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Abstract. Using a modification of the adapted Riccati transformation, we
prove an oscillation criterion for generalizations of linear and half-linear Euler dif-
ference equations. Our main result complements a large number of previously
known oscillation criteria about several similar generalizations of Euler difference
equations. The major part of this paper is formed by the proof of the main the-
orem. To illustrate the fact that the presented criterion is new even for linear
equations with periodic coefficients, we finish this paper with the corresponding
corollary together with concrete examples of simple equations whose oscillatory
properties do not follow from previously known criteria.

1. Introduction

1.1. Treated equations. In this paper, we study the oscillation of
linear and half-linear difference equations which generalize the famous Euler
equation. At first, we recall that the half-linear difference equation is an
equation in the form

(1.1) ∆
(

ckΦ(∆xk)
)

+ dkΦ(xk+1) = 0,

where Φ(x) := |x|p−1 sgnx for an arbitrarily given p > 1 and ck > 0, dk ∈ R

for all considered k ∈ N. It is seen that (1.1) is a linear equation if and
only if p = 2. In particular, it suffices to formulate results for p > 1 (linear
equations are covered by the half-linear ones).
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In this paragraph, we mention the needed basic definitions from the oscil-
lation theory of (1.1). We say that an interval (l, l+ 1] (where l ∈ N is suffi-
ciently large) contains the generalized zero of a solution {xk} of (1.1) if xl 6= 0
and if xlxl+1 ≤ 0. Equation (1.1) is called disconjugate on {l, l+1, . . . , l+ j}
(where j ∈ N) if any solution of (1.1) has at most one generalized zero on
(l, l+ j+1] and any solution {xk} fulfilling xl = 0 has no generalized zero on
(l, l+ j+1]. In the other case, (1.1) is called conjugate on {l, l+1, . . . , l+ j}.
Finally, (1.1) is called non-oscillatory if there exists l ∈ N such that the equa-
tion is disconjugate on {l, l + 1, . . . , l + j} for all j ∈ N. In the other case,
(1.1) is called oscillatory.

From the famous Sturm separation theorem (see, e.g., [3, Theorem 3.3.6]),
it follows that either any non-trivial solution of (1.1) has infinitely many
generalized zeros or none on a neighborhood of infinity. Therefore, (1.1) is
oscillatory if its non-trivial solution has infinitely many generalized zeros.
Especially, in the oscillation theory, it suffices to consider all equations only
for k ∈ Na := {l ∈ N; l ≥ a}, where a ∈ N is a sufficiently large integer. Note
that we consider a ≥ p. We will also use the standard notation concerning
the conjugate numbers p, q, i.e., let q > 1 be such that

(1.2) p+ q = pq.

Then, the inverse function of Φ(x) = |x|p−1 sgnx is Φ−1(x) = |x|q−1 sgnx.
We analyze generalizations of the Euler half-linear difference equation

whose coefficients are given by asymptotically periodic sequences and the
generalized power function. Thus, we recall these concepts in the following
two definitions.

Definition 1. We say that a sequence {rk}k∈Na
is asymptotically pe-

riodic if there exist sequences {r1k}k∈Na
, {r2k}k∈Na

such that rk = r1k + r2k,
k ∈ Na, where {r1k}k∈Na

is periodic and {r2k}k∈Na
satisfies limk→∞ r2k = 0.

The sequence {r1k}k∈Na
is called the periodic part of the sequence {rk}k∈Na

.

Definition 2. The generalized power function is defined as

k(s) :=



















1 for s = 0;

k(k − 1) · · · (k − s+ 1) for s ∈ N;
1

(k+1)(k+2)···(k−s) for − s ∈ N;
Γ(k+1)

Γ(k−s+1) for s 6∈ Z,

where k ∈ N is sufficiently large and Γ denotes the Euler gamma function

Γ(x) :=

∫ ∞

0
e−ssx−1 ds, x > 0.
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Now, we can explicitly mention the form of studied equations whose
oscillation is analyzed. We consider the Euler type half-linear difference
equations

(1.3) ∆

(

r1−p
k

k
Φ(∆xk)

)

+
sk

(k + 1)(p+1)
Φ(xk+1) = 0, k ∈ Na,

where {rk}k∈Na
is an asymptotically periodic sequence with the property

that infk∈Na
rk > 0 and {sk}k∈Na

is bounded. Considering Definition 1, one
can put

(1.4) S(rk) := sup
k∈Na

rk < ∞, I(rk) := inf
k∈Na

rk > 0, S(sk) := sup
k∈Na

|sk| < ∞.

Let n ∈ N be a period of the periodic part of {rk}k∈Na
. We consider the

situation when there exists ε > 0 such that the inequality

(1.5)
1

n

k+n−1
∑

i=k

si > ε+

(

1

n

k+n−1
∑

i=k

ri

)1−p

is valid for all large k ∈ N. Henceforward, we will consider (1.3) with co-
efficients given by an asymptotically periodic sequence {rk}k∈Na

satisfying
infk∈Na

rk > 0 and having periodic part with period n and by a bounded
sequence {sk}k∈Na

such that (1.5) is true for some ε > 0 and all large k ∈ N.

1.2. Previous results. We highlight that the strongest known oscil-
lation criteria about the studied generalizations of Euler (linear and half-
linear) difference equations are proved in [15,20,22,24,25,34,36,51,56,58] (for
special cases, we refer to [13,18,35,55] as well). Some of the most relevant
results are explicitly mentioned below.

Theorem 1 [51]. Let us consider the equation

(1.6) ∆
(

kr1−p
k Φ(∆xk)

)

+
sk

(k + 1)(p−1)
Φ(xk+1) = 0, k ∈ Na,

where p > 2, {rk}k∈Na
is an asymptotically periodic sequence satisfying

infk∈Na
rk > 0 whose periodic part has period n ∈ N, and {sk}k∈Na

is a posi-

tive and bounded sequence. If there exists ε > 0 with the property that

1

n

k+n−1
∑

i=k

si > ε+
(p− 2

p

)p
(

1

n

k+n−1
∑

i=k

ri

)1−p

holds for all large k ∈ N, then (1.6) is oscillatory.
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Theorem 2 [34,36]. Let us consider the equation

(1.7) ∆
(

r1−p
k Φ(∆xk)

)

+
sk
kp

Φ(xk+1) = 0, k ∈ N,

where {rk}k∈N, {sk}k∈N are positive sequences. Let n ∈ N be such that

(k+1)n
∑

i=kn+1

ri =
n
∑

i=1

ri,

(k+1)n
∑

i=kn+1

si =
n
∑

i=1

si, k ∈ N.

Equation (1.7) is oscillatory if and only if

1

n

n
∑

i=1

si >

(

p− 1

p

)p
(

1

n

n
∑

i=1

ri

)1−p

.

Theorem 3 [22]. Let us consider the equation

(1.8) ∆

(

r1−p
k

k
Φ(∆xk)

)

+
sk

(k + 1)p+1
Φ(xk+1) = 0, k ∈ N,

where {rk}k∈N, {sk}k∈N satisfy

0 < inf
k∈N

rk ≤ sup
k∈N

rk < ∞, 0 < inf
k∈N

sk ≤ sup
k∈N

sk < ∞.

• If there exist N,n ∈ N such that

1 > sup
k∈NN

(

1

n

k+n−1
∑

i=k

ri

)1−p( 1

n

k+n−1
∑

i=k

si

)−1

,

then (1.8) is oscillatory.
• If there exist N,n ∈ N such that

1 < inf
k∈NN

(

1

n

k+n−1
∑

i=k

ri

)1−p( 1

n

k+n−1
∑

i=k

si

)−1

,

then (1.8) is non-oscillatory.

We use the theorems above to describe the goal of our paper. We study
equations whose second coefficients can change sign (note that the coeffi-
cients of the analyzed equations in Theorems 1–3 have to be positive). We
obtain an oscillation criterion similar to Theorem 1 or Theorem 2 which are
proved for different generalizations of the Euler half-linear difference equa-
tion. The presented criterion improves in a certain sense the oscillatory part
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of Theorem 3 whose non-oscillatory part shows that our result cannot be
substantially generalized. We point out that, for (1.3), all previously ap-
plied processes cannot be used if {sk}k∈Na

can change its sign. This fact
documents the novelty of our approach.

Fundamental results about the oscillation of linear and half-linear dif-
ference equations are mentioned, e.g., in [3,7]. For other relevant oscillation
criteria, we refer to [1,2,8,11,28,30,38,39,41,43–46,52–54]. The oscillation of
the perturbed Euler type difference equations is studied in [29,59] (see also
[33]). The oscillation of the Euler type dynamic equations on time scales is
analyzed in [14,26,27,57] (see also [31,32]).

The oscillation of linear and half-linear difference equations is primar-
ily motivated by its continuous counterpart, i.e., by oscillation criteria for
the corresponding differential equations. The most relevant results about
generalizations of the corresponding Euler linear and half-linear differential
equations are proved in [6,12,16,23,48,49] (see also [5,17,47,50]). The oscilla-
tion of perturbations of the Euler type differential equations is studied, e.g.,
in [4,9,10,21,40,42].

1.3. Riccati transformation. To prove the main result, we use a
modification of the Riccati transformation. From (1.1), applying the basic
Riccati transformation

wk = ckΦ
(∆xk

xk

)

,

we obtain the so-called Riccati equation

∆wk + dk + wk

(

1− ck
Φ[Φ−1(ck) + Φ−1(wk)]

)

= 0.

Considering [3, Lemma 3.2.6, (I8)] for wk + ck > 0, one can express the Ric-
cati equation associated to (1.1) in the form

∆wk + dk +
(p− 1) |wk|q |αk|p−2

Φ[Φ−1(ck) + Φ−1(wk)]
= 0,

where αk is between Φ−1(ck) and Φ−1(ck)+Φ−1(wk) for all considered k ∈ N,
i.e., k ∈ Na.

We recall that we analyze (1.1) for

ck =
r1−p
k

k
, dk =

sk
(k + 1)(p+1)

, k ∈ Na,

i.e., we consider the Riccati equation in the form

(1.9) ∆wk +
sk

(k + 1)(p+1)
+

(p− 1)|wk|q|αk|p−2

Φ[Φ−1(k−1r1−p
k ) + Φ−1(wk)]

= 0,
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6 P. HASIL, L. LINHARTOVÁ and M. VESELÝ

where αk is between Φ−1(k−1r1−p
k ) and Φ−1(k−1r1−p

k ) + Φ−1(wk).
The non-oscillation of (1.3) is connected with the solvability of (1.9) as

follows.

Theorem 4 [3, Theorem 3.3.4]. Equation (1.3) is non-oscillatory if and

only if there exists a solution {wk}k∈Nb
of (1.9) satisfying wk + k−1r1−p

k > 0,
k ∈ Nb.

Finally, we mention the announced modification of the half-linear Riccati
transformation for k ∈ Na. Putting

(1.10) ζk = −k(p)wk,

from (1.9), we obtain

∆ζk = −pk(p−1)wk − (k + 1)(p)∆wk

= pk(p−1) ζk
k(p)

+ (k + 1)(p)
sk

(k + 1)(p+1)

+ (k + 1)(p)
(p− 1)|ζk|q(k(p))−q|αk|p−2

Φ
[

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)] .

From Definition 2, it follows

k(p−1)

k(p)
=

(k + 1)(p)

(k + 1)(p+1)
=

1

k − p+ 1
,

(k + 1)(p+1)

k(p)
= k + 1

for all considered large k ∈ N. Thus, for k ∈ Na, the modified Riccati equa-
tion associated to (1.3) takes the form

∆ζk =
1

k−p+1

[

pζk + sk + (k+1)(p+1) (p− 1)|ζk|q(k(p))−q|αk|p−2

Φ
[

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)]

]

=
1

k−p+1

[

pζk + sk +
(k + 1)(k(p))1−q(p− 1)|ζk|q|αk|p−2

Φ
[

Φ−1
(

k−1r1−p
k

)

+ Φ−1
(

− ζk
k(p)

)]

]

,

i.e.,
(1.11)

∆ζk =
1

k−p+1

[

pζk + sk +
(k + 1)(p− 1)|ζk|q|αk|p−2

(k(p))q−1Φ
[

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)]

]

,

where αk is between Φ−1
(

k−1r1−p
k

)

and Φ−1
(

k−1r1−p
k

)

+ Φ−1
(

− ζk
k(p)

)

.
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2. Oscillation criterion with consequences

At first, we prove two auxiliary results.

Lemma 1. If (1.3) is non-oscillatory, then there exists a negative solu-
tion {ζk}k∈Nb

of (1.11) such that

(2.1) lim
k→∞

ζk
kp−1

= 0.

Proof. From Theorem 4, it follows that the non-oscillation of (1.3) im-

plies the existence of a solution {wk}k∈Nb
of (1.9) for which wk+k−1r1−p

k > 0,
k ∈ Nb, where b ∈ Na. Using (1.10), we obtain the corresponding solution

{ζk}k∈Nb
≡ {−k(p)wk}k∈Nb

of (1.11). It suffices to prove that this solution
{ζk}k∈Nb

is negative and satisfies (2.1).
From known results (see, e.g., [7, Theorems 8.2.8 and 8.2.10]), it follows

that

(2.2) lim
k→∞

wk = 0.

Actually, we show that the solution {wk}k∈Nb
of (1.9) satisfies

(2.3) lim
k→∞

kwk = 0.

We consider the sequences {wnk}, {wnk+1}, . . . , {wnk+n−1} for large k ∈ N.
In fact, we choose j ∈ {0, 1, . . . , n− 1} arbitrarily and consider the sequence
{wnk+j} for large k ∈ N.

From (1.5) and the positivity of {rk}k∈Na
, we have

n(k+1)+j−1
∑

i=nk+j

si > ε

for all large k ∈ N and, from Definition 2, we have

lim
m→∞

(m+ i)(p+1)

m(p+1)
= 1, i ∈ {1, 2, . . . , n− 1}.

Hence, (1.4) yields

(2.4)

n(k+1)+j−1
∑

i=nk+j

si
(i+ 1)(p+1)

> 0

for all large k ∈ N. At the same time, wk + k−1r1−p
k > 0 implies

(2.5) Φ
[

Φ−1
(

k−1r1−p
k

)

+Φ−1(wk)
]

> 0
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for all k ∈ Nb. Considering (1.9) together with (2.4) and (2.5), for all large
k ∈ N, we have

wn(k+1)+j − wnk+j = −
n(k+1)+j−1

∑

i=nk+j

si
(i+ 1)(p+1)

(2.6)

−
n(k+1)+j−1

∑

i=nk+j

(p− 1)|wi|q|αi|p−2

Φ
[

Φ−1(i−1r1−p
i ) + Φ−1(wi)

] < 0,

i.e., the sequence {wnk+j} is decreasing for considered large k ∈ N. In addi-

tion, the inequality wk + k−1r1−p
k > 0 and (1.4) guarantee the positivity of

the sequence {wnk+j}. Indeed, if wnk0+j is negative for some large k0 ∈ N,
then

lim inf
k→∞

(wk + k−1r1−p
k ) = lim inf

k→∞
wk < wnk0+j < 0,

which is a contradiction (see also (2.2)). We have proved that {wnk+j} is
decreasing and positive. In particular, the sequence {ζk}k∈Nb

is negative.
Our aim is to prove

(2.7) lim
k→∞

(nk + j)wnk+j = 0

which implies (2.3) (consider that j ∈ {0, 1, . . . , n− 1} is arbitrarily given).
From (2.4) and (2.6), we have

(n(k + 1) + j)wn(k+1)+j − (nk + j)wnk+j(2.8)

< nwn(k+1)+j − (nk + j)

n(k+1)+j−1
∑

i=nk+j

(p− 1)|wi|q|αi|p−2

Φ
[

Φ−1(i−1r1−p
i ) + Φ−1(wi)

] .

Let us assume that the inequality

(2.9) (nk + j)wnk+j > ϑ

holds for some large k ∈ N and some ϑ > 0. We put

(2.10) Ωk := wnk+j

(

r1−p
nk+j

ϑ
+ 1

)

for large k ∈ N. Taking into account (1.2), (1.4), (2.5), (2.9), and (2.10), we
have

(nk + j)

n(k+1)+j−1
∑

i=nk+j

(p− 1)|wi|q|αi|p−2

Φ
[

Φ−1(i−1r1−p
i ) + Φ−1(wi)

]
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≥ (nk + j)
(p− 1)|wnk+j|q|αnk+j |p−2

Φ
[

Φ−1
(

(nk + j)−1r1−p
nk+j

)

+Φ−1(wnk+j)
]

= (nk + j)
(p− 1)|wnk+j|q|αnk+j |p−1

Φ
[

Φ−1
(

(nk + j)−1r1−p
nk+j

)

+Φ−1(wnk+j)
]

|αnk+j|

≥ (nk + j)
(p− 1)|wnk+j|q

(

Φ−1((nk + j)−1r1−p
nk+j)

)p−1

Φ
[

Φ−1
(

(nk + j)−1r1−p
nk+j

)

+Φ−1(wnk+j)
]

|αnk+j|

=
(p− 1)|wnk+j|qr1−p

nk+j

Φ
[

Φ−1
(

(nk + j)−1r1−p
nk+j

)

+Φ−1(wnk+j)
]

|αnk+j |

>
(p− 1)|wnk+j|q(S(rk))1−p

Φ
[

Φ−1
(

wnk+jϑ−1r1−p
nk+j

)

+ Φ−1(wnk+j)
]

× 1
∣

∣Φ−1
(

wnk+jϑ−1r1−p
nk+j

)

+Φ−1(wnk+j)
∣

∣

>
(p− 1)|wnk+j|q(S(rk))1−p

Φ
[

Φ−1(Ωk) + Φ−1(Ωk)
]∣

∣Φ−1(Ωk) + Φ−1(Ωk)
∣

∣

=
(p− 1)|wnk+j|q(S(rk))1−p

2pΩk Φ−1(Ωk)
=

(p− 1)wq
nk+j(S(rk))

1−p

2pwq
nk+j

( r
1−p

nk+j

ϑ
+ 1

)q

≥ (p− 1)(S(rk))
1−p

2p
( (I(rk))1−p

ϑ
+ 1

) q
,

i.e., if (2.9) is valid, then

(2.11) (nk + j)

n(k+1)+j−1
∑

i=nk+j

(p− 1)|wi|q|αi|p−2

Φ
[

Φ−1(i−1r1−p
i ) + Φ−1(wi)

] > δ(ϑ),

where

δ(ϑ) :=
p− 1

2p(S(rk))p−1
( (I(rk))1−p

ϑ
+ 1

) q
> 0

is constant for an arbitrarily given number ϑ > 0.
Considering (2.8) and (2.11) (see also (2.2)), if (2.9) is valid for large

k ∈ N and for some ϑ > 0, then

(n(k + 1) + j)wn(k+1)+j − (nk + j)wnk+j < −δ(ϑ)

2
< 0.
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10 P. HASIL, L. LINHARTOVÁ and M. VESELÝ

We point out that {wnk+j} is positive and ϑ > 0 is arbitrary in (2.9). There-
fore, for large k ∈ N, the obtained implication

(nk + j)wnk+j > η ⇒ (n(k + 1) + j)wn(k+1)+j − (nk + j)wnk+j < −δ(η)

2

proves that (2.9) cannot be valid for infinitely many large k ∈ N for any
ϑ = 2η > 0 (consider (2.8) and the positivity of {(nk + j)wnk+j}). We have
proved (2.7) which implies (2.3).

Now, we use the well-known asymptotic equivalence of k(γ) and kγ for
γ ≥ 1, i.e.,

(2.12) lim
k→∞

kγ

k(γ)
= 1, γ ≥ 1.

Note that (2.12) can be easily derived from Definition 2 (we can also refer
to [37]). Finally, from (1.10), (2.3), and (2.12), we obtain

lim
k→∞

ζk
kp−1

= lim
k→∞

−k(p)wk

kp−1
= lim

k→∞
−kwk = 0,

i.e., (2.1) is satisfied as well. �

Lemma 2. If (1.3) is non-oscillatory, then there exists a negative and
bounded solution {ζk}k∈Nb

of (1.11) such that

(2.13) lim
k→∞

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)

Φ−1(k−1r1−p
k )

= 1.

Proof. Lemma 1 guarantees the existence of a negative solution {ζk}k∈Nb

of (1.11) satisfying (2.1). From (1.4), (2.1), and (2.12), we have (2.13).
Therefore, it suffices to show that {ζk}k∈Nb

is bounded from below.
It holds (see (1.4) and (1.11))

(2.14)

∆ζk ≥ 1

k−p+1

[

pζk − S(sk) +
(k + 1)(p− 1)|ζk|qαp−2

k

(k(p))q−1Φ
(

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

))

]

for k ∈ Nb, where

(2.15) 0 < Φ−1(k−1r1−p
k ) ≤ αk ≤ Φ−1(k−1r1−p

k ) + Φ−1
(

− ζk
k(p)

)

, k ∈ Nb.

Considering (2.13) and (2.15), we obtain

(2.16)
(k−1r1−p

k )2−q

3
√
2

< αp−2
k <

3
√
2
(

k−1r1−p
k

) 2−q
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for all large k ∈ N. Similarly, considering (2.13), we obtain

(2.17)
k−1r1−p

k
3
√
2

< Φ

(

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)

)

<
3
√
2 k−1r1−p

k

for all large k ∈ N. We also use

(2.18) lim
k→∞

(k + 1)kq−1

(k(p))q−1
= 1

which follows from (1.2) and (2.12). Hence,

(2.19)
k1−q

3
√
2

<
k + 1

(k(p))q−1
<

3
√
2k1−q

for all sufficiently large k ∈ N. Thus, we have (see (1.4), (2.13), (2.15), and
(2.18))

lim
k→∞

(

(k + 1)αp−2
k

(k(p))q−1Φ
(

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

))
− rk

)

(2.20)

= lim
k→∞

(

(k + 1)
(

Φ−1(k−1r1−p
k )

)p−2

(k(p))q−1k−1r1−p
k

− rk

)

= lim
k→∞

(

rk
(k + 1)kq−1

(k(p))q−1
− rk

)

= 0.

Similarly as in (2.20), we obtain (see (1.4), (2.14), (2.16), (2.17), and
(2.19))

∆ζk >
1

k − p+ 1

[

pζk − S(sk) +
(k + 1)(p− 1)|ζk|q(k−1r1−p

k )2−q

3
√
4(k(p))q−1k−1r1−p

k

]

(2.21)

=
1

k − p+ 1

[

pζk − S(sk) +
(k + 1)(p− 1)|ζk|q(k−1r1−p

k )1−q

3
√
4(k(p))q−1

]

>
1

k − p+ 1

[

pζk − S(sk) +
(p− 1)rk|ζk|qkq−1

3
√
8 kq−1

]

≥ 1

k − p+ 1

[

pζk − S(sk) +
(p− 1)I(rk)|ζk|q

2

]

for large k ∈ N. Let

ζk ≤ −
(

2(p+ S(sk))

(p− 1)I(rk)

)
1

q−1

− 1
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for some large k ∈ N. Then,

(p− 1)I(rk) |ζk|q
2

=
(p− 1)I(rk)|ζk| · |ζk|q−1

2

≥ p|ζk|+ S(sk)|ζk| ≥ p|ζk|+ S(sk)

which yields

∆ζk >
1

k − p+ 1

[

pζk − S(sk) +
(p− 1)I(rk)|ζk|q

2

]

≥ 0.

Analogously as in (2.21), we have

|∆ζk| <
1

k − p+ 1

[

p|ζk|+ S(sk) + 2(p− 1)S(rk)|ζk|q
]

for large k ∈ N. Let

0 > ζk > −
(

2(p+ S(sk))

(p− 1)I(rk)

)
1

q−1

− 1

for some large k ∈ N. If we denote

C :=

(

2(p+ S(sk))

(p− 1)I(rk)

)
1

q−1

+ 1,

then

|∆ζk| <
1

k − p+ 1

[

pC + S(sk) + 2(p− 1)S(rk)C
q
]

.

We recapitulate the estimations mentioned above. For large k ∈ N, we
have proved that ∆ζk is positive if ζk ≤ −C, and |∆ζk| < D/(k − p+ 1) for
some D > 0 if ζk > −C. Thus, the considered solution {ζk}k∈Nb

has to be
bounded from below. �

The main result of this paper reads as follows.

Theorem 5. Let us consider (1.3), where {rk}k∈Na
⊂ (0,∞) is an

asymptotically periodic sequence with period n ∈ N of its periodic part satis-

fying lim infk→∞ rk > 0 and {sk}k∈Na
is a bounded sequence. If (1.5) is valid

for some ε > 0 and for all large k ∈ N, then (1.3) is oscillatory.

Proof. On contrary, let us consider that (1.5) is true for some ε > 0 and
for all k ∈ Na and that (1.3) is non-oscillatory. We remark that we assume
the validity of (1.5) for all k ∈ Na for the sake of simplicity. From Lemma 2,
we know that there exists a negative and bounded solution {ζk}k∈Nb

of (1.11)
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satisfying (2.13), where b ∈ Na. Especially, there exists M > 0 with the prop-
erty that

(2.22) ζk ∈ (−M, 0), k ∈ Nb.

Similarly as in (2.21), we can again use (2.16), (2.17), and (2.19). Thus,
we have (consider also (1.11) together with (1.4) and (2.22))

∆ζk <
1

k − p+ 1

[

0 + S(sk) +
3
√
4(k + 1)(p− 1)M q(k−1r1−p

k )2−q

(k(p))q−1k−1r1−p
k

]

(2.23)

=
1

k − p+ 1

[

S(sk) +
3
√
4(k + 1)(p− 1)M q(k−1r1−p

k )1−q

(k(p))q−1

]

<
1

k − p+ 1

[

S(sk) +
3
√
8(p− 1)rkM

qkq−1

kq−1

]

≤ 1

k − p+ 1

[

S(sk) + 2(p− 1)S(rk)M
q
]

and, at the same time,

(2.24) ∆ζk >
1

k − p+ 1
[pζk + sk + 0] >

1

k − p+ 1
[−pM − S(sk)]

for all large k ∈ N. Combining (2.23) and (2.24), we obtain

|∆ζk| <
S(sk) + 2(p− 1)S(rk)M

q + pM

k − p+ 1

for all large k ∈ N, i.e., there exists N > 0 for which

|∆ζk| ≤
N

k − p+ 1
, k ∈ Nb.

Consequently,

(2.25) |ζk+i − ζk+j| ≤
(n− 1)N

k − p+ 1
, i, j ∈ {0, 1, . . . , n− 1}, k ∈ Nb.

For k ∈ Nb, we put

ξk :=
1

n

k+n−1
∑

i=k

ζi,(2.26)

Ak := p

(

p

n

k+n−1
∑

i=k

ri

)− 1

q

,(2.27)
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Bk := −ξk

(

p

n

k+n−1
∑

i=k

ri

)
1

q

,(2.28)

Uk := p
k − p+ n

k − p+ 1
ξk +

Ap
k

p
+

Bq
k

q
,(2.29)

Vk :=
1

n

k+n−1
∑

i=k

si −
Ap

k

p
− ε

4
,(2.30)

and

(2.31) Wk :=
1

n

k+n−1
∑

i=k

(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))
− Bq

k

q
.

Evidently (see (2.22) and (2.26)),

(2.32) ξk ∈ (−M, 0), k ∈ Nb.

Using (2.22), (2.25), (2.26), and (2.32), we obtain L > 0 such that

(2.33)
∣

∣ |ζi|q −
∣

∣ξk|q| ≤
L

k − p+ 1
, i ∈ {k, k + 1, . . . , k + n− 1}, k ∈ Nb.

For all large k ∈ N, considering (1.11) together with (1.5), (2.22), and (2.26),
we have

∆ξk =
1

n

k+n−1
∑

i=k

∆ζi

=
1

n

k+n−1
∑

i=k

1

i− p+ 1

[

pζi + si +
(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))

]

≥ p

k − p+ 1
ξk +

1

k − p+ n

×
[

1

n

k+n−1
∑

i=k

si −
ε

4
+

1

n

k+n−1
∑

i=k

(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))

]

=
1

k − p+ n

[

p
k − p+ n

k − p+ 1
ξk +

Ap
k

p
+

Bq
k

q
+

1

n

k+n−1
∑

i=k

si −
Ap

k

p
− ε

4

+
1

n

k+n−1
∑

i=k

(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))
− Bq

k

q

]

.
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Hence, we obtain (see (2.29), (2.30), and (2.31))

(2.34) ∆ξk ≥ Uk + Vk +Wk

k − p+ n

for all large k ∈ N.
The Young inequality gives

(2.35) pξk +
Ap

k

p
+

Bq
k

q
=

Ap
k

p
+

Bq
k

q
−AkBk ≥ 0, k ∈ Nb.

Considering

lim
k→∞

k − p+ n

k − p+ 1
= 1

together with (2.32) and (2.35), we have

(2.36) Uk > −ε

4

for all large k ∈ N.
Taking into account (1.5), we also have (see (2.27) and (2.30))

Vk =
1

n

k+n−1
∑

i=k

si −
Ap

k

p
− ε

4
=

1

n

k+n−1
∑

i=k

si −
pp

p

(

p

n

k+n−1
∑

i=k

ri

)1−p

− ε

4

=
1

n

k+n−1
∑

i=k

si −
(

1

n

k+n−1
∑

i=k

ri

)1−p

− ε

4
>

3ε

4
,

i.e.,

(2.37) Vk >
3ε

4
for all large k ∈ N.

It holds (see (2.20) and (2.22))

lim
k→∞

(

|ζk|q
(k + 1)αp−2

k

(k(p))q−1Φ
(

Φ−1(k−1r1−p
k ) + Φ−1

(

− ζk
k(p)

)) − |ζk|qrk
)

= 0

and (see (1.2), (2.15), (2.28), (2.31), and (2.32))

Wk =
1

n

k+n−1
∑

i=k

(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))
− Bq

k

q
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=
1

n

k+n−1
∑

i=k

(i+ 1)(p− 1)|ζi|q|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

))
− |ξk|q

q
· p
n

k+n−1
∑

i=k

ri

=
p− 1

n

k+n−1
∑

i=k

(

|ζi|q
(i+ 1)|αi|p−2

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

)) − |ξk|qri
)

=
p− 1

n

k+n−1
∑

i=k

(

|ζi|q
(i+ 1)αp−2

i

(i(p))q−1Φ
(

Φ−1(i−1r1−p
i ) + Φ−1

(

− ζi
i(p)

)) − |ζi|qri
)

+
p− 1

n

k+n−1
∑

i=k

(|ζi|qri − |ξk|qri)

for all k ∈ Nb. Thus (see (1.4) and (2.33)),

lim sup
k→∞

|Wk| ≤ lim sup
k→∞

p− 1

n

k+n−1
∑

i=k

∣

∣ |ζi|qri − |ξk|qri
∣

∣(2.38)

≤ S(rk)
p− 1

n
lim sup
k→∞

k+n−1
∑

i=k

L

k − p+ 1
= 0.

In particular,

(2.39) Wk > −ε

4

for all large k ∈ N.
Finally, (2.34), (2.36), (2.37), and (2.39) imply

(2.40) ∆ξk >
− ε

4 + 3ε
4 − ε

4

k − p+ n
=

ε

4 (k − p+ n)

for all large k ∈ N. Because of

∞
∑

i=l

1

i− p+ n
= ∞

for any large l ∈ N, from (2.40), we obtain

lim
k→∞

ξk = ∞,

i.e., {ξk}k∈Nb
has to be positive for large k ∈ N. This contradiction (see

(2.32)) completes the proof. �
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Remark 1. Based on Theorems 2 and 3 (see also [24] together with
constructions in [19]), we conjecture that Theorem 5 is not true for some n-
periodic sequence {rk}k∈Na

and a bounded positive sequence {sk}k∈Na
sat-

isfying

lim
k→∞

1

n

k+n−1
∑

i=k

si =

(

1

n

a+n−1
∑

i=a

ri

)1−p

.

Nevertheless, it remains an open problem.

Let a sequence {hk}k∈N ⊂ (0,∞) satisfy

lim
k→∞

hk

(k + 1)(p+1)
= 1.

For such a sequence, it is easy to reformulate Theorem 5 for equations in the
form

∆

(

r1−p
k

k
Φ(∆xk)

)

+
sk
hk

Φ(xk+1) = 0, k ∈ N.

A basic reformulation is embodied into the following theorem, whose state-
ment does not contain the generalized power function.

Theorem 6. Let us consider the equation

(2.41) ∆

(

r1−p
k

k
Φ(∆xk)

)

+
sk

kp+1
Φ(xk+1) = 0, k ∈ N,

where {rk}k∈N is an asymptotically periodic sequence satisfying infk∈N rk > 0
whose periodic part has period n ∈ N and {sk}k∈N is a bounded sequence. If
there exists ε > 0 with the property that (1.5) is valid for all large k ∈ N,
then (2.41) is oscillatory.

Proof. It suffices to consider Theorem 5 together with (2.12) from the
proof of Lemma 1. �

To highlight the novelty of our research in the linear case, we formulate
the corresponding oscillation criterion for linear equations.

Corollary 1. Let a sequence {hk}k∈N ⊂ (0,∞) satisfy

(2.42) lim
k→∞

hk

k3
= 1

and let us consider the equation

(2.43) ∆
( 1

k rk
∆xk

)

+
sk
hk

xk+1 = 0, k ∈ N,
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where {rk}k∈N is an asymptotically periodic sequence with period n ∈ N of its
periodic part and satisfying infk∈N rk > 0 and {sk}k∈N is a bounded sequence.
If there exists ε > 0 with the property that

1

n

k+n−1
∑

i=k

si > ε+

(

1

n

k+n−1
∑

i=k

ri

)−1

is valid for all large k ∈ N, then (2.43) is oscillatory.

Proof. The corollary follows from Theorem 6 for p = 2. �

Corollary 1 is new even for linear equations with periodic coefficients (see
Corollary 2 below). We also mention examples of simple equations whose
oscillation does not follow from any previously known result.

Corollary 2. Let a sequence {hk}k∈N ⊂ (0,∞) satisfy (2.42) and let
us consider (2.43), where {rk}k∈N ⊂ (0,∞) and {sk}k∈N are n-periodic se-

quences. If
(

1

n

n
∑

i=1

ri

)(

1

n

n
∑

i=1

si

)

> 1,

then (2.43) is oscillatory.

Proof. This is a special case of Corollary 1. �

Example 1. Let n1, n2 ∈ N and Λ > 1 and let us consider the equations

∆

([

k

(

1 +
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1 + 2 sin kπ
n2

)

k3
xk+1 = 0, k ∈ N,

∆

([

k

(

1 +
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1 + 2 sin kπ
n2

)

k(k + 4)(k + 8)
xk+1 = 0, k ∈ N,

∆

([

k

(

1 +
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1 + 2 sin kπ
n2

)

(

k +
√
k

)(3)
xk+1 = 0, k ∈ N,

∆

([

k

(

1 +
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1 + 2 sin kπ
n2

)

k3 + k2 − k + 1
xk+1 = 0, k ∈ N,

∆

([

k

(

1+
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1+2 sin kπ
n2

)

k3 + 3
√
k8+1arctan(k+2)

xk+1 = 0, k ∈ N,

∆

([

k

(

1 +
sin kπ

n1

2

)]−1

∆xk

)

+
Λ
(

1 + 2 sin kπ
n2

)

k3 + k2 sin k
xk+1 = 0, k ∈ N.
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We use Corollary 2 for n = 2n1n2. Since

(

1

n

n
∑

i=1

ri

)(

1

n

n
∑

i=1

si

)

= Λ

for each one of the equations above, we obtain its oscillation.
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[24] P. Hasil and M. Veselý, Oscillation constants for half-linear difference equations with
coefficients having mean values, Adv. Difference Equ., 2015 (2015), Paper
No. 210, 18 pp.
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[42] Z. Pát́ıková, Nonoscillatory solutions of half-linear Euler-type equation with n terms,

Math. Methods Appl. Sci., 43 (2020), 7615–7622.
[43] P. Řehák, Comparison theorems and strong oscillation in the half-linear discrete os-

cillation theory, Rocky Mountain J. Math., 33 (2003), 333–352.
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