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Abstract. The purpose of this note is to discuss several results that have
been obtained in the last decade in the context of sharp adjoint Fourier restric-
tion/Strichartz inequalities. Rather than aiming at full generality, we focus on
several concrete examples of underlying manifolds with large groups of symme-
tries, which sometimes allow for simple geometric proofs. We mention several
open problems along the way, and include an appendix on integration on mani-
folds using delta calculus.

1. Introduction

Curvature causes the Fourier transform to decay. This observation links
geometry to analysis, and lies at the base of several topics of modern har-
monic analysis. Given the long history of the subject, it is perhaps surprising
that the possibility of restricting the Fourier transform to curved submani-
folds of Euclidean space was not observed until the late sixties. The Fourier
transform of an integrable function is uniformly continuous, and as such,
can be restricted to any subset. On the other hand, the Fourier transform
of a square-integrable function is again square-integrable, and in view of
Plancherel’s theorem no better properties can be expected. In particular,
restricting the Fourier transform of a square-integrable function to a set of
zero Lebesgue measure is meaningless. The question is what happens for
intermediate values of 1 < p < 2.
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mailto:damiano.foschi@unife.it
mailto:dosilva@math.uni-bonn.de


242 D. FOSCHI and D. OLIVEIRA E SILVA

It is not hard to check that the Fourier transform of a radial func-
tion in Lp(Rd) defines a continuous function away from the origin when-
ever 1 ≤ p < 2d

d+1 , see for instance [52]. The corresponding problem for non-
radial functions is considerably more delicate. To introduce it, let M be a
smooth compact hypersurface in R

d, endowed with a surface-carried mea-
sure dμ = ψ dσ. Here σ denotes the surface measure of M, and the function
ψ is smooth and non-negative. Given 1 < p < 2, for which exponents q does
the a priori inequality

(1.1)
( ˆ

M
|f̂(ξ)|q dμξ

)1/q ≤ C‖f‖Lp(Rd)

hold? A complete answer for q = 2 is given by the celebrated Tomas–Stein
inequality.

Theorem 1 [51,56]. Suppose M has non-zero Gaussian curvature at
each point of the support of μ. Then the restriction inequality (1.1) holds
for q = 2 and 1 ≤ p ≤ 2d+2

d+3 .

The range of exponents is sharp, since no Lp → L2(μ) restriction can hold
for M if p > 2d+2

d+3 . This is shown via the well-known Knapp example, which

basically consists of testing the inequality dual to (1.1) against the charac-
teristic function of a small cap on M. Moreover, some degree of curvature is
essential, as there can be no meaningful restriction to a hyperplane except in
the trivial case when p = 1 and q = ∞. An example to keep in mind is that
of the unit sphere Sd−1 = {ξ ∈ R

d : |ξ| = 1}, with constant positive Gaussian
curvature. However, nonvanishing Gaussian curvature is a strong assump-
tion that can be replaced by the nonvanishing of some principal curvatures,
at the expense of decreasing the range of admissible exponents p.

The question of what happens for values of q < 2 is the starting point
for the famous restriction conjecture. One is led by dimensional analysis
and Knapp-type examples to guess that the correct range for estimate (1.1)
to hold is 1 ≤ p < 2d

d+1 and q ≤ (d−1
d+1)p

′, where p′ = p
p−1 denotes the dual

exponent. This is depicted in Fig. 1. Note that the endpoints of this relation
are the trivial case (p, q) = (1,∞), and p, q → 2d

d+1 .
Despite tremendous effort and very promising partial progress, the re-

striction conjecture is only known to hold for d = 2. The restriction con-
jecture implies the Kakeya conjecture and is implied by the Bochner–Riesz
conjecture. Multilinear versions of the restriction and Kakeya conjectures
have been established by Bennett, Carbery and Tao [5], and played a crucial
role in the very recent work of Bourgain and Demeter [10] on �2 decoupling.
For more on the restriction problem, and its relation to other prominent
problems in modern harmonic analysis, we recommend the works [51,59]
and especially [55].
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Fig. 1: Range of exponents for the restriction problem

Tomas–Stein type restriction estimates are very much related to Strichartz
estimates for linear partial differential equations of dispersion type. Let us
illustrate this point in two cases, that of solutions u = u(x, t) to the homo-
geneous Schrödinger equation

(1.2) i∂tu = Δu,

and that of solutions to the homogeneous wave equation

(1.3) ∂2t u = Δu.

In both situations, (x, t) ∈ R
d+1. The following theorem was originally

proved by Strichartz.

Theorem 2 [54]. Let d ≥ 1. Then there exists a constant S > 0 such
that

(1.4) ‖u‖
L2+ 4

d (Rd+1)
≤ S‖f‖L2(Rd),

whenever u is the solution of (1.2) with initial data u(x,0) = f(x). If d ≥ 2,
then there exists a constant W > 0 such that

(1.5) ‖u‖
L

2+ 4
d−1 (Rd+1)

≤ W‖(f, g)‖
Ḣ

1
2 (Rd)×Ḣ− 1

2 (Rd)
,

whenever u is the solution of (1.3) with initial data u(x, 0) = f(x) and
∂tu(x, 0) = g(x).
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A hint that Theorems 1 and 2 might be related comes from the numerol-
ogy of the exponents: The Strichartz exponent 2+ 4

d coincides with the dual
of the Tomas–Stein exponent in dimension d+1. It turns out that Strichartz
estimates for the Schrödinger equation correspond to restriction estimates
on the paraboloid, whereas Strichartz estimates for the wave equation corre-
spond to restriction estimates on the cone. Note that the Gaussian curvature
of the cone is identically zero because one of its principal curvatures vanishes.
This in turn translates into estimate (1.5) holding for the Strichartz expo-
nent in one lower dimension. Perhaps more significantly, neither of these
manifolds is compact. However, they exhibit some scale invariance proper-
ties that enable a reduction to the compact setting. We shall return to this
important point later in our discussion.

In this note, we are interested in extremizers and optimal constants for
sharp variants of restriction and Strichartz-type inequalities. Apart from
their intrinsic mathematical interest and elegance, such sharp inequalities
often allow for various refinements of existing inequalities. The following are
natural questions, which in particular can be posed for inequalities (1.1),
(1.4) and (1.5):

(1) What is the value of the optimal constant?
(2) Do extremizers exist?

(a) If so, are they unique, possibly after applying the symmetries of
the problem?

(b) If not, what is the mechanism responsible for this lack of compact-
ness?

(3) How do extremizing sequences behave?
(4) What are some qualitative properties of extremizers?
(5) What are necessary and sufficient conditions for a function to be an

extremizer?
Questions of this flavor have been asked in a variety of situations, and

in the context of classical inequalities from Euclidean harmonic analysis go
back at least to the seminal work of Beckner [1] for the Hausdorff–Young
inequality, and Lieb [36] for the Hardy–Littlewood–Sobolev inequality. In
comparison, sharp Fourier restriction inequalities have a relatively short his-
tory, with the first works on the subject going back to Kunze [35], Foschi
[23] and Hundertmark–Zharnitsky [30].

Works addressing the existence of extremizers for inequalities of Fourier
restriction type tend to be a tour de force in classical analysis, using a va-
riety of sophisticated techniques: bilinear estimates and refined estimates
in Xs,b-type spaces [16,37,43,45], concentration compactness arguments tai-
lored to the specific problem in question [26,32,33,35,47–49], variants and
generalizations of the Brézis–Lieb lemma from functional analysis [21,22,
26], Fourier integral operators [16,26], symmetrization techniques [16], vari-
ational, perturbative and spectral analysis [16,19,26,37], regularity theory
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for equations with critical scaling and additive combinatorics [17], among
others. In contrast, a full characterization of extremizers has been given in
a few selected cases using much more elementary methods. This is due to
the presence of a large underlying group of symmetries which allows for sev-
eral simplifications that ultimately reduce the problem to simple geometric
observations. We will try to illustrate this point in the upcoming sections.

Before doing so, let us briefly comment on some approaches that have
been developed in the last decades in order to establish Tomas–Stein type
Fourier restriction inequalities. For the sake of brevity, we specialize our
discussion to inequalities (1.1) and (1.4), but a more general setting should

be kept in mind. If T denotes the restriction operator f �→ f̂ |M, then its
adjoint T ∗, usually called the extension operator, is given by g �→ ĝμ, where
the Fourier transform of the measure gμ is given by

(1.6) ĝμ(x) =

ˆ
M
g(ω)e−ix·ω dμω. (x ∈ R

d)

The Tomas–Stein inequality at the endpoint (p, q) =
(
2d+2
d+3 , 2

)
is equivalent

to the extension estimate

(1.7) ‖ĝμ‖
L

2d+2
d−1 (Rd)

≤ C‖g‖L2(M,μ).

If f ∈ L2(Rd), then the composition T ∗T (f) is well-defined, and a computa-
tion shows that

T ∗T : f �→ f ∗ μ̂.
Since the operator norms satisfy ‖T‖2 = ‖T ∗‖2 = ‖T ∗T‖, the study of these
three operators is equivalent, even if the goal is to obtain sharp inequalities
and determine optimal constants. So we focus on the operator T ∗T . Bound-
edness of T ∗T (f) is only ensured if the Fourier transform μ̂(x) exhibits some
sort of decay as |x| → ∞. This in turn is a consequence of the principle of
stationary phase, see [51,59], since the nonvanishing curvature of M trans-
lates into a nondegenerate Hessian for the phase function of the oscillatory
integral given by (1.6) with g ≡ 1. This is the starting point for the origi-
nal argument of Tomas [56], which was then extended to the endpoint 2d+2

d−1
by embedding T ∗T into an analytic family of operators and invoking Stein’s
complex interpolation theorem. It is hard not to notice the parallel between
the operator T ∗T and the averaging operator f �→ f ∗ μ, whose Lp improv-
ing properties can be established via the same proof on the Fourier side, see
for instance [51, pp. 370-371].

A second method to prove restriction estimates goes back to the work
of Ginibre and Velo [27]. It consists of introducing a time parameter and
treating the extension operator as an evolution operator. Two key ingre-
dients for this approach are the Hausdorff–Young inequality and fractional
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integration in the form of the Hardy–Littlewood–Sobolev inequality.1 These
methods are more amenable to the needs of the partial differential equations
community, and for instance allow to treat the case of mixed norm spaces.

In the special cases when the dual exponent p′ is an even integer, one
can devise yet another proof which comes from the world of bilinear esti-
mates, see for instance [9,25,34]. One simply rewrites the left-hand side of
inequality (1.7) as an L2 norm, and appeals to Plancherel in order to reduce
the problem to a multilinear convolution estimate. For instance, if d = 3,
then p′ = 2·3+2

3−1 = 4, and

‖ĝμ‖2L4(R3) = ‖ĝμ ĝμ‖L2(R3) = ‖gμ ∗ gμ‖L2(R3).

Similarly, if d = 2, then p′ = 2·2+2
2−1 = 6, and

‖ĝμ‖3L6(R2) = ‖gμ ∗ gμ ∗ gμ‖L2(R2).

In the bilinear case, the pointwise inequality

|gμ ∗ gμ| ≤ |g|μ ∗ |g|μ
reveals that one can restrict attention to nonnegative functions. This obser-
vation can greatly simplify matters, as it reduces an oscillatory problem to
a question of geometric integration over specific manifolds. Furthermore, an
application of the Cauchy–Schwarz inequality with respect to an appropriate
measure implies the pointwise inequality

|gμ ∗ gμ|2 ≤ (|g|2μ ∗ |g|2μ)(μ ∗ μ).
A good understanding of the convolution measure μ ∗ μ becomes a prior-
ity. Given integrable functions g, h ∈ L1(M, μ), the convolution gμ ∗ hμ is a
finite measure defined on the Borel subsets E ⊂ R

d by

(gμ ∗ hμ)(E) =

ˆ
M×M

χE(η + ζ)g(η)h(ζ) dμη dμζ .

It is clear that this measure is supported on the Minkowski sum M+M.
In most situations of interest when some degree of curvature is present, one
can check that gμ ∗ hμ is absolutely continuous with respect to Lebesgue
measure on R

d. In such cases, the measure gμ ∗ hμ can be identified with
its Radon–Nikodym derivative with respect to Lebesgue measure, and for
almost every ξ ∈ R

d we have that

(1.8) (gμ ∗ hμ)(ξ) =
ˆ
M×M

δ
(
ξ − η − ζ

)
g(η)h(ζ) dμη dμζ .

1 Interestingly, the full restriction conjecture on R
2 can be proved with a combination of

Hausdorff–Young and Hardy–Littlewood–Sobolev, see for instance [51, pp. 412–414].
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Here δ
(·) denotes the d-dimensional Dirac delta distribution. As we shall

exemplify in the course of the paper, expression (1.8) turns out to be very
useful for computational purposes.

Overview. As we hope to have made apparent already, this note is
meant as a short survey of a restricted part of the topic of sharp Strichartz
and Fourier extension inequalities. In Section 2 we deal with noncompact
surfaces, and discuss the cases of the paraboloid and the cone, where a full
characterization of extremizers is known, and the cases of the hyperboloid
and a quartic perturbation of the paraboloid, where extremizers fail to ex-
ist. Most of the material in this section is contained in the works [12,23,39,
43,44]. In Section 3 we discuss the case of spheres. A full characterization
of extremizers at the endpoint is only known in the case of S2. We mention
some recent partial progress in the case of the circle S

1, and observe how
the methods in principle allow to refine some related inequalities. In partic-
ular, we obtain a new sharp extension inequality on S

1 in the mixed norm
space L6

radL
2
ang(R

2). Most of the material in Section 3 is contained in the
works [13,14,18,24,40]. We leave some final remarks to Section 4, where we
hint at a possible unifying picture for the results that have been discussed.
Finally, we include an Appendix with a brief introduction to integration on
manifolds using delta calculus.

Remarks and further references. The style of this note is admit-
tedly informal. In particular, some objects will not be rigorously defined,
and most results will not be precisely formulated. None of the material is
new, with the exception of the results in Section 3.2 and a few observations
that we have not been able to find in the literature. The subject is becoming
more popular, as shown by the increasing number of works that appeared in
the last five years. We have attempted to give a rather complete set of refer-
ences, which includes several interesting works [3,4,6–8,11,29,31,38,41,42,46]
that will not be discussed here. Given its young age, there are plenty of open
problems in the area. Our contribution is to provide some more.

2. Noncompact surfaces

2.1. Paraboloids. Given d ≥ 1, let us consider the d-dimensional
paraboloid

P
d =

{
(ξ, τ) ∈ R

d+1 : τ = |ξ|2},
equipped with projection measure

μd(ξ, τ) = δ
(
τ − |ξ|2)dξ dτ.
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The validity of an L2(μd) → L2+ 4

d extension estimate follows from Strichartz
inequality (1.4) for the Schrödinger equation as discussed before. Extrem-
izers for this inequality are known to exist in all dimensions [47], and to be
Gaussians in low dimensions [2,23,30]. Extremizers are conjectured to be
Gaussians in all dimensions [30], see also [15]. Let us specialize to the case
d = 2 and follow mostly [23]. In view of identity (1.8), which itself is a con-
sequence of formula (A.1) from the Appendix, the convolution of projection
measure on the two-dimensional paraboloid P

2 is given by

(μ2 ∗ μ2)(ξ, τ) =
ˆ
R2×R2

δ

(
ξ − η − ζ

τ − |η|2 − |ζ|2
)
dη dζ

=

ˆ
R2

δ
(
τ − |η|2 − |ξ − η|2)dη.

Changing variables and computing in polar coordinates according to (A.5),
we have that

(μ2 ∗ μ2)(ξ, τ) =
ˆ
R2

δ
(
τ − |ξ|2

2 − 2|η|2
)
dη =

π

2
χ
(
τ ≥ |ξ|2

2

)
.

We arrive at the crucial observation that the convolution measure μ2 ∗ μ2
defines a function which is not only uniformly bounded, but also constant in
the interior of its support {2τ ≥ |ξ|2}. See [23, Lemma 3.2] for an alterna-
tive proof that uses the invariance of μ2 ∗μ2 under Galilean transformations
and parabolic dilations. A successive application of Cauchy–Schwarz and
Hölder’s inequalities finishes the argument. Indeed, the pointwise bound

(2.1) |(fμ2 ∗ fμ2)(ξ, τ)|2 ≤ (μ2 ∗ μ2)(ξ, τ)(|f |2μ2 ∗ |f |2μ2)(ξ, τ)
follows from an application of the Cauchy–Schwarz inequality with respect
to the measure

δ

(
ξ − η − ζ

τ − |η|2 − |ζ|2
)
dη dζ.

Integrating inequality (2.1) over R2+1, an application of Hölder’s inequality
then reveals

(2.2) ‖fμ2 ∗ fμ2‖2L2(R3) ≤ ‖μ2 ∗ μ2‖L∞(R3)‖f‖4L2(R2).

It is possible to turn both inequalities simultaneously into an equality. The
conditions for equality in (2.1) translate into a functional equation

(2.3) f(η)f(ζ) = F (η + ζ, |η|2 + |ζ|2)
which should hold for some complex-valued function F defined on the sup-
port of the convolution μ2 ∗ μ2, at almost every point (η, ζ). An example
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of a solution to (2.3) is given by the Gaussian function f(η) = exp(−|η|2)
and the corresponding F (ξ, τ) = exp(−τ). Any other solution is obtained
from this one by applying a symmetry of the Schrödinger equation, see [23,
Proposition 7.15]. That they turn inequality (2.2) into an equality follows
from the fact that the convolution μ2 ∗ μ2 is constant inside its support.

The one-dimensional case L2(μ1) → L6 admits a similar treatment. The
threefold convolution μ1 ∗μ1 ∗μ1 is given by a constant function in the inte-
rior of its support {3τ ≥ ξ2}, and the corresponding functional equation can
be solved by similar methods. Gaussians are again seen to be the unique
extremizers.

Alternative approaches are available: Hundertmark–Zharnitski [30] based

their analysis on a novel representation of the Strichartz integral ‖f̂σ‖4L4 ,
and Bennett et al. [2] identified a monotonicity property of such integrals
under a certain quadratic heat-flow.

2.2. Cones. Given d ≥ 2, consider the (one-sheeted) cone

Γd =
{
(ξ, τ) ∈ R

d+1 : τ = |ξ| > 0
}
,

equipped with its Lorentz invariant measure

νd(ξ, τ) = δ
(
τ − |ξ|) dξ dτ

|ξ| = 2 δ
(
τ2 − |ξ|2) χ(τ > 0) dξ dτ .

The second identity is a consequence of formula (A.4) from the Appendix.

The validity of an L2(νd) → L2+ 4

d−1 extension estimate follows from Stri-
chartz inequality (1.5) for the wave equation as discussed before. Extrem-
izers for the cone are known to exist in all dimensions [45], and to be ex-
ponentials in low dimensions [12,23]. Let us specialize to the case d = 3.
The convolution of the Lorentz invariant measure on the three-dimensional
cone Γ3 is given by

(ν3 ∗ ν3)(ξ, τ) =
ˆ
R3

δ
(
τ − |η| − |ξ − η|)

|η||ξ − η| dη.

Given ξ ∈ R
3, we write a generic vector η ∈ R

3 in spherical coordinates, so
that dη = ρ2 sin θ dρdθ dϕ, where ρ = |η| ≥ 0, θ ∈ [0, π] is the angle between
ξ and η, and ϕ ∈ [0, 2π] is an angular variable. Setting σ = |ξ − η|, the Ja-
cobian of the change of variables η � (ρ, σ, ϕ) into bipolar coordinates, see
Fig. 2 below, is given by

dη =
ρσ

|ξ| dρdσ dϕ.
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ρ σ

0 ξ

η

Fig. 2: Bipolar coordinates

Letting a = ρ− σ and b = ρ+ σ, we invoke the change of variables for-
mula (A.5) to further compute

(ν3 ∗ ν3)(ξ, τ) = 2π

ˆ
|ρ−σ|≤|ξ|
ρ+σ≥|ξ|

δ
(
τ − ρ− σ

)
ρσ

ρσ

|ξ| dρdσ =

=
π

|ξ|
ˆ
|a|≤|ξ|
b≥|ξ|

δ
(
τ − b

)
dadb = 2πχ(τ ≥ |ξ|).

This again defines a constant function inside its support, and a combination
of Cauchy–Schwarz and Hölder as before establishes the sharp inequality.
The characterization of extremizers follows from the analysis of the func-
tional equation

(2.4) f(η)f(ζ) = F (η + ζ, |η| + |ζ|),
which yields as a particular solution the exponential function f(η)= exp(−|η|)
and the corresponding F (ξ, τ) = exp(−τ). Any other solution is obtained
from this one by applying a symmetry of the wave equation, see [23, Propo-
sition 7.23], and the lower dimension case L2(ν2) → L6 admits a similar
treatment.

2.3. Hyperboloids. We now switch to the (one-sheeted) hyperboloid

H
d =

{
(ξ, τ) ∈ R

d+1 : τ =
√
1 + |ξ|2},

equipped with the Lorentz invariant measure

λd(ξ, τ) = δ
(
τ −√

1 + |ξ|2) dξ dτ√
1 + |ξ|2 = 2 δ

(
τ2 − |ξ|2 − 1

)
χ(τ > 0) dξ dτ .
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As established in [54], an L2(λd) → Lp′
extension estimate holds provided

(2.5)

⎧⎨
⎩

2 +
4

d
≤ p′ ≤ 2 +

4

d− 1
, if d > 1,

6 ≤ p′ <∞, if d = 1.

Note that the lower and upper bounds in the exponent range (2.5) corre-
spond to the cases of the paraboloid and the cone, respectively. We focus
on the case d = 2 and p′ = 4, and take advantage of Lorentz symmetries to
compute the convolution λ2 ∗ λ2. Along the vertical axis of the hyperboloid
H

2,

(λ2 ∗ λ2)(0, τ) =
ˆ
R2

δ
(
τ − 2

√
1 + |η|2 ) dη

1 + |η|2 =
2π

τ
χ(τ ≥ 2).

Lorentz invariance forces the convolution λ2 ∗ λ2 to be constant along the
level sets of the function τ2 − |ξ|2. As a consequence,

(2.6) (λ2 ∗ λ2)(ξ, τ) = 2π√
τ2 − |ξ|2 χ(τ ≥

√
4 + |ξ|2).

Contrary to the previous cases, this no longer defines a constant function
inside its support. Since it is uniformly bounded (by π), the argument can
still be salvaged to yield a sharp extension inequality. Extremizers for this
inequality, however, do not exist. We shall observe a similar phenomenon
in the case of perturbed paraboloids, considered in the next subsection, and
postpone a more detailed discussion until then.

2.4. Perturbations. Let us start with a brief discussion of a specific
instance of a comparison principle from [39] that proved useful in establishing
sharp inequalities for perturbed paraboloids. Let (P2, μ2) denote the two-
dimensional paraboloid considered in §2.1, and let μ̃2 denote the projection
measure on the surface

{
(ξ, τ) ∈ R

2+1 : τ = |ξ|2 + |ξ|4}.
Then the pointwise inequality

(2.7) (μ̃2 ∗ μ̃2)
(
ξ,

|ξ|2
2

+
|ξ|4
8

+ τ
)
≤ (μ2 ∗ μ2)

(
ξ,

|ξ|2
2

+ τ
)

holds for every τ > 0 and ξ ∈ R
d, and is strict at almost every point of the

support of the measure μ̃2 ∗ μ̃2. The feature of the function ξ �→ |ξ|4 that
makes this possible is convexity. Any nonnegative, continuously differen-
tiable, strictly convex function would do, see [39, Theorem 1.3] for a precise
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version of this comparison principle which holds in all dimensions. A sharp
L2(μ̃2) → L4 extension inequality can be obtained by concatenating Cauchy–
Schwarz and Hölder as before, and extremizers do not exist because of the
strict inequality in (2.7). Heuristically, extremizing sequences are forced to
place their mass in arbitrarily small neighborhoods of the region where the
convolution μ̃2 ∗ μ̃2 attains its global maximum, for otherwise they would
not come close to attaining the sharp constant. The analysis of the cases
of equality in (2.7) reveals that this region has zero Lebesgue measure, and
this forces any extremizing sequence to concentrate.

3. Compact surfaces

3.1. Spheres. Consider the endpoint Tomas–Stein extension inequal-
ity on the sphere

(3.1)
( ˆ

Rd

|f̂σ(x)|p′
dx

)1/p′

≤ C‖f‖L2(Sd−1,σ),

where σ = σd−1 denotes surface measure on S
d−1 and p′ = 2d+2

d−1 . Extremizers

for inequality (3.1) were first shown to exist when d = 3 in [16]. The precise
form of nonnegative extremizers was later determined in [24], and they turn
out to be constant functions. See also [26] for a conditional existence result
in higher dimensions. It seems natural to conjecture that extremizers should
be constants in all dimensions. Spheres are antipodally symmetric compact
manifolds, and this brings in some additional difficulties which can already
be observed at the level of convolution measures. Indeed, formula (A.4) from
the Appendix implies

σd−1(ξ) = δ
(
1− |ξ|)dξ = 2 δ

(
1− |ξ|2) dξ.

Invoking (A.3), and then (A.4) once again, we have

(σd−1 ∗ σd−1)(ξ) = 2

ˆ
Sd−1

δ
(
1− |ξ − ω|2)dσω

=
2

|ξ|
ˆ
Sd−1

δ
(
2 ξ
|ξ| · ω − |ξ|

)
dσω.

Computing in polar coordinates according to (A.5), one concludes

(3.2) (σd−1 ∗ σd−1)(ξ) =
Vd−2

|ξ|
(
1− |ξ|2

4

) d−3

2

+
,
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where Vd−2 denotes the surface measure of Sd−2. When d = 3, and conse-
quently p′ = 4, the inequality in question is equivalent to a 4-linear estimate.
Moreover, the last factor in (3.2) simplifies and one is left with

(3.3) (σ2 ∗ σ2)(ξ) = 2π

|ξ|χ(|ξ| ≤ 2).

Expression (3.3) blows up at the origin ξ = 0, which prevents a straightfor-
ward adaptation of the methods from the previous section. In particular,
the interaction between antipodal points causes difficulties that prevented
the local analysis from [16] to identify the global extremizers of the problem.
The work [24] resolves this issue in a simple manner, using the following ge-
ometric feature of the sphere: If the sum of three unit vectors ω1, ω2, ω3 ∈ S

d

is again a unit vector, then necessarily

(3.4) |ω1 + ω2|2 + |ω2 + ω3|2 + |ω3 + ω1|2 = 4.

To see why this is true, one simply squares the assumption |ω1+ω2+ω3| = 1
and expands the left-hand side of (3.4). An application of the Cauchy–
Schwarz inequality together with identity (3.4) reduces the analysis to an-
tipodally symmetric functions, and at the same time neutralizes the singu-
larity of the convolution measure at the origin. This reduces the 4-linear
problem on f to a bilinear problem on its square f2. More precisely, one is
left with establishing a monotonicity property for the quadratic form

H(g) =

ˆ
(S2)2

g(ω)g(ν)|ω − ν|dσω dσν ,

where g = f2 is now assumed to be merely integrable. This in turn is ac-
complished via spectral analysis. If c denotes the mean value of g over the
sphere and 1 denotes the constant function equal to 1, one wants to show
that H(g) ≤ H(c1). The crucial observation is that the quadratic form H
is diagonal in a suitable basis. In fact, expanding g =

∑
k≥0 Yk in spherical

harmonics, we have

(3.5) H(g) = 2π
∑
k≥0

Λk‖Yk‖2L2(S2) ≤ 2πΛ0‖Y0‖2L2(S2) = H(c1),

where the eigenvalues Λk can be computed via the Funk–Hecke formula [20,
p. 247]. It turns out that Λk < 0 when k ≥ 1, we refer the reader to [24]
for the full details. This approach was extended in [13] to establish sharp
L2(σd−1) → L4 extension estimates on S

d−1 for d = 4, 5, 6, 7. Table 1 indi-
cates the signs of the corresponding coefficients Λk = Λk(S

d−1).
Note that the sum in (3.5) ranges over even values of k only since the

function f , and therefore g = f2, is assumed to be antipodally symmetric. In
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Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 . . .

d = 3 + − − − − − − · · ·
d = 4 + 0 − 0 − 0 − · · ·

d = 5, 6, 7 + + − − − − − · · ·
d ≥ 8 + + + ∗ ∗ ∗ ∗ · · ·

Table 1: Signs of the coefficients Λk(S
d−1)

particular, the sign of the coefficient Λ1 is of no importance to the analysis.
However, one starts to observe that Λ2(S

d−1) > 0 if d ≥ 8, and this is the
reason for the failure of this method of proof.

Threefold convolution measures can also be computed via delta calculus,
at the expense of possibly more complicated expressions. For instance, the
convolution σ2 ∗ σ2 ∗ σ2 is a radial function supported on the ball of radius 3
centered at the origin, given by the expression

(σ2 ∗ σ2 ∗ σ2)(ξ) =
{
8π2, if 0 ≤ |ξ| ≤ 1,

4π2
(− 1 + 3

|ξ|
)
, if 1 ≤ |ξ| ≤ 3.

Notice that this defines a bounded, continuous function which is constant
inside the unit ball, and decreases to zero on the annulus {1 ≤ |ξ| ≤ 3}. The
lowest dimensional endpoint case (d, p) = (2,6) holds some hidden surprises.
First of all, the estimate translates into an inequality involving a 6-linear
form. The convolution σ1 ∗ σ1 ∗ σ1 defines a radial function given by a com-
plicated integral expression, see [14, Lemma 8], which is better illustrated in
Fig. 3 below.

1 2 3 4

10

20

30

40

Fig. 3: Plot of the function r �→ (σ1 ∗ σ1 ∗ σ1)(r).
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A difficulty is that the convolution σ1 ∗ σ1 ∗ σ1 now blows up along a
whole circle, and not just at one point. One would still like to reduce matters
to a two-step analysis, and a possible program is as follows. One first reduces
the 6-linear analysis to a trilinear analysis on squares, and then performs a
spectral analysis of the trilinear form

(3.6) T (h1, h2, h3) =

ˆ
(S1)6

h1(ω1)h2(ω2)h3(ω3)
(|ω4 + ω5 + ω6|2 − 1

)
dΣ	ω,

where the measure Σ is given by
(3.7)

dΣ	ω = δ
(
ω1 + ω2 + ω3 + ω4 + ω5 + ω6

)
dσω1

dσω2
dσω3

dσω4
dσω5

dσω6
.

This is later specialized to the case h1 = h2 = h3 = f2. Let us formulate
these steps in a more precise manner:

Step 1. Let f ∈ L2(S1) be nonnegative and antipodally symmetric.
Then:

ˆ
(S1)6

f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)
(|ω4 + ω5 + ω6|2 − 1

)
dΣ	ω

≤
ˆ
(S1)6

f(ω1)
2f(ω2)

2f(ω3)
2
(|ω4 + ω5 + ω6|2 − 1

)
dΣ	ω.

Step 2. Let h ∈ L1(S1) be a nonnegative and antipodally symmetric
function. Let c denote the mean value of h over S

1. Then T (h, h, h)
≤ c3T (1,1,1), with equality if and only if h is constant.

Step 1 is an open problem, posed as a conjecture in [14]. Step 2 is the
subject of papers [14,40]. In short, one decomposes h = c+ g where g has
mean zero, and analyzes each of the summands in

T (h, h, h) = T (c, c, c) + 3T (c, c, g) + 3T (c, g, g) + T (g, g, g)

separately. The linear term in g vanishes by symmetry considerations, the
bilinear term is nonpositive and the trilinear term can be controlled in ab-
solute value by the bilinear term. The proof of these statements relies on
expanding the integrand in (3.6) in Fourier basis, and appealing to delicate
estimates for integrals of sixfold products of Bessel functions. We refer the
reader to the original papers for details, and proceed to discuss a related
inequality which can be put in sharp form by invoking more elementary
estimates for integrals of Bessel functions.
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3.2. Estimates in mixed norm spaces. The connection between
Bessel functions and spherical harmonics is easily seen via the formula

(3.8) Ŷkσ(x) = ikJ d

2
−1+k(|x|)|x|1−

d

2Yk

( x

|x|
)
, (x ∈ R

d)

which follows from an application of the Funk–Hecke formula together with
Rodrigues formula for Gegenbauer polynomials, see [53,58]. Spherical har-
monic expansions played an important role in the recent work of Córdoba
[18] on certain Fourier extension inequalities in mixed norm spaces. The fol-
lowing inequality, which had already appeared in the Ph.D. thesis of Vega
[57], was reproved in [18] using different methods: For d ≥ 2 and q > 2d

d−1 ,
there exists Cd,q <∞ such that

(3.9) ‖f̂σ‖Lq
radL

2
ang(R

d) ≤ Cd,q‖f‖L2(Sd−1).

Here the norm in Lq
radL

2
ang(R

d) is given by the integral

( ˆ ∞

0

(ˆ
Sd−1

|f̂σ(rω)|2 dσω
)q/2

rd−1 dr

)1/q

.

Note that inequality (3.9) follows in a simple way from Hölder’s inequal-
ity for those exponents q for which the (adjoint) Tomas–Stein inequality is
known to hold. We now indicate a possible path to obtain the sharp form of
a number of instances of inequality (3.9). Given f ∈ L2(Sd−1), we expand it
in normalized spherical harmonics

f =
∑
k≥0

akYk,

with each ‖Yk‖L2 = 1. Appealing to formula (3.8) and to orthogonality of
the {Yk}, we see that

ˆ
Sd−1

|f̂σ(rω)|2 dσω =
∑
k≥0

|ak|2|J d

2
−1+k(r)|2r2−d.

The q-th power of the left-hand side of inequality (3.9) can thus be rewritten
as

(3.10)

ˆ ∞

0

(∑
k≥0

|ak|2|J d

2
−1+k(r)|2

)q/2

r(1−
d

2
)qrd−1 dr,

which is the starting point for the analysis in [18]. Whenever the exponent q
is an even integer, we can take an alternative route and in principle obtain a
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sharp inequality. Let us illustrate this in the case (d, q) = (2,6), which corre-
sponds to a weaker form of the L2(σ1) → L6 adjoint Tomas–Stein inequality
discussed in the previous subsection. In this case, the integral (3.10) can be
rewritten as ∑

k,
,m≥0

|ak|2|a
|2|am|2I(k, �,m),

where the integrals I(k, �,m) are defined as

I(k, �,m) =

ˆ ∞

0
J2
k (r)J

2

 (r)J

2
m(r)r dr.

These integrals obey the following property:

Proposition 3. Let k, �, m be nonnegative integers. Then

I(k, �,m) ≤ I(0, 0, 0),

and equality holds if and only if k = � = m = 0.

As a consequence, we obtain a sharp form of this particular instance of
inequality (3.9):

‖f̂σ‖6L6
radL

2
ang(R

2) =
∑

k,
,m≥0

|ak|2|a
|2|am|2I(k, �,m)

≤ I(0, 0, 0)
∑

k,
,m≥0

|ak|2|a
|2|am|2 = I(0, 0, 0)‖f‖6L2(S1),

with constants being the unique extremizers.

Proof of Proposition 3. Reasoning as in [14, §3], we see that

I(k, �,m) =

ˆ
R2

êkσ êkσ ê
σ ê
σ êmσ êmσ dx

=

ˆ
(S1)6

(ω1ω2)
k(ω3ω4)


(ω5ω6)
m dΣ	ω,

where the function en : S
1 → C is defined via en(ω) = ωn and the measure

Σ is given by (3.7). The triangle inequality immediately implies

I(k, �,m) ≤ I(0, 0, 0),

with equality if and only

(ω1ω2)
k(ω3ω4)


(ω5ω6)
m = 1,

for every ω1, . . . , ω6 ∈ S
1 such that

∑6
j=1 ωj = 0. One easily checks that this

implies k = � = m = 0. The proof is complete. �
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4. Towards a unifying picture

Table 2 summarizes some of our discussion from the previous sections
concerning the sharp form of a number of Fourier extension inequalities
which can be recast as bilinear estimates for the appropriate convolution
measures.

Manifold Fourier extension inequality Extremizers

Paraboloid L2(P2, μ2) → L4(R3) Gaussians

Cone L2(Γ3, ν3) → L4(R4) Exponentials

Hyperboloid L2(H2, λ2) → L4(R3) Do not exist

Sphere L2(S2, σ2) → L4(R3) Constants

Table 2

The two-dimensional surfaces in question (paraboloid, hyperboloid and
sphere) can all be obtained as intersections of the three-dimensional cone
with appropriately chosen hyperplanes. Fig. 4 below illustrates this point.
There, the ambient space R

4 is endowed with coordinates (ξ, τ) ∈ R
3+1,

where ξ = (ξ1, ξ
′) ∈ R

1+2. One cannot help noticing that the restriction
of the exponential function exp(−|ξ|), an extremizer for the cone, to the
different conic sections coincides with the corresponding extremizers given
by Table 2. It is a constant function when τ = 1 (sphere, red in Fig. 4)
and a Gaussian when τ = −ξ1 + 2 (paraboloid, blue in Fig. 4). Further-

more, it yields the function exp(−√
1 + |ξ′|2) when τ =

√
1 + |ξ′|2 (hy-

perboloid, yellow in Fig. 4). Extemizers for the problem on the hyper-
boloid do not exist, but it was shown in [44, Lemma 5.4] that the function

fa(ξ
′) = exp(−a√1 + |ξ′|2) produces an extremizing sequence {fa/‖fa‖L2}

as a→ ∞ for the L2(λ2) → L4 extension inequality on the hyperboloid.

Appendix A. Integration on manifolds using delta calculus

Let M be a smooth k-dimensional submanifold of Rd, with 0 < k < d.
On M one can define a canonical measure σ = σM which is naturally in-
duced by the Euclidean metric structure of Rd. Integration on the mani-
fold M can be rigorously defined by means of differential forms [50], but the
actual computation of integrals of the form

ˆ
M
ϕ(x) dσ
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τ

ξ′

ξ1q10p

Cone: τ = |ξ|

Hyperboloid: ξ1 = 1, τ2 − |ξ′|2 = 1

Hyperboloid: |ξ − q| − |ξ| = |q| − 2
Paraboloid: 4ξ1 = 4− |ξ′|2
Ellipsoid: |ξ − p|+ |ξ| = |p|+ 2

Sphere: |ξ| = 1

Fig. 4: Conic sections

often appears to be a challenging task when M is a nontrivial manifold. The
theory of distributions comes into help since these integrals can be viewed
as pull-backs of Dirac delta distributions [28].

Suppose that M is (locally) implicitly described as the zero level set of a
C1 function f defined on an open subset Ω of Rd and taking values in R

d−k,

M = Mf := {x ∈ Ω: f(x) = 0} ,
and assume that the Jacobian matrix Df(x) of the map f has maximal
rank at every point x ∈ Ω. Consider the usual Dirac delta distribution δ

(·)
on R

d−k defined by

〈 δ(·), ϕ〉 =
ˆ
Rd−k

δ
(
y
)
ϕ(y) dy = ϕ(0),

for any smooth test functions ϕ. We would like to make sense of the compo-
sition δ

(
f(x)

)
as a distribution on Ω. There are several ways to define such
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a composition. One possibility is to approximate the delta distribution with
a family of smooth bump functions,

γε(y) = εk−dγ(ε−1y), where 0 ≤ γ ∈ C∞
c (Rd−k),

ˆ
Rd−k

γ(y) dy = 1.

One is led to defineˆ
Ω
δ
(
f(x)

)
ϕ(x) dx = 〈 δ(f), ϕ〉 := lim

ε→0

ˆ
Ω
γε (f(x))ϕ(x) dx,

for every ϕ ∈ C∞
c (Ω). This limit converges to the integral

(A.1)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
M

ϕ(x)

Jf (x)
dσ,

where Jf (x) is the Jacobian determinant of the function f at the point x,

Jf (x) =
√
det

(
Df(x) ·Df(x)t) = |df1(x) ∧ df2(x) ∧ · · · ∧ dfd−k(x)| ,

and here ∧ stands for the wedge product of differential forms. Therefore in-
tegrals over the manifold M can be expressed as integrals over Rd by means
of delta distributions:ˆ

M
ϕ(x) dσ =

ˆ
Rd

δ
(
f(x)

)
ϕ(x)Jf(x) dx.

Let us now have a look at some simple but useful algebraic rules which
follow easily from these definitions, and allow for manipulation of integrals
with delta distributions. These rules have been used in the previous sections
to carry out explicit computations of convolution measures defined on the
various manifolds considered there.

A.1. Hypersurfaces. In the codimension 1 case, k = d− 1, we have
that M is a hypersurface defined by a scalar function. Identity (A.1) sim-
plifies to

(A.2)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
M

ϕ(x)

|∇f(x)| dσ.

For example, in the case of the unit sphere S
d−1 equipped with surface

measure σ, we have that f(x) = |x| − 1, |∇f(x)| = 1, and

ˆ
Sd−1

ϕ(x) dσ =

ˆ
Rd

δ
(|x| − 1

)
ϕ(x) dx.
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For another example, consider the region Ω− = {x ∈ Ω: f(x) < 0}, with
boundary inside Ω given by M, and with outgoing unit normal vector given
by ν = ∇f

|∇f | . Combining the divergence theorem with formula (A.2), we have

the following: For any smooth vector field V (x) with compact support in Ω,
ˆ
Ω−

(∇ · V )(x) dx =

ˆ
M
V (x) · ν(x) dσ =

ˆ
Ω
δ
(
f(x)

)
V (x) · ∇f(x) dx.

A.2. Products of delta distributions. We can make sense of the
product of two delta distributions by simply setting

δ
(
f(x)

)
δ
(
g(x)

)
:= δ

(
f(x)
g(x)

)
,

whenever the right-hand side is well-defined as a distribution supported on
the manifold M(f,g) = Mf ∩Mg. We can also make sense of the integration

of the distribution δ
(
f(x)

)
over the manifold Mg as follows:

ˆ
Mg

δ
(
f(x)

)
ϕ(x) dσMg

=

ˆ
Ω
δ

(
f(x)
g(x)

)
ϕ(x)Jg(x) dx(A.3)

=

ˆ
Mf∩Mg

ϕ(x)
Jg(x)

J(f,g)(x)
dσM(f,g)

.

In the case of codimension d− k > 1, the delta distribution can always be
viewed (locally) as a product of d− k delta distributions on hypersurfaces.

For example, let σ denote the surface measure on the (d−1)-dimensional
unit sphere in R

d, and let h be a smooth function on the unit sphere. The
convolution hσ ∗ hσ is supported on the ball of radius 2 centered at the ori-
gin, and its value at a point x inside that ball can be written as an integral
over the (d− 2)-dimensional sphere Γx obtained as the intersection of the

unit sphere with its translate by x. The sphere Γx has radius

√
1− |x|2

4 .

We can write Γx = Mf ∩Mg, with f(y) = |y| − 1 and g(y) = |x− y| − 1. If
y ∈ Γx, then

J(f,g)(y) = |df(y) ∧ dg(y)| =
∣∣∣∣
x− y

|x− y| ∧
y

|y|
∣∣∣∣ = |x ∧ y| = |x|

√
1− |x|2

4
.

Using formula (A.3), we obtain a generalization of formula (3.2): If |x| ≤ 2,
then

(hσ ∗ hσ)(x) =
ˆ
Rd

δ

(|x− y| − 1
|y| − 1

)
h(x− y)h(y) dy
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=

ˆ
Γx

h(x− y)h(y)

J(f,g)(y)
dσy =

2

|x|
√

4− |x|2
ˆ
Γx

h(x− y)h(y) dσy

=
Vd−2

|x|
(
1− |x|2

4

) d−3

2

 
Γx

h(x− y)h(y) dσy,

where Vd−2 is the surface volume of the (d− 2)-dimensional unit sphere andffl
denotes the averaged integral.

0

x
1

y 1

Γx

Fig. A.1: Γx = S
d−1 ∩ (x+ S

d−1)

A.3. Multiplication by scalar functions. Let α : Ω → R be a pos-
itive C1 scalar function. Then, on the manifold Mαf = Mf , we have that

Jαf = αd−kJf , and consequently

(A.4) δ
(
α(x)f(x)

)
= α(x)−d+k δ

(
f(x)

)
.

In particular, if α and β are smooth positive scalar functions which coincide
on Mf , then δ

(
αf

)
= δ

(
βf

)
. For example, on the unit sphere, we have that

δ
(|x|2 − 1

)
=

1

|x|+ 1
δ
(|x| − 1

)
=

1

2
δ
(|x| − 1

)
.

In a similar way, on the null cone, we have that

δ
(
t2 − |x|2)= δ

(
t− |x|)
t+ |x| − δ

(
t+ |x|)
t− |x| =

δ
(
t− |x|)
2 |x| +

δ
(
t+ |x|)
2 |x| .
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A.4. Change of variables. Suppose that x = Ψ(y) is a local injective
diffeomorphism on R

d. As for any distribution, we have the usual change of
variables rule,

(A.5)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
Ψ−1(Ω)

δ
(
f(Ψ(y))

)
ϕ(Ψ(y)) |detDΨ(y)| dy.

If instead we consider the composition g(x) = Φ(f(x)), with Φ a local dif-
feomorphism defined on a neighborhood of 0 in R

d−k and satisfying Φ(0) = 0,
then Mg = Mf , and

δ
(
Φ(f(x))

)
= |detDΦ(f(x))|−1 δ

(
f(x)

)
.

In particular, if L is a nonsingular d× d matrix and M is a nonsingular
(d− k)× (d− k) matrix, then we have thatˆ

L−1(Ω)
δ
(
Mf(Lx)

)
ϕ(x) dx =

1

|detL detM |
ˆ
Ω
δ
(
f(y)

)
ϕ(L−1y) dy.
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