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Ab s t r a c t . Let G be a locally compact abelian group (LCA group) and Ω be an
open, 0-symmetric set. Let F := F(Ω) be the set of all continuous functions f : G → R

which are supported in Ω and are positive definite. The Turán constant of Ω is then
defined as

T (Ω) := sup
n Z

Ω

f : f ∈ F(Ω), f(0) = 1

ff
.

Mihalis Kolountzakis and the author has shown that structural properties — like
spectrality, tiling or packing with a certain set Λ — of subsets Ω in finite, compact or
Euclidean (i.e., R

d) groups and in Z
d yield estimates of T (Ω). However, in these estimates

some notion of the size, i.e., density of Λ played a natural role, and thus in groups where
we had no grasp of the notion, we could not accomplish such estimates.

In the present work a recent generalized notion of asymptotic uniform upper density
is invoked, allowing a more general investigation of the Turán constant in relation to the
above structural properties. Our main result extends a result of Arestov and Berdysheva,
(also obtained independently and along different lines by Kolountzakis and the author),
stating that convex tiles of a Euclidean space necessarily have

T
Rd(Ω) = |Ω|/2d.

In our extension R
d could be replaced by any LCA group, convexity is considerably relaxed

to Ω being a difference set, and the condition of tiling is also relaxed to a certain packing
type condition and positive asymptotic uniform upper density of the set Λ.
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Also our goal is to give a more complete account of all the related developments and
history, because until now an exhaustive overview of the full background of the so-called
Turán problem was not delivered.

1. Introduction

1.1. The Turán problem

We study the following problem, generally investigated under the name
of “Turán’s Problem”, following Stechkin [61], who recalls a question posed
to him in personal discussion.

Prob l em 1. Given an open set Ω, symmetric about 0, and a con-
tinuous, positive definite, integrable function f , with supp f ⊆ Ω and with
f(0) = 1, how large can

R
f be?

Although this name for the problem is quite widespread, one has to
note that all the important versions of the problem were investigated well
before the beginning of the seventies, when the discussion of Turán and
Stechkin took place.

About the same time when Turán discussed the question with Stechkin,
American researchers already investigated in detail the square integral ver-
sion of the problem, see [24, 54, 17]. Their reason for searching the extremal
function and value came from radar engineering problems at the Jet Propul-
sion Laboratory.

More importantly, Problem 1 appears as early as in the thirties [60],
when Siegel considered the question for Ω being a ball, or an ellipsoid in Eu-
clidean space R

d, and established the right extremal value |Ω|/2d. The ques-
tion occurred to Siegel as a theoretical possibility to sharpen the Minkowski
Latice Point Theorem. Although Siegel concluded that, due to the extremal
value being just as large as the Minkowski Lattice Point Theorem would
require, this geometric statement can not be further sharpened through im-
provement on the extremal problem, nevertheless he works out the extremal
problem fully and exhibits some nice applications in the theory of entire
functions.

Furthermore, the same Problem 1 appeared in a paper of Boas and
Kac [12] in the forties, even if the main direction of the study there was
a different version, what is nowadays generally called the pointwise Turán
problem. However, as is realized partially in [12] and fully only later in [46],
the pointwise Turán problem — formulated in the classical setting of Fourier
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series, but nevertheless equivalent to the Euclidean space settings of [12] —
goes back already to Caratheodory [13] and Fejér [21, 22].

The Turán problem was considered on an interval in the torus T =
R/Z by Stechkin [61] and in R by Boas and Kac [12], but extensions were
to follow in several directions.

Such a question is interesting in the study of sphere packings [26,
14, 15], in additive number theory [58, 39, 53, 30] and in the theory of
Dirichlet characters and exponential sums [48], among other things. In their
short survey of results on Problem 1, Ehm, Gneiting and Richards [18]
also mentions applications of several variants in optics, antenna design and
statistics.

1.2. One dimensional case of the Turán problem

Already the symmetric interval case in one dimension presents non-
trivial complications, which were resolved satisfactorily only recently. We
discuss the development of the problem from the outset to date.

Actually, Turán’s interest might have come from another area in num-
ber theory, namely Diophantine approximation. (Let us point out that [2]
starts with the sentence: “With regard to applications in number theory,
P. Turán stated the following problem:”, while at the end of the paper there
is special expression of gratitude to Professor Stechkin for his interest in this
work. Also, Gorbachev writes in [25, p. 314]: “Studying applications in
number theory, P. Turán posed the problem . . . ”)

One can hypothesise that Turán thought of the elegant proof of the
well-known Dirichlet approximation theorem, stating that for any given α ∈
R at least one multiple nα in the range n = 1, . . . , N have to approach some
integer as close as 1/(N + 1). The proof, which uses Fourier analysis and
Fejér kernels in particular, is presented in [53, p. 99], and in a generalized
framework it is explained in [11], but it is remarked in [53, p. 105] that the
idea comes from Siegel [60], so Turán could have been well aware of it. Let
us briefly present the argument right here.

If we wish to detect multiples nα of α ∈ R which fall in the δ-
neighborhood of an integer, that is which have {{nα}} < δ (where, as usual
in this field, {{x}} := dist(x, Z)), then we can use that for the triangle
function

F (x) := Fδ(x) := (1 − {{x}}/δ)+ := max(1 − {{x}}/δ, 0),

we have
F (nα) > 0 iff {{nα}} < δ.
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So if with an arbitrary δ > 1/(N + 1) we can work through a proof of
F (nα) > 0 for some n ∈ [1, N ], then the proof yields the sharp form of the
Dirichlet approximation theorem. (It is indeed sharp, because for no N ∈ N

can any better statement hold true, as the easy example of α := 1/(N + 1)
shows.)

So we take now

S :=
NX

n=1

“
1 − n

N + 1

”
F (nα),

or, since F is even and F (0) = 1, consider the more symmetric sum

2S + 1 =
NX

n=−N

“
1 − |n|

N + 1

”
F (nα).

Note that
cFδ(t) = δ

“ sin(πδt)
πδt

”2
,

so in particular with the nonnegative coefficients bF (k) = ck we can write
(with e(t) := e2πit)
(1)

Fδ(x) =
∞X

k=−∞
cke(kx), c0 = δ, ck = δ

“ sin(πkδ)
πkδ

”2
(k = ±1,±2, . . .).

It suffices to show S > 0. With the Fejér kernels

σN (x) :=
NX

n=−N

“
1 − |n|

N + 1

”
e(nx) =

1
N + 1

“ sin(π(N + 1)x)
πx

”2
≥ 0,

after a change of the order of summation we are led to

2S + 1 =
∞X

k=−∞
ck

NX
n=−N

“
1 − |n|

N + 1

”
e(nkα) =

= c0σN(0) + 2
∞X

k=1

ckσN (kα) ≥ c0σN(0) = δ(N + 1) > 1,

which concludes the argument.
Now if in place of the triangle function with δ = 1/(N + 1) another

positive definite (i.e., bf ≥ 0) function f could be put with supp f ⊂ [−δ, δ]
and f(0) = 1 but with bf(0) > δ, then the above argument with f in place
of F would give S > 0 even for δ = 1/(N + 1), clearly a contradiction since
the Dirichlet approximation theorem cannot be further sharpened. That
round-about argument already gives that for h a reciprocal of an integer,
the triangle function Fh is extremal in the Turán problem for [−h, h]. In
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other words, we obtain Stechkin’s result [61], (see also below) already from
considerations of Diophantine approximation.

So Turán asked Stechkin if for any h > 0 the triangle function provides
the largest possible integral among all positive definite functions vanishing
outside [−h, h] and normalized by attaining the value 1 at 0. (Note that
this formulation is slightly different of the general formulation in Problem
1, (which form became standard only later) in the extent that setting Ω =
[−h, h] means use of a closed set for Ω. In the interval setting an easy
limiting process easily shows the equivalence to the general formulation,
in view of availability of approximations of any interval, and functions
supported on that interval, by dilates. That is, however, an argument not
available for non-convex sets, or in general topological groups without proper
interpretations of dilation.)

Stechkin derived that this extremality of the triangle function is the
case for h being the reciprocal of a natural number: by monotonicity in h
for other values he could conclude an estimate. Anticipating and slightly
abusing the general notations below, denote the extremal value by T (h):
then Stechkin obtained

T (h) = h + O(h2).
This was sharpened later by Gorbachev [25] and Popov [55] (cited in [27,
p. 77]) to h + O(h3).

The corresponding Turán extremal value TR(h) on the real line is, by
simple dilation, depends linearly on the interval length and is just hTR(1)
for any interval I = [−h, h]. On the other hand, it follows already from

lim
h→0+

T (h)/h = 1

that e.g. for the unit interval [−1, 1] the extremal function must be the
triangle function and TR(1) = 1, hence TR(h) = h. In fact, this case was
already settled earlier by Boas and Katz in [12] as a byproduct of their
investigation of the pointwise question.

But there is another observation, seemingly well-known although no
written source can be found. Namely, it is also known for some time that
for h not being a reciprocal of an integer number , the triangle function can
indeed be improved upon a little. Indeed, the triangle function Fh has Fourier
transform which vanishes precisely at integer multiples of 1/h, and in case
1/h /∈ N, some multiples fall outside Z. And then the otherwise double
zeroes of cFh can even be substituted by a product of two close-by zero
factors, allowing a small interval in between, where the Fourier transform
can be negative. This negativity spoils positive definiteness regarding the
function on R: but on T it does not, for only the values at integer increments
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must be nonnegative in order that a function be positive definite on T.
With a detailed calculus (using also the symmetric pair of zeroes) such an
improvement upon the triangle function is indeed possible. (Note that here
bF , so also

R bF = F (0) is perturbed while bF (0) =
R

F is unchanged.) I have
heard this construction explained in lectures during my university studies
[33]; in Russia, a similar observation was communicated by Popov [55] and
later recorded in writing in [29, 31, 27].

As said above, the computation of exact values of T (h) started with
Stechkin for h = 1/q, q ∈ N: these are the only cases when T (h) = h.
Further values, already deviating from this simple formula, were much more
difficult to compute exactly. At the turn of the century, Gorbachev and
Manoshina [29, 31, 50] reduced the Turán problem for h ∈ Q to a discrete
Fejér type optimization problem. Also they showed that the extremal func-
tion in the Turán problem is a piecewise linear function connecting discrete
values of the discrete extremal polynomial solution of the Fejér problem. In
2000 Ivanov in his seminar lectures in Tula State University formulated the
right conjecture about the form of the solution of the Fejér type problem
and the extremal polynomial in the corresponding direct and dual linear
programming problem. Then the goal became to prove positiveness of co-
efficients of the hypothetically extremal discrete trigonometric polynomials.
Via this approach, Gorbachev and Manoshina [29, 31] solved the Turán
problem for some rational values. The full conjecture on the solution of
the discrete Fejér problem was finally proved by Ivanov and Rudomazina

[37, 27, 28], which implied also the solution of the Turán extremal problem
for all rational h and furnished the solution of the so-called Montgomery
problem, too.

Finally, in 2006 Ivanov [36] solved even the case of irrational h, and
thus completed the solution of Turán’s problem on the torus. Ivanov’s paper
also established that for [−h, h] ⊂ T the Turán extremal problem and the
Delsarte extremal problem (see below in §1.4.) have the same extremal value
(and extremal functions). Note that this coincidence does not hold true in
general.

However, it seems that almost nothing is known about Turán extremal
values of other, one would say “dispersed” sets not being intervals. A
natural conjecture is that e.g. on R (or perhaps even on T ?) a set Ω ⊂
R of fixed measure |Ω| = m can have maximal Turán constant value if
only it is a zero-symmetric interval [−m/2,m/2]. What we know from
[47, Theorem 6] is that we certainly have T (Ω) ≤ m/2, that is, in R no
“better sets”, than zero-symmetric intervals, can exist. However, uniqueness
is not known, not even for R. In [47] there is a more general estimate in
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terms of the prescribed measure m, but for higher dimensions it is far less
precise. Also, regarding the discrete group Z one must observe that zero-
symmetric intervals [−N,N ] ⊂ Z have the same Turán extremal values as
their homothetic copies k[−N,N ] (k ∈ N) which already destroys the hope
for “uniqueness only for intervals”. In higher dimensions not even the right
class of the corresponding “condensed sets”, like intervals in dimension one,
has been identified.

1.3. Turán’s problem in the multivariate setting

Already as early as in the 1930’s, Siegel [60] proved that for an
ellipsoid Ω ⊂ R

d the extremal value in Problem 1 is |Ω|/2d .
In the 1940’s, Boas and Katz [12] mentioned that Poisson summation

may be used to treat similar questions in higher dimensions. Besides men-
tioning the group settings, Garcia et al. [24] and Domar [17] also touches
upon the question without going into further details. The packing problem
by balls in Euclidean space has already been treated by many authors via
multivariate extremal problems of the type, but there the optimal approach
is to pose a closely related, still different variant, named Delsarte- (and also
as Logan- and Levenshtein-) problem. See, e.g., [26, 14] and the references
therein.

As a direct generalization of Stechkin’s work, Andreev [1] calculated
the Turán constants of cubes Qd

h in T
d obtaining hd + O(hd+1). Moreover,

he estimated the Turán constant of the cross-polytope (�1-ball) Od
h in T

d:
his estimates are asymptotically sharp when d = 2. Gorbachev [25]
simultaneously sharpened and extended these results proving that for any
centrally symmetric body D ⊂ [−1, 1]d and for all 0 < h < 1/2 we always
have

TTd(hD) = TRd(D) · hd + O(hd+2)

(where the notation TG(Ω) for the Turán extremal value can be anticipated
already here although it is introduced formally only below in Definition 1).

Arestov and Berdysheva [5] offer a systematic investigation of the
multivariate Turán problem collecting several natural properties. They
also prove that the hexagon has Turán constant exactly one fourth of the
area of itself. Gorbachov [25] proved that the unit ball Bd ⊂ R

d has
Turán constant 2−d|Bd|, where |Bd| is the volume (d-dimensional Lebesgue
measure) of the ball. Another proof of this fact can be found in [45], but we
have already noted that the result goes back to Siegel [60].

There is a special interest in the case which concerns Ω being a (cen-
trally symmetric) convex subset of R

d [5, 6, 25, 45], since in this case the
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natural analog of the triangle function, the self-convolution (convolution
square) of the characteristic function χ 1

2Ω of the half-body 1
2
Ω is available

showing that
TRd(Ω) ≥ |Ω|/2d.

The natural conjecture is that for a symmetric convex body this convolution
square is extremal, and

TRd(Ω) = |Ω|/2d.

(Note that this fails in T
d, already for d = 1, for some sets Ω.) Convex

bodies with this property may be called Turán type, or Stechkin-regular,
or, perhaps, Stechkin–Turán domains, while symmetric convex bodies in R

d

with
TRd(Ω) > |Ω|/2d

as anti-Turán or non-Stechkin–Turán domains. Thus the above mentioned
result about the ball can be reworded saying that the ball is of Stechkin–
Turán type.

To date, no non-Stechkin–Turán domains are known, although the
family of known Stechkin–Turán domains is also quite meager (apart from
d = 1 when everything is clear for the intervals).

In [5, 6] Arestov and Berdysheva prove that if Ω ⊆ R
d is a convex

polytope which can tile space when translated by the lattice Λ ⊆ R
d (this

means that the copies Ω + λ, λ ∈ Λ, are non-overlapping and almost every
point in space is covered) then

TRd(Ω) = |Ω|/2d.

Whence the class of Stechkin–Turán domains includes, by the result of
Arestov and Berdysheva, convex lattice tiles.

Kolountzakis and Révész [45] showed the same formula for all
convex domains in R

d which are spectral . For the definition and some
context see §2.2, where it will be explained that all convex tiles are spectral,
and so the result of Arestov and Berdysheva is also a consequence of the
result in [45].

For not necessarily convex sets, further results are contained in [47] for
R

d, T
d and Z

d.

1.4. Variants and relatives of the Turán problem

Let F be a a class of functions. There are several related quantities
which we may want to maximize, which induce several Turán-type problems.
The two most natural versions concern the square-integral of f ∈ F , hence-
forth called the square-integral Turán problem, and the function value at
some arbitrarily prescribed point z ∈ Ω, called the pointwise Turán problem.
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The square-integral Turán problem occurred for applied scientists in
connection with radar design (radar ambiguity and overall signal strength
maximizing), see [54, 24]. Further interesting results were obtained in [17].
Nevertheless, already on the torus T the exact answer is not known, even if
[54] provides convincing computational evidence for certain conjectures in
case h = π/n, and the existence of some extremal function is known.

The natural pointwise analogue of Problem 1 is the maximization of
the function value f(z), for given, fixed z ∈ Ω, in place of the integral, over
functions from the same class than in Problem 1. (Actually, the question
can as well be posed in any LCA group.) For intervals in T or R this was
studied in [7] under the name of “the pointwise Turán problem”, although
the same problem was already settled in the relatively easy case of an interval
(−h, h) ⊂ R by Boas and Kac in [12]. For general domains in arbitrary
dimension the problem was further studied in [46]. Further ramifications are
obtained by considering different variations of the above definitions. E.g.
Belov and Konyagin [8, 9] consider functions with integer coefficients,
and periodic even functions

f ∼
X
k

ak cos(kx) with
X
k

|ak| = 1

but with not necessarily ak ≥ 0, i.e., not necessarily positive definite.
Berdysheva and Berens [10] consider the multivariate question re-

stricted to the class of �1-radial functions.
A very natural version of the same problem is the Delsarte prob-

lem [15] (also known under the names of Logan and Levenshtein): here the
only change in the conditioning of the extremal problem is that we assume,
instead of vanishing of f outside a given set Ω, only the less restrictive con-
dition that f be nonpositive outside the given set. Both extremal problems
are suitable in deriving estimates of packing densities through Poisson sum-
mation: this is exploited in particular for balls in Euclidean space, see, e.g.,
[16, 38, 49, 3, 15, 4, 26, 14].

There are several other rather similar, yet different extremal problems
around. E.g. one related intriguing question [59], dealt with by several
authors, is the maximization of

R
f for real functions f supported in [−1, 1],

admitting ‖f‖∞ = 1, but instead of being positive definite, (which in R is
equivalent to being represented as g ∗ eg, with

eg(x) := g(−x), x ∈ R),

having a representation f = g ∗ g with some g ≥ 0 supported in the half-
interval [−1/2, 1/2].

Here we do not consider these relatives of the Turán problem.
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1.5. Extension of the problem to LCA groups

Some authors have already extended the investigations, although not
that systematically as in case of the multivariate setting, to locally compact
abelian groups (LCA groups henceforth). This is the natural setting for
a general investigation, since the basic notions used in the formulation of
the question — positive definiteness, neighborhood of zero, support in and
integral over a 0-symmetric set Ω — can be considered whenever we have the
algebraic and topological structure of an LCA group. Note that we always
have the Haar measure, which makes the consideration of the integral over
a compact set (hence over the support of a compactly supported positive
definite function) well defined. Also recall that on a LCA group G a function
f is called positive definite if the inequality

(2)
NX

n,m=1

cncmf(xn − xm) ≥ 0 (∀x1, . . . , xN ∈ G, ∀ c1, . . . , cN ∈ C)

holds true. Note that positive definite functions are not assumed to be
continuous. Still, all such functions f are necessarily bounded by f(0) (see
[57, p. 19, Eqn (3)]). Moreover,

f(x) = ef(x) := f(−x) for all x ∈ G

(see [57, p. 19, Eqn (2)]), hence the support of f is necessarily symmetric,
and the condition supp f ⊂ Ω implies also supp f ⊂ Ω ∩ (−Ω). The latter
set being symmetric, without loss of generality we can assume at the outset
that Ω is symmetric itself. So in this paper the set Ω will always be taken
to be a 0-symmetric, open set in G.

We find the first mention of the group case in [24], and a more sys-
tematic use of the settings (for the square-integral Turán problem) in [17].
Utilizing also the work in [5] on extensions to the several dimensional case,
the framework below was set up in [47]. There we obtained some fairly
general results for compact LCA groups as well as for the most classical
non-compact groups: R

d and Z
d.

In this paper we study the problem in the generality of LCA groups.
This simplifies and unifies many of the existing results and gives several new
estimates and examples. If G is a LCA group a continuous function f ∈
L1(G) is positive definite if its Fourier transform bf : bG → C is everywhere
nonnegative on the dual group bG. For the relevant definitions of the Fourier
transform we refer to [40, Chapter VII] or [57].

We say that f belongs to the class F(Ω) of functions if f ∈ L1(G) is
continuous, positive definite and is supported on a closed subset of Ω. For
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any positive definite function f it follows that f(0) ≥ f(x) for any x ∈ G.
This leads to the estimateZ

G
f ≤ |Ω|f(0) for all f ∈ F ,

which is called (following Andreev [1]) the trivial estimate from now on.

De f in i t i on 1. The Turán constant TG(Ω) of a 0-symmetric, open
subset Ω of a LCA group G is the supremum of the quantity

Z

G
f/f(0), where f ∈ F(Ω),

i.e., f ∈ L1(G) is continuous and positive definite, and

suppf := {x : f(x) 
= 0}

is a closed set contained in Ω.

In fact, depending on the precise requirements on the functions consid-
ered, here we have certain variants of the problem: an account of these is
presented below in §1.6.

Remark 1. The quantity TG(Ω) depends on which normalization we
use for the Haar measure on G. If G is discrete we use the counting measure
and if G is compact and non-discrete we normalize the measure of G to be 1.
(Note that normalizing TG(Ω) by the measure of Ω would be inconvenient
for several reasons, in particular when it is infinite.)

The trivial upper estimate or trivial bound for the Turán constant is
thus TG(Ω) ≤ |Ω|.

1.6. Various equivalent forms of the Turán problem

It is worth noting that Turán type problems can be, and have been
considered with various settings, although their relation has not been fully
clarified yet. Thus in extending the investigation to LCA groups or to
domains in Euclidean groups which are not convex, the issue of equivalence
has to be dealt with. One may consider the following function classes (with
� denoting compact subsets).

(3) F1(Ω) :=
n
f ∈ L1(G) : suppf ⊂ Ω, f positive definite

o
,

(4) F&(Ω) :=
n
f ∈ L1(G) ∩ C(G) : suppf ⊂ Ω, f positive definite

o
,
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(5) Fc(Ω) :=
n
f ∈ L1(G) : suppf � Ω, f positive definite

o
,

(6) F(Ω) :=
n
f ∈ C(G) : suppf � Ω, f positive definite

o
.

In F1, F& suppf is assumed to be merely closed and not necessarily com-
pact, and in F1,Fc the function f may be discontinuous.

The respective Turán constants are

(7) T (1)
G (Ω) or T &

G (Ω) or T c
G(Ω) or TG(Ω) :=

:= sup
jR

G f

f(0)
: f ∈ F1(Ω) or F&(Ω) or Fc(Ω) or F(Ω), resp.

ff
.

In general we should consider functions f : G → C. However, it is easy
to see from (2) that together with f , also f is positive definite. Whence
even ϕ := Re f is positive definite, while belonging to the same function
class. As we also have

f(0) = ϕ(0) and
Z

f =
Z

ϕ,

restriction to real valued functions does not change the values of the Turán
constants.

For a detailed introduction to positive definite functions, and for a
proof of the following theorem, we refer to [47].

Theor em 1 (Kolountzakis–Révész). In any LCA group the above
defined versions of the Turán constants coincide:

(8) T (1)
G (Ω) = T &

G (Ω) = T c
G(Ω) = TG(Ω) .

Note that the original formulation, presented also above in Definition 1,
corresponds to T &

G (Ω). Also note that with this setup, e.g. the interval case
Ω = [−h, h] ⊂ T or R admits no extremal function, because the support of
Δh is the full Ω, not a closed subset of the open set (−h, h). In this case an
obvious limiting process is neglected in the formulation of the results above.

Remark 2. It is not fully clarified what happens for functions vanish-
ing only outside of Ω, but having nonzero values up to the boundary ∂Ω.

Our main result in this paper appears in Theorem 7. This is an essential
extension of the above mentioned result of Arestov and Berdysheva about
convex lattice tiles in Euclidean spaces being of the Stechkin–Turán type.
To arrive at the result we need some preparations. So in the next section
we describe the structural context, including without proofs a different
extension of the result of Arestov and Berdysheva — in the direction of
spectrality — already given in [45]. Also we explain the relevant new notion
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of asymptotic uniform upper density and its computation or estimation in
relation with packing, covering and tiling. The main result then appears
in §3.

2. Structural properties of sets — tiling, packing,
spectrality, and asymptotic uniform upper density

2.1. Tiling and packing

Suppose G is a LCA group.

De f in i t i on 2. We say that a nonnegative function f ∈ L1(G) tiles
G by translation with a set Λ ⊆ G at level c ∈ R+ if

X
λ∈Λ

f(x − λ) = c

for a.e. x ∈ G, with the sum converging absolutely. We then write “f +Λ =
cG”.

We say that f packs G with the translation set Λ at level c ∈ R+, and
write f + Λ ≤ cG, if X

λ∈Λ

f(x − λ) ≤ c

for a.e. x ∈ G. When the same properties hold with constant c = 1 for
a characteristic function χΩ of some Borel measurable set Ω with compact
closure, then we simply say that Ω tiles or packs G, and write Ω + Λ = G,
Ω + Λ ≤ G, respectively.

Neglecting some measure zero sets, packing occurs when for any point
x ∈ G x−λ ∈ Ω for at most one point λ of Λ, which in turn is equivalent to
λ + Ω being disjoint for different λ ∈ Λ. This explains the term “packing”.
On the other hand this latter statement is equivalent to saying that

λ + x = λ′ + x′ with λ, λ′ ∈ Λ and x, x′ ∈ Ω

can occur only if λ = λ′ and hence also x = x′. Writing this in the form of
differences, λ − λ′ = x′ − x only for both sides being 0, that is,

(Λ − Λ) ∩ (Ω − Ω) = {0}.
This is an equivalent condition to Ω packing with Λ. More generally, we
will say that the set S satisfies a “packing type condition” with L, if

(L − L) ∩ S ⊂ {0},
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irrespectively of the situation whether S can be represented as a difference
set of some other Ω or not.

So in an Euclidean space about a nonnegative f ∈ L1(Rd) we say that
f tiles with Λ at level � if

X
λ∈Λ

f(x − λ) = �, a.e. x.

We denote this latter condition by f + Λ = �Rd.
In particular, a measurable set Ω ⊆ R

d is a translational tile if there
exists a set Λ ⊆ R

d such that almost all (Lebesgue) points in R
d belong to

exactly one of the translates

Ω + λ, λ ∈ Λ.

We denote this condition by Ω + Λ = R
d.

In any tiling the translation set has some properties of density, which
hold uniformly in space. A set Λ ⊆ R

d has (uniform) density ρ if (with

lim
R→∞

#(Λ ∩ BR(x))
|BR(x)| → ρ with BR(x) := {y ∈ R

d : |y − x| ≤ R})

uniformly in x ∈ R
d. We write ρ = dens Λ. We say that Λ has density

bounded uniformly by ρ, if the fraction above is bounded by the constant ρ
uniformly for x ∈ R and R > 1.

Remark 3. It is not hard to prove (see for example [42, Lemma 2.3],
where it is proved in dimension one — the proof extends verbatim to higher
dimension) that in any tiling f + Λ = �Rd the set Λ has density �/

R
f .

When the group is finite (and we do not, therefore, have to worry about
the set Λ being finite or not) the tiling condition f +Λ = cG means precisely
f ∗ χΛ = c. Taking Fourier transform, this is the same as bf cχΛ = c|G|χ{0},
which is in turn equivalent to the condition

(9) supp cχΛ ⊆ {0} ∪ { bf = 0} and c =
|Λ|
|G|

X
x∈G

f(x).

The packing type condition Ω∩(Λ−Λ) = {0} will be used in Theorem 7
below. This result will be an essential extension of the earlier result of
Arestov and Berdysheva, stating that in R

d a convex lattice tile is necessarily
of the Stechkin–Turán type. Another generalization of this result appears
in the next section, through another structural property of sets, namely
spectrality.
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2.2. Spectral sets

Def in i t i on 3. Let G be a LCA group and bG be its dual group, that
is the group of all continuous group homomorphisms (characters)

G → C1 := {z ∈ C : |z| = 1}.
We say that the set T ⊆ bG is a spectrum of H ⊆ G if and only if the
restrictions of the characters from T form an orthogonal basis for L2(H).

In particular, let Ω be a measurable subset of R
d and Λ be a discrete

subset of R
d. We write

eλ(x) = exp(2πi〈λ, x〉), (x ∈ R
d),

and
EΛ = {eλ : λ ∈ Λ} ⊂ L2(Ω).

The inner product and norm on L2(Ω) are

〈f, g〉Ω =
Z

Ω
fg, and ‖f‖2

Ω =
Z

Ω
|f |2.

The pair (Ω,Λ) is called a spectral pair if EΛ is an orthogonal basis for
L2(Ω). A set Ω will be called spectral if there is Λ ⊂ R

d such that (Ω,Λ) is
a spectral pair. The set Λ is then called a spectrum of Ω.

Example 1. If Qd = (−1/2, 1/2)d is the cube of unit volume in R
d

then (Qd, Z
d) is a spectral pair, as is well known by the ordinary L2 theory

of multiple Fourier series.

Fuglede [23] formulated the following famous conjecture in 1974.

Con j ec tu r e 1. Let Ω ⊂ R
d be a bounded open set. Then Ω is spectral

if and only if there exists L ⊂ R
d such that Ω + L = R

d is a tiling.

One basis for the conjecture was that the lattice case of this conjecture
is easy to show, (see for example [23, 41]). In the following result the dual
lattice Λ∗ of a lattice Λ is defined as usual by

Λ∗ = {x ∈ R
d : ∀λ ∈ Λ 〈x, λ〉 ∈ Z

o
.

Theor em 2 (Fuglede [23]). The bounded, open domain Ω admits
translational tilings by a lattice Λ if and only if EΛ∗ is an orthogonal basis
for L2(Ω).

Note that in Fuglede’s Conjecture no relation is claimed between the
translation set L and the spectrum Λ.
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Conjecture 1 in its full generality was recently disproved. First, Tao

[62] showed that in R
5 there exists a spectral set, which however fails to tile

space. The method, roughly speaking, is to construct counterexamples in
finite groups, and then “lift them up” first to Z

d and finally to R
d. Soon after

that breakthrough, Tao’s construction was further sharpened to provide non-
tiling spectral sets in R

4 (see [51]) and finally even in dimension 3 (see [44]).
Furthermore, the converse implication was also disproved, first in di-

mension 5 by Kolountzakis and Matolcsi [43]. Subsequently, exam-
ples of tiling, but non-spectral sets were constructed in R

4 by Farkas and
Révész [20], and then even in R

3 by Farkas, Matolcsi and Móra [19].
Positive results are far more meager, and basically restrict to special

sets on the real line. However, for planar convex domains, Conjecture 1also
holds true (see [35]).

As for application of spectrality for estimating the Turán constant,
essentially the following was proved in [45].

Theor em 3 (Kolountzakis–Révész [45]). If H is a bounded open
set in R

d which is spectral, then for the difference set Ω = H − H we have
TRd(Ω) = |H|. So in particular in such cases |H| is uniquely determined by
Ω = H − H even if H may not be unique.

Originally, we formulated in [45] only the following special case of the
above result. The possibility of getting Theorem 3 from essentially the same
proof, was noted only in [47].

Coro l l a ry 1. (Kolountzakis–Révész [47]). Let Ω ⊆ R
d be a

convex domain. If Ω is spectral, then it has to be a Stechkin–Turán type
domain as well.

Proo f . First let us note that convex spectral domains are necessarily
symmetric according to the result in [41]. Let now Ω be a symmetric convex
domain. Then taking H := 1

2Ω, we have H − H = Ω. Moreover, if Ω
is spectral, say with spectrum Λ, then also H is clearly spectral with the
dilated spectrum 2Λ. So Theorem 3 applies and we are done, in view of

|H| =
˛̨
˛1
2
Ω

˛̨
˛ = |Ω|/2d. ��

Coro l l a ry 2 (Arestov–Berdysheva [6]). Suppose the symmetric
convex domain Ω ⊆ R

d is a translational tile. Then it is a Stechkin–Turán
domain.

Proo f o f Coro l l a ry 2. We start with the following result which
claims that every convex tile is also a lattice tile.
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Theor em 4 (Venkov [63] and McMullen [52]). Suppose that a
convex body K tiles space by translation. Then it is necessarily a symmetric
polytope and there is a lattice L such that

K + L = R
d.

A complete characterization of the tiling polytopes is also among the
conclusions of the Venkov–McMullen Theorem but we do not need it here
and choose not to give the full statement as it would require some more
definitions.

So, if a convex domain is a tile, it is also a lattice tile, hence spectral
by Theorem 2, and as such it is Stechkin–Turán type, by Corollary 1. ��

Remark 4. If one wants to avoid using the Venkov–McMullen The-
orem in the proof of Corollary 2 one should enhance the assumption of
Corollary 2 to state that Ω is a lattice tile. Arestov and Berdysheva [6]
prove Corollary 2 without going through spectral domains.

The result of [5] about the hexagon being a Stechkin–Turán type do-
main is thus a special case of our Corollary 2, but not the result in [60] and
[25] about the ball being Stechkin–Turán type. The ball, and essentially
every smooth convex body, is known not to be spectral, in accordance with
the Fuglede Conjecture (see [34]).

2.3. The notion of asymptotic uniform upper density on LCA groups

First let us recall the frequently used definition of asymptotic uniform
upper density in R

d. Let K ⊂ R
d be a fat body , i.e. a set with

0 ∈ int K, K = int K and K compact.
Then asymptotic uniform upper density of a measurable set A ⊂ R

d with
respect to K is defined as

(10) DK(A) := lim sup
r→∞

supx∈Rd |A ∩ (rK + x)|
|rK| .

It is obvious that the notion is translation invariant. It is also well known,
that DK(A) gives the same value for all nice — e.g., for all convex — bodies
K ⊂ R

d, although this fact does not seem immediate from the formulation.
Note also the following ambiguity in the use of densities in literature.

Sometimes even in continuous groups a discrete set Λ is considered in place
of A, and then the definition of the asymptotic uniform upper density of the
sequence (discrete set) Λ ⊂ R

d is

(11) D
#
K(Λ) := lim sup

r→∞
supx∈Rd #(Λ ∩ (rK + x))

|rK| .
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This motivates the general definition of asymptotic uniform upper den-
sities of measures, say measure ν with respect to measure μ, whether equal
or not. E.g., ν := # is the cardinality or counting measure in (11), while
μ := | · | is just the volume. The general formulation of a.u.u.d. (this short-
hand version standing for the expression asymptotic uniform upper density)
in R

d is thus

(12) DK(ν) := lim sup
r→∞

supx∈Rd ν(rK + x)
|rK| .

Two notions of asymptotic uniform upper densities of measures ν with
respect to a translation invariant, nonnegative, locally finite (outer) measure
μ were defined in general LCA groups in [56]. Considering such groups
are natural for they have an essentially unique translation invariant Haar
measure μG (see e.g. [57]), what we fix to be our μ. By construction, μ
is a Borel measure, and the sigma algebra of μ-measurable sets is just the
sigma algebra of Borel mesurable sets, denoted by B throughout. To avoid
questions of infinite measure, we consider the subset B0 of Borel measurable
sets having compact closure.

Note if we consider the discrete topological structure on any abelian
group G, it makes G a LCA group with Haar measure μG = #, the counting
measure. This is the natural structure for Z

d, e.g. On the other hand all σ-
finite groups admit the same structure as well, i.e. are LCA groups with the
discrete topology and the counting measure being the natural Haar measure.
This unifies considerations. (Note that e.g. Z

d is not a σ-finite group since
it is torsion-free, i.e. has no finite subgroups.)

The other measure ν can be defined, e.g. , as the trace of μ on the
given set A, that is,

ν(H) := νA(H) := μG(H ∩ A),
or can be taken as the counting measure of the points included in some set
Λ derived from the cardinality measure similarly:

γ(H) := γΛ(H) := #(H ∩ Λ).

Def in i t i on 4. Let G be a LCA group and μ := μG be its Haar
measure. If ν is another measure on G with the sigma algebra of measurable
sets being S , then we define

(13) D(ν;μ) := inf
C�G

sup
V ∈S∩B0

ν(V )
μ(C + V )

.

In particular, if A ⊂ G is Borel measurable and ν = μA is the trace of the
Haar measure on the set A, then we get

(14) D(A) := D(νA;μ) := inf
C�G

sup
V ∈B0

μ(A ∩ V )
μ(C + V )

.
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If Λ ⊂ G is any (e.g. discrete) set and

γ := γΛ :=
X
λ∈Λ

δλ

is the counting measure of Λ, then we get

(15) D
#

(Λ) := D(γΛ;μ) := inf
C�G

sup
V ∈B0

#(Λ ∩ V )
μ(C + V )

.

Propos i t i on 1. Let K be any convex body in R
d and normalize the

Haar measure of R
d to be equal to the volume | · |. Let ν be any measure

with sigma algebra of measurable sets S . Then we have

(16) D(ν; | · |) = DK(ν) .

The same statement applies also to Z
d. For heuristical considerations

and comparisons to existing notions and approaches, as well as for the proofs
and for some examples we refer to [56].

2.4. Packing, covering, tiling and asymptotic uniform upper density

Propos i t i on 2. Assume that H ∈ B and that H + Λ ≤ G (H packs
G with Λ ⊂ G), i.e.,

(H − H) ∩ (Λ − Λ) ⊆ {0}.
Then Λ must satisfy

D
#

(Λ) ≤ 1/μ(H).

Proo f . Let B � H and V ∈ B0 be arbitrary. Denote L := Λ ∩ V .
Then

B + V ⊃ B + L =
[

λ∈L

(B + λ),

and this union being disjoint (as

(B + λ) ∩ (B + λ′) ⊂ (H + λ) ∩ (H + λ′) = ∅
unless λ = λ′), from additivity and translation invariance of the Haar
measure we obtain

μ(B + V ) ≥ μ(B + L) = #Lμ(B).

This yields
#L/μ(B + V ) ≤ 1/μ(B),

therefore
sup

V ∈B0

#(Λ ∩ V )/μ(B + V ) ≤ 1/μ(B).
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Approximating μ(H) by μ(B) of B � H arbitrarily closely, we thus obtain

inf
B�H

sup
V ∈B0

#(Λ ∩ V )/μ(B + V ) ≤ 1/μ(H).

However, D
#

(Λ) is a similar infimum extended to a larger family of compact
sets, so it can not be larger, and the assertion follows. ��

Propos i t i on 3. Assume that H ∈ B0 and that it covers G with
Λ ⊂ G (“H + Λ ≥ G”), i.e., H + Λ contains μ-almost all points of G.
Then we necessarily have

D
#

(Λ) ≥ 1/μ(H).

Proo f . Let C � G be arbitrary, and take W := H −C , which is again
a compact set of G by assumption on H and in view of the continuity of the
group operation on G. So the Theorem in §2.6.7. on p. 52 of [57] applies
to the compact set W and to any given ε > 0, and we find some Borel
measurable set U = Uε,C ∈ B0 satisfying

μ(U − W ) < (1 + ε)μ(U).

Consider now
V := Vε,C := U − H ∈ B0.

Then

μ(C + V ) = μ(C + U − H) ≤ μ(U − (H − C)) = μ(U − W ) < (1 + ε)μ(U).

Denote L := Λ ∩ V . Then

L = {λ ∈ Λ : ∃h ∈ H, λ + h ∈ U} = {λ ∈ Λ : (λ + H) ∩ U 
= ∅},
and so clearly

U ∩ (Λ + H) ⊂
[

λ∈L

(λ + H),

while
U0 := U \ (U ∩ (Λ + H))

is of measure zero by assumption on the covering property of H with Λ. So
in all

μ(U) ≤ μ(U0)+
X
λ∈L

μ(λ+H) = 0+#Lμ(H) and μ(C+V ) < (1+ε)#Lμ(H).

It follows that with the arbitrarily chosen C � G and for all ε > 0 we
have

#(Λ ∩ Vε,C)
μ(C + Vε,C)

≥ 1
(1 + ε)2μ(H)
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with a certain Vε,C ∈ B0, so taking supremum over all V ∈ B0 we even get

sup
V ∈B0

#(Λ ∩ V )/μ(C + V ) ≥ 1/μ(H).

This holding for all C�G, taking infimum over C does not change the lower
estimation, so finally we arrive at

D
#

(Λ) ≥ 1/μ(H),
whence the proposition follows. ��

Tiling means simultaneously packing and covering. Therefore, from
the above two propositions the following corollary obtains immediately.

Coro l l a ry 3. Assume that H ∈ B0 tiles with the set of translations
Λ ⊂ G : H + Λ = G. Then we also have D

#
(Λ) = 1/μ(H).

3. Upper bound from packing

3.1. Bounds from packing in some special cases

In the type of results we now present, some kind of “packing” condition
is assumed on Ω which leads to an upper bound for TG(Ω). The first result
we present here is taken from [47]: we repeat it here for sake of a simpler
situation which nevertheless may shed light on the general case.

Theor em 5 (Kolountzakis–Révész [47]). Suppose that G is a
compact abelian group, Λ ⊆ G, Ω ⊆ G is a 0-symmetric open set and
(Λ − Λ) ∩ Ω ⊆ {0}. Suppose also that f ∈ L1(G) is a continuous positive
definite function supported on Ω. Then

(17)
Z

G
f(x) dx ≤ μ(G)

#Λ
f(0).

In other words,
TG(Ω) ≤ μ(G)/#Λ.

Observe that the conditions imply that Λ is finite.

Proo f . Define F : G → C by

F (x) =
X

λ,μ∈Λ

f(x + λ − μ).

In other words, F = f ∗ δΛ ∗ δ−Λ, where δA denotes the finite measure on G
that assigns a unit mass to each point of the finite set A. It follows that

bF = bf
˛̨
˛cδΛ

˛̨
˛
2
≥ 0
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so that F is continuous and positive definite. Moreover, we also have

(18) suppF ⊆ supp f + (Λ − Λ) ⊆ Ω + (Λ − Λ)

and

(19) F (0) = #Λf(0),

since Ω ∩ (Λ − Λ) ⊆ {0}. Finally

(20)
Z

G
F = #Λ2

Z

G
f.

Applying the trivial upper boundZ

G
F ≤ F (0)μ(Ω + (Λ − Λ))

to the positive definite function F and using (19) and (20) we get

(21)
Z

G
f ≤ μ(Ω + (Λ − Λ))

#Λ
f(0).

Estimating trivially μ(Ω + (Λ − Λ)) from above by μ(G) we obtain the
required

TG(Ω) ≤ μ(G)/#Λ. ��

Coro l l a ry 4. Let G be a compact abelian group and suppose
Ω,H,Λ ⊆ G, H + Λ ≤ G is a packing at level 1, that Ω ⊆ H − H and
that f ∈ F(Ω). Then (17) holds.

In particular, if H + Λ = G is a tiling, we have

(22) TG(Ω) ≤ μ(H).

Proo f . Since H + Λ ≤ G it follows that

(H − H) ∩ (Λ − Λ) = {0}.
Since Ω ⊆ H − H by assumption it follows that Ω and Λ − Λ have at most
0 in common. Theorem 5 therefore applies and gives the result. If H + Λ =
G then μ(G)/#Λ = μ(H) and this proves (22). ��

A partial extension of the result to the non-compact case was also
worked out in [47]. However, it used the notion of a.u.u.d. which then
restricted considerations to classical groups only.

Theor em 6 (Kolountzakis–Révész [47]). Suppose that G is one
of the groups R

d or Z
d, that Λ ⊆ G is a set of asymptotic uniform upper

density ρ > 0, and Ω ⊆ G is a 0-symmetric open set such that

Ω ∩ (Λ − Λ) ⊆ {0}.
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Let also f ∈ L1(G) be a continuous positive definite function on G whose
support is a compact set contained in Ω. Then

(23)
Z

G
f(x) dx ≤ 1

ρ
f(0).

In other words, TG(Ω) ≤ 1/ρ.

For sharpness and examples we refer to [47]. Note that some parts of
the proof in [47] for this theorem will be used in the proof for our more
general result, see the end of Lemma 1.

3.2. Bounds from packing in general LCA groups

Now we have ready a notion of a.u.u.d. as defined in §2.3. With this
notion, we have the following general version of the above particular results.

Theor em 7. Let Ω ⊂ G be a 0-symmetric open neighborhood of 0
and Λ ⊂ G be a subset satisfying the “packing-type condition” Ω∩(Λ−Λ) =
{0}. If ρ := D

#
(Λ) > 0, then we have TG(Ω) ≤ 1/ρ.

Proo f . Let ε > 0 be fixed small, but arbitrary. By Theorem 1, there
exists f ∈ F(Ω), normalized to satisfy

f(0) = 1, with
Z

G
f > TG(Ω) − ε.

Denote S := supp f , which is a compact subset of Ω in view of f ∈ F(Ω).
In the following we consider a compact, 0-symmetric neighborhood of

0 which we denote by W . We require W to be the closure of a 0-symmetric
open subset O containing S − S in it.

Let us consider the subgroup G0 of G, generated by W . Here we
repeat the construction on [57, p. 52]. First, by [57, Lemma 2.4.2], 〈W 〉 =
G0 implies that there exists a closed subgroup K ≤ G0 which is isomorphic
to Z

k with some natural number k and satisfies W ∩K = {0}, so that H :=
G0/K is then compact. Let φ be the natural homomorphism (projection)
of G0 onto H .

Since S − S ⊂ intW , there exists an open neighborhood X1 of S such
that X1 − X1 ⊂ W , whence

φ(x) − φ(y) = 0 ∈ H with x, y ∈ X1

would imply

x − y ∈ ker φ = K, i.e. x − y ∈ K ∩ W = {0}
and thus x = y. In other words, φ is a homeomorphism on X1, and Y1 :=
φ(X1) ⊂ H is open. By compactness of H , finitely many translates of Y1,
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say Y1, Y2, . . . , Yr will cover H , and there are open subsets Xi of G0 with
compact closure such that φ maps Xi onto Yi homeomorphically for each
i = 1, . . . , r. If

Y ′
1 := Y1, Y ′

i := Yi \
“ i−1[

j=1

Yj

”
(i = 2, . . . , r)

and
X ′

i := Xi ∩ φ−1(Y ′
i ) (i = 1, . . . , r),

then

E :=
r[

i=1

X ′
i

is a Borel set in G0 with compact closure, φ is one-to-one on E , and φ(E) =
H , i.e., each x ∈ G0 can be uniquely represented as x = e + n, with e ∈
E and n ∈ K . We will call this the standard decomposition of the element
x ∈ G0.

In the following, we put

‖n‖ := max
1≤j≤k

|nj |, where (n1, . . . , nk) ∈ Z
k

is the element corresponding to n ∈ K under the fixed isomorphism from K
to Z

k. Note also that
S ⊂ X1 = X ′

1 ⊂ E

and that E is compact. Hence also E +E−E has compact closure, and the
discrete set K can intersect it only in finitely many points. So we put

s := max{‖n‖ : n ∈ (E + E − E) ∩ K},
which is finite. Next we define

(24) VN :=
[ n

E + n : n ∈ K, ‖n‖ ≤ N
o

(N ∈ N).

Note that
μ(VN ) = (2N + 1)kμ(E) for all N ∈ N,

and the VN are Borel sets with compact closure. Let N,M ∈ N, and

x = e + n, y = f + m

be the standard decomposition of two elements x ∈ VN and y ∈ VM in terms
of E + K , that is, e, f ∈ E and n,m ∈ K . Then

x + y = e + f + n + m = g + p + n + m,

where e + f has the standard decomposition g + p, and so

p = e + f − g ∈ (E + E − E),
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therefore in (E + E − E) ∩ K , and we find ‖p‖ ≤ s. In all, we find x + y ∈
E + q, where q := p + n + m satisfies ‖q‖ ≤ N + M + s, and so x + y ∈
VN+M+s. It follows that

VN + VM ⊂ VN+M+s.

For the sake of the next lemma we introduce a notation extending
the notion of the Turán constant from open sets even to Borel (i.e. Haar)
measurable sets V . For this we pick up the function class F(V ) with
continuous positive definite functions compactly supported in V and write

TG(V ) := sup
n Z

f/f(0) : f ∈ F(V )
o
.

Lemma 1. With the above notations we have

TG0(VN ) ≤ (N + s + 1)kμ(E)

for arbitrary N ∈ N.

Proo f . Our proof will run analogously to [47, Proposition 3], but,
since we consider here measurable sets, we give a full proof.

Recall that the natural homeomorphism (projection) φ : G0 →
G0/K =: H maps surjectively onto H with H a compact subgroup and
K ∼= Z

k a closed discrete subgroup, hence a LCA group itself. By definition
of the topology of G0/K , φ is an open and continuous mapping. (Compare
§§B.2 and B.6 in [57, Appendix B].)

For the determination of the Turán constants, the choice of the Haar
measure is relevant. Haar measures are unique up to a constant factor:
we can always choose the Haar measures μK and μG0/K so that dμG0 =
dμK dμG0/K , in the sense of (2) in [57, §2.7.3]. Considering G0/K as a factor
group, this is the natural choice: for distinguishing from the normalized
Haar measure of G0/K = H , we denote ν := μG0/K . On the other hand
fixing a particular Haar measure μH of H always leaves open the question
of compatibility with the fixed measure ν = μG0/K (and the mapping φ).
Recall that under our convention, the discrete group K admits μK = #,
while for the compact group H ≤ G0 the natural normalized Haar measure
μH has μH(H) = 1. Let us denote C := dμH/ dν .

Obviously
V

(g)
N := VN ∩ (K + g)

is a discrete, hence closed subset for any g ∈ G, together with the full coset
K + g. Let us choose arbitrarily a representative g(h) ∈ G0 of each coset
φ−1(h) of K to all h ∈ H . Now for any uniformly continuous function (so
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in particular to any compactly supported continuous function) f : G0 → C

we can define with μK = #K

(25) F (h) :=
Z

K
f(g(h) + k) dμK(k) =

=
Z

ϕ−1(h)
f(x) dμK(x − g(h))

“
=

X
k∈K+g(h)

f(k)
”
.

From now on let supp f � VN . Since f is compactly supported, the sum is
always finite, and the function F : H → C is continuous,

F (0) =
Z

K
f dμK ,

and by Fubini’s Theorem (denoting [g(h)] := g(h) + K = φ−1(h) the coset
of K in G0, i.e. the element of G0/K , corresponding to h)

(26)
Z

H
F (h) dμH(h) =

Z

H

Z

K
f(g(h) + k) dμK(k)C dν(h) =

= C

Z

H×K
f(g(h) + k) dμK(k) dμG0/K([g(h)]) = C

Z

G0

f dμG0 ,

taking into account the choice of normalization of the Haar measures for K
and G0/K .

Next we prove that F is positive definite on H in case f is positive
definite on G0. Indeed, for any character χ on H there is a character γ :=
χ ◦ φ on G0, and applying (26) to fγ yields

Z

H
F (h)χ(h) dμH (h) = C

Z

G
f(g)γ(g) dμG0(g) ≥ 0 .

Note that Z

H
F dμH ≤ F (0)μH(H) = F (0)

in view of the trivial estimate and the normalization of the Haar measure
μH . Furthermore, also f |K is positive definite on K , hence we also have

F (0) =
Z

K∩VN

f dμK ≤ TK(K ∩ VN)f(0).

Comparing these inequalities with (26) yields

C
Z

G0

f dμG0 ≤ TK(K ∩ VN)f(0),

and taking supremum of
R
G0

f dμG0/f(0) yields

(27) TG0(VN ) ≤ 1
C
TK(VN ∩ K), C :=

dμH

dν
.
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Next, let us compute C . It suffices to consider one test function, which
we chose to be χE , the characteristic function of E . We obtain

(28) μ(E) = μG0(E) =
Z

G0

χE dμG0 =

=
Z

G0/K

Z

K
χE(x + y) dμK(y) dμG0/K([x]) =

=
Z

G0/K
1 dμG0/K([x]) = μG0/K(G0/K),

in view of
#{y ∈ K : x + y ∈ E} = 1

and by the above unique representation (the standard decomposition) of G0

as E + K . It follows that

(29) C =
μH(H)

μG0/K(G0/K)
=

1
μ(E)

,

and we are led to

(30) TG0(VN ) ≤ μ(E)TK(VN ∩ K).

Let us write from now on

QM := Q2M (0) := {m : m ∈ K, ‖m‖ ≤ M}.
We know that VN ∩ K ⊂ QN+s, because for any e ∈ E ∩ K we necessarily
have ‖e‖ ≤ s. These observations yield

TG0(VN ) ≤ μ(E)TK

“
{m ∈ K : ‖m‖ ≤ N + s}

”
= μ(E)TZk(QN+s),

by the isomorphism of K and Z
k . It remains to recall that for QL = Q2L(0)

we have
TZk(QL) ≤ (L + 1)k,

in view of [47, formula (26)] from the proof of Theorem 6 in [47]. ��

Lemma 2. Let V be any Borel measurable subset of G with compact
closure and let ν be a Borel measure on G with DG(ν;μ) = ρ > 0. If ε > 0
is given, then there exists z ∈ G such that

(31) ν(V + z) ≥ (ρ − ε)μ(V ).

Proo f . Let D := −V . D is a Borel set with compact closure D � G.
So by Definition 4 we can find, according to the assumption on DG(ν;μ) =
ρ, some Z ∈ B0 (i.e. Z ∈ B with μ(Z) < ∞) which satisfies

(32) ν(Z) ≥ (ρ − ε)μ(Z + D) ≥ (ρ − ε)μ(Z + D).
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We can then write

(33)
Z

χZ(t) dν(t) ≥ (ρ − ε)μ(Z + D).

For t ∈ Z and u ∈ D(= −V ) also t+u ∈ Z +D holds. Hence χZ+D(t+u) =
1, and we get

(34) χZ(t) ≤ 1
μ(D)

Z
χZ+D(t + u)χD(u) dμ(u)

for all t ∈ Z . But for t 
∈ Z χZ(t) = 0 and the right hand side being
nonnegative, inequality (34) holds for all t ∈ G, hence (33) implies

(35) (ρ − ε)μ(Z + D) ≤ 1
μ(D)

Z Z
χZ+D(t + u)χD(u) dμ(u) dν(t) =

=
Z

χZ+D(y)
“ 1
μ(D)

Z
χD(y − t) dν(t)

”
dμ(y) =

=
Z

χZ+D(y)f(y) dμ(y) =
Z

Z+D
f dμ

“
with f(y) :=

ν(y − D)
μ(D)

”
.

It follows that there exists z ∈ Z + D ⊂ G satisfying f(z) ≥ (ρ − ε). That
is, we find

ν(z + V ) = ν(z − D) ≥ (ρ − ε)μ(D) = (ρ − ε)μ(V ). ��

Lemma 3. If DG(ν;μ) = ρ > 0 with μ = μG and ν any given Borel
measure on the LCA group G, then for any open subgroup G′ of G, compact
D � G′ and ε > 0 there exist x ∈ G and Z ⊂ G′, Z ∈ B0 so that

ν(Z + x) ≥ (ρ − ε)μ(Z + D).

Remark 5. One would be tempted to assert that on some coset G′+x
of G′ the relative density of ν must be at least ρ − ε, i.e.

DG′(νx;μ|G′) = ρ − ε with νx(Z) := ν(Z + x) for Z ⊂ G′ and x ∈ G.

However, this stronger statement does not hold true. Consider, e.g.,

G = Z
2, G′ := Z × {0}, A := {(k, l) : k ∈ N, l ≥ k},

and ν := μA the trace of the counting measure μ of Z
2 on A. Since A

contains arbitrarily large squares, D(ν;μ) = 1. (In fact, ν has a positive
asymptotic density δ(ν;μ) = 1/8, too, where

δ(ν, μ) := lim
r→∞ ν(B(0, r)/μ(B(0, r)

whenever the limit exists.) However, for each coset G′ + x = Z×{m} of G′

the intersection A ∩ G′ is only finite and DG′(νx;μ|G′) = 0.
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Proo f o f Lemma 3. By condition, for D�G′ ≤ G there exists V �G
such that

(36) ν(V ) ≥ (ρ − ε)μ(V + D).

Let now U be an open set containing V +D and with compact closure U�G.
Because the cosets of G′ cover G, we have

V + D =
[

x∈G

“
(V + D) ∩ (G′ + x)

”
⊂

[
x∈G

“
U ∩ (G′ + x)

”
.

Since both U and G′ are open, and V + D is compact, the covering on the
right hand side has a finite subcovering; moreover, we can select all covering
cosets only once, hence arrive at a disjoint covering

V + D ⊂
m[

j=1

Uj (Uj := U ∩ (G′ + xj), j = 1, . . . ,m).

Take now
Vj := Uj ∩ (V + D).

As the Uj are disjoint, so are the Vj ; and as the Uj together cover V + D,
so do the Vj . So we have the disjoint covering

V + D =
m[

j=1

Vj .

Furthermore, we can write

Vj = (V + D) ∩ (G′ + xj)

in place of the above definition of Vj , that is, we can drop the set U from
the intersection defining Vj . Indeed, it is clear that

Vj ⊂ (V + D) ∩ (G′ + xj) (j = 1, . . . ,m),

and as already the cosets G′ + xj were chosen to be disjoint, we have

Vi ∩ (G′ + xj) = ∅ unless i = j,

hence

Vj ⊆ (V + D) ∩ (G′ + xj) =
m[

i=1

Vi ∩ (G′ + xj) = Vj ∩ (G′ + xj) = Vj

and we have equality throughout.
By this we can see that the sets Vj are necessarily compact sets for

all j = 1, . . . ,m. Indeed, V + D is compact and G′ + xj is closed, as G′
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is closed, the latter being a general property of open subgroups in a locally
compact group because

G′ = G \
[

(G′+y)∩G′=∅
(G′ + y)

expresses the open subgroup as a complement of an open set.
Next we define Wj := V ∩ Vj . Plainly, Wj � G and disjoint, and

V =
m[

j=1

Wj .

Moreover, Wj + D = Vj ; indeed,

Wj + D = (V ∩ (G′ + xj)) + D = (V + D) ∩ (G′ + xj)

since D ⊂ G′ and G′ ≤ G. So we find

(37) ν(V ) =
mX

j=1

ν(Wj)

and also

(38) μ(V + D) =
mX

j=1

μ(Vj) =
mX

j=1

μ(Wj + D) =
mX

j=1

μ(Wj − xj + D).

Collecting (37), (36) and (38) we conclude

(39)
mX

j=1

ν(Wj) ≥ (ρ − ε)
mX

j=1

μ(Wj − xj + D),

hence for some appropriate j ∈ [1,m] we also have

ν(Wj) ≥ (ρ − ε)μ(Wj − xj + D).

Taking Z := Wj − xj and x = xj concludes the proof. ��

End of the p roo f o f Theor em 7. Let now ν := δΛ be the counting
measure of the (discrete) set Λ ⊂ G. Then

DG(ν;μ) = D
#

G(Λ) = ρ > 0

and Lemma 2 applies providing some z := zN ∈ G with

(40) M := #(Λ ∩ (VN + z)) ≥ (ρ − ε)μ(VN ).

Take now
Λ′ := Λ ∩ (VN + z) = {λm : m = 1, . . . ,M},

and put F := f � δΛ′ � δ−Λ′ , i.e.,

F (x) :=
MX

m=1

MX
n=1

f(x + λm − λn),
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which is a positive definite continuous function, compactly supported in

S + (VN + z) − (VN + z) = S + VN − VN =

= S + E − E + Q2N ⊂ E + E − E + Q2N ⊂ V2N+s.

Furthermore, as S ⊂ G0 ,

(41)
Z

G0

F = M2
Z

G0

f ≥ M2(TG(Ω) − ε)

and

(42) F (0) =
MX

m=1

MX
n=1

f(λm − λn) = Mf(0) = M,

because if λm − λn ∈ S , then

λm − λn ∈ S ∩ (Λ − Λ) ⊂ Ω ∩ (Λ − Λ) = {0} and λm = λn,

i.e., n = m. By this construction we derive that

(43) TG0(V2N+s) ≥
1

F (0)

Z

G0

F ≥ M(TG(Ω) − ε) ≥

≥ (ρ − ε)(TG(Ω) − ε)μ(VN ) = (ρ − ε)(TG(Ω) − ε)(2N + 1)kμ(E).
On the other hand, Lemma 1 provides us

(44) TG0(V2N+s) ≤ (2N + 2s + 1)kμ(E).

On comparing (43) and (44) we conclude

(ρ − ε)(TG(Ω) − ε)(2N + 1)kμ(E) ≤ (2N + 2s + 1)kμ(E),

that is,

TG(Ω) − ε ≤ 1
ρ − ε

“2N + 2s + 1
2N + 1

”k
.

Letting N → ∞ and ε → 0 gives the assertion. ��

Coro l l a ry 5. Suppose that Ω ⊂ G is an open and symmetric set and
Ω = H − H , where H tiles space with Λ ⊂ G. Moreover, assume that H
has compact closure H � G and is measurable, i.e. H ∈ B0. Then TG(Ω) =
μ(H).

Proo f . First, observe that for any A � H we have

f := χA ∗ χ−A ∈ F&(Ω).

Indeed, fχA = χ−A because χA is real valued, also χA ∈ L2(G), and such
a convolution representation guarantees that f ∈ C(G) ∩ L1(G) is positive
definite; furthermore, if f(x) 
= 0, then necessarily x = a − a′ with some
a, a′ ∈ A ⊂ H , hence suppf ⊂ Ω.
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Therefore, calculating with the admissible function f , we find

TG(Ω) ≥
Z

G
f/f(0) = μ(A)2/μ(A) = μ(A).

Since H is Borel measurable, its measure can be approximated arbitrarily
closely by measures of inscribed compact sets A: therefore, taking supremum
over compact sets A � H , we obtain the lower estimate TG(Ω) ≥ μ(H).

On the other hand, H + Λ = G entails that H packs with Λ, and so
an application of Theorem 7 gives

TG(Ω) ≤ 1/D
#

(Λ),

while by Corollary 3, we have D
#

(Λ) = μ(H), whence the assertion fol-
lows. ��
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[29] D. V. Gorbachev and A. S. Manoshina, The extremal Turán problem for periodic

functions with small support, Proceedings of the IV International Conference “Mod-

ern Problems of Number Theory and its Applications” (Tula, 2001). Chebyshevskĭı
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�kstremal�na� zadaqa Turana
na lokal�no kompaktnyh abelevyh gruppah

SILARD D. REVES

Pust� G lokal�no kompaktna� abeleva gruppa (LKA gruppa) i Ω — otkry-
toe mno�estvo, simmetriqeskoe otnositel�no 0. Pust� F := F(Ω) oboznaqaet
mno�estvo vseh nepreryvnyh polo�itel�no opredelënnyh funkci�i f : G → R s
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nositelem G. Togda konstanta Turana mno�estva Ω opredel�ets� sledu�wim
sootnoxeniem:

T (Ω) := sup

j Z

Ω

f : f ∈ F(Ω), f(0) = 1

ff
.

M. Kolunzakis i avtor pokazali, qto strukturnye svo�istva podmno�estv Ω

— takie kak spektral�nost�, razbieni� ili upakovki s pomow�� nekotorogo mno-
�estva Λ v koneqnyh, kompaktnyh ili Evklidovyh (t.e. R

d) gruppah i v Z
d vlekut

vypolnenie ocenok T (Ω). Odnako v upom�nutyh ocenkah estestvennu� rol� igralo
nekotoroe pon�tie razmera, t.e. plotnosti Λ, i po�tomu dl� grupp, v kotoryh
takoe pon�tie ne�sno, ne�snymi ostavalis� i ocenki. V nasto�we�i rabote pri-
men�ets� nedavno voznikxee obobwennoe pon�tie asimptotiqesko�i ravnomerno�i
verhne�i plotnosti, i �to pozvol�et bolee obwee issledovanie konstanty Turana
v sv�zi s vyxeukazannymi strukturnymi svo�istvami. Nax osnovno�i rezul�tat
obobwaet nekotory�i rezul�tat Arestova i Berdyxevo�i (nezavisimo dokazanny�i
tak�e i avtorom sovmestno s Kolunzakisom) o tom, qto dl� vypuklyh razbieni�i
Evklidova prostranstva vypoln�ets�

T
Rd(Ω) = |Ω|/2d.

Nax podhod pozvol�et zamenit� R
d na l�bu� LKA gruppu, izbavit�s� ot uslovi�

vypuklosti, a tak�e oslabit� uslovie razbivaemosti do nekotorogo uslovi� tipa
upakovki i polo�itel�nosti asimptotiqesko�i ravnomerno�i verhne�i plotnosti
mno�estva Λ.
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