∣
∣+

n∑

i=1

(si − si−1)|f(ti)|

≤ ε · uf (s) +
n∑

i=1

(si − si−1)g(ti) ≤ ε · (uf (s) + ug(s)) +

∫ s

0
g(t) dt.

Since X is Archimedean, we obtain (iii).
Assertion (iv) follows from the fact that positive operators preserve rel-

ative uniform limits. �

We now show a version of the Fundamental Theorem of Calculus for
ru-integrals and ru-derivatives.

Proposition 3.4. Let f : R+ →X be an ru-continuous and ru-integrable
function. Then the ru-integral of f is ru-differentiable and its ru-derivative
equals f .

Proof. By assumption, there exists a map u : R+ → X such that for
each ε > 0 there exists δ > 0 such that |f(t+ s)− f(s)| ≤ ε ·u(s) holds for all
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s ≥ 0 and t ∈ [−min{δ, s}, δ]. Hence, by Proposition 3.3.(ii)-(iii), we obtain

∣
∣
∣
∣

∫ s+h
0 f(t) dt− ∫ s

0 f(t) dt

h
− f(s)

∣
∣
∣
∣

≤ 1

h

∣
∣
∣
∣

∫ h

0
(f(t+ s)− f(s)) dt

∣
∣
∣
∣ ≤

1

h

∫ h

0
ε · u(s) dt = ε · u(s)

for all s ≥ 0 and h ∈ [−min{δ, s}, δ]. �
The following result will be used in the proof of Lemma 4.8. It is a

version of the Newton–Leibniz theorem in the relatively uniform context.

Proposition 3.5. Let f : R+ → X be ru-differentiable with differenti-
ation regulator u : R+ → X such that its ru-derivative f ′ is ru-continuous
with continuity regulator ũ : R+ → X . If u and ũ are ru-integrable, then f ′
is ru-integrable and for each s > 0 we have

∫ s

0
f ′(t) dt = f(s)− f(0).

Proof. By assumption, there exists w : R+ → X such that for each
s ≥ 0 and ε > 0 one can find δs > 0 such that for all partitions {s0, s1, . . . , sn}
of the interval [0, s] with max1≤i≤n |si − si−1| ≤ δs and ti ∈ [si−1, si], 1 ≤ i
≤ n, we have

∣∣
∣
∣

n∑

i=1

(si − si−1)u(ti)−
∫ s

0
u(t) dt

∣∣
∣
∣ ≤ ε · w(s)

and
∣∣
∣
∣

n∑

i=1

(si − si−1)ũ(ti)−
∫ s

0
ũ(t) dt

∣∣
∣
∣ ≤ ε · w(s).

Fix s > 0 and ε > 0. By assumption, there exists 0 < δ < δs such that

∣
∣
∣
f(h+ t)− f(t)

h
− f ′(t)

∣
∣
∣ ≤ ε · u(t) and

∣∣f ′(h+ t)− f ′(t)
∣∣ ≤ ε · ũ(t)

hold for all t ≥ 0 and h ∈ [−min{δ, t}, δ]. Now we estimate

∣∣
∣
∣

n∑

i=1

(si − si−1)f
′(ti)− (f(s)− f(0))

∣∣
∣
∣

≤
n∑

i=1

(si−si−1)

∣
∣
∣
∣f

′(ti)− f(si)−f(si−1)

si − si−1

∣
∣
∣
∣
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≤
n∑

i=1

(si−si−1)
∣
∣f ′(ti)−f ′(si−1)

∣
∣+

n∑

i=1

(si−si−1)

∣
∣
∣
∣f

′(si−1)− f(si)−f(si−1)

si − si−1

∣
∣
∣
∣

≤ ε ·
( n∑

i=1

(si − si−1)ũ(si−1) +
n∑

i=1

(si − si−1)u(si−1)

)

≤ ε ·
(
2ε · w(s) +

∫ s

0
ũ(t) dt+

∫ s

0
u(t) dt

)
. �

4. Relatively uniformly continuous semigroups and generators

As defined in [5], a family (T (t))t≥0 of linear operators on X is called a
relatively uniformly continuous semigroup (or ruc-semigroup, for short) if it
satisfies the following two conditions.

(i) For each t, s ≥ 0 we have T (s+ t) = T (t)T (s) and T (0) = IX .
(ii) For each x ∈ X and t ≥ 0 the orbit map t �→ T (t)x is ru-continuous,

i.e.,

T (h+ t)x
ru−→ T (t)x as h → 0.

If, in addition, T (t) is a positive operator on X for each t ≥ 0, the semigroup
(T (t))t≥0 is called positive.

Remark 4.1. Since relatively uniform convergence implies convergence
in the relatively uniform topology, the notion of relative uniform continuity
allows us to study continuous semigroups on non-locally convex spaces such
as Lp(R) for 0 < p < 1; see Example 2.2.

It was shown in [5, Proposition 3.5] that for a positive semigroup it
suffices to check the ru-continuity of the orbit maps only at t = 0 and for
positive vectors, i.e.,

T (t)x
ru−→ x as t ↘ 0 for x ∈ X+.

Another crucial property of ruc-semigroups is that orbit maps are order
bounded on finite intervals; see [5, Proposition 3.4]. For the general theory
of positive operator semigroups and ruc-semigroups we refer to [2], [3] and
[5], respectively.

Next, we study the ru-integrability of the orbit maps of a positive ruc-
semigroup on an ru-complete vector lattice.

Lemma 4.2. Let (T (t))t≥0 be a relatively uniformly continuous positive
semigroup on a relatively uniformly complete vector lattice X . Then the fol-
lowing assertions hold for each x ∈ X and s ≥ 0.

(i) The orbit map t �→ T (t)x is ru-integrable.
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(ii) The operator y �→ ∫ s
0 T (τ)y dτ on X is well-defined and positive.

(iii) We have yh := 1
h

( ∫ h
0 T (τ)xdτ

) ru−→ x as h ↘ 0.

Proof. To prove (i) fix ε > 0. By assumption, there exist a positive
element u ∈ X , independent of ε, and δ > 0 such that |T (h)x− x| ≤ ε · u
holds for all h ∈ [0, δ]. Furthermore, by [5, Proposition 3.4], there exists
v ∈ X such that T (t)(u ∨ x) ≤ v holds for all t ∈ [0, s]. In particular, for
each t ∈ [0, s] we have T (t)x ∈ I{v}, where I{v} is the order ideal generated
by v. Pick 0 ≤ t′ ≤ t ≤ s with |t− t′| ≤ δ. Then

|T (t)x− T (t′)x| ≤ T (t′)|T (t− t′)x− x| ≤ ε · T (t′)u ≤ ε · v.
Hence, the mapping

ϕ : [0, s] → I{v}, t �→ T (t)x,

is continuous with respect to the AM-norm on I{v} defined by

‖y‖v := inf
{
λ > 0 : |y| ≤ λ · v}.

Since X is Archimedean and ru-complete, the order ideal I{v} is complete
with respect to the norm ‖ · ‖v and so there exists the unique Riemann in-
tegral in X which is the ru-limit of the Riemann sums of the orbit map
t �→ T (t)x on [0, s].

To prove (ii) fix y ∈ X+. We show that
∫ s
0 T (τ)y dτ ∈ X+. Indeed,

for each t ≥ 0 the operator T (t) is positive and thus, for any partition
{s0, s1, . . . , sn} of the interval [0, s] and ti ∈ [si−1, si], 1 ≤ i ≤ n, the Rie-
mann sum

n∑

i=1

(si − si−1)T (ti)y

is positive in X . The element
∫ s
0 T (τ)y dτ is the ru-limit of a net of positive

elements in X and hence,
∫ s
0 T (τ)y dτ ∈ X+.

To show (iii) fix ε > 0. By assumption, there exist u ∈ X , independent
of ε, and δ > 0 such that |T (h)x−x| ≤ ε ·u holds for all h ∈ [0, δ] and hence,
by Proposition 3.3.(iii), we have

|yh − x| = 1

h

∣∣
∣
∣

∫ h

0
(T (τ)x− x) dτ

∣∣
∣
∣ ≤ ε · u

for all h ∈ [0, δ]. �
Example 4.3. For a function f : R → R and t ≥ 0, we consider the

translation operator

(Tl(t)f)(x) = f(t+ x), x ∈ R.
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It is evident that by fixing a translation invariant space Y of functions on R

one obtains a semigroup (Tl(t))t≥0 on Y which we call the (left) translation
semigroup on Y . This semigroup is ru-continuous on UCB(R) which is an
ru-complete vector lattice. Indeed, if we fix f ∈ UCB(R) and pick ε > 0,
then there exists δ > 0 such that |f(h+ t)− f(t)| ≤ ε · 1 holds for all h ∈
[0, δ] and t ∈ R, and since the constant function is in UCB(R) we obtain the
claim. Hence, by [5, Proposition 3.11] and [5, Proposition 6.2], the (left) shift
semigroup is relatively uniformly continuous on Cc(R) and C(R) which, by
Example 2.4, are ru-complete vector lattices. So, (Tl(t))t≥0 on Cc(R), C(R),
and UCB(R) satisfies the assumptions of Lemma 4.2.

Since we will repeatedly use Lemma 4.2, in this section X will de-
note an ru-complete vector lattice. Contrary to ru-integrability, the ru-
differentiability of the orbit maps does not always hold. On the set of vec-
tors, for which the orbits are ru-differentiable we can define the generator of
an ruc-semigroup as follows.

The generator A : D(A) ⊂ X → X of a relatively uniformly continuous
semigroup (T (t))t≥0 on X is the operator

Ax := ru- lim
h↘0

1

h
(T (h)x− x),

D(A) :=

{
x ∈ X : ru- lim

h↘0

1

h
(T (h)x− x) exists in X

}
.

Remark 4.4. Obviously, every ruc-semigroup determines its generator
uniquely. Proposition 5.8 will show that under additional assumptions the
converse is also true.

Example 4.5. The generator of the (left) translation semigroup (Tl(t))t≥0

on Cc(R) is the first derivative operator A := d
dx with the domain

D(A) =
{
f ∈ Cc(R) | f is continuously differentiable

}
.

Indeed, if (B,D(B)) is the generator of (Tl(t))t≥0, then, by definition, for
fixed f ∈ D(B) there exists u ∈ Cc(R) such that for each ε > 0 there exists
0 < δ < 1 such that we have

∣
∣∣
f(h+ x)− f(x)

h
− (Bf)(x)

∣
∣∣ ≤ ε · u(x)

for all x ∈ R and h ∈ [0, δ] and hence, f is left differentiable with left deriva-
tive Bf . Since Bf is a continuous function, f is differentiable and Bf = Af .
In particular, we have D(B) ⊂ D(A).

Now, let f ∈ D(A). Then Af ∈ Cc(R) and hence, there exists n ∈ N

such that f(x) = 0 and Af(x) = 0 for all x ∈ [−n, n]c. Furthermore, since
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Af = f ′ is continuous, by [11, Exercise 5.8], for fixed ε > 0 there exists 0 <
δ < 1 such that

∣
∣
∣
f(h+ x)− f(x)

h
− f ′(x)

∣
∣
∣ ≤ ε

holds for all h ∈ [0, δ] and x ∈ [−n, n]. By Urysohn’s lemma, there exists
u ∈ Cc(R) such that u(x) = 1 holds for all x ∈ [−n− 1, n+1] and hence, we
obtain

∣∣
∣
(Tl(h)f)(x)− f(x)

h
− (Af)(x)

∣∣
∣ =

∣∣
∣
f(h+ x)− f(x)

h
− f ′(x)

∣∣
∣ ≤ ε · u(x)

for all h ∈ [0, δ] and x ∈ R, i.e., f ∈ D(B).

The following lemma captures some of the important properties of gen-
erators of positive ruc-semigroups. It is motivated by properties from the
classical theory of strongly continuous semigroups; cf. [3, II.1.3].

Lemma 4.6. Let A be the generator of a relatively uniformly continu-
ous positive semigroup (T (t))t≥0 on an ru-complete vector lattice X . The
following assertions hold for each s ≥ 0.

(i) The operator A : D(A) ⊂ X → X is linear.

(ii) For x ∈ D(A) we have T (s)x ∈ D(A) and AT (s)x = T (s)Ax. Futher-
more, the orbit map t �→ T (t)x is ru-differentiable with ru-derivative t �→
T (t)Ax.

(iii) For each x ∈ X we have

∫ s

0
T (τ)xdτ ∈ D(A).

(iv) We have

T (s)x− x =

{
A
∫ s
0 T (τ)xdτ if x ∈ X,

∫ s
0 T (τ)Axdτ if x ∈ D(A).

Proof. Assertion (i) follows directly from the linearity of the operators
T (t) and Lemma 2.1.

To prove (ii) fix x ∈ D(A). By assumption, there exists u ∈ X such that
for each ε > 0 there exists δ > 0 such that

|T (h)Ax−Ax| ≤ ε · u and
∣
∣
∣
1

h
(T (h)x− x)−Ax

∣
∣
∣ ≤ ε · u
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hold for all h ∈ [0, δ]. Furthermore, by [5, Proposition 3.4], there exists v ∈ X
such that T (t)u ≤ v holds for all t ∈ [0, s]. Therefore

∣
∣
∣
1

h
(T (h)T (s)x− T (s)x)− T (s)Ax

∣
∣
∣

≤ T (s)
∣
∣
∣
1

h
(T (h)x− x)−Ax

∣
∣
∣ ≤ ε · T (s)u ≤ ε · 2v

holds for all h ∈ [0, δ]. Hence, we obtain T (s)x ∈ D(A) and AT (s)x =
T (s)Ax. Moreover,

∣
∣
∣
1

h

(
T (h)T (s)x− T (s)x

)− T (s)Ax
∣
∣
∣

≤ T (h+ s)

(∣∣
∣
1

−h

(
T (−h)x− x

)− Ax
∣∣
∣+

∣
∣Ax− T (−h)Ax

∣
∣
)

≤ ε · T (h+ s)(2u) ≤ ε · (2v)
holds for all h ∈ [−min{δ, s},0]. This proves that t �→ T (t)x is ru-differentiable
with ru-derivative t �→ T (t)Ax.

To prove (iii) and (iv) fix x ∈ X . Using Proposition 3.3.(iv) and Propo-
sition 3.3.(ii) twice we obtain

1

h

(
T (h)

∫ t

0
T (τ)xdτ −

∫ t

0
T (τ)xdτ

)

=
1

h

(∫ t+h

0
T (τ)xdτ −

∫ h

0
T (τ)xdτ −

∫ t

0
T (τ)xdτ

)

=
1

h

∫ h

0
T (τ)T (t)xdτ − 1

h

∫ h

0
T (τ)xdτ

for each h > 0. By Lemma 4.2.(iii), the right-hand side converges relatively
uniformly to T (t)x− x as h ↘ 0. This proves (iii) and the first identity of
(iv). Furthermore, we have

1

h

(
T (h)

∫ t

0
T (τ)xdτ −

∫ t

0
T (τ)xdτ

)
=

∫ t

0
T (τ)

(1
h
(T (h)x− x)

)
dτ

for each h > 0. Since, by Lemma 4.2.(ii), the operator y �→ ∫ s
0 T (τ)y dτ is

positive on X it preserves ru-convergence and, hence, the right-hand side

converges relatively uniformly to
∫ t
0 T (τ)Axdτ as h ↘ 0. This proves the

second identity of (iv). �
The generator of a strongly continuous semigroup on a Banach space is

closed and densely defined; see e.g. [3, II.1.4]. Before we state an analogue
to this result in our setting we need to introduce the appropriate notions.
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A set D ⊂ X is called ru-dense if for each x ∈ X there exists a sequence

(xn)n∈N ⊂ D such that xn
ru−→ x. We call an operator P on X ru-densely de-

fined if its domain D(P ) is ru-dense in X . An operator P on X with domain

D(P ) is called ru-closed if xn
ru−→ x and Pxn

ru−→ y imply that x ∈ D(P ) and
Px = y.

Proposition 4.7. The generator of a positive relatively uniformly con-
tinuous semigroup is an ru-densely defined and ru-closed operator.

Proof. Consider a positive ruc-semigroup (T (t))t≥0 on X with gener-

ator A. Take x ∈ X and define yn := n
∫ 1

n

0 T (τ)xdτ . By Lemma 4.6.(iii),

yn ∈ D(A) for for each n ∈ N and, by Lemma 4.2.(iii), we have yn
ru−→ x as

n → ∞. This proves that A is ru-densely defined.
To show that A is ru-closed pick x, y ∈ X and (xn)n∈N ⊂ D(A) such that

xn
ru−→ x and Axn

ru−→ y. By Lemma 4.6.(iv), the identity

T (h)xn − xn =

∫ h

0
T (τ)Axn dτ

holds for each h > 0 and n ∈ N. Furthermore, since for each h > 0 the oper-

ators T (h) and y �→ ∫ h
0 T (τ)y dτ preserve relative uniform convergence, we

have

T (h)xn − xn
ru−→ T (h)x− x and

∫ h

0
T (τ)Axn dτ

ru−→
∫ h

0
T (τ)y dτ

as n → ∞. Hence, the identity

1

h
(T (h)x− x) =

1

h

∫ h

0
T (τ)y dτ

holds for each h > 0. By Lemma 4.2.(iii), the right-hand side converges rela-
tively uniformly to y as h ↘ 0 and, hence x ∈ D(A). Since at the same time
the left-hand side converges relatively uniformly to Ax, we obtain Ax = y.
This proves that A is ru-closed. �

The following result can be interpreted as the ‘product rule’ for the ru-
derivative of commuting semigroups and is vital for the proof of the main
result of this paper, Theorem 5.4.

Lemma 4.8. Let (T (t))t≥0 and (S(t))t≥0 be relatively uniformly contin-
uous positive semigroups on X with generators A and B, respectively. If
D(A) ⊂ D(B) and for each s, t ≥ 0 the operators T (t) and S(s) commute,
then for each x ∈ D(A) and t ≥ 0 we have

T (t)x− S(t)x =

∫ t

0
T (t− τ)S(τ)(B −A)xdτ.
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Proof. Fix x ∈ D(A) ⊂ D(B) and t ≥ 0. We will prove that the func-
tion

f : τ �→ T (t− τ)S(τ)x

is ru-differentiable with the ru-derivative

f ′ : τ �→ T (t− τ)S(τ)(B −A)x,

which is ru-continuous, and that there exists wt ∈ X such that the constant
function τ �→ wt is a differentiation regulator of f and a continuity regulator
of f ′. If so, then f satisfies the assumptions of Proposition 3.5 which yields
the result.

By assumption, there exists u ∈ X such that

T (h)x− x

h

ru−→ Ax,
S(h)x− x

h

ru−→ Bx,

T (h)(B −A)x
ru−→ (B −A)x, S(h)(B −A)x

ru−→ (B − A)x

with respect to the regulator u as h ↘ 0. By [5, Proposition 3.4], there exists
vt, wt ∈ X such that S(s)u ≤ vt and T (s)vt ≤ wt holds for all s ∈ [0, t].

Fix τ ∈ (0, t) and ε > 0. Then for some δ > 0 we have

∣
∣
∣
f(τ + h)− f(τ)

h
− f ′(τ)

∣
∣
∣

=
∣
∣
∣
T (t− τ − h)S(τ + h)x− T (t− τ)S(τ)x

h
− T (t− τ)S(τ)(B −A)x

∣
∣
∣

≤ T (t− τ − h)S(τ)
∣
∣
∣
S(h)x− T (h)x

h
− T (h)(B −A)x

∣
∣
∣

≤ T (t− τ − h)S(τ)

(∣∣
∣
S(h)x− x

h
−Bx

∣∣
∣+

∣∣
∣
T (h)x− x

h
−Ax

∣∣
∣

+
∣
∣(B −A)x− T (h)(B −A)x

∣
∣
)

≤ ε · T (t− τ − h)S(τ)3u ≤ ε · 3wt

for all h ∈ [0,min{δ, t− τ}]. Similarly,

∣∣
∣
f(τ − h)− f(τ)

h
− f ′(τ)

∣∣
∣ ≤ ε · 3wt

holds for all h ∈ [0,min{δ, τ}]. This proves that f is ru-differentiable on [0, t]
with ru-derivative f ′ and that τ �→ 3wt is a differentiation regulator of f .

Furthermore, by using similar arguments, we obtain

∣
∣f ′(τ+h)−f ′(τ)

∣
∣ =

∣
∣T (t−τ−h)S(τ+h)(B−A)x−T (t−τ)S(τ)(B−A)x

∣
∣
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≤ T (t−τ−h)S(τ)(|S(h)(B−A)x− (B−A)x|+ |T (h)(B−A)x−(B−A)x|)
≤ ε · 2wt ≤ ε · 3wt

for some δ > 0 and all h ∈ [0,min{δ, t− τ}], and
∣
∣f ′(τ − h)− f ′(τ)

∣
∣

= |T (t− τ + h)S(τ − h)(B −A)x− T (t− τ)S(τ)(B − A)x| ≤ ε · 3wt

for all h ∈ [0,min{δ, τ}]. This proves that f ′ is ru-continuous on [0, t] with
continuity regulator τ �→ 3wt and hence, we conclude the result. �

It is well-known that every strongly continuous semigroup on a Banach
space is exponentially bounded, see e.g. [3, Proposition I.5.5]. We now define
an analogous property for semigroups on vector lattices.

We call a semigroup (T (t))t≥0 on X exponentially order bounded if there
exists some w ∈ R such that for each x ∈ X there exists u ∈ X such that for
all t ≥ 0 we have

|T (t)x| ≤ ew·tu.

We call such an w ∈ R an order exponent of (T (t))t≥0.

Example 4.9. The multiplication semigroup (Tq(t))t≥0, defined by

Tq(t)f = eq(·)tf, q ∈ Cb(R)

for each f : R → C and t ≥ 0, is an exponentially order bounded semigroup
on Cc(R), Lip(R), UC(R), UCB(R), Cb(R), C(R), and Lp(R) (0 < p < ∞)
with order exponent ‖q‖∞, since

|T (t)f | ≤ e‖q‖∞t|f |.
In general, a relatively uniformly continuous semigroup is exponentially

order bounded only under some additional assumptions.

Proposition 4.10. If a vector lattice X has an order unit u ∈ X , then
every relatively uniformly continuous positive semigroup (T (t))t≥0 is expo-
nentially order bounded.

Proof. First, by assumption, there exists λ > 1 such that T (1)u ≤ λu
hold. Fix x ∈ X . By [5, Proposition 3.4], there exists v ∈ X such that
|T (s)x| ≤ v holds for all s ∈ [0, 1]. Fix t ≥ 0, N ∈ N0, 0 ≤ s < 1 such that
t = N + s and pick μ > 0 such that v ≤ μu. Then for w := ln(λ) we have

|T (t)x| ≤ T (N)|T (s)x| ≤ T (N)v ≤ μ · T (1)Nu ≤ λN · (μu) ≤ ew·t(μu). �
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Example 4.11. By [5, Lemma 2.4], the vector lattices Lip(R) and
UC(R) have an order unit and, by [5, Proposition 6.3], the (left) translation
semigroup (Tl(t))t≥0 is a relatively uniformly continuous positive semigroup
on Lip(R) and UC(R). Hence, by Proposition 4.10, (Tl(t))t≥0 is exponen-
tially order bounded on Lip(R) and UC(R).

By [5, Proposition 3.11] and [5, Proposition 6.2], the (left) translation
semigroup is relatively uniformly continuous on Cc(R) and C(R), but it is
not exponentially order bounded on these lattices as the next example shows.

Example 4.12. The (left) translation semigroup (Tl(t))t≥0 is not expo-
nentially order bounded on the following spaces.

(a) On Cc(R). Fix a positive function f ∈ Cc(R) with f(0) = 1 and as-
sume that there exists w ∈ R and u ∈ Cc(R) such that Tl(t)f ≤ ew·tu holds
for all t ≥ 0. Then 1 = f(0) = (Tl(t)f)(−t) ≤ ew·tu(−t) and, hence u(−t)
≥ e−w·t > 0 for all t ≥ 0 which contradicts u ∈ Cc(R).

(b) On C(R). Consider the function f : x �→ ex
2

and assume that there
exist w ∈ R and u ∈ C(R) such that Tl(t)f ≤ ew·tu holds for all t ≥ 0. Then
et

2−w·t ≤ u(0) for all t ≥ 0 which is a contradiction.

(c) On Lp(R) for 0 < p < ∞. Consider the function

f : x �→
∣∣
∣

1

x− 1
2

∣∣
∣

1

2p · χ[0,1](x)

in Lp(R). Assume that there exist w ∈ R and u ∈ Lp(R) such that Tl(t)f
≤ ew·tu, i.e.,

e−w·t
∣∣
∣

1

x+ t− 1
2

∣∣
∣

1

2p · χ[0,1](x+ t) ≤ u(x)

holds for all t ≥ 0 and almost every x ∈ R. Furthermore, for each x ∈ [0, 12 ]

there exists t ∈ [0, 12 ] such that x+ t− 1
2 = 0 and hence, u attains infinity

a.e. on [0, 12 ] which contradicts u ∈ Lp(R).

For further studies we need to define the resolvent set and the resol-
vent operator in our setting. In order to do that it is necessary to consider
vector lattices over complex fields. A complex vector lattice XC is a com-
plexification of an ru-complete vector lattice X endowed with the modulus
function

|z| := sup
0≤θ<2π

|cos(θ)x+ sin(θ)y|

which, by [7, Lemma 3.1], exists for each z := x+ iy ∈ XC. It is well-known
that all complex vector lattices are ru-complete. For a better understanding
of complex vector lattices we refer to [7].

Analysis Mathematica 46, 2020



310 M. KAPLIN and M. KRAMAR FIJAVŽ

Motivated by the fact that a strongly continuous semigroup on a Banach
lattice is positive iff its generator is a resolvent positive operator (see [2,
Corollary 11.4]), we introduce the following notion. For an operatorA on XC

we define its positive resolvent set by

ρ+(A) := {λ ∈ C : R(λ,A) := (λ−A)−1 exists

and is a positive operator on XC}.
For each w ∈ R set C>w := {λ ∈ C : Reλ > w}.

In [5, Section 4] it was shown, that rescaling does not change the ru-
continuity of the semigroup. One can show even more.

Lemma 4.13. Let (T (t))t≥0 be a positive ruc-semigroup on XC with gen-
erator A. Let μ ∈ R and α > 0. The rescaled semigroup (S(t))t≥0 defined by

S(t) := eμtT (αt)

is again a positive ruc-semigroup with generator B = αA+ μIX , D(B) =

D(A) and resolvent R(λ,B) = 1
αR(λ−μ

α , A) for λ ∈ ρ+(B). Moreover, if
(T (t))t≥0 is exponentially order bounded with order exponent w, then (S(t))t≥0,
is also exponentially order bounded with order exponent w + μ.

Proof. The claim that (S(t))t≥0 is a positive ruc-semigroup follows di-
rectly from [5, Section 4]. To see that B is the generator of (S(t))t≥0, fix
x ∈ D(A). For each h > 0 we have

eμhT (αh)x− x

h
= αeμh

T (αh)x− x

αh
+

eμh − 1

h
· x

and hence, by assumption, the right-hand side converges relatively uniformly
to αAx+ μx as h ↘ 0. It is clear that D(B) = D(A). For λ ∈ ρ+(B) we
have

λ−B = α ·
(λ− μ

α
−A

)

and hence, R(λ,B) = 1
αR(λ−μ

α , A) follows. Now, if there exists w ∈ R such
that for each x ∈ XC there exists u ∈ XC such that |T (t)x| ≤ ewtu holds for
all t ≥ 0, then |S(t)x| ≤ e(μ+w·α)tu holds for all t ≥ 0. �

5. A Hille–Yosida-type generation theorem

In this section we present and prove the main result of the paper, Theo-
rem 5.4, which is an analogue to the classical Hille–Yosida Theorem (see [3,
II.3.5 Generation Theorem]) for ruc-semigroups. It provides a characterisa-
tion of those linear operators that are the generators of some exponentially
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order bounded, relatively uniformly continuous, positive semigroups. More
precisely, the generators are characterised via the behaviour of their resol-
vents. Throughout this section X denotes an ru-complete complex vector
lattice.

The following result allows us to work with the resolvents of the genera-
tors of exponentially order bounded positive ruc-semigroups. It shows that
these resolvents are the Laplace transforms of the corresponding semigroups.

Proposition 5.1. Let (T (t))t≥0 be a positive exponentially order bounded
ruc-semigroup on X with order exponent w ∈ R and generator A. Then the
following assertions hold.

(i) For each λ ∈ C>w the mapping

x �→ R(λ)x :=

∫ ∞

0
e−λ·tT (t)xdt

defines a positive linear operator on X which is positive whenever λ ∈ (w,∞).

(ii) For each x ∈ X there exists u ∈ X such that

|R(λ)kx| ≤ (Reλ− w)−k · u

holds for all k ∈ N and λ ∈ C>w.

(iii) The positive resolvent set ρ+(A) contains (w,∞) and R(λ) = R(λ,A)
holds for each λ ∈ C>w.

Proof. By assumption, there exists w ∈ R such that for each x ∈ X ,
there exists u ∈ X such that

|T (t)x| ≤ etw u

holds for all t ≥ 0. Hence, by Proposition 3.3.(ii)–(iii), for each Reλ > w,
S > s ≥ 0 and fixed x ∈ X we obtain

∣
∣∣
∣

∫ S

0
e−λ·tT (t)xdt−

∫ s

0
e−λ·tT (t)xdt

∣
∣∣
∣ =

∣
∣∣
∣

∫ S−s

0
e−λ·(s+t)T (s+ t)xdt

∣
∣∣
∣

≤
∫ S−s

0
e−(Reλ−w)·(s+t) · udt ≤ (Reλ− w)−1e−(Reλ−w)·s · u.

Since X is relatively uniformly complete, the improper ru-integral defining
R(λ)x exists. Furthermore, by Lemma 2.1.(ii) and the fact that T (t) is linear
and positive for each t ≥ 0, the operator R(λ) is also linear and positive
whenever λ ∈ (w,∞). This proves (i).
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To prove (ii) we use the assumption that (T (t))t≥0 is exponentially order
bounded with order exponent w and Proposition 3.3.(iii)–(iv) (n− 1) times
to estimate

|R(λ)kx| =
∣∣
∣
∣

∫ ∞

0
. . .

∫ ∞

0
e−λ·(∑k

l=1 tl)T

( k∑

l=1

tl

)
xdt1 . . . dtk

∣∣
∣
∣

≤
∫ ∞

0
. . .

∫ ∞

0
e−(Reλ−w)·(∑k

l=1 tl)udt1 . . . dtk

=

(∫ ∞

0
e−(Reλ−w)·t dt

)k

· u = (Reλ− w)−k · u.

Next, we show (iii). By a simple rescaling argument, see Lemma 4.13,
we may assume that λ = 0. We need to show that R(0, A) exists and equals
R(0). By Proposition 3.3.(ii), for each h > 0 and x ∈ X we have

T (h)− I

h
R(0)x =

T (h)− I

h

∫ ∞

0
T (t)xdt

=
1

h

∫ ∞

0
T (t+ h)xdt− 1

h

∫ ∞

0
T (t)xdt = −1

h

∫ h

0
T (t)xdt.

By Lemma 4.2.(iii), the right-hand side converges relatively uniformly to −x
as h ↘ 0 and therefore R(0)x ∈ D(A) with AR(0)x = −x for all x ∈ X . On
the other hand, for x ∈ D(A), we obtain by Lemma 4.6.(iv) that

AR(0)x = A

∫ ∞

0
T (t)xdt =

∫ ∞

0
T (t)Axdt = R(0)Ax.

This proves (iii). �
The following property was introduced in [5, Section 5]. It provides a

substitute for the Principle of Uniform Boundedness, which is an essential
assumption in the rest of this paper.

Definition 5.2. A vector lattice X has the property (D) if for each net

of linear operators (Tα)α on X the following two assertions imply Tαx
ru−→ 0

for each x ∈ X .

(a) There exists an ru-dense subset D ⊂ X such that Tαy
ru−→ 0 for each

y ∈ D.

(b) For each sequence (xn)n∈N ⊂ X with xn
ru−→ 0 there exists u ∈ X+

such that for each ε > 0 there exist Nε ∈ N and αε such that

|Tαxn| ≤ ε · u
holds for all n ≥ Nε and α ≥ αε.
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By [5, Section 5], the class of vector lattices which have the property
(D) contains all Banach lattices as well as Lp(R) (0 < p < 1), C(R), Cc(R),
Lip(R), UC(R), UCB(R) and Cb(R).

Let us immediately state a very useful criterion for the ru-continuity of
an exponentially order bounded positive semigroup on an ru-complete vector
lattice with the property (D). It follows directly from [5, Theorem 5.7].

Lemma 5.3. Let X have the property (D) and let (T (t))t≥0 be an ex-
ponentially order bounded positive semigroup on X . If there exists an ru-

dense set D ⊂ X such that T (h)y
ru−→ y as h ↘ 0 holds for each y ∈ D, then

(T (t))t≥0 is relatively uniformly continuous on X .

We are now ready to state our main generation result which is motivated
by the classical theorems of Hille and Yosida.

Theorem 5.4. Let X be an ru-complete vector lattice with the prop-
erty (D) and A a linear operator on X . Then the following assertions are
equivalent.

(i) Operator A is the generator of an exponentially order bounded rela-
tively uniformly continuous positive semigroup with order exponent 0.

(ii) Operator A is ru-closed, ru-densely defined, (0,∞) ⊂ ρ+(A) and for
each x ∈ X there exists u ∈ X such that

(5.1) |R(λ,A)kx| ≤ (Reλ)−k · u
holds for all k ∈ N and λ ∈ C>0.

While one of the implications in this theorem follows directly from Propo-
sition 4.7 and Proposition 5.1.(ii), more effort is needed for the proof of
the other one. We start by showing a couple of lemmas. The operators
λAR(λ,A) appearing in the following lemmas are known as Yosida approx-
imants.

Lemma 5.5. Let X have the property (D) and let A be an ru-closed and
ru-densely defined operator on X with (0,∞) ⊂ ρ+(A). Suppose that for each
x ∈ X there exists u ∈ X such that

|R(λ,A)x| ≤ λ−1 · u
holds for all λ > 0. Then the following assertions hold.

(i) For each relatively uniformly convergent sequence (xn)n∈N ⊂ X there
exists u ∈ X such that for each ε > 0 there exists N ∈ N such that

∣
∣λR(λ,A)xn − xn

∣
∣ ≤ ε · u

holds for all λ, n ≥ N .
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(ii) For each relatively uniformly convergent sequence (xn)n∈N ⊂ D(A)
there exists u ∈ X such that for each ε > 0 there exists N ∈ N such that

∣
∣λAR(λ,A)xn −Axn

∣
∣ ≤ ε · u

holds for all λ, n ≥ N .

Proof. To show (i) we prove first that λR(λ,A)x
ru−→ x as λ → ∞ for

each x ∈ X . Set Tλ := λR(λ,A)− IX for each λ > 0. Since X has the prop-
erty (D), it suffices to verify that (Tλ)λ satisfies assertions (a) and (b) from
Definition 5.2.

(a) By assumption, the set D := D(A) is ru-dense in X . For x ∈ D we
have Tλx = R(λ,A)Ax and hence, by assumption, there exists u ∈ X such

that |Tλx| ≤ λ−1u holds for all λ > 0 which yields Tλx
ru−→ 0 as λ → ∞.

(b) Pick a sequence (xn)n∈N ⊂ X such that xn
ru−→ 0 with respect to reg-

ulator v ∈ X . Fix ε > 0. Then there exists Nε ∈ N such that |xn| ≤ ε · v
holds for all n ≥ Nε. By assumption, there exists u ∈ X such that R(λ,A)v
≤ λ−1 · u holds for all λ > 0 and since R(λ,A) is positive for each λ > 0 we
estimate

|Tλxn| = |λR(λ,A)xn − xn| ≤ λ ·R(λ,A)|xn|+ |xn|
≤ ε · (λR(λ,A)v + v) ≤ ε · (u+ v)

for all λ > 0 and n ≥ Nε.
By property (D), we conclude that λR(λ,A)x

ru−→ x as λ → ∞ for each
x ∈ X .

To finish the proof of (i) pick a sequence (xn)n∈N ⊂ X and x ∈ X with

xn
ru−→ x with respect to regulator u ∈ X as n → ∞ and find regulators v1, v2

∈ X such that λR(λ,A)x
ru−→ x with respect to v1 and λR(λ,A)u

ru−→ u with
respect to v2 as λ → ∞. Then for each ε > 0 there exists N ∈ N such that

|xn − x| ≤ ε · u, |λR(λ,A)x − x| ≤ ε · v1, and |λR(λ,A)u − u| ≤ ε · v2
hold for all λ, n ≥ N and hence,

|λR(λ,A)xn − xn| ≤
∣
∣λR(λ,A)(xn − x)

∣
∣+

∣
∣λR(λ,A)x− x

∣
∣+ |x− xn|

≤ ε · λR(λ,A)u + ε · v1 + ε · u ≤ ε · (v1 + εv2 + 2u).

This proves (i). The second statement is an immediate consequence of the
first one. �

By using Yosida approximants we construct a sequence of exponentially
order bounded, relatively uniformly continuous, positive semigroups which
will play a crucial role in the proofs of Theorem 5.4 and Proposition 5.8.
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Lemma 5.6. Let X be an ru-complete vector lattice with the property
(D) and A be as in Lemma 5.5. Then for each n ∈ N the operator

An := n2R(n,A)− nIX = nAR(n,A)

on X is the generator of an exponentially order bounded, relatively uniformly
continuous, positive semigroup (Tn(t))t≥0 with order exponent 0. Further-
more, these semigroups satisfy the following assertions.

(i) For each x ∈ X there exists u ∈ X such that

|Tn(t)x| ≤ u

holds for all n ∈ N and t ≥ 0.

(ii) For each x ∈ X there exists u ∈ X such that for each n ∈ N and ε > 0
there exists δ > 0 such that

∣
∣
∣
Tn(h)x− x

h
− Anx

∣
∣
∣ ≤ ε · u

holds for all h ∈ [0, δ].

(iii) The operators Tn(t) and Tm(s) commute for all n,m ∈ N and t, s ≥ 0.

Proof. For each n ∈ N we first define the operator Tn(t) and show as-
sertion (i). From this immediately follows that (Tn(t))t≥0 is an exponentially
order bounded positive semigroup with order exponent 0. Then we show as-
sertion (ii) which also yields that An is the generator of the ruc-semigroup
(Tn(t))t≥0. At the end we verify assertion (iii).

Fix x ∈ X . By assumption, there exists u ∈ X such that

(5.2) |(nR(n,A))kx| ≤ u

holds for all n,k ∈ N. Then for each t ≥ 0, n ∈ N and all �,m ∈ N with � ≥ m
we estimate

∣
∣
∣
∣

�∑

k=0

(tn)k

k!
(nR(n,A))kx−

m∑

k=0

(tn)k

k!
(nR(n,A))kx

∣
∣
∣
∣

=

∣∣
∣
∣

�∑

k=m+1

(tn)k

k!
(nR(n,A))kx

∣∣
∣
∣ ≤

�∑

k=m+1

(tn)k

k!
· u.

This shows that (
∑�

k=0
tk

k! (n
2R(n,A))kx)�∈N is a relatively uniform Cauchy

sequence in X and hence, it has a unique limit which we denote by∑∞
k=0

tk

k!(n
2R(n,A))kx for each t ≥ 0 and n ∈ N. Since n2R(n,A) is a posi-

tive linear operator the mapping

Tn(t) : y �→ e−nt
∞∑

k=0

tk

k!
(n2R(n,A))ky
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defines a positive linear operator on X for each n ∈ N and t ≥ 0. Further-
more, using (5.2) we estimate

(5.3) |Tn(t)x| ≤ e−nt
∞∑

k=0

(tn)k

k!

∣
∣(nR(n,A))kx

∣
∣ ≤ e−nt

∞∑

k=0

(tn)k

k!
· u = u

for all t ≥ 0 and n ∈ N. This proves (i). Moreover, it follows that Tn(t)x is
an element of the principal ideal Iu ⊂ X generated by u for all t ≥ 0, n ∈ N

and since X is ru-complete, Iu, endowed with the norm

‖y‖u := sup
{
λ > 0 : |y| ≤ λu

}
,

is a Banach lattice and, by (5.3), both series

∞∑

j=0

(tn)j

j!
and

∞∑

k=0

tk

k!
(n2‖R(n,A)x‖u)k

converge absolutely. Hence, one can show, as for the Cauchy product for
scalar series, that for each n ∈ N and t ≥ 0, it holds

Tn(t)x =
∞∑

k=0

tk(−n)k

k!
·

∞∑

k=0

tk

k!
(n2R(n,A))kx(5.4)

=
∞∑

k=0

( k∑

j=0

tk−j(−n)k−j

(k − j)!
· t

j

j!
(n2R(n,A))jx

)

=
∞∑

k=0

( k∑

j=0

(
k

j

)
(−n)k−j(n2R(n,A))jx

)
· t

k

k!

=
∞∑

k=0

(n2R(n,A)− n)kx

k!
· tk =

∞∑

k=0

tk

k!
Ak

nx.

Furthermore, using (5.4) and similar arguments as in [3, Proposition
I.2.3], it is easy to see that (Tn(t))t≥0 defines a positive semigroup on X for
each n ∈ N.

We now show (ii). Using the binomial formula and (5.2), we obtain

|Ak
nx| =

∣
∣
∣
∣

k∑

j=0

(
k

j

)
(−n)j(n2R(n,A))k−jx

∣
∣
∣
∣(5.5)

≤
( k∑

j=0

(
k

j

)
njnk−j

)
· u = (2n)k · u.
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Now, fix n ∈ N and 0 < ε < 1. Then, by using (5.4) and (5.5), for all
h ∈ [0, ε · e−2n] we estimate

∣
∣
∣
∣
Tn(h)x− x

h
− Anx

∣
∣
∣
∣ = h ·

∣
∣
∣
∣

∞∑

k=2

hk−2 ·Ak
nx

k!

∣
∣
∣
∣

≤ h ·
∞∑

k=2

|Ak
nx|
k!

≤ h ·
( ∞∑

k=2

(2n)k

k!

)
· u ≤ ε · u.

This proves (ii) and shows that the orbit map t �→ Tn(t)x is ru-differentiable
and hence, by Proposition 3.2, it is also ru-continuous, i.e., (Tn(t))t≥0 is an
ruc-semigroup on X .

Finally, assertion (iii) follows from formula (5.4) and the fact that An

and Am commute for all n,m ∈ N. �
We now proceed with the proof of the left implication of Theorem 5.4

which we divide into three steps:
Step 1. By using the semigroups (Tn(t))t≥0 defined in Lemma 5.6, for

each y ∈ D(A) and t ≥ 0 we define T (t)y as the ru-limit of Tn(t)y as n → ∞
and extend this definition to X .

Step 2. We show that (T (t))t≥0 is an exponentially order bounded rela-
tively uniformly continuous positive semigroup with order exponent 0.

Step 3. We prove that A is the generator of (T (t))t≥0.

Proof of Theorem 5.4, Step 1. Consider the Yosida approximants
An and the corresponding semigroups (Tn(t))t≥0 as defined in Lemma 5.6.
Fix x ∈ X . Since A is ru-densely defined, there exists a sequence (xk)k∈N
⊂ D(A) such that xk

ru−→ x. Take any such sequence.
We show first that for each t ≥ 0 and k ∈ N the sequence (Tn(t)xk)n∈N

is a relatively uniform Cauchy sequence. By Lemma 5.5.(ii), there exists
ũ ∈ X such that for each ε > 0 there exists N ∈ N such that
∣
∣Anxk−Amxk

∣
∣ ≤ ∣

∣nAR(n,A)xk−Axk
∣
∣+

∣
∣Axk−mAR(m,A)xk

∣
∣ ≤ ε · (2ũ)

holds for all n,m, k ≥ N . Furthermore, by Lemma 5.6.(i), there exist w̃, v
∈ X such that for all n ∈ N, t ≥ 0 we have Tn(t)(2ũ) ≤ w̃ and Tn(t)w̃ ≤ v.
Since Tn(t) and Tm(t) are positive operators, we estimate

(5.6)
∣
∣Tm(t− τ)Tn(τ)(Anxk −Amxk)

∣
∣ ≤ ε · v

for all n,m, k ≥ N and τ ∈ [0, t]. Moreover, by Lemma 5.6.(iii), for each
n,m ∈ N and t, s ≥ 0 the operators Tn(t), Tm(s) commute and hence, by
Lemma 4.8, (5.6), and Proposition 3.3.(iii), for each ε > 0 there exists N ∈ N

such that

|Tn(t)xk − Tm(t)xk| =
∣
∣∣
∣

∫ t

0
Tm(t− τ)Tn(τ)(Anxk −Amxk) dτ

∣
∣∣
∣ ≤ t · ε · v
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holds for all n,m, k ≥ N and t ≥ 0. This proves that for each k ≥ N and
t ≥ 0 the sequence (Tn(t)xk)n∈N is a relatively uniform Cauchy sequence and
hence, it has a limit which we denote by T (t)xk. Furthermore, there exists
v ∈ X such that for each ε > 0 there exists N ∈ N such that

(5.7)
∣
∣Tn(t)xk − T (t)xk

∣
∣ ≤ t · ε · v

holds for all n, k ≥ N and t ≥ 0. In particular, for each t > 0 and ε > 0 there
exists Ñ ∈ N such that

(5.8)
∣
∣Tn(t)xk − T (t)xk

∣
∣ ≤ t · ε

t
· v = ε · v

holds for all n, k ≥ Ñ .
Next, we prove that (T (t)xk)k∈N is a relatively uniform Cauchy sequence

for each t ≥ 0. Assume that xk
ru−→ x with respect to a regulator u. By

Lemma 5.6.(i), there exists ṽ ∈ X such that Tn(t)u ≤ ṽ holds for all n ∈ N,

t ≥ 0 and hence, by (5.8), for each ε > 0 and t ≥ 0 there exists Ñ ∈ N such
that

∣
∣T (t)xk − T (t)xm

∣
∣ ≤ ∣

∣T (t)xk − Tn(t)xk
∣
∣+ Tn(t)|xk − xm|

+
∣
∣Tn(t)xm − T (t)xm

∣
∣ ≤ ε · (v + Tn(t)u+ v

) ≤ ε · (2v + ṽ)

holds for all k,m ≥ Ñ . Hence, for each t ≥ 0 the sequence (T (t)xk)k∈N is a
relatively uniform Cauchy sequence and it has a limit which we denote by
T (t)x. Furthermore, there exists w̃ ∈ X such that for each t ≥ 0 and ε > 0

there exists Ñ ∈ N such that

(5.9)
∣∣T (t)xk − T (t)x

∣∣ ≤ ε · w̃

holds for all k ≥ Ñ . As in the Banach space case, it is not difficult to verify
that the limit T (t)x is independent of the choice of (xk)k∈N. �

Proof of Theorem 5.4, Step 2. Since positivity and semigroup prop-
erty are preserved under ru-limits, (T (t))t≥0 is a positive semigroup. We now
show that it is exponentially order bounded with order exponent 0. To this

end, fix x ∈ X and pick any sequence (xk)k∈N ⊂ D(A) such that xk
ru−→ x

with respect to a regulator u ∈ X . Then, by (5.9), (5.8) and Lemma 5.6.(i),
there exists v1, v2, v3 ∈ X such that for each t ≥ 0 there exists N ∈ N such
that

|T (t)x− T (t)xN | ≤ v1, |T (t)xN − TN (t)xN | ≤ v2,

|xN | ≤ u+ |x|, TN (t)(u+ |x|) ≤ v3
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hold and hence,

|T (t)x| ≤ ∣∣T (t)x− T (t)xN
∣∣+

∣∣T (t)xN − TN (t)xN
∣∣+ TN (t)|xN |

≤ v1 + v2 + TN (t)(u+ |x|) ≤ v1 + v2 + v3.

This proves that (T (t))t≥0 is exponentially order bounded with order expo-
nent 0.

It remains to prove that (T (t))t≥0 is ru-continuous. By Lemma 5.3, it

suffices to check that T (h)y
ru−→ y as h ↘ 0 for each y ∈ D(A). By the same

reasoning as in the proof of (5.7), we derive that there exists w1 ∈ X such

that for fixed 0 < ε̃ ≤ 1 there exists Ñ ∈ N such that |T (h)y − TÑ (h)y| ≤
h · ε̃ · w1 holds for all h ≥ 0. Furthermore, since the semigroup (TÑ (t))t≥0

is ru-continuous there exists w2 ∈ X such that for each ε > 0 there exists
0 < δ < ε such that |TÑ (h)y − y| ≤ ε · w2 holds for all h ∈ [0, δ] and hence,

∣
∣T (h)y − y

∣
∣ ≤ ∣

∣T (h)y − TÑ (h)y
∣
∣+

∣
∣TÑ (h)y − y

∣
∣

≤ h · ε̃ · w1 + ε · w2 ≤ ε · (w1 + w2). �

Proof of Theorem 5.4, Step 3. Let B denote the generator of
(T (t))t≥0. We show that A and B coincide on D(A) and that D(A) = D(B)
which will conclude the proof.

Fix y ∈ D(A). As we mentioned in Step 2, from the proof of (5.7) one
can deduce that there exists u1 ∈ X such that for each ε > 0 there exist
N ∈ N such that

|T (h)y − TN (h)y| ≤ h · ε · u1
holds for all h ≥ 0 and n ≥ N . Furthermore, by Lemma 5.6.(ii) and
Lemma 5.5.(ii), there exist u2, u3 ∈ X such that for each ε > 0 there ex-
ist M ≥ N and δ > 0 such that

∣∣
∣
TM (h)y − y

h
− AMy

∣∣
∣ ≤ ε · u2, |AMy −Ay| ≤ ε · u3

hold for all h ∈ [0, δ] and hence, we obtain

∣
∣∣
T (h)y−y

h
−Ay

∣
∣∣ ≤

∣
∣∣
T (h)y−TM (h)y

h

∣
∣∣+

∣
∣∣
TM (h)y−y

h
−AMy

∣
∣∣+ |AMy−Ay|

≤ h · ε · u1
h

+ ε · u2 + ε · u3 ≤ ε · (u1 + u2 + u3).

This proves that D(A) ⊂ D(B) and that A coincides with B on D(A).
To prove D(B) ⊂ D(A) fix x ∈ D(B). Since B is the generator of

an exponentially order bounded semigroup with order exponent 0, by
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Proposition 5.1.(iii), we have 1 ∈ ρ+(A) ∩ ρ+(B) and hence, (IX −A) and
(IX −B) are bijective operators. Thus, there exists y ∈ D(A) such that
(IX −B)x = (IX −A)y. Since (IX−A) and (IX−B) coincide on D(A) we
obtain (IX−B)x = (IX−B)y and hence, we have x = y. This proves that
x ∈ D(A). �

By applying Lemma 4.13 we directly obtain a generalization of Theo-
rem 5.4 for exponentially order bounded ruc-semigroups of any order expo-
nent.

Corollary 5.7. Let X be an ru-complete vector lattice with the prop-
erty (D). For w ∈ R the following assertions are equivalent.

(i) The operator A is the generator of an exponentially order bounded,
relatively uniformly continuous, positive semigroup with order exponent w.

(ii) The operator A is ru-closed, ru-densely defined, (w,∞) ⊂ ρ+(A) and
for each x ∈ X there exists u ∈ X such that

|R(λ,A)kx| ≤ (Reλ− w)−k · u
holds for all k ∈ N and λ ∈ C>w.

We conclude by showing that every exponentially order bounded positive
ruc-semigroup is uniquely determined by its generator.

Proposition 5.8. Let X be an ru-complete vector lattice with the prop-
erty (D). Every exponentially order bounded relatively uniformly continuous
positive semigroup on X is uniquely determined by its generator.

Proof. By a simple rescaling argument, see Lemma 4.13, we may
assume that (S(t))t≥0 is an exponentially order bounded positive ruc-
semigroup with order exponent 0. We will prove that (S(t))t≥0 coincides
with the semigroup (T (t))t≥0 which was constructed in Step 1 of the proof
of the backward implication in Theorem 5.4.

Assume that A is the generator of (S(t))t≥0. By Proposition 5.1, the
resolvent set ρ+(A) contains (0,∞) and we have

(5.10) R(n,A)x =

∫ ∞

0
e−n·tS(t)xdt

for each n ∈ N and x ∈ X . Furthermore, by Proposition 5.1.(ii) and Proposi-
tion 4.7, A satisfies the assumptions of Lemma 5.5 and hence, by Lemma 5.6,
for each n ∈ N the operator

An := n2R(n,A) − nIX = nAR(n,A)

on X is the generator of the exponentially order bounded positive ruc-
semigroup (Tn(t))t≥0 with order exponent 0.
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Fix y ∈ D(A). By Lemma 5.5.(ii), there exists u ∈ X such that for each
ε > 0 there exists N ∈ N such that

|Any −Ay| ≤ ε · u
for all n ≥ N . Furthermore, by assumption and Lemma 5.6.(i), there exist
w, v ∈ X such that S(t)w ≤ v and Tn(t)u ≤ w for all n ∈ N, t ≥ 0. Hence,
for each t ≥ 0 we have

(5.11) |S(t− τ)Tn(τ)(Any −Ay)| ≤ ε · v
for all n ≥ N and τ ∈ [0, t].

By identity (5.10), the operators S(t) and An commute for each n ∈ N,
t ≥ 0 and hence, by (5.4), the operators S(t) and Tn(s) commute for each t, s
≥ 0 and n ∈ N. Therefore, by Lemma 4.8, (5.11), and Proposition 3.3.(iii),
for each ε > 0 there exists N ∈ N such that

|S(t)y − Tn(t)y| =
∣
∣
∣∣

∫ t

0
S(t− τ)Tn(τ)(Any −Ay) dτ

∣
∣
∣∣ ≤ t · ε · v

holds for all n ≥ N and t ≥ 0. This proves that Tn(t)y
ru−→ S(t)y as n → ∞

and hence, S(t)y = T (t)y for each t ≥ 0 and y ∈ D(A). Since D(A) is ru-
dense in X and S(t) and T (t) preserve ru-convergence we obtain S(t)x =
T (t)x for every x ∈ X and t ≥ 0. �
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