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Multivariate Hausdorff operators
on the spaces H'(R") and BMO(R")

FERENC MORICZ

Dedicated to Professor S. M. Nikol’skii on his hundredth birthday
with admiration and deep respect

Abstract. A multivariate Hausdorff operator H = H(u, ¢, A) is defined in terms
of a o-finite Borel measure g on R™, a Borel measurable function ¢ on R", and an
n X n matrix A whose entries are Borel measurable functions on R™ and such that A
is nonsingular p-a.e. The operator H* := H (u,c|det A™'|, A™!) is the adjoint to H
in a well-defined sense. Our goal is to prove sufficient conditions for the boundedness
of these operators on the real Hardy space H'(R™) and BMO(R™). Our main tool is
proving commuting relations among H, H*, and the Riesz transforms R;. We also prove
commuting relations among H, H*, and the Fourier transform.

1. Introduction

The notion of Hausdorff (as well as quasi Hausdorff) operators with
respect to a positive Borel measure on the unit interval [0,1] was intro-
duced by HARDY [3, Ch. XI]. In [1], multivariate Hausdorff operators with
respect to complex Borel measures on R” were introduced in a more general
framework.

To go into details, let p be a o-finite complex Borel measure defined
on R™; let ¢ : R™ — C be a Borel measurable function; and let A = [a;;] be
an 1 X n matrix whose entries a; : R® — C are Borel measurable functions
and such that A is nonsingular u-a.e. We shall take it for granted that
these assumptions on u, ¢, and A are satisfied throughout this paper; in
particular, in each of our Theorems 1, 2, and 3.

We shall consider Lebesgue—Stieltjes integrals with respect to the mea-
sure . The reader may consult the books [4, Ch. 9] by KAMKE and [7,
Ch. 3] by SAKS.
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32 F. Moéricz

In [1], first we defined the multivariate Hausdorff operator H =
H(p,c,A) acting on the continuous functions f € R™ — C, in symbol:
f € C(R™), by setting

(11) Hf(a)i= [ el)f(As)r) duls),

provided that the integral on the right exists as a Lebesgue—Stieltjes integral.
Here and in the sequel (if it is not indicated otherwise), the integral is taken
over the whole space R”, and the variables s, z (and ¢ later on) are points
of (or vectors in) R™. Second, we extended the operator H from C(R") to
the whole space LP(R"™), where 1 < p < oo, by making use of the so-called
“density” argument familiar in Functional Analysis. This approach does not
apply to L>(R™), since C'(R™) is not dense in it. Therefore, by L>°(R") we
mean C'(R™) in the sequel if u is not absolutely continuous with respect to
the Lebesgue measure.

On the other hand, if u is absolutely continuous with respect to the
Lebesgue measure, then Hf can be defined immediately by (1.1) for any
Borel measurable function f belonging to LP(R™) for some 1 < p < oo,
provided that the integral on the right-hand side of (1.1) exists. Indeed,
it is well known that for any f € LP(R™), there exists a Borel measurable
function f; € LP(R™) such that f(z) = fi(x) at almost every = € R™ with
respect to the Lebesgue measure.

The operator H* adjoint to H (in the sense of (2.4) below) is given by

H f(x) = /C(S)Idet A7) (AT (s)x) dus),

provided that the integral on the right exists. Clearly, H* is also a Hausdorff
operator corresponding to the triplet u(s), c(s)|det A=1(s)|, A=!(s); that is
H*(f) := H(p,c|det A7, A71).

The reader is referred to [1] for more details.

We make a last remark about practical notation. If there are two
measures, g and g, (see (5.4) in Section 5), then we use the abbreviations
H(p) == H(p, ¢, A) and H(pq) := H(pa, ¢, A) to distinguish the correspond-
ing Hausdorff operators. The notations H*(u) and H*(u,), or H(c) and
H(c1) (see Lemma 3 in Section 3) are used in the same sense.

2. Main results
We recall that the real Hardy space H'(R™) consists of those functions

f € L'(R™) whose Riesz transforms R, f also belong to L'(R"™) for j =
1,2,...,n; and H!(R") is endowed with the norm



Multivariate Hausdorff operators 33

1Al =1l + D2 IR, fll

j=1

(see, e.g. [8, pp. 26, 123-124] by Stein). As is usual, we set

17y = ([ 1@l dz) ™ for 1<p <o,

and
I flloo := esssup{|f(x)| : z € R"}.

Let 1 < p < > and denote by p* the exponent conjugate to p; that is,
let 1/p+ 1/p* =1 with the agreement that 1/0c0 := 0. In [1], the following
sufficient conditions were proved for the boundedness of the operators H

and H* on LP(R™).
Lemma 1. If
(2.1) by i= [ le(s)]|det A7 (s) /7l (s) < o0

for some 1 < p < oo, where || denotes the total variation of u, then H is
bounded on LP(R™):

(22) [Hfllp < Fpll £llps
and H* is bounded on LP" (R™):
(2.3) HH*pr* < kp”f”zo*-

In [1], we also proved that the operators H and H* are adjoint of each
other in the sense that if (2.1) is satisfied for some 1 < p < 00, f € LP(R"),
and g € L?" (R"), then

24 Jrs@lg@ iz = [ @ o) dr.

Our first main result reads as follows.

Theorem 1. Assume A(s) := diag(a(s),...,a(s)), where a(s) : R™ —
C is a Borel measurable function and a(s) # 0 p-a.e.
(i) If k1 < oo, then H is bounded on H'(R™):

(2.5) RSNy < kall fll e
(i) If koo < 00, then H* is bounded on H'(R™):
(2.6) IH" fllers < Kool f 1l e
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We recall that the space BMO(R™) consists of those locally integrable
functions f on R"™ for which the quasinorm

Ilorio = sup oz [ 17(a) = folda

is finite, where the supremum is extended over all balls B C R™ of volume
|B| and
1
= dy.
o= 57, f@)dy

The next theorem follows from Theorem 1 by a familiar duality argu-
ment.

Theorem 2. Assume A(s) is the same as in Theorem 1.

(1) If koo < 00, then H is bounded on BMO(R™):

(2.7) [HfllBMo < kool flIBMO-
(ii) If k1 < oo, then H* is bounded on BMO(R™):
(2.8) [H* fllemo < kil fllBMO-

The most common examples of Hausdorff operators correspond to the
following triplets: pu is the ordinary Lebesgue measure supported on the unit
cube [0,1]" of R™, ¢(s) = 1, and A(s) := diag(s1, $2,...,Sn), and called the
multivariate Cesaro operator, while the adjoint is called the multivariate
Copson operator. There are various kinds of mixed Cesaro—Copson oper-
ators, as well. In these examples the diagonal entries of the matrix A are
different, and thus Theorems 1 and 2 do not apply.

However, in the case when

) n 1/2
A(s) = diag(ls],., [s]),  [sl = (3s7) ",
j=1

Theorems 1 and 2 apply and provide the following corollaries:
(i) The ‘radial’ Cesaro operator

Hi(z) ::/ Fllsla, ... |s|zn) dsy - - dsn =

[0,1]™

1
= wn_l/ flray,...,rx,)r" tdr, x€R",
0
is bounded on BMO(R"™), where
Wno1:=21"2/T(n)2), n=12,...,

is the surface area of the unit sphere ¥,,_1 := {s € R" : |s| = 1}, and T is
the familiar gamma function.
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(ii) The ‘radial’ Copson operator
1 T

X
H*f(x)::/ LY O S A P
0.1~ |s|™ <\S\ !3!> !

1
T Ty dr
:("j’nflx/0 f(_77_n>77 xeRn7

r r
is bounded on H'(R").
It is worthy of mention that in the particular case when f is rotationally
invariant, that is, when f(zi,...,x,) depends only on R := |z|, which we

denote also by f(R), we find

1 R
M) = [ FE =52 [C (o) dp
and
1 R d o0
H*f<x>:wn,1/0 f(;)%:wM/R @d,}, z € R™

The reader is referred to [1, especially Section 5] for more details.

We note that for n = 1, the above statements (i) and (ii) were proved in
[6], where the term ‘harmonic Copson operator’ was used in place of ‘Cesaro
operator’, and the term ‘harmonic Cesaro operator’ was used in place of
‘Copson operator’. We also note that Part (ii) in Theorem 1 was proved in
[5] when n =1 and p is absolutely continuous with respect to the Lebesgue
measure.

Furthermore, we note that the radial Cesaro operator H in (i) is not
bounded on H!(R™), and the radial Copson operator H* in (ii) is not
bounded on BMO(R™).

3. Auxiliary results

We recall that the Fourier transform f of a function f € LY(R") is
defined by

Ft) = (QW)*"/Q/f(x)e*it'x dxr, where t-x:= thxj
Jj=1
is the familiar inner product of the vectors t = (t1,...,t,) and =z =
(x1,...,2,). Itis well known that f € C'(R™) and by the Riemann—Lebesgue
lemma R
f(t) =0 as max{|t;|:j=1,2,...,n} — oo.

In [1], we proved the following commuting relations among H, H*, and

the Fourier transform.
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Lemma 2. Assume the matriz A(s) is symmetric p-a.e. and f €
LY(R™).
(i) If k1 < oo, then

(3.1) (Hf)\t) = H*f(t), teR™
(ii) If koo < 00, then
(3.2) (H*f)Nt) = Hf(t), teR"

Now, we shall prove similar commuting relations among H, H*, and
the Riesz transforms R ;.

Lemma 3. Assume A(s) is the same as in Theorem 1, f € H'(R"),
c1(s) :=c(s)signa(s), and 1 < j <n.
(i) If k1 < oo, then

(33) H(C)ij = RjH(Cl)f.
(il) If koo < 00, then
(34) H*(C)ij = RjH*(Cl)f.

It is plain that k,(c) = kp(c1) for all 1 < p < oo.
Proof of Lemma 3. It hinges on the fact that the Riesz transform R ;
can be defined on L!(R"™) in terms of the following multiplier transformation:

(3.5) (R f)NE) = —fﬂ ft), terr,

where the Fourier transform on the left is understood in the sense of tem-
pered distributions. (See, e.g., [9, pp. 19-30] by STEIN and WEISS.)

(i) Suppose k; < co and f € HY(R™). Since R, f € L'(R"), by (2.2),
we have H(c)R; f € L*(R™). By (3.1) and (3.5), we may proceed as follows

(3.6) (HOR,F)NE) = H ()R, (1) =
= [ els)ldet A7 (5) (R ) (A7 (1) diu(s) =

_ AT g
= [ els)idet A ) (i) T St (AT () (),

where [A7!(s)t]; means the jth component of the vector A~*(s)t in R". By

assumption,
A7 ()t _ b
| |

[ S, Y P -1
AL(s)t it signa™"(s).
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Thus, by (3.6) we conclude that
NI Iy n

(3.7) (H(e)R; )" (t) = —Z|7]H (c1)f(t), o#teR™

On the other hand, H*(¢;)f € L'(R"), due to (2.3). By (3.5) and
(3.1), we have

1 N7 ~

(3.8)  (RjH(c1) ) (1) = —%‘TJ(H(ﬁ)f)A(f) = —lﬁH (c1) f (1),
where the first equality is understood in the distributional sense.

Combining (3.7) and (3.8) yields

(H(Q)R;£)" (1) = (RH(cx) )" (1),
also in the distributional sense. By the uniqueness of the Fourier transform,
we conclude (3.3).
The proof of (3.4) is analogous to that of (3.3), while making use of
(3.2) in place of (3.1). 0

In the proof of Theorem 2, we shall need the following result, which is
a folklore in Operator Theory (see, e.g., [2, p. 172] by FRIEDMAN).

Lemma 4. If By and Bs are Banach spaces and L is a bounded
linear operator from By into By, then an adjoint operator L* can be uniquely
defined from the dual of By into the dual of Bi such that

1£7]
where B* denotes the Banach space dual of B.

B;—B; = |ILlBi—B,)
In case By = Bs, the shorter notation ||£|| g, is used.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i) Suppose k; < oo and f € H*(R™). Since
c1(s)signa(s) = c(s) and R, f € L*(R™), by (3.3) and (2.2) we have
IRy (H())llx = [[H(e) (R Il <
S k(e)Rifllh = ki(@IR; fll, 5=1,2,...,mn.
Combining inequalities just obtained with (2.2) yields

IHf e = IHF e+ DR HA < ka(llFll+ D2 IR, fll) = kall fll o

Jj=1 Jj=1
This proves (2.5).

(ii) The proof of (2.6) is analogous to that of (2.5), while making use
of (2.3) in place of (2.2). 0
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Proof of Theorem 2. (i) Suppose ks < o0 and f € BMO(R").
We recall (see, e.g., [8, p. 141] by STEIN) that there exists a constant -,
such that the inequality

(1) [ 1£@)ldw < 3]l Flmrio v Inr +2

holds for all f € BMO(R™) and balls B with radius r > 0 and center at the
origin.

Given a ball B with radius 7, we consider an arbitrary function g €
L*>(B) with ||g||loc < 1. By Fubini’s theorem, we obtain

@2 |[ g < [ lg)ds] [ () f(A@)) dus)] <
< [le@lduls) [ ls@llfAE) ds <
< lgllo [ le(s)ldinl(s) [ 1£(A(s))] do.

Taking into account that f(A(s)x) = f(a(s)zy,...,a(s)z,) also belongs to
BMO(R™) and

Ifllemo = [1f(A(s))llBmo,
provided a(s) # 0, from (4.1) and (4.2) it follows that

[ 9@ (@) da] < 3 G+ 2) [ 1e(s)l1F(AGs) nio dll(5) =

= Yl fIBMOKoor™ In(r + 2) < 0.
Since this inequality is valid for any g € L>(B) with ||g|lcc < 1 and the
radius r of the ball B can be arbitrarily large, the reverse Holder’s inequality
implies that H f(z) is locally integrable on R™.
Now, it remains to recall that the Banach space dual of H!(R") is
isomorphic to BMO(R™) (modulo constant) (see, e.g., [8, p. 142] by STEIN),
(2.7) follows immediately from (2.6) via Lemma 4.

(ii) The validity of (2.8) follows from (2.5) in an analogous way. O

5. Commuting relations involving Fourier transform

It is of interest to extend the validity of Lemma 2 when f € LP(R™)

for some 1 < p < 2. We recall that the Fourier transform f of a function
f € LP(R™) for some 1 < p < 2 is defined as the limit in LP" (R™)-norm of
the truncated function

falz) = f(z)xq.(z) as a— oo,
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where p* :=p/(p—1) and
Q. = {x: (1,...,2p) €ER" ¢ |zj| <a, j= 1,2,...,n}
is the cube with sides 2a and centered at the origin. In symbol, we write
]?:: LP lim f,.
a—00

As is well known, f : LP(R™) — LP (R") is a bounded linear operator:
51 Wl <l flls Apon = @)D ZWRIZ < p <2,

(See, e.g. [10, Vol. 2, p. 254] by ZYGMUND.)
The following theorem expresses commuting relations among H, H*,
and the Fourier transform, and it may be useful in other contexts.

Theorem 3. Assume the matriz A(s) is symmetric p-a.e. and f €
LP(R™) for some 1 < p < 2.
(i) If det A=1(s) is locally bounded p-a.e. and k, < oo, then

(5.2) (HHNE) = H f(t)  ae.
(ii) If det A(s) is locally bounded i-a.e. and kp- < oo, then
(5.3) (H*F)ME) = H(t)  ae.

Proof. (i) We shall prove (5.2) in details. Let 0 < a € R! and denote
by p, the restriction of the measure p to the cube Qg; that is, let
(5.4) 1a(S) == (SN Qa)

for every Borel measurable subset S of R™. By assumption, det A=1(s) is
locally bounded p-a.e., and consequently,

k1(pa) ¢=/IC(S)HdetA_I(S)Id!ual(S) <

< k() esssup{|det AT ($)|VP 1 s € Q) < oo

p—a.e.

By (3.1), for all g € L'(R") we have

(H(1a)9)"(t) = H"(na)g(t), tER™
Since (L' N LP)(R") is dense in LP(R"), we conclude, for all f € LP(R"™)
and a > 0,
(5.5) (H(pa) )" =H*(pa)f  in LP"(R™).
Since k, < oo and f € LP(R™), it follows from (2.2) that H f € LP(R").
By (5.1) and (2.2), we have

(5.6) I(H () )™ = (H(pa) )

pr S ’Yp,n”H(ﬂ)f - H(Ma)f”ll) =
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= Yol K — pa) fllp < Vonkp (e — pa)ll fllp =
=l fllp [ lels)lldet AL )P dl5).
R™M\@Q

a

Clearly, the integral over R™\@, tends to 0 as a — oo. Thus, by (5.6) we
see that

(5.7) LV dim(H () ) = (H(p) ).

On the other hand, applying Lemma 1 to f € LP" (R™) gives that
H* () f, H*(1a)f € LP" (R™). By (2.3) and (5.1), we find (cf. (5.6)) that
1H (1) = H (1a) Fllp < (e = o)1 ]

< Apmkp(t — pa)|lfllp =0  as a— oo.
This means that

(5.8) LPlim M (pa) f = H* (1) (f)-
Combining (5.5), (5.7) and (5.8) yields (5.2).
(ii) The proof of (5.3) runs along the same lines as that of (5.2). O

p =
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MHuoromepssbie onepaTopbl Xaycaopda
Ha npoctparcrBax H'(R™) u BMO(R")

. MOPHMII

Muoromepssii oneparop Xaycnopdpa H = H(u,c, A) onpenensercs B TepMUHAX
o-KOHEUHOW GopeneBckod Mepol 4 Ha R™, ¢pyurimusa ¢ va R™, usmepumoit no Bopeuro,
u mMarpunsl A BUZa M X N, BIEMEHTHl KOTODOW ¢yHKIUIYN, M3MepuMBle M0 Bope-
a0 Ha R™, mpudem npennonaraercs, uro A HeBBIpOkAeHaA p-nouyru Beioxy. Omeparop
H* == H(p, c|det A7|, A™) conmpsvren ¢ H B obbrasom cmeicae. Ilens paboTer — HakiTi
[OCTATOYHBIE YCJIOBUS OIPAHUYEHHOCTH STUX OIEPATOPOB HA BEIIECTBEHHOM IPOCT-
panctse Xapm H'(R™) u nta BMO(R™). Jlisi 5TOr0 yCTAHABIMBAIOTCS KOMMY TAIMOH-
Hble cooTHOIeHus Mexny H, H* u npeobpazosanusamu Pucca R;. Mol ycranaBiauBaeM
TakKe KOMMYTAIUOHHLIE COOTHOImEHUs Mesxkay H, H™ u npeobpasosanuem Pypne.
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