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Multivariate Hausdorff operators

on the spaces H
1(Rn) and BMO(Rn)

FERENC MÓRICZ

Dedicated to Professor S. M. Nikol’skĭı on his hundredth birthday

with admiration and deep respect

Abs t r a c t . A multivariate Hausdorff operator H = H(µ, c, A) is defined in terms
of a σ-finite Borel measure µ on R

n , a Borel measurable function c on R
n , and an

n × n matrix A whose entries are Borel measurable functions on R
n and such that A

is nonsingular µ-a.e. The operator H∗ := H (µ, c|det A−1|, A−1) is the adjoint to H
in a well-defined sense. Our goal is to prove sufficient conditions for the boundedness
of these operators on the real Hardy space H1(Rn) and BMO(Rn). Our main tool is
proving commuting relations among H, H∗ , and the Riesz transforms Rj . We also prove
commuting relations among H, H∗ , and the Fourier transform.

1. Introduction

The notion of Hausdorff (as well as quasi Hausdorff) operators with
respect to a positive Borel measure on the unit interval [0, 1] was intro-
duced by Hardy [3, Ch. XI]. In [1], multivariate Hausdorff operators with
respect to complex Borel measures on R

n were introduced in a more general
framework.

To go into details, let µ be a σ-finite complex Borel measure defined
on R

n; let c : R
n → C be a Borel measurable function; and let A = [ajk] be

an n×n matrix whose entries ajk : R
n → C are Borel measurable functions

and such that A is nonsingular µ-a.e. We shall take it for granted that
these assumptions on µ, c, and A are satisfied throughout this paper; in
particular, in each of our Theorems 1, 2, and 3.

We shall consider Lebesgue–Stieltjes integrals with respect to the mea-
sure µ. The reader may consult the books [4, Ch. 9] by Kamke and [7,
Ch. 3] by Saks.
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In [1], first we defined the multivariate Hausdorff operator H =
H(µ, c,A) acting on the continuous functions f ∈ R

n → C, in symbol:
f ∈ C(Rn), by setting

(1.1) Hf(x) :=
∫

c(s)f(A(s)x) dµ(s),

provided that the integral on the right exists as a Lebesgue–Stieltjes integral.
Here and in the sequel (if it is not indicated otherwise), the integral is taken
over the whole space R

n, and the variables s, x (and t later on) are points
of (or vectors in) R

n. Second, we extended the operator H from C(Rn) to
the whole space Lp(Rn), where 1 ≤ p < ∞, by making use of the so-called
“density” argument familiar in Functional Analysis. This approach does not
apply to L∞(Rn), since C(Rn) is not dense in it. Therefore, by L∞(Rn) we
mean C(Rn) in the sequel if µ is not absolutely continuous with respect to
the Lebesgue measure.

On the other hand, if µ is absolutely continuous with respect to the
Lebesgue measure, then Hf can be defined immediately by (1.1) for any
Borel measurable function f belonging to Lp(Rn) for some 1 ≤ p ≤ ∞,
provided that the integral on the right-hand side of (1.1) exists. Indeed,
it is well known that for any f ∈ Lp(Rn), there exists a Borel measurable
function f1 ∈ Lp(Rn) such that f(x) = f1(x) at almost every x ∈ R

n with
respect to the Lebesgue measure.

The operator H∗ adjoint to H (in the sense of (2.4) below) is given by

H∗f(x) :=

∫
c(s)|det A−1(s)|f(A−1(s)x) dµ(s),

provided that the integral on the right exists. Clearly, H∗ is also a Hausdorff
operator corresponding to the triplet µ(s), c(s)|det A−1(s)|, A−1(s); that is
H∗(f) := H(µ, c|det A−1|, A−1).

The reader is referred to [1] for more details.
We make a last remark about practical notation. If there are two

measures, µ and µa (see (5.4) in Section 5), then we use the abbreviations
H(µ) := H(µ, c,A) and H(µa) := H(µa, c, A) to distinguish the correspond-
ing Hausdorff operators. The notations H∗(µ) and H∗(µa), or H(c) and
H(c1) (see Lemma 3 in Section 3) are used in the same sense.

2. Main results

We recall that the real Hardy space H1(Rn) consists of those functions
f ∈ L1(Rn) whose Riesz transforms Rjf also belong to L1(Rn) for j =
1, 2, . . . , n; and H1(Rn) is endowed with the norm
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‖f‖H1 := ‖f‖1 +
n∑

j=1

‖Rjf‖1

(see, e.g. [8, pp. 26, 123-124] by Stein). As is usual, we set

‖f‖p :=
(∫

|f(x)|p dx
)1/p

for 1 ≤ p < ∞,

and

‖f‖∞ := ess sup{|f(x)| : x ∈ R
n}.

Let 1 ≤ p ≤ ∞ and denote by p∗ the exponent conjugate to p; that is,
let 1/p + 1/p∗ = 1 with the agreement that 1/∞ := 0. In [1], the following
sufficient conditions were proved for the boundedness of the operators H
and H∗ on Lp(Rn).

Lemma 1. If

(2.1) kp :=
∫

|c(s)||det A−1(s)|1/pd|µ|(s) < ∞

for some 1 ≤ p ≤ ∞, where |µ| denotes the total variation of µ, then H is

bounded on Lp(Rn):

(2.2) ‖Hf‖p ≤ kp‖f‖p;

and H∗ is bounded on Lp∗(Rn):

(2.3) ‖H∗f‖p∗ ≤ kp‖f‖p∗ .

In [1], we also proved that the operators H and H∗ are adjoint of each
other in the sense that if (2.1) is satisfied for some 1 ≤ p ≤ ∞, f ∈ Lp(Rn),
and g ∈ Lp∗(Rn), then

(2.4)

∫
[Hf(x)]g(x) dx =

∫
f(x)[H∗g(x)] dx.

Our first main result reads as follows.

Theorem 1. Assume A(s) := diag(a(s), . . . , a(s)), where a(s) : R
n →

C is a Borel measurable function and a(s) 6= 0 µ-a.e.

(i) If k1 < ∞, then H is bounded on H1(Rn):

(2.5) ‖Hf‖H1 ≤ k1‖f‖H1.

(ii) If k∞ < ∞, then H∗ is bounded on H1(Rn):

(2.6) ‖H∗f‖H1 ≤ k∞‖f‖H1 .
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We recall that the space BMO(Rn) consists of those locally integrable
functions f on R

n for which the quasinorm

‖f‖BMO := sup
B

1

|B|

∫

B
|f(x) − fB| dx

is finite, where the supremum is extended over all balls B ⊂ R
n of volume

|B| and

fB :=
1

|B|

∫

B
f(y) dy.

The next theorem follows from Theorem 1 by a familiar duality argu-
ment.

Theorem 2. Assume A(s) is the same as in Theorem 1.
(i) If k∞ < ∞, then H is bounded on BMO(Rn):

(2.7) ‖Hf‖BMO ≤ k∞‖f‖BMO.

(ii) If k1 < ∞, then H∗ is bounded on BMO(Rn):

(2.8) ‖H∗f‖BMO ≤ k1‖f‖BMO.

The most common examples of Hausdorff operators correspond to the
following triplets: µ is the ordinary Lebesgue measure supported on the unit
cube [0, 1]n of R

n, c(s) ≡ 1, and A(s) := diag(s1, s2, . . . , sn), and called the
multivariate Cesàro operator, while the adjoint is called the multivariate
Copson operator. There are various kinds of mixed Cesàro–Copson oper-
ators, as well. In these examples the diagonal entries of the matrix A are
different, and thus Theorems 1 and 2 do not apply.

However, in the case when

A(s) := diag(|s|, . . . , |s|), |s| :=
( n∑

j=1

s2
j

)1/2
,

Theorems 1 and 2 apply and provide the following corollaries:
(i) The ‘radial’ Cesàro operator

Hf(x) :=

∫

[0,1]n
f(|s|x1, . . . , |s|xn) ds1 · · · dsn =

= ωn−1

∫ 1

0
f(rx1, . . . , rxn)rn−1 dr, x ∈ R

n,

is bounded on BMO(Rn), where

ωn−1 := 2πn/2/Γ(n/2), n = 1, 2, . . . ,

is the surface area of the unit sphere Σn−1 := {s ∈ R
n : |s| = 1}, and Γ is

the familiar gamma function.
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(ii) The ‘radial’ Copson operator

H∗f(x) :=
∫

[0,1]n

1

|s|n
f
(x1

|s|
, . . . ,

xn

|s|

)
ds1 · · · dsn =

= ωn−1

∫ 1

0
f
(x1

r
, . . . ,

xn

r

)dr

r
, x ∈ R

n,

is bounded on H1(Rn).
It is worthy of mention that in the particular case when f is rotationally

invariant, that is, when f(x1, . . . , xn) depends only on R := |x|, which we
denote also by f(R), we find

Hf(x) = ωn−1

∫ 1

0
f(Rr)rn−1 dr =

ωn−1

Rn

∫ R

0
ρn−1f(ρ) dρ

and

H∗f(x) = ωn−1

∫ 1

0
f
(R

r

)dr

r
= ωn−1

∫ ∞

R

f(ρ)

ρ
dρ, x ∈ R

n.

The reader is referred to [1, especially Section 5] for more details.
We note that for n = 1, the above statements (i) and (ii) were proved in

[6], where the term ‘harmonic Copson operator’ was used in place of ‘Cesàro
operator’, and the term ‘harmonic Cesàro operator’ was used in place of
‘Copson operator’. We also note that Part (ii) in Theorem 1 was proved in
[5] when n = 1 and µ is absolutely continuous with respect to the Lebesgue
measure.

Furthermore, we note that the radial Cesàro operator H in (i) is not
bounded on H1(Rn), and the radial Copson operator H∗ in (ii) is not
bounded on BMO(Rn).

3. Auxiliary results

We recall that the Fourier transform f̂ of a function f ∈ L1(Rn) is
defined by

f̂(t) := (2π)−n/2
∫

f(x)e−it·x dx, where t · x :=
n∑

j=1

tjxj

is the familiar inner product of the vectors t = (t1, . . . , tn) and x =

(x1, . . . , xn). It is well known that f̂ ∈ C(Rn) and by the Riemann–Lebesgue
lemma

f̂(t) → 0 as max{|tj | : j = 1, 2, . . . , n} → ∞.

In [1], we proved the following commuting relations among H, H∗, and
the Fourier transform.
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Lemma 2. Assume the matrix A(s) is symmetric µ-a.e. and f ∈
L1(Rn).

(i) If k1 < ∞, then

(3.1) (Hf)∧(t) = H∗f̂(t), t ∈ R
n.

(ii) If k∞ < ∞, then

(3.2) (H∗f)∧(t) = Hf̂(t), t ∈ R
n.

Now, we shall prove similar commuting relations among H, H∗, and
the Riesz transforms Rj .

Lemma 3. Assume A(s) is the same as in Theorem 1, f ∈ H 1(Rn),
c1(s) := c(s) sign a(s), and 1 ≤ j ≤ n.

(i) If k1 < ∞, then

(3.3) H(c)Rjf = RjH(c1)f.

(ii) If k∞ < ∞, then

(3.4) H∗(c)Rjf = RjH
∗(c1)f.

It is plain that kp(c) = kp(c1) for all 1 ≤ p ≤ ∞.

P roo f o f Lemma 3. It hinges on the fact that the Riesz transform Rj

can be defined on L1(Rn) in terms of the following multiplier transformation:

(3.5) (Rjf)∧(t) = −i
tj
|t|

f̂(t), t ∈ R
n,

where the Fourier transform on the left is understood in the sense of tem-
pered distributions. (See, e.g., [9, pp. 19–30] by Stein and Weiss.)

(i) Suppose k1 < ∞ and f ∈ H1(Rn). Since Rjf ∈ L1(Rn), by (2.2),
we have H(c)Rjf ∈ L1(Rn). By (3.1) and (3.5), we may proceed as follows

(3.6) (H(c)Rjf)∧(t) = H∗(c)(Rjf)∧(t) :=

:=
∫

c(s)|det A−1(s)|(Rjf)∧(A−1(s)t) dµ(s) =

=
∫

c(s)|det A−1(s)|(−i)
[A−1(s)t]j
|A−1(s)t|

f̂(A−1(s)t) dµ(s),

where [A−1(s)t]j means the jth component of the vector A−1(s)t in R
n. By

assumption,
[A−1(s)t]j
|A−1(s)t|

=
tj
|t|

sign a−1(s).
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Thus, by (3.6) we conclude that

(3.7) (H(c)Rjf)∧(t) = −i
tj
|t|

H∗(c1)f̂(t), o 6= t ∈ R
n.

On the other hand, H∗(c1)f ∈ L1(Rn), due to (2.3). By (3.5) and
(3.1), we have

(3.8) (RjH(c1)f)∧(t) = −i
tj
|t|

(H(c1)f)∧(t) = −i
tj
|t|

H∗(c1)f̂(t),

where the first equality is understood in the distributional sense.
Combining (3.7) and (3.8) yields

(H(c)Rjf)∧(t) = (RjH(c1)f)∧(t),

also in the distributional sense. By the uniqueness of the Fourier transform,
we conclude (3.3).

The proof of (3.4) is analogous to that of (3.3), while making use of
(3.2) in place of (3.1). ut

In the proof of Theorem 2, we shall need the following result, which is
a folklore in Operator Theory (see, e.g., [2, p. 172] by Friedman).

Lemma 4. If B1 and B2 are Banach spaces and L is a bounded

linear operator from B1 into B2, then an adjoint operator L∗ can be uniquely

defined from the dual of B2 into the dual of B1 such that

‖L∗‖B∗

2
→B∗

1
= ‖L‖B1→B2

,

where B∗ denotes the Banach space dual of B.

In case B1 = B2, the shorter notation ‖L‖B1
is used.

4. Proofs of Theorems 1 and 2

Proo f o f Theorem 1. (i) Suppose k1 < ∞ and f ∈ H1(Rn). Since
c1(s) sign a(s) = c(s) and Rjf ∈ L1(Rn), by (3.3) and (2.2) we have

‖Rj(H(c)f)‖1 = ‖H(c1)(Rjf)‖1 ≤

≤ k1(c1)‖Rjf‖1 = k1(c)‖Rjf‖1, j = 1, 2, . . . , n.

Combining inequalities just obtained with (2.2) yields

‖Hf‖H1 := ‖Hf‖1 +
n∑

j=1

‖Rj(Hf)‖1 ≤ k1(‖f‖1 +
n∑

j=1

‖Rjf‖1) =: k1‖f‖H1 .

This proves (2.5).

(ii) The proof of (2.6) is analogous to that of (2.5), while making use
of (2.3) in place of (2.2). ut
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Proo f o f Theorem 2. (i) Suppose k∞ < ∞ and f ∈ BMO(Rn).
We recall (see, e.g., [8, p. 141] by Stein) that there exists a constant γn

such that the inequality

(4.1)
∫

B
|f(x)| dx ≤ γn‖f‖BMO rn ln(r + 2)

holds for all f ∈ BMO(Rn) and balls B with radius r > 0 and center at the
origin.

Given a ball B with radius r, we consider an arbitrary function g ∈
L∞(B) with ‖g‖∞ ≤ 1. By Fubini’s theorem, we obtain

(4.2)
∣∣∣
∫

B
g(x)Hf(x) dx

∣∣∣ ≤
∫

B
|g(x)| dx

∣∣∣
∫

c(s)f(A(s)x) dµ(s)
∣∣∣ ≤

≤

∫
|c(s)| d|µ|(s)

∫

B
|g(x)||f(A(s)x)| dx ≤

≤ ‖g‖∞

∫
|c(s)| d|µ|(s)

∫

B
|f(A(s)x)| dx.

Taking into account that f(A(s)x) = f(a(s)x1, . . . , a(s)xn) also belongs to
BMO(Rn) and

‖f‖BMO = ‖f(A(s))‖BMO,

provided a(s) 6= 0, from (4.1) and (4.2) it follows that
∣∣∣∣
∫

B
g(x)Hf(x) dx

∣∣∣∣ ≤ γnrn ln(r + 2)

∫
|c(s)|‖f(A(s))‖BMO d|µ|(s) =

= γn‖f‖BMOk∞rn ln(r + 2) < ∞.

Since this inequality is valid for any g ∈ L∞(B) with ‖g‖∞ ≤ 1 and the
radius r of the ball B can be arbitrarily large, the reverse Hölder’s inequality
implies that Hf(x) is locally integrable on R

n.
Now, it remains to recall that the Banach space dual of H 1(Rn) is

isomorphic to BMO(Rn) (modulo constant) (see, e.g., [8, p. 142] by Stein),
(2.7) follows immediately from (2.6) via Lemma 4.

(ii) The validity of (2.8) follows from (2.5) in an analogous way. ut

5. Commuting relations involving Fourier transform

It is of interest to extend the validity of Lemma 2 when f ∈ Lp(Rn)

for some 1 < p ≤ 2. We recall that the Fourier transform f̂ of a function
f ∈ Lp(Rn) for some 1 < p ≤ 2 is defined as the limit in Lp∗(Rn)-norm of
the truncated function

fa(x) := f(x)χQa
(x) as a → ∞,
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where p∗ := p/(p − 1) and

Qa :=
{
x = (x1, . . . , xn) ∈ R

n : |xj | ≤ a, j = 1, 2, . . . , n
}

is the cube with sides 2a and centered at the origin. In symbol, we write

f̂ := Lp∗-lim
a→∞

fa.

As is well known, f̂ : Lp(Rn) → Lp∗(Rn) is a bounded linear operator:

(5.1) ‖f̂‖p∗ ≤ γp,n‖f‖p, γp,n := (2π)n[(1/p∗)−(1/p)]/2, 1 ≤ p ≤ 2.

(See, e.g. [10, Vol. 2, p. 254] by Zygmund.)
The following theorem expresses commuting relations among H, H∗,

and the Fourier transform, and it may be useful in other contexts.

Theorem 3. Assume the matrix A(s) is symmetric µ-a.e. and f ∈
Lp(Rn) for some 1 < p ≤ 2.

(i) If det A−1(s) is locally bounded µ-a.e. and kp < ∞, then

(5.2) (Hf)∧(t) = H∗f̂(t) a.e.

(ii) If detA(s) is locally bounded µ-a.e. and kp∗ < ∞, then

(5.3) (H∗f)∧(t) = Hf̂(t) a.e.

Proo f . (i) We shall prove (5.2) in details. Let 0 < a ∈ R
1 and denote

by µa the restriction of the measure µ to the cube Qa; that is, let

(5.4) µa(S) := µ(S ∩ Qa)

for every Borel measurable subset S of R
n. By assumption, det A−1(s) is

locally bounded µ-a.e., and consequently,

k1(µa) :=

∫
|c(s)||det A−1(s)| d|µa|(s) ≤

≤ kp(µ) ess sup
µ−a.e.

{|det A−1(s)|1/p∗ : s ∈ Qa} < ∞.

By (3.1), for all g ∈ L1(Rn) we have

(H(µa)g)∧(t) = H∗(µa)ĝ(t), t ∈ R
n.

Since (L1 ∩ Lp)(Rn) is dense in Lp(Rn), we conclude, for all f ∈ Lp(Rn)
and a > 0,

(5.5) (H(µa)f)∧ = H∗(µa)f̂ in Lp∗(Rn).

Since kp < ∞ and f ∈ Lp(Rn), it follows from (2.2) that Hf ∈ Lp(Rn).
By (5.1) and (2.2), we have

(5.6) ‖(H(µ)f)∧ − (H(µa)f)∧‖p∗ ≤ γp,n‖H(µ)f −H(µa)f‖p =
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= γp,n‖H(µ − µa)f‖p ≤ γp,nkp(µ − µa)‖f‖p =:

=: γp,n‖f‖p

∫

Rn\Qa

|c(s)||det A−1(s)|1/p d|µ|(s).

Clearly, the integral over R
n\Qa tends to 0 as a → ∞. Thus, by (5.6) we

see that

(5.7) Lp∗-lim
a→∞

(H(µa)f)∧ = (H(µ)f)∧.

On the other hand, applying Lemma 1 to f̂ ∈ Lp∗(Rn) gives that

H∗(µ)f̂ , H∗(µa)f̂ ∈ Lp∗(Rn). By (2.3) and (5.1), we find (cf. (5.6)) that

‖H∗(µ)f̂ −H∗(µa)f̂‖p∗ ≤ kp(µ − µa)‖f̂‖p∗ ≤

≤ γp,nkp(µ − µa)‖f‖p → 0 as a → ∞.

This means that

(5.8) Lp∗-lim
a→∞

H∗(µa)f̂ = H∗(µ)(f).

Combining (5.5), (5.7) and (5.8) yields (5.2).

(ii) The proof of (5.3) runs along the same lines as that of (5.2). ut
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[1] G. Brown and F. Móricz, Multivariate Hausdorff operators on the spaces Lp(Rn),

J. Math. Anal. Appl., 271(2002), 443–454.

[2] A. Friedman, Foundations of modern analysis, Dover (New York, 1970).

[3] G. H. Hardy, Divergent series, Clarendon Press (Oxford, 1949).

[4] E. Kamke, Das Lebesgue–Stieltjes Integral , Teubner (Leipzig, 1956).
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Mnogomernye operatory Hausdorfa

na prostranstvah H1(Rn) i BMO(Rn)

F. MORIC

Mnogomerny$i operator Hausdorfa H = H(µ, c, A) opredel�ets� v terminah

σ-koneqno$i borelevsko$i mery µ na R
n, funkci� c na R

n, izmerimo$i po Borel�,

i matricy A vida n × n, �lementy kotoro$i — funkcii, izmerimye po Bore-

l� na R
n, priqem predpolagaets�, qto A nevyro�dena µ-poqti vs�du. Operator

H∗ := H(µ, c|det A−1|, A−1) sopr��en s H v obyqnom smysle. Cel~ raboty — na$iti

dostatoqnye uslovi� ograniqennosti �tih operatorov na vewestvennom prost-

ranstve Hardi H1(Rn) i na BMO(Rn). Dl� �togo ustanavliva�ts� kommutacion-

nye sootnoxeni� me�du H, H∗ i preobrazovani�mi Rissa Rj . My ustanavlivaem

tak�e kommutacionnye sootnoxeni� me�du H, H∗ i preobrazovaniem Fur~e.
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