ON THE STRUCTURE OF THE IWASAWA MODULE FOR Z₂-EXTENSIONS OF CERTAIN REAL BIQUADRATIC FIELDS

A. EL MAHI

Faculty of Sciences, Oujda, Morocco e-mail: elmahi.abdelkader@yahoo.fr

(Received August 29, 2023; revised May 27, 2024; accepted June 13, 2024)

Abstract. For an infinite family of real biquadratic fields k we give the structure of the Iwasawa module $X = X(k_{\infty})$ of the \mathbb{Z}_2 -extension of k. For these fields, we obtain that $\lambda = \mu = 0$ and $\nu = 2$. where λ , μ and ν are the Iwasawa invariants of the cyclotomic \mathbb{Z}_2 -extension of k.

1. Introduction

Let ℓ be a prime number and k a number field. A Galois extension k_{∞}/k is called a \mathbb{Z}_{ℓ} -extension if the topological group $\operatorname{Gal}(k_{\infty}/k)$ is isomorphic to the additive group \mathbb{Z}_{ℓ} of ℓ -adic integers. Except for the trivial subgroup, all the closed subgroups of \mathbb{Z}_{ℓ} have finite index. Such a closed subgroup is of the form $\ell^n \mathbb{Z}_{\ell}$ for some positive integer n and the corresponding quotient group is cyclic of order ℓ^n . Thus, if k_{∞}/k is a \mathbb{Z}_{ℓ} -extension, there is a unique field k_n of degree ℓ^n over k for all n, which called the n^{th} layer of k_{∞}/k . These k_n and k_{∞} , are the only fields between k and k_{∞} .

Every number field k, has at least one \mathbb{Z}_{ℓ} -extension, namely the cyclotomic \mathbb{Z}_{ℓ} -extension. It is obtained by the compositum $k_{\infty} = k\mathbb{Q}_{\infty}$, where \mathbb{Q}_{∞} is the cyclotomic \mathbb{Z}_{ℓ} -extension of the field of rational numbers \mathbb{Q} .

For each positive integer n, let $a_n = 2\cos(\frac{2\pi}{2^{n+2}})$ and $\mathbb{Q}_n = \mathbb{Q}(a_n)$, then $\mathbb{Q}_n \subset \mathbb{Q}_{n+1}$ by $a_{n+1} = \sqrt{2+a_n}$. The extension \mathbb{Q}_n is cyclic of degree 2^n over \mathbb{Q} . This mean that $\mathbb{Q}_{\infty} = \bigcup_{n=0}^{\infty} \mathbb{Q}_n$ is the unique \mathbb{Z}_2 -extension of \mathbb{Q} . Specifically, the first layer \mathbb{Q}_1 of the cyclotomic \mathbb{Z}_2 -extension of \mathbb{Q} is the real quadratic field $\mathbb{Q}(\sqrt{2})$. Accordingly if $\sqrt{2} \notin k$, the first layer k_1 of the cyclotomic \mathbb{Z}_2 -extension of a number field k is $k_1 = k(\sqrt{2})$.

Key words and phrases: Iwasawa theory, \mathbb{Z}_2 -extension, real biquadratic field, 2-class group, class field theory, unit.

Mathematics Subject Classification: 11R21, 11R26, 11R27, 11R29, 11R32.

^{0236-5294/\$20.00 © 2024} The Author(s), under exclusive licence to Akadémiai Kiadó, Budapest, Hungary

A. EL MAHI

Let $A(k_n)$ be the ℓ -Sylow subgroup of ideal class group of n^{th} layer k_n , and $X(k_{\infty}) = \lim_{k \to \infty} A(k_n)$ be the inverse limit with respect the norm map. For all sufficiently large n, the order $\#A(k_n)$ is described as,

$$#A(k_n) = \ell^{\lambda n + \mu p^n + \nu}$$

by the Iwasawa invariants λ , μ and ν . The inverse limit $X(k_{\infty}) = \varprojlim A(k_n)$ is called the Iwasawa module for k_{∞}/k . Greenberg conjectured claims [8] that λ and μ both vanish for any prime number ℓ and any totally real number field k. When k is abelian over the field of rational numbers \mathbb{Q} , and k_{∞} is the cyclotomic \mathbb{Z}_{ℓ} -extension of k, Ferrero and Washington [2] proved that $\mu = 0$.

In the previous years, many authors work on Greenberg's conjecture for totally real fields. For example, Ozaki and Taya [17] proved the existence of infinitely many real quadratic fields k, with $\lambda = \mu = 0$ in various situations. Y. Mizusawa [16] discusses some cases of real quadratic fields, for which Greenberg's conjecture hold. On the other hand when $k = \mathbb{Q}(\sqrt{p})$ is real quadratic field with prime number p, T. Fukuda and K. Kamotsue [4,5] have given some sufficient conditions for the conjecture to be true, mainly in terms of units of the n^{th} layer k_n of the cyclotomic \mathbb{Z}_2 -extension for some n. Comparing with previous papers, the main novelty of this article is to construct an infinite family of real biquadratic fields k, such that the Iwasawa module $X(k_{\infty})$, is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then we prove that the Iwasawa λ and μ -invariants of k_{∞}/k vanish, which confirms a conjecture of Greenberg's.

The aim of this article is to prove the following theorem:

THEOREM 1. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8}$ and $s \equiv 7 \pmod{8},$

and let k be one of the biquadratic fields

$$\mathbb{Q}(\sqrt{qs},\sqrt{2pq}), \quad \mathbb{Q}(\sqrt{qs},\sqrt{pq}) \quad or \quad \mathbb{Q}(\sqrt{2qs},\sqrt{pq}).$$

Assume that the condition

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

is satisfied. Then the Iwasawa module $X(k_{\infty})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Consequently $\lambda = \mu = 0$ and $\nu = 2$.

2. Preliminary results

During this paper, we fix the following notations.

k	number field.
U_k	the unit group of k .
O_k	the ring of integers of k .
k_1	the first layer of the cyclotomic \mathbb{Z}_2 -extension of a number field k.
A_1	the 2-Sylow subgroup of the ideal class group k_1 .
A	the 2-Sylow subgroup of the ideal class group k .
$N_{K/k}$	the relative norm of K/k .
$r(\dot{K}/k)$	the number of primes of k ramified in K .
m	positive integer.
ε_m	the fundamental unit of $\mathbb{Q}(\sqrt{m})$.
h(k)	the class number of k .
h(m)	the class number for the quadratic number field $\mathbb{Q}(\sqrt{m})$.
$(\frac{*,*}{*})_m$	the m^{th} power residue symbol.
$(\frac{*,*}{*})$	the norm residue symbol.
#	the order of a finite group.

In this section, we are collecting some results that will be useful in the sequel. The following result gives the rank of 2-Sylow subgroup of ideal class group of a number field K, such that K contains a number field k with odd class number, and the extension K/k is quadratic. Recall that the 2-rank of the ideal class group of k, meant to be the dimension of A(K)/2A(K) as a \mathbb{F}_2 -vector space.

LEMMA 1 [6]. Let K/k be a quadratic extension of number fields. Assume that the class number of k is odd, then the rank of the 2-Sylow subgroup of the ideal class group of K, is equal to r(K/k) - e - 1 where $2^e = [U_k : U_k \cap N_{K/k}(K^*)]$.

Let k be a number field and d a square-free integer satisfying $\sqrt{d} \notin k$. The determination of the integer e return to search units of k that are norms in the extension $k(\sqrt{d})/k$. A unit ε of k is norm in $k(\sqrt{d})/k$ if and only if the value of the norm residue symbol $\left(\frac{\varepsilon,d}{\mathcal{P}}\right)$ equals 1, for each prime ideal \mathcal{P} of k that ramifies in $k(\sqrt{d})$. For instance, when all units of k are norms in the extension $k(\sqrt{d})/k$ we have e = 0. Note that the definition of norm residue symbol can be extended to any extension of the form $k(\sqrt[m]{d})/k$ where m is a positive integer and k contains the m^{th} roots of unity.

Let K/\mathbb{Q} be a real biquadratic field. The field K has the three real quadratic subextensions F_i/\mathbb{Q} (i = 1, 2, 3). Let ε_i be the fundamental unit of F_i (i = 1, 2, 3), and A(K), $A(F_i)$ the 2-Sylow subgroup of ideal class group of K, F_i , respectively. Put the group index $Q_K = [U_K : \langle -1, \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle]$. Then, we have $Q_K = 1, 2$ or 4. S. Kuroda [14] proved the following equa-

tion:

$$#A(K) = \frac{1}{4}Q_K \cdot #A(F_1) \cdot #A(F_2) \cdot #A(F_3).$$

This is often called Kuroda's class number formula. Furthermore, a system of the fundamental units of K is one of the following types (cf. [13, p. 72, Satz 1]):

 $\begin{array}{l} (1) \{ \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \}, \\ (2) \{ \sqrt{\varepsilon_{1}}, \varepsilon_{2}, \varepsilon_{3} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = 1), \\ (3) \{ \sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \varepsilon_{3} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = N_{F_{2}/\mathbb{Q}}(\varepsilon_{2}) = 1), \\ (4) \{ \sqrt{\varepsilon_{1}\varepsilon_{2}}, \varepsilon_{2}, \varepsilon_{3} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = N_{F_{2}/\mathbb{Q}}(\varepsilon_{2}) = 1), \\ (5) \{ \sqrt{\varepsilon_{1}\varepsilon_{2}}, \sqrt{\varepsilon_{3}}, \varepsilon_{2} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = N_{F_{2}/\mathbb{Q}}(\varepsilon_{2}) = N_{\mathbb{Q}(F_{3}/\mathbb{Q}}(\varepsilon_{3}) = 1), \\ (6) \{ \sqrt{\varepsilon_{1}\varepsilon_{2}}, \sqrt{\varepsilon_{2}\varepsilon_{3}}, \sqrt{\varepsilon_{1}\varepsilon_{3}} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = N_{F_{2}/\mathbb{Q}}(\varepsilon_{2}) = N_{\mathbb{Q}(F_{3}/\mathbb{Q}}(\varepsilon_{3}) = 1), \\ (7) \{ \sqrt{\varepsilon_{1}\varepsilon_{2}\varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3} \}, (N_{F_{1}/\mathbb{Q}}(\varepsilon_{1}) = N_{F_{2}/\mathbb{Q}}(\varepsilon_{2}) = N_{\mathbb{Q}(F_{3}/\mathbb{Q}}(\varepsilon_{3}) = \pm 1). \end{array}$

LEMMA 2 [11]. If $N_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(\varepsilon_m) = -1$, then all odd prime factors of m are congruent to 1 modulo 4.

The following result plays a crucial role in the proofs of our results.

LEMMA 3 [15]. Let F be a real quadratic number field with fundamental unit ε and discriminant D. Suppose that $N_{F/\mathbb{Q}}(\varepsilon) = 1$. Then, there exists a positive square free integer m dividing D such that $m\varepsilon$ is a square in F.

REMARK 1. As in the proof of Lemma 3, the integer m is norm in the extension F/\mathbb{Q} .

PROPOSITION 1 [1]. Let p, q and r be distinct prime numbers with

$$p \equiv -q \equiv -s \equiv 1 \pmod{4}$$

and let $k = \mathbb{Q}(\sqrt{qs}, \sqrt{pq})$. Then the rank of 2-Sylow subgroup of the ideal class group of k equal to 2, if and only if the condition

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1$$

is satisfied,

Add to the above proposition the following theorem which plays an important role in the proof of our main theorem.

THEOREM 2 [3]. Let k_{∞}/k be any \mathbb{Z}_p -extension such that any prime of k_{∞} which is ramified in k_{∞}/k is totally ramified.

(1) If $\operatorname{rank}(A_1) = \operatorname{rank}(A)$, then $\operatorname{rank}A(k_n) = \operatorname{rank}(A)$ for all $n \ge 1$.

(2) If $\#A_1 = \#A$, then $\#A(k_n) = \#A$ for all $n \ge 1$.

Let us close this preliminary reminder by recalling the following known result that we shall use through our computations.

THEOREM 3 [9]. Let k be a number field containing the m-th roots of unity and K be a finite extension of K. Let $\alpha \in k^*$, and $\beta \in K^*$. For an ideal prime \mathcal{P} of k we have

$$\prod_{\overline{\mathcal{P}}} \left(\frac{\beta, \alpha}{\overline{\mathcal{P}}}\right)_m = \left(\frac{N_{K/k}(\beta), \alpha}{\mathcal{P}}\right)_m,$$

where the product is taken over all the prime ideals of K above \mathcal{P} .

3. Rank of Iwasawa module of the cyclotomic \mathbb{Z}_2 -extensions of certain real biquadratic fields

PROPOSITION 2. Let q and s be prime numbers such that $q \equiv s \equiv -1 \pmod{4}$. Then we have

$$\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}) \quad or \quad \sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}).$$

Consequently $\varepsilon_{qs} = qu^2$ or $\varepsilon_{qs} = sv^2$ where u and v are two elements in $\mathbb{Q}(\sqrt{qs})$.

PROOF. The discriminant of $\mathbb{Q}(\sqrt{qs})$ is equal to qs. By Lemma 2 we have $N_{\mathbb{Q}(\sqrt{qs})/\mathbb{Q}}(\varepsilon_{qs}) = 1$. Lemma 3 gives that there exists an integer $m \mid qs$ such $\sqrt{m\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})$. Since ε_{qs} is the fundamental unit of $\mathbb{Q}(\sqrt{qs})$ then m must be contained in $\{q, s\}$. Either way, we can conclude that

$$\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}) \text{ or } \sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}).$$

Therefore $\varepsilon_{qs} = qu^2$ or $\varepsilon_{qs} = sv^2$ where u and v are two elements in $\mathbb{Q}(\sqrt{qs})$ as desired. \Box

PROPOSITION 3. Let q and s be prime numbers such that $q \equiv 3 \pmod{8}$ and $s \equiv 7 \pmod{8}$. Then,

$$\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs}).$$

Consequently, $\varepsilon_{2qs} = sa^2$ where a is an element in $\mathbb{Q}(\sqrt{2qs})$.

PROOF. The discriminant of $\mathbb{Q}(\sqrt{2qs})$ is equal to 8qs, and

$$N_{\mathbb{Q}(\sqrt{2qs})/\mathbb{Q}}(\varepsilon_{2qs}) = 1$$

(see Lemma 2). By Lemma 3 and Remark 1 there exists an integer $m \mid 2qs$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{2qs})/\mathbb{Q}$ and $\sqrt{m\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs})$. By the facts $\left(\frac{2}{q}\right) = -1$, 2 and q are not norms in the extension $\mathbb{Q}(\sqrt{2qs})/\mathbb{Q}$, hence we deduce

$$\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs}).$$

Therefore $\varepsilon_{2qs} = sa^2$ where *a* is an element in $\mathbb{Q}(\sqrt{2qs})$. This establishes the proposition. \Box

PROPOSITION 4. Let p and q be prime numbers such that $p \equiv 5 \pmod{8}$ and $q \equiv 3 \pmod{8}$. Then,

$$\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq}) \quad or \quad \sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq}).$$

PROOF. The discriminant of $\mathbb{Q}(\sqrt{pq})$ is equal to 4pq, and

 $N_{\mathbb{Q}(\sqrt{pq})/\mathbb{Q}}(\varepsilon_{pq}) = 1.$

By Lemma 3 there exists an integer $m \mid 2pq$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{pq})/\mathbb{Q}$ (see Remark 1) and $\sqrt{m\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. Since ε_{pq} is the fundamental unit of $\mathbb{Q}(\sqrt{pq})$ then m must be contained in $\{2, p, q, 2p, 2q, 2pq\}$. On the other hand we have $p \equiv 5 \pmod{8}$ and $q \equiv 3 \pmod{8}$, which means: $\binom{2}{p} = \binom{2}{q} = -1$. Then 2, 2p, 2q and 2pq are not norms in the extension $\mathbb{Q}(\sqrt{pq})/\mathbb{Q}$. Therefore

$$\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq}) \text{ or } \sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq}).$$

This shows the statement. \Box

LEMMA 4. Let q and s be distinct prime numbers with

$$q \equiv 3 \pmod{8}$$
 and $s \equiv 7 \pmod{8}$

and let L be the biquadratic field $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$. Then, $\{\sqrt{\varepsilon_{2qs}\varepsilon_{qs}}, \varepsilon_{qs}, \varepsilon_2\}$ is a fundamental system of units of biquadratic field L. Therefore the Hasse unit index Q_L is equal to 2.

PROOF. By Proposition 2 we have

$$\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}) \text{ or } \sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}).$$

Proposition 3 gives that $\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs})$. Therefore,

$$\sqrt{\varepsilon_{qs}\varepsilon_{2qs}} \in L.$$

Since $N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(\varepsilon_2) = -1$, ε_2 is not a square root of an element of L. It follows that $\{\sqrt{\varepsilon_{2qs}\varepsilon_{qs}}, \varepsilon_{qs}, \varepsilon_2\}$ is a fundamental system of units of biquadratic field L, which gives that the Hasse unit index Q_L is equal to 2. \Box

LEMMA 5. Let q and s be distinct prime numbers with

$$q \equiv 3 \pmod{8}$$
 and $s \equiv 7 \pmod{8}$.

Then the class number of $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$ is odd.

PROOF. Assume that q and s satisfy the conditions in Lemma 5. By Lemma 4 the Hasse unit index for the biquadratic number field L is equal to 2. On the other hand, the class number formula gives that

$$h(L) = \frac{2h(2qs)h(qs)h(2)}{4}$$

We have h(2) = 1 and h(qs) is odd [19]. Moreover since $q \equiv 3 \pmod{8}$, from [10] we have $h(2qs) \equiv 2 \pmod{4}$. This allows us to conclude that the class number of biquadratic number field $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$ is odd. \Box

PROPOSITION 5. Let p, q and r be distinct prime numbers with

$$p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$$

and

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the Hasse unit index Q_F is equal to 2.

PROOF. By Proposition 3 we have $\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs})$, and Proposition 4 gives that $\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. On the other hand, the discriminant of $\mathbb{Q}(\sqrt{2ps})$ is equal to 8ps, and $N_{\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}}(\varepsilon_{2ps}) = 1$. By Lemma 3 there exists an integer $m \mid 2ps$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}$ and $\sqrt{m\varepsilon_{2ps}} \in \mathbb{Q}(\sqrt{2ps})$. On account of the fact that ε_{2ps} is the fundamental unit of $\mathbb{Q}(\sqrt{2ps})$, m must be contained in $\{2, p, s, 2p, 2s\}$. By the facts $p \equiv 5 \pmod{8}$, we have 2, 2p and 2s are not norms in the extension $\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}$, hence we deduce $\sqrt{p\varepsilon_{2ps}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{s\varepsilon_{2ps}} \in \mathbb{Q}(\sqrt{2ps})$. Therefore, $\sqrt{\varepsilon_{pq}\varepsilon_{2ps}}, \sqrt{\varepsilon_{2ps}\varepsilon_{2qs}}$ or $\sqrt{\varepsilon_{pq}\varepsilon_{2ps}}$ is in the bi-quadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. It follows that, a system of the fundamental units of F is one of the types $\{\sqrt{\varepsilon_{pq}\varepsilon_{2qs}}, \varepsilon_{2qs}, \varepsilon_{2ps}\}, \{\sqrt{\varepsilon_{2ps}\varepsilon_{2qs}}, \varepsilon_{pq}, \varepsilon_{2ps}\}$ or $\{\sqrt{\varepsilon_{pq}\varepsilon_{2ps}}, \varepsilon_{2qs}, \varepsilon_{2ps}\}$. (See a system of the fundamental units of biquadratic fields at the beginning of page 4). Either way, we can conclude that the Hasse unit index Q_F is equal to 2. \Box

PROPOSITION 6. Let p, q and r be distinct prime numbers with

 $p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$

and

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

Let k be the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Then, the Hasse unit index Q_k is equal to 4.

A. EL MAHI

PROOF. By Proposition 2, $\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})$. On the other hand, Proposition 4 gives that $\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. Then

 $\sqrt{\varepsilon_{pq}\varepsilon_{qs}}$, $\sqrt{\varepsilon_{pq}\varepsilon_{ps}}$ and $\sqrt{\varepsilon_{ps}\varepsilon_{qs}}$,

are in the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. This allows us to conclude that a fundamental system of units of the biquadratic number field k, is $\{\sqrt{\varepsilon_{pq}\varepsilon_{qs}}, \sqrt{\varepsilon_{pq}\varepsilon_{ps}}, \sqrt{\varepsilon_{ps}\varepsilon_{qs}}\}$. Therefore, the Hasse unit index Q_k for the biquadratic number field k is equal to 4. Thus, we have proved the desired result. \Box

In order to prove Theorem 1, we use the following proposition.

PROPOSITION 7. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8},$

and $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Assume that the condition

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

is satisfied. Then the rank of 2-Sylow subgroup of the ideal class group of $k_1 = k(\sqrt{2}) = \mathbb{Q}(\sqrt{pq}, \sqrt{qs}, \sqrt{2})$ is equal to 2.

PROOF. We see that $k_1 = L(\sqrt{pq})$. From Lemma 5 the class number Lis odd, moreover the number of primes of L which are ramified in k_1 is equal to 3. Consequently for Lemma 1 the rank of 2-Sylow subgroup of the ideal class group of k_1 is equal to $r(k_1/L) - e - 1$ such that $r(k_1/L) = 3$ and $2^e =$ $[U_L : U_L \cap N(k_1^{\times})]$. Then to prove that the rank of 2-Sylow subgroup of the ideal class group of k_1 is equal to 2, it suffices to show that all units of Lare norms in the extension k_1/L . Since $\left(\frac{qs}{p}\right) = 1$, the rational prime p splits in $\mathbb{Q}(\sqrt{qs})$. Then $pO_{\mathbb{Q}(\sqrt{qs})} = \mathcal{P}_1\mathcal{P}_2$, where \mathcal{P}_1 and \mathcal{P}_2 are two prime ideals of $\mathbb{Q}(\sqrt{qs})$ lying above p. By assumption $\left(\frac{2}{p}\right) = -1$, we have $\mathcal{P}_1O_L = \mathfrak{B}_1$ and $\mathcal{P}_2O_L = \mathfrak{B}_2$, where $\mathfrak{B}_1, \mathfrak{B}_2$ the two prime ideals of L lying respectively above \mathcal{P}_1 and \mathcal{P}_2 . So from the properties of the norm residue symbol we get

$$\begin{pmatrix} \varepsilon_{qs}, pq \\ \mathfrak{B}_1 \end{pmatrix} = \begin{pmatrix} N_{L/\mathbb{Q}(\sqrt{qs})}(\varepsilon_{qs}), pq \\ \mathcal{P}_1 \end{pmatrix} = \begin{pmatrix} \varepsilon_{qs}^2, pq \\ \mathcal{P}_1 \end{pmatrix} = 1,$$

$$\begin{pmatrix} \sqrt{\varepsilon_{qs}}, pq \\ \mathfrak{B}_1 \end{pmatrix} = \begin{pmatrix} N_{L/\mathbb{Q}(\sqrt{qs})}(\sqrt{\varepsilon_{qs}}), pq \\ \mathcal{P}_1 \end{pmatrix} = \begin{pmatrix} \pm \varepsilon_{qs}, p \\ \mathcal{P}_1 \end{pmatrix}$$

$$= \begin{pmatrix} \pm qu^2 \\ p \end{pmatrix} = \begin{pmatrix} \pm q \\ p \end{pmatrix} = 1,$$

ON THE STRUCTURE OF THE IWASAWA MODULE

$$\begin{pmatrix} \varepsilon_2, pq \\ \mathfrak{B}_1 \end{pmatrix} = \begin{pmatrix} N_{L/\mathbb{Q}(\sqrt{qs})}(\varepsilon_2), pq \\ \mathcal{P}_1 \end{pmatrix} = \begin{pmatrix} -1, p \\ \mathcal{P}_1 \end{pmatrix} = \begin{pmatrix} -1 \\ p \end{pmatrix} = 1,$$
$$\begin{pmatrix} -1, pq \\ \mathfrak{B}_1 \end{pmatrix} = \begin{pmatrix} N_{L/\mathbb{Q}(\sqrt{qs})}(-1), pq \\ \mathcal{P}_1 \end{pmatrix} = \begin{pmatrix} 1, pq \\ \mathcal{P}_1 \end{pmatrix} = 1.$$

On the other hand by Proposition 3, $\varepsilon_{2qs} = sa^2$. By the facts $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1$, and $\left(\frac{2}{p}\right) = -1$, if we denote by \mathcal{P}' the prime ideal of $\mathbb{Q}(\sqrt{2qs})$ lying above the prime p, we have $pO_{\mathbb{Q}(\sqrt{2qs})} = \mathcal{P}'$ and $\mathcal{P}'O_L = \mathfrak{B}_1\mathfrak{B}_2$, then

$$\begin{pmatrix} \sqrt{\varepsilon_{2qs}}, pq \\ \mathfrak{B}_1 \end{pmatrix} = \begin{pmatrix} N_{L/\mathbb{Q}(\sqrt{2qs})}(\sqrt{\varepsilon_{2qs}}), pq \\ \mathcal{P}' \end{pmatrix} = \begin{pmatrix} \varepsilon_{2qs}, p \\ \mathcal{P}' \end{pmatrix}$$
$$= \begin{pmatrix} sa^2, p \\ \mathcal{P}' \end{pmatrix} = \begin{pmatrix} s, p \\ \mathcal{P}' \end{pmatrix} = \begin{pmatrix} s \\ p \end{pmatrix} = 1.$$

By the condition $q \equiv 3 \pmod{8}$ and $s \equiv 7 \pmod{8}$ we can see that rational prime 2, remain inert in $\mathbb{Q}(\sqrt{qs})$. Hence $2O_{\mathbb{Q}(\sqrt{qs})} = S$ and $SO_L = \mathfrak{R}^2$. For all unit u in L we have

$$\left(\frac{u,qs}{\mathfrak{R}}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(u),pq}{\mathcal{S}}\right) = 1.$$

Consequently all units of L are norms in the extension k_1/L . This allows us to conclude that e = 0 and complete the proof of the proposition. \Box

THEOREM 4. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$

and let k be one of the following biquadratic fields

$$\mathbb{Q}(\sqrt{qs},\sqrt{2pq}), \quad \mathbb{Q}(\sqrt{qs},\sqrt{pq}) \quad or \quad \mathbb{Q}(\sqrt{2qs},\sqrt{pq}).$$

Assume that the condition

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

is satisfied. Then the rank of the Iwasawa module $X(k_{\infty})$ is equal to 2.

PROOF. The extension k_1/k is ramified this means that the extension k_{∞}/k is totally ramified. In Proposition 1 the rank of the 2-Sylow subgroup of the ideal class group of k is equal to 2. From Proposition 7 the rank of the 2-Sylow subgroup of the ideal class group of k_1 is equal to 2. Therefore we obtain

$$\operatorname{rank}(A) = \operatorname{rank}(A_1) = 2.$$

By using Theorem 2, the rank of $X(k_{\infty})$ is equal to 2. \Box

4. Proof of main Theorem 1

Before giving the proof of the main theorem, we are going to give some preliminary results.

It is known ([7, Ch. 5, Theorem 4.5]) that there exist exactly three infinite families of non-abelian finite 2-groups G of which the largest abelian factor groups G^{ab} are isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Namely, the generalized quaternion groups Q_m , dihedral groups D_m and the semidihedral groups S_m , of order exactly 2^m , with $m \geq 3$ for the first two families and $m \geq 4$ for the last. A representation by generators and relations of these three families are given by

$$Q_m = \langle x, y \mid x^{2^{m-2}} = y^2, \ y^4 = 1, \ y^{-1}xy = x^{-1} \rangle \text{ with } m \ge 3,$$
$$D_m = \langle x, y \mid x^{2^{m-1}} = y^2 = 1, \ y^{-1}xy = x^{-1} \rangle \text{ with } m \ge 3,$$
$$S_m = \langle x, y \mid x^{2^{m-1}} = y^2, \ y^{-1}xy = x^{2^{m-2}-1} \rangle \text{ with } m \ge 4.$$

In this section we will use the following known properties of these groups G (see, for instance, [12, pp. 272–273] and [7, Ch. 5]). The commutator subgroup [G, G] of G is always cyclic: $[G, G] = \langle x^2 \rangle$. These groups Gpossess exactly three sub-groups of index 2. Namely, $H_1 = \langle x \rangle$, $H_2 = \langle x^2, y \rangle$, $H_3 = \langle x^2, xy \rangle$. When G is not the quaternion group of order 8, only one of the three maximal sub-groups of G is cyclic. When $m \ge 4$, the other two maximal sub-groups of G are not abelian and their maximal abelian factor groups, are again isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Of course, when G is the quaternion group of order 8, its three maximal subgroups are cyclic and when G is the dihedral group of order 8, its three subgroups are abelian.

Now let k be a number field whose 2-class group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. By Taussky [18], the Hilbert 2-class field tower of k terminates in at most two steps. Denote by L(k) the Hilbert 2-class field of k and by $L^2(k)$ that of L(k). Let H_i (i = 1, 2, 3) be the subgroups of $G = \text{Gal}(L^2(k)/k)$ associated to the above notations. There are just three quadratic subextensions F_i/k (i = 1, 2, 3) such that $H_i = \text{Gal}(L^2(k)/F_i)$ and the 2-Sylow subgroup of the ideal class group $A(F_i) \simeq H_i^{ab}$. If $G \simeq Q_8$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, all the three 2-class groups $A(F_i)(i = 1, 2, 3)$ are cyclic. If $G \simeq Q_{2^m}$ $(m \ge 4)$ or D_{2^m} , SD_{2^m} , then $A(F_1)$ is cyclic and $A(F_2) \simeq A(F_3) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

LEMMA 6. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$

and

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the 2-class numbers of F is equal to 4.

PROOF. By Proposition 5 the Hasse unit index for biquadratic number field F is equal to 2. The class number formula gives that:

$$h(F) = \frac{h(2qs)h(2ps)h(pq)}{2}.$$

Moreover, since $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = -\left(\frac{2}{p}\right) = 1$, from [10] we have $h(2qs) \equiv h(pq) \equiv h(2ps) \equiv 2 \pmod{4}$. This allows us to conclude that the 2-class number of biquadratic number field F is equal to 4. \Box

LEMMA 7. Let p, q and s be distinct prime numbers with

$$p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$$

and

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

Let k be the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Then, the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Proposition 6 the Hasse unit index for biquadratic number field k is equal to 4. On the other hand, the class number formula gives that:

$$h(k) = h(pq)h(qs)h(ps),$$

we have h(qs) is odd [19]. Moreover since $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = -\left(\frac{2}{p}\right) = 1$. From [10] we have $h(pq) \equiv h(ps) \equiv 2 \pmod{4}$. This allows us to conclude that the 2-class number of biquadratic number field k is equal to 4. By Proposition 1 the rank of the 2-ideal class group of k is equal to 2. From the above results, we have the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Thus, we have proved the desired result. \Box

LEMMA 8. Let p, q and r be distinct prime numbers with

$$p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}$$

and

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.$$

A. EL MAHI

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the 2-Sylow subgroup of the ideal class group of F is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Proposition 5 the 2-class numbers of F is equal to 4, we can see that the Hilbert 2-class field of F is the field $L(F) = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{s}, \sqrt{2})$. The three quadratic unramified subextensions of L(F)/F are: $k_1 = \mathbb{Q}(\sqrt{qs}, \sqrt{pq}, \sqrt{2})$, $F_1 = \mathbb{Q}(\sqrt{q}, \sqrt{p}, \sqrt{2s})$ and $F_2 = \mathbb{Q}(\sqrt{2q}, \sqrt{2p}, \sqrt{s})$. Then the 2-Sylow subgroup of the ideal class group of F is not cyclic. This allows us to conclude that $A(F) \simeq \operatorname{Gal}(L(F)/F) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. \Box

THEOREM 5. Let p, q and r be distinct prime numbers with

 $p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8},$

Assume that the condition

$$\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1$$

is satisfied. Then, the 2-Sylow subgroup of the ideal class group of $k_1 = \mathbb{Q}(\sqrt{pq}, \sqrt{qs}, \sqrt{2})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Lemma 8 the 2-Sylow subgroup of the ideal class group of biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The three quadratic unramified subextensions of F are: $k_1 = \mathbb{Q}(\sqrt{qs}, \sqrt{pq}, \sqrt{2})$, $F_1 = \mathbb{Q}(\sqrt{q}, \sqrt{p}, \sqrt{2s})$ and $F_2 = \mathbb{Q}(\sqrt{2q}, \sqrt{2p}, \sqrt{s})$. By Proposition 7 we have, the rank of the 2-ideal class group of k_1 is equal to 2. This means that the 2-Sylow subgroup of the ideal class group of k_1 is not cyclic. So we conclude that the 2-Sylow subgroup of the ideal class group of k_1 is not cyclic. So morphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, (see the properties of 2-group G such that G^{ab} is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ at the beginning of this section). Thus, we have proved the desired result. \Box

Now, we are ready to prove Theorem 1.

The extension k_1/k is ramified, i.e. k_{∞}/k is totally ramified. It was noted in Lemma 7 that the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and from Theorem 5 we have the 2-Sylow subgroup of the ideal class group of k_1 is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ therefore we obtain

$$A \simeq A_1 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

By applying Theorem 2 we get $X(k_{\infty}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. This means that $\lambda = \mu = 0$ and $\nu = 2$. Finally, the three biquadratic fields

$$\mathbb{Q}(\sqrt{qr},\sqrt{pq}), \ \mathbb{Q}(\sqrt{2qr},\sqrt{pq}) \text{ and } \mathbb{Q}(\sqrt{qr},\sqrt{2pq}),$$

have the same cyclotomic \mathbb{Z}_2 -extension k_{∞} , so the Iwasawa invariants are also the same.

Acknowledgement. The author thanks the anonymous referee for careful reading of the manuscript and helpful comments.

References

- A. El mahi and M. Ziane, The Iwasawa invariant μ-vanishes for Z₂-extensions of certain real biquadratic fields, Acta Math. Hungar., 165 (2021), 146–155.
- [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2), **109** (1979), 377–395.
- [3] T. Fukuda, Remarks on Z_p-extensions of number fields, Proc. Japan Acad. Ser. A, 70 (1994), 264–266.
- [4] T. Fukuda and K. Komatsu, On the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_{2} -extensions of $\mathbb{Q}(\sqrt{p})$. II, Funct. Approx. Comment. Math., **51** (2014), 167–179.
- [5] T. Fukuda, K. Komatsu, M. Ozaki and T. Tsuji, On the Iwasawa λ-invariant of the cyclotomic Z₂-extensions of Q(√p), III, Funct. Approx. Comment. Math., 54 (2016), 7–17.
- [6] G. Gras, Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier *l*, Ann. Inst. Fourier (Grenoble), 23 (1973), 1–48.
- [7] D. Gorensten, Finite Groups, 2nd ed., Chelsea Publishing Co. (New York, 1980).
- [8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263–284.
- [9] H. Hasse, Neue Begründung der Theorie der Normenrestsymbols, Journal Reine Angew. Math., 162 (1930), 134–144.
- [10] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math., 283/284 (1976), 313–363.
- [11] G. Karpilovsky, Unit Groups of Classical Rings, Oxford University Press (1988).
- [12] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory, 8 (1976), 271–279.
- [13] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65–85.
- [14] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sc. Imp. Univ. Tokyo sec. I, 4 (1943), 383–406.
- [15] A. Mouhib, On the parity of the class number of multiquadratic number fields, J. Number Theory, 129 (2009), 1205–1211.
- [16] Y. Mizusawa, On the Iwasawa invariants of Z₂-extensions of certain real quadratic fields, *Tokyo J. Math.*, 27 (2004), 255–261.
- [17] M. Ozaki and H. Taya, On the Iwasawa invariants λ_2 -invariants of certain families of real quadratic fields, *Manuscripta Math.*, **94** (1997), 437–444.
- [18] O. Taussky, A remark on the class fields tower, J. London Math. Soc., 12 (1937), 82–85.
- [19] M. Saito and H. Wada, Tables of ideal class group of real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci., 64 (1988), 347–349.
- [20] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Math., vol. 83, Springer (1997).

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.