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Abstract. For an infinite family of real biquadratic fields k we give the
structure of the Iwasawa module X = X(k∞) of the Z2-extension of k. For these
fields, we obtain that λ = µ = 0 and ν = 2. where λ, µ and ν are the Iwasawa
invariants of the cyclotomic Z2-extension of k.

1. Introduction

Let ℓ be a prime number and k a number field. A Galois extension k∞/k
is called a Zℓ-extension if the topological group Gal(k∞/k) is isomorphic to
the additive group Zℓ of ℓ-adic integers. Except for the trivial subgroup, all
the closed subgroups of Zℓ have finite index. Such a closed subgroup is of
the form ℓnZℓ for some positive integer n and the corresponding quotient
group is cyclic of order ℓn. Thus, if k∞/k is a Zℓ-extension, there is a unique
field kn of degree ℓn over k for all n, which called the nth layer of k∞/k.
These kn and k∞, are the only fields between k and k∞.

Every number field k, has at least one Zℓ-extension, namely the cyclo-
tomic Zℓ-extension. It is obtained by the compositum k∞ = kQ∞, where
Q∞ is the cyclotomic Zℓ-extension of the field of rational numbers Q.

For each positive integer n, let an = 2 cos( 2π
2n+2 ) and Qn = Q(an), then

Qn ⊂ Qn+1 by an+1 =
√
2 + an. The extension Qn is cyclic of degree 2n

over Q. This mean that Q∞ =
⋃∞

n=0 Qn is the unique Z2-extension of Q.
Specifically, the first layer Q1 of the cyclotomic Z2-extension of Q is the
real quadratic field Q(

√
2). Accordingly if

√
2 6∈ k, the first layer k1 of the

cyclotomic Z2-extension of a number field k is k1 = k(
√
2).
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2 A. EL MAHI

Let A(kn) be the ℓ-Sylow subgroup of ideal class group of nth layer kn,
and X(k∞) = lim←−A(kn) be the inverse limit with respect the norm map. For
all sufficiently large n, the order #A(kn) is described as,

#A(kn) = ℓλn+µpn+ν

by the Iwasawa invariants λ, µ and ν. The inverse limit X(k∞) = lim←−A(kn)

is called the Iwasawa module for k∞/k. Greenberg conjectured claims [8]
that λ and µ both vanish for any prime number ℓ and any totally real num-
ber field k. When k is abelian over the field of rational numbers Q, and k∞
is the cyclotomic Zℓ-extension of k, Ferrero and Washington [2] proved that
µ = 0.

In the previous years, many authors work on Greenberg’s conjecture for
totally real fields. For example, Ozaki and Taya [17] proved the existence
of infinitely many real quadratic fields k, with λ = µ = 0 in various situ-
ations. Y. Mizusawa [16] discusses some cases of real quadratic fields, for
which Greenberg’s conjecture hold. On the other hand when k = Q(

√
p) is

real quadratic field with prime number p, T. Fukuda and K. Kamotsue [4,5]
have given some sufficient conditions for the conjecture to be true, mainly in
terms of units of the nth layer kn of the cyclotomic Z2-extension for some n.
Comparing with previous papers, the main novelty of this article is to con-
struct an infinite family of real biquadratic fields k, such that the Iwasawa
module X(k∞), is isomorphic to Z/2Z× Z/2Z. Then we prove that the
Iwasawa λ and µ-invariants of k∞/k vanish, which confirms a conjecture of
Greenberg’s.

The aim of this article is to prove the following theorem:

Theorem 1. Let p, q and s be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8),

and let k be one of the biquadratic fields

Q
(√

qs,
√

2pq
)

, Q
(√

qs,
√
pq
)

or Q
(
√

2qs,
√
pq
)

.

Assume that the condition
(p

q

)

=
(p

s

)

= 1.

is satisfied. Then the Iwasawa module X(k∞) is isomorphic to Z/2Z×Z/2Z.
Consequently λ = µ = 0 and ν = 2.

2. Preliminary results

During this paper, we fix the following notations.
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ON THE STRUCTURE OF THE IWASAWA MODULE 3

k number field.
Uk the unit group of k.
Ok the ring of integers of k.
k1 the first layer of the cyclotomic Z2-extension of a number field k.
A1 the 2-Sylow subgroup of the ideal class group k1.
A the 2-Sylow subgroup of the ideal class group k.
NK/k the relative norm of K/k.
r(K/k) the number of primes of k ramified in K.
m positive integer.
εm the fundamental unit of Q(

√
m).

h(k) the class number of k.
h(m) the class number for the quadratic number field Q(

√
m).

(∗,∗∗ )m the mth power residue symbol.
(∗,∗∗ ) the norm residue symbol.
# the order of a finite group.

In this section, we are collecting some results that will be useful in the
sequel. The following result gives the rank of 2-Sylow subgroup of ideal class
group of a number field K, such that K contains a number field k with odd
class number, and the extension K/k is quadratic. Recall that the 2-rank of
the ideal class group of k, meant to be the dimension of A(K)/2A(K) as a
F2-vector space.

Lemma 1 [6]. Let K/k be a quadratic extension of number fields. As-

sume that the class number of k is odd, then the rank of the 2-Sylow subgroup

of the ideal class group of K, is equal to r(K/k)− e− 1 where 2e = [Uk : Uk

∩NK/k(K
∗)].

Let k be a number field and d a square-free integer satisfying
√
d 6∈ k.

The determination of the integer e return to search units of k that are norms
in the extension k(

√
d)/k. A unit ε of k is norm in k(

√
d)/k if and only if the

value of the norm residue symbol ( ε,dP ) equals 1, for each prime ideal P of k

that ramifies in k(
√
d). For instance, when all units of k are norms in the

extension k(
√
d)/k we have e = 0. Note that the definition of norm residue

symbol can be extended to any extension of the form k( m

√
d)/k where m is

a positive integer and k contains the mth roots of unity.
Let K/Q be a real biquadratic field. The field K has the three real

quadratic subextensions Fi/Q (i = 1, 2, 3). Let εi be the fundamental unit
of Fi (i = 1, 2, 3), and A(K), A(Fi) the 2-Sylow subgroup of ideal class group
of K, Fi, respectively. Put the group index QK = [UK : 〈−1, ε1, ε2, ε3〉].
Then, we have QK = 1, 2 or 4. S. Kuroda [14] proved the following equa-
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4 A. EL MAHI

tion:

#A(K) =
1

4
QK .#A(F1).#A(F2).#A(F3).

This is often called Kuroda’s class number formula. Furthermore, a system
of the fundamental units of K is one of the following types (cf. [13, p. 72,
Satz 1]):

(1) {ε1, ε2, ε3},
(2) {√ε1, ε2, ε3}, (NF1/Q(ε1) = 1),
(3) {√ε1,

√
ε2, ε3} (NF1/Q(ε1) = NF2/Q(ε2) = 1),

(4) {√ε1ε2, ε2, ε3}, (NF1/Q(ε1) = NF2/Q(ε2) = 1),
(5) {√ε1ε2,

√
ε3, ε2}, (NF1/Q(ε1) = NF2/Q(ε2) = NQ(F3/Q(ε3) = 1),

(6) {√ε1ε2,
√
ε2ε3,

√
ε1ε3} (NF1/Q(ε1) = NF2/Q(ε2) = NQ(F3/Q(ε3) = 1),

(7) {√ε1ε2ε3, ε2, ε3}, (NF1/Q(ε1) = NF2/Q(ε2) = NQ(F3/Q(ε3) = ±1).

Lemma 2 [11]. If NQ(
√
m)/Q(εm) = −1, then all odd prime factors of m

are congruent to 1 modulo 4.

The following result plays a crucial role in the proofs of our results.

Lemma 3 [15]. Let F be a real quadratic number field with fundamental
unit ε and discriminant D. Suppose that NF/Q(ε) = 1. Then, there exists a
positive square free integer m dividing D such that mε is a square in F .

Remark 1. As in the proof of Lemma 3, the integer m is norm in the
extension F/Q.

Proposition 1 [1]. Let p, q and r be distinct prime numbers with

p ≡ −q ≡ −s ≡ 1 (mod 4)

and let k = Q
(√

qs,
√
pq
)

. Then the rank of 2-Sylow subgroup of the ideal
class group of k equal to 2, if and only if the condition

(p

q

)

=
(p

s

)

= 1

is satisfied,

Add to the above proposition the following theorem which plays an im-
portant role in the proof of our main theorem.

Theorem 2 [3]. Let k∞/k be any Zp-extension such that any prime
of k∞ which is ramified in k∞/k is totally ramified.

(1) If rank(A1) = rank(A), then rankA(kn) = rank(A) for all n ≥ 1.
(2) If #A1 = #A, then #A(kn) = #A for all n ≥ 1.

Let us close this preliminary reminder by recalling the following known
result that we shall use through our computations.
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ON THE STRUCTURE OF THE IWASAWA MODULE 5

Theorem 3 [9]. Let k be a number field containing the m-th roots of
unity and K be a finite extension of K. Let α ∈ k∗, and β ∈ K∗. For an
ideal prime P of k we have

∏

P

(β, α

P

)

m
=

(NK/k(β), α

P
)

m
,

where the product is taken over all the prime ideals of K above P .

3. Rank of Iwasawa module of the cyclotomic Z2-extensions of
certain real biquadratic fields

Proposition 2. Let q and s be prime numbers such that q ≡ s ≡ −1
(mod 4). Then we have

√
qεqs ∈ Q(

√
qs) or

√
sεqs ∈ Q(

√
qs).

Consequently εqs = qu2 or εqs = sv2 where u and v are two elements in
Q(

√
qs).

Proof. The discriminant of Q(
√
qs) is equal to qs. By Lemma 2 we

have NQ(
√
qs)/Q(εqs) = 1. Lemma 3 gives that there exists an integer m | qs

such
√
mεqs ∈ Q(

√
qs). Since εqs is the fundamental unit of Q(

√
qs) then m

must be contained in {q, s}. Either way, we can conclude that

√
qεqs ∈ Q(

√
qs) or

√
sεqs ∈ Q(

√
qs).

Therefore εqs = qu2 or εqs = sv2 where u and v are two elements in Q(
√
qs)

as desired. �

Proposition 3. Let q and s be prime numbers such that q ≡ 3
(mod 8) and s ≡ 7 (mod 8). Then,

√
sε2qs ∈ Q(

√

2qs).

Consequently, ε2qs = sa2 where a is an element in Q(
√
2qs).

Proof. The discriminant of Q(
√
2qs) is equal to 8qs, and

NQ(
√
2qs)/Q(ε2qs) = 1

(see Lemma 2). By Lemma 3 and Remark 1 there exists an integer m | 2qs
such that m is a norm in the extension Q(

√
2qs)/Q and

√
mε2qs ∈ Q(

√
2qs).

By the facts
(

2
q

)

= −1, 2 and q are not norms in the extension Q(
√
2qs)/Q,

hence we deduce
√
sε2qs ∈ Q

(
√

2qs
)

.
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6 A. EL MAHI

Therefore ε2qs = sa2 where a is an element in Q(
√
2qs). This establishes the

proposition. �

Proposition 4. Let p and q be prime numbers such that p ≡ 5 (mod 8)
and q ≡ 3 (mod 8). Then,

√
pεpq ∈ Q(

√
pq) or

√
qεpq ∈ Q(

√
pq).

Proof. The discriminant of Q(
√
pq) is equal to 4pq, and

NQ(
√
pq)/Q(εpq) = 1.

By Lemma 3 there exists an integer m | 2pq such that m is a norm in
the extension Q(

√
pq)/Q (see Remark 1) and

√
mεpq ∈ Q(

√
pq). Since

εpq is the fundamental unit of Q(
√
pq) then m must be contained in

{2, p, q, 2p, 2q, 2pq}. On the other hand we have p ≡ 5 (mod 8) and q ≡ 3
(mod 8), which means:

(

2
p

)

=
(

2
q

)

= −1. Then 2, 2p, 2q and 2pq are not

norms in the extension Q(
√
pq)/Q. Therefore

√
pεpq ∈ Q(

√
pq) or

√
qεpq ∈ Q(

√
pq).

This shows the statement. �

Lemma 4. Let q and s be distinct prime numbers with

q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and let L be the biquadratic field L = Q
(√

qs,
√
2
)

. Then,
{√

ε2qsεqs, εqs, ε2
}

is a fundamental system of units of biquadratic field L. Therefore the Hasse
unit index QL is equal to 2.

Proof. By Proposition 2 we have

√
qεqs ∈ Q(

√
qs) or

√
sεqs ∈ Q(

√
qs).

Proposition 3 gives that
√
sε2qs ∈ Q(

√
2qs). Therefore,

√
εqsε2qs ∈ L.

Since N
Q(

√
2)/Q(ε2) = −1, ε2 is not a square root of an element of L. It fol-

lows that {√ε2qsεqs, εqs, ε2} is a fundamental system of units of biquadratic
field L, which gives that the Hasse unit index QL is equal to 2. �

Lemma 5. Let q and s be distinct prime numbers with

q ≡ 3 (mod 8) and s ≡ 7 (mod 8).

Then the class number of L = Q
(√

qs,
√
2
)

is odd.
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ON THE STRUCTURE OF THE IWASAWA MODULE 7

Proof. Assume that q and s satisfy the conditions in Lemma 5. By
Lemma 4 the Hasse unit index for the biquadratic number field L is equal
to 2. On the other hand, the class number formula gives that

h(L) =
2h(2qs)h(qs)h(2)

4
.

We have h(2) = 1 and h(qs) is odd [19]. Moreover since q ≡ 3 (mod 8), from
[10] we have h(2qs) ≡ 2 (mod 4). This allows us to conclude that the class
number of biquadratic number field L = Q(

√
qs,

√
2) is odd. �

Proposition 5. Let p, q and r be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and
(p

q

)

=
(p

s

)

= 1.

Let F be the biquadratic field F = Q
(√

2qs,
√
pq
)

. Then, the Hasse unit
index QF is equal to 2.

Proof. By Proposition 3 we have
√
sε2qs ∈ Q(

√
2qs), and Proposition

4 gives that
√
pεpq ∈ Q(

√
pq) or

√
qεpq ∈ Q(

√
pq). On the other hand, the

discriminant of Q(
√
2ps) is equal to 8ps, and NQ(

√
2ps)/Q(ε2ps) = 1. By

Lemma 3 there exists an integer m | 2ps such that m is a norm in the
extension Q(

√
2ps)/Q and

√
mε2ps ∈ Q(

√
2ps). On account of the fact

that ε2ps is the fundamental unit of Q(
√
2ps), m must be contained in

{2, p, s, 2p, 2s}. By the facts p ≡ 5 (mod 8), we have 2, 2p and 2s are not
norms in the extension Q(

√
2ps)/Q, hence we deduce

√
pε2ps ∈ Q(

√
pq) or√

sε2ps ∈ Q(
√
2ps). Therefore,

√
εpqε2ps,

√
ε2psε2qs or

√
εpqε2ps is in the bi-

quadratic field F = Q(
√
2qs,

√
pq). It follows that, a system of the fundamen-

tal units of F is one of the types {√εpqε2qs, ε2qs, ε2ps}, {√ε2psε2qs, εpq, ε2ps} or
{√εpqε2ps, ε2qs, ε2ps}. (See a system of the fundamental units of biquadratic
fields at the beginning of page 4). Either way, we can conclude that the
Hasse unit index QF is equal to 2. �

Proposition 6. Let p, q and r be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and
(p

q

)

=
(p

s

)

= 1.

Let k be the biquadratic field k = Q
(√

pq,
√
qs
)

. Then, the Hasse unit index
Qk is equal to 4.
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8 A. EL MAHI

Proof. By Proposition 2,
√
qεqs ∈ Q(

√
pq) or

√
sεqs ∈ Q(

√
qs). On the

other hand, Proposition 4 gives that
√
pεpq ∈ Q(

√
pq) or

√
qεpq ∈ Q(

√
pq).

Then
√
εpqεqs,

√
εpqεps and

√
εpsεqs,

are in the biquadratic field k = Q(
√
pq,

√
qs). This allows us to conclude

that a fundamental system of units of the biquadratic number field k, is
{√εpqεqs,

√
εpqεps,

√
εpsεqs}. Therefore, the Hasse unit index Qk for the bi-

quadratic number field k is equal to 4. Thus, we have proved the desired
result. �

In order to prove Theorem 1, we use the following proposition.

Proposition 7. Let p, q and s be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8),

and k = Q(
√
pq,

√
qs). Assume that the condition

(p

q

)

=
(p

s

)

= 1.

is satisfied. Then the rank of 2-Sylow subgroup of the ideal class group of

k1 = k(
√
2) = Q(

√
pq,

√
qs,

√
2) is equal to 2.

Proof. We see that k1 = L(
√
pq). From Lemma 5 the class number L

is odd, moreover the number of primes of L which are ramified in k1 is equal
to 3. Consequently for Lemma 1 the rank of 2-Sylow subgroup of the ideal
class group of k1 is equal to r(k1/L)− e− 1 such that r(k1/L) = 3 and 2e =
[UL : UL ∩N(k×1 )]. Then to prove that the rank of 2-Sylow subgroup of the
ideal class group of k1 is equal to 2, it suffices to show that all units of L
are norms in the extension k1/L. Since

( qs
p

)

= 1, the rational prime p splits

in Q
(√

qs
)

. Then pOQ(
√
qs) = P1P2, where P1 and P2 are two prime ideals

of Q(
√
qs) lying above p. By assumption

(

2
p

)

= −1, we have P1OL = B1

and P2OL = B2, where B1, B2 the two prime ideals of L lying respectively
above P1 and P2. So from the properties of the norm residue symbol we get

(εqs, pq

B1

)

=

(

NL/Q(
√
qs)(εqs), pq

P1

)

=

(

ε2qs, pq

P1

)

= 1,

(√
εqs, pq

B1

)

=

(

NL/Q(
√
qs)(

√
εqs), pq

P1

)

=

(±εqs, p

P1

)

=

(±qu2

p

)

=

(±q

p

)

= 1,
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(ε2, pq

B1

)

=

(

NL/Q(
√
qs)(ε2), pq

P1

)

=
(−1, p

P1

)

=
(−1

p

)

= 1,

(−1, pq

B1

)

=

(

NL/Q(
√
qs)(−1), pq

P1

)

=
(1, pq

P1

)

= 1.

On the other hand by Proposition 3, ε2qs = sa2. By the facts
( p
q

)

=
( p
s

)

= 1,

and
(

2
p

)

= −1, if we denote by P ′ the prime ideal of Q(
√
2qs) lying above

the prime p, we have pOQ(
√
2qs) = P ′ and P ′OL = B1B2, then

(√
ε2qs, pq

B1

)

=

(

NL/Q(
√
2qs)(

√
ε2qs), pq

P ′

)

=
(ε2qs, p

P ′

)

=
(sa2, p

P ′

)

=
(s, p

P ′

)

=
(s

p

)

= 1.

By the condition q ≡ 3 (mod 8) and s ≡ 7 (mod 8) we can see that rational
prime 2, remain inert in Q(

√
qs). Hence 2OQ(

√
qs) = S and SOL = R

2. For
all unit u in L we have

(u, qs

R

)

=

(

NL/Q(
√
qs)(u), pq

S

)

= 1.

Consequently all units of L are norms in the extension k1/L. This allows us
to conclude that e = 0 and complete the proof of the proposition. �

Theorem 4. Let p, q and s be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and let k be one of the following biquadratic fields

Q
(√

qs,
√

2pq
)

, Q
(√

qs,
√
pq
)

or Q
(
√

2qs,
√
pq
)

.

Assume that the condition
(p

q

)

=
(p

s

)

= 1.

is satisfied. Then the rank of the Iwasawa module X(k∞) is equal to 2.

Proof. The extension k1/k is ramified this means that the extension
k∞/k is totally ramified. In Proposition 1 the rank of the 2-Sylow subgroup
of the ideal class group of k is equal to 2. From Proposition 7 the rank of
the 2-Sylow subgroup of the ideal class group of k1 is equal to 2. Therefore
we obtain

rank(A) = rank(A1) = 2.
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By using Theorem 2, the rank of X(k∞) is equal to 2. �

4. Proof of main Theorem 1

Before giving the proof of the main theorem, we are going to give some
preliminary results.

It is known ([7, Ch. 5, Theorem 4.5]) that there exist exactly three in-
finite families of non-abelian finite 2-groups G of which the largest abelian
factor groups Gab are isomorphic to Z/2Z× Z/2Z. Namely, the generalized
quaternion groups Qm, dihedral groupsDm and the semidihedral groups Sm,
of order exactly 2m, with m ≥ 3 for the first two families and m ≥ 4 for the
last. A representation by generators and relations of these three families are
given by

Qm = 〈x, y | x2m−2

= y2, y4 = 1, y−1xy = x−1〉 with m ≥ 3,

Dm = 〈x, y | x2m−1

= y2 = 1, y−1xy = x−1〉 with m ≥ 3,

Sm = 〈x, y | x2m−1

= y2, y−1xy = x2
m−2−1〉 with m ≥ 4.

In this section we will use the following known properties of these
groups G (see, for instance, [12, pp. 272–273] and [7, Ch. 5]). The commu-
tator subgroup [G,G] of G is always cyclic: [G,G] = 〈x2〉. These groups G
possess exactly three sub-groups of index 2. Namely, H1 = 〈x〉, H2 = 〈x2, y〉,
H3 = 〈x2, xy〉. When G is not the quaternion group of order 8, only one of
the three maximal sub-groups of G is cyclic. When m ≥ 4, the other two
maximal sub-groups of G are not abelian and their maximal abelian fac-
tor groups, are again isomorphic to Z/2Z× Z/2Z. Of course, when G is
the quaternion group of order 8, its three maximal subgroups are cyclic and
when G is the dihedral group of order 8, its three subgroups are abelian.

Now let k be a number field whose 2-class group is isomorphic to Z/2Z
× Z/2Z. By Taussky [18], the Hilbert 2-class field tower of k terminates in
at most two steps. Denote by L(k) the Hilbert 2-class field of k and by L2(k)
that of L(k). Let Hi (i = 1,2,3) be the subgroups of G = Gal(L2(k)/k) asso-
ciated to the above notations. There are just three quadratic subextensions
Fi/k (i = 1, 2, 3) such that Hi = Gal(L2(k)/Fi) and the 2-Sylow subgroup
of the ideal class group A(Fi) ≃ Hab

i . If G ≃ Q8, or Z/2Z× Z/2Z, all the
three 2-class groups A(Fi)(i = 1, 2, 3) are cyclic. If G ≃ Q2m(m ≥ 4) or D2m ,
SD2m , then A(F1) is cyclic and A(F2) ≃ A(F3) ≃ Z/2Z× Z/2Z.

Lemma 6. Let p, q and s be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)
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and
(p

q

)

=
(p

s

)

= 1.

Let F be the biquadratic field F = Q
(√

2qs,
√
pq
)

. Then, the 2-class numbers
of F is equal to 4.

Proof. By Proposition 5 the Hasse unit index for biquadratic number
field F is equal to 2. The class number formula gives that:

h(F ) =
h(2qs)h(2ps)h(pq)

2
.

Moreover, since
( p
q

)

=
( p
s

)

= −
(

2
p

)

= 1, from [10] we have h(2qs) ≡ h(pq)

≡ h(2ps) ≡ 2 (mod 4). This allows us to conclude that the 2-class number
of biquadratic number field F is equal to 4. �

Lemma 7. Let p, q and s be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and
(p

q

)

=
(p

s

)

= 1.

Let k be the biquadratic field k = Q
(√

pq,
√
qs
)

. Then, the 2-Sylow subgroup
of the ideal class group of k is isomorphic to Z/2Z× Z/2Z.

Proof. By Proposition 6 the Hasse unit index for biquadratic number
field k is equal to 4. On the other hand, the class number formula gives that:

h(k) = h(pq)h(qs)h(ps),

we have h(qs) is odd [19]. Moreover since
( p
q

)

=
( p
s

)

= −
(

2
p

)

= 1. From

[10] we have h(pq) ≡ h(ps) ≡ 2 (mod 4). This allows us to conclude that the
2-class number of biquadratic number field k is equal to 4. By Proposition 1
the rank of the 2-ideal class group of k is equal to 2. From the above results,
we have the 2-Sylow subgroup of the ideal class group of k is isomorphic to
Z/2Z× Z/2Z. Thus, we have proved the desired result. �

Lemma 8. Let p, q and r be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8)

and
(p

q

)

=
(p

s

)

= 1.
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Let F be the biquadratic field F = Q
(√

2qs,
√
pq
)

. Then, the 2-Sylow sub-
group of the ideal class group of F is isomorphic to Z/2Z× Z/2Z.

Proof. By Proposition 5 the 2-class numbers of F is equal to 4, we can
see that the Hilbert 2-class field of F is the field L(F ) = Q

(√
p,
√
q,
√
s,
√
2
)

.

The three quadratic unramified subextensions of L(F )/F are: k1 = Q
(√

qs,√
pq,

√
2
)

, F1 = Q
(√

q,
√
p,
√
2s
)

and F2 = Q
(√

2q,
√
2p,

√
s
)

. Then the
2-Sylow subgroup of the ideal class group of F is not cyclic. This allows
us to conclude that A(F ) ≃ Gal(L(F )/F ) ≃ Z/2Z× Z/2Z. �

Theorem 5. Let p, q and r be distinct prime numbers with

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and s ≡ 7 (mod 8),

Assume that the condition
(p

q

)

=
(p

s

)

= 1

is satisfied. Then, the 2-Sylow subgroup of the ideal class group of k1 =
Q
(√

pq,
√
qs,

√
2
)

is isomorphic to Z/2Z× Z/2Z.

Proof. By Lemma 8 the 2-Sylow subgroup of the ideal class group of
biquadratic field F = Q

(√
2qs,

√
pq
)

is isomorphic to Z/2Z× Z/2Z. The

three quadratic unramified subextensions of F are: k1 = Q
(√

qs,
√
pq,

√
2
)

,

F1 = Q
(√

q,
√
p,
√
2s
)

and F2 = Q
(√

2q,
√
2p,

√
s
)

. By Proposition 7 we
have, the rank of the 2-ideal class group of k1 is equal to 2. This means
that the 2-Sylow subgroup of the ideal class group of k1 is not cyclic. So
we conclude that the 2-Sylow subgroup of the ideal class group of k1 is iso-
morphic to Z/2Z× Z/2Z, (see the properties of 2-group G such that Gab is
isomorphic to Z/2Z×Z/2Z at the beginning of this section). Thus, we have
proved the desired result. �

Now, we are ready to prove Theorem 1.
The extension k1/k is ramified, i.e. k∞/k is totally ramified. It was

noted in Lemma 7 that the 2-Sylow subgroup of the ideal class group of k is
isomorphic to Z/2Z× Z/2Z, and from Theorem 5 we have the 2-Sylow sub-
group of the ideal class group of k1 is isomorphic to Z/2Z× Z/2Z therefore
we obtain

A ≃ A1 ≃ Z/2Z× Z/2Z.

By applying Theorem 2 we get X(k∞) ≃ Z/2Z× Z/2Z. This means that
λ = µ = 0 and ν = 2. Finally, the three biquadratic fields

Q
(√

qr,
√
pq
)

, Q
(
√

2qr,
√
pq
)

and Q
(√

qr,
√

2pq
)

,

have the same cyclotomic Z2-extension k∞, so the Iwasawa invariants are
also the same.
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[6] G. Gras, Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré
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[14] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sc. Imp. Univ. Tokyo sec. I, 4
(1943), 383–406.

[15] A. Mouhib, On the parity of the class number of multiquadratic number fields, J. Num-
ber Theory, 129 (2009), 1205–1211.

[16] Y. Mizusawa, On the Iwasawa invariants of Z2-extensions of certain real quadratic
fields, Tokyo J. Math., 27 (2004), 255–261.

[17] M. Ozaki and H. Taya, On the Iwasawa invariants λ2-invariants of certain families of
real quadratic fields, Manuscripta Math., 94 (1997), 437–444.

[18] O. Taussky, A remark on the class fields tower, J. London Math. Soc., 12 (1937),
82–85.

[19] M. Saito and H. Wada, Tables of ideal class group of real quadratic fields, Proc. Japan
Acad. Ser. A Math. Sci., 64 (1988), 347–349.

[20] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in
Math., vol. 83, Springer (1997).

Acta Mathematica Hungarica

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article 
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of 
the accepted manuscript version of this article is solely governed by the terms of such publishing 
agreement and applicable law.


	On the structure of the Iwasawa module for Z2-extensions of certain real biquadratic ﬁelds
	Abstract
	Introduction
	Preliminary results
	Rank of Iwasawa module of the cyclotomic Z2-extensions of certain real biquadratic ﬁelds
	Proof of main Theorem 1
	Acknowledgement.

	References


