ON THE STRUCTURE OF THE IWASAWA MODULE FOR \mathbb{Z}_2 -EXTENSIONS OF CERTAIN REAL BIQUADRATIC FIELDS

A. EL MAHI

Faculty of Sciences, Oujda, Morocco e-mail: elmahi.abdelkader@yahoo.fr

(Received August 29, 2023; revised May 27, 2024; accepted June 13, 2024)

Abstract. For an infinite family of real biquadratic fields k we give the structure of the Iwasawa module $X = X(k_{\infty})$ of the \mathbb{Z}_2 -extension of k. For these fields, we obtain that $\lambda = \mu = 0$ and $\nu = 2$. where λ , μ and ν are the Iwasawa invariants of the cyclotomic \mathbb{Z}_2 -extension of k.

1. Introduction

Let ℓ be a prime number and k a number field. A Galois extension k_{∞}/k is called a \mathbb{Z}_{ℓ} -extension if the topological group $Gal(k_{\infty}/k)$ is isomorphic to the additive group \mathbb{Z}_{ℓ} of ℓ -adic integers. Except for the trivial subgroup, all the closed subgroups of \mathbb{Z}_{ℓ} have finite index. Such a closed subgroup is of the form $\ell^n\mathbb{Z}_{\ell}$ for some positive integer n and the corresponding quotient group is cyclic of order ℓ^n . Thus, if k_{∞}/k is a \mathbb{Z}_{ℓ} -extension, there is a unique field k_n of degree ℓ^n over k for all n, which called the n^{th} layer of k_{∞}/k . These k_n and k_{∞} , are the only fields between k and k_{∞} .

Every number field k , has at least one \mathbb{Z}_{ℓ} -extension, namely the cyclotomic \mathbb{Z}_{ℓ} -extension. It is obtained by the compositum $k_{\infty} = k \mathbb{Q}_{\infty}$, where \mathbb{Q}_{∞} is the cyclotomic \mathbb{Z}_{ℓ} -extension of the field of rational numbers \mathbb{Q} .

For each positive integer n, let $a_n = 2 \cos(\frac{2\pi}{2^{n+2}})$ and $\mathbb{Q}_n = \mathbb{Q}(a_n)$, then $\mathbb{Q}_n \subset \mathbb{Q}_{n+1}$ by $a_{n+1} = \sqrt{2+a_n}$. The extension \mathbb{Q}_n is cyclic of degree 2^n over Q. This mean that $\mathbb{Q}_{\infty} = \bigcup_{n=0}^{\infty} \mathbb{Q}_n$ is the unique \mathbb{Z}_2 -extension of Q. Specifically, the first layer \mathbb{Q}_1 of the cyclotomic \mathbb{Z}_2 -extension of $\mathbb Q$ is the real quadratic field $\mathbb{Q}(\sqrt{2})$. Accordingly if $\sqrt{2} \notin k$, the first layer k_1 of the cyclotomic \mathbb{Z}_2 -extension of a number field k is $k_1 = k(\sqrt{2})$.

Key words and phrases: Iwasawa theory, \mathbb{Z}_2 -extension, real biquadratic field, 2-class group, class field theory, unit.

Mathematics Subject Classification: 11R21, 11R26, 11R27, 11R29, 11R32.

^{0236-5294/\$20.00} \odot 2024 The Author(s), under exclusive licence to Akadémiai Kiadó, Budapest, Hungary

2 A. EL MAHI

Let $A(k_n)$ be the ℓ -Sylow subgroup of ideal class group of n^{th} layer k_n , and $X(k_{\infty}) = \lim A(k_n)$ be the inverse limit with respect the norm map. For all sufficiently large n, the order $\#A(k_n)$ is described as,

$$
\#A(k_n) = \ell^{\lambda n + \mu p^n + \nu}
$$

by the Iwasawa invariants λ , μ and ν . The inverse limit $X(k_{\infty}) = \lim_{\lambda \to 0} A(k_n)$
is called the Iwasawa module for k_{∞}/k . Greenberg conjectured claims [8] iscalled the Iwasawa module for k_{∞}/k . Greenberg conjectured claims [[8](#page-12-0)] that λ and μ both vanish for any prime number ℓ and any totally real number field k. When k is abelian over the field of rational numbers \mathbb{Q} , and k_{∞} isthe cyclotomic \mathbb{Z}_ℓ -extension of k, Ferrero and Washington [[2](#page-12-1)] proved that $\mu = 0.$

In the previous years, many authors work on Greenberg's conjecture for totally real fields. For example, Ozaki and Taya [\[17](#page-12-2)] proved the existence of infinitely many real quadratic fields k, with $\lambda = \mu = 0$ in various situations. Y. Mizusawa[[16\]](#page-12-3) discusses some cases of real quadratic fields, for which Greenberg's conjecture hold. On the other hand when $k = \mathbb{Q}(\sqrt{p})$ is real quadratic field with prime number p , T. Fukuda and K. Kamotsue [\[4,](#page-12-4)[5](#page-12-5)] have given some sufficient conditions for the conjecture to be true, mainly in terms of units of the n^{th} layer k_n of the cyclotomic \mathbb{Z}_2 -extension for some n. Comparing with previous papers, the main novelty of this article is to construct an infinite family of real biquadratic fields k , such that the Iwasawa module $X(k_{\infty})$, is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then we prove that the Iwasawa λ and μ -invariants of k_{∞}/k vanish, which confirms a conjecture of Greenberg's.

The aim of this article is to prove the following theorem:

THEOREM 1. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8},$

and let k be one of the biquadratic fields

$$
\mathbb{Q}(\sqrt{qs}, \sqrt{2pq}), \mathbb{Q}(\sqrt{qs}, \sqrt{pq}) \text{ or } \mathbb{Q}(\sqrt{2qs}, \sqrt{pq}).
$$

Assume that the condition

$$
\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.
$$

is satisfied. Then the Iwasawa module $X(k_{\infty})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. Consequently $\lambda = \mu = 0$ and $\nu = 2$.

2. Preliminary results

During this paper, we fix the following notations.

In this section, we are collecting some results that will be useful in the sequel. The following result gives the rank of 2-Sylow subgroup of ideal class group of a number field K , such that K contains a number field k with odd class number, and the extension K/k is quadratic. Recall that the 2-rank of the ideal class group of k, meant to be the dimension of $A(K)/2A(K)$ as a \mathbb{F}_2 -vector space.

LEMMA 1 [\[6\]](#page-12-6). Let K/k be a quadratic extension of number fields. Assume that the class number of k is odd, then the rank of the 2-Sylow subgroup of the ideal class group of K, is equal to $r(K/k) - e - 1$ where $2^e = [U_k : U_k]$ $\cap N_{K/k}(K^*)].$

Let k be a number field and d a square-free integer satisfying $\sqrt{d} \notin k$. The determination of the integer e return to search units of k that are norms in the extension $k(\sqrt{d})/k$. A unit ε of k is norm in $k(\sqrt{d})/k$ if and only if the value of the norm residue symbol $(\frac{\varepsilon, d}{\mathcal{P}})$ equals 1, for each prime ideal $\mathcal P$ of k that ramifies in $k(\sqrt{d})$. For instance, when all units of k are norms in the extension $k(\sqrt{d})/k$ we have $e = 0$. Note that the definition of norm residue symbol can be extended to any extension of the form $k(\sqrt[m]{d})/k$ where m is a positive integer and k contains the m^{th} roots of unity.

Let K/\mathbb{Q} be a real biquadratic field. The field K has the three real quadratic subextensions F_i/\mathbb{Q} ($i = 1, 2, 3$). Let ε_i be the fundamental unit of F_i $(i = 1, 2, 3)$, and $A(K)$, $A(F_i)$ the 2-Sylow subgroup of ideal class group of K, F_i , respectively. Put the group index $Q_K = [U_K : \langle -1, \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle].$ Then, we have $Q_K = 1, 2$ or 4. S. Kuroda [\[14](#page-12-7)] proved the following equation:

$$
#A(K) = \frac{1}{4}Q_K. #A(F_1).#A(F_2).#A(F_3).
$$

This is often called Kuroda's class number formula. Furthermore, a system ofthe fundamental units of K is one of the following types (cf. $[13, p. 72,$ $[13, p. 72,$ $[13, p. 72,$ Satz 1):

(1) $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\},\$ (2) $\{\sqrt{\varepsilon_1}, \varepsilon_2, \varepsilon_3\}, (N_{F_1/\mathbb{Q}}(\varepsilon_1) = 1),$ (3) $\left\{\sqrt{\varepsilon_1}, \sqrt{\varepsilon_2}, \varepsilon_3\right\}$ ($N_{F_1/\mathbb{Q}}(\varepsilon_1) = N_{F_2/\mathbb{Q}}(\varepsilon_2) = 1$), $(4) \{\sqrt{\varepsilon_1 \varepsilon_2}, \varepsilon_2, \varepsilon_3\}, (N_{F_1/\mathbb{Q}}^{1/\mathbb{Q}}(\varepsilon_1)) = N_{F_2/\mathbb{Q}}^{2/\mathbb{Q}}(\varepsilon_2) = 1),$ (5) $\{\sqrt{\varepsilon_1\varepsilon_2},\sqrt{\varepsilon_3},\varepsilon_2\},\ \frac{(N_{F_1/\mathbb{Q}}(\varepsilon_1))}{(N_{F_1/\mathbb{Q}}(\varepsilon_1))}=N_{F_2/\mathbb{Q}}(\varepsilon_2)=N_{\mathbb{Q}(F_3/\mathbb{Q}}(\varepsilon_3)=1),$ (6) $\{\sqrt{\varepsilon_1\varepsilon_2},\sqrt{\varepsilon_2\varepsilon_3},\sqrt{\varepsilon_1\varepsilon_3}\}^{\prime\prime\prime}(\sqrt{\varepsilon_1}\varepsilon_3)^{\prime\prime}(\sqrt{N_{F_1}}_{\sqrt{Q}}(\varepsilon_1)=N_{F_2/\mathbb{Q}}(\varepsilon_2)=N_{\mathbb{Q}(F_3/\mathbb{Q}}(\varepsilon_3)=1),$ (7) $\{\sqrt{\varepsilon_1 \varepsilon_2 \varepsilon_3}, \varepsilon_2, \varepsilon_3\},\ (N_{F_1/\mathbb{Q}}(\varepsilon_1) = N_{F_2/\mathbb{Q}}(\varepsilon_2) = N_{\mathbb{Q}(F_3/\mathbb{Q}}(\varepsilon_3) = \pm 1).$

LEMMA 2 [\[11](#page-12-9)]. If $N_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(\varepsilon_m) = -1$, then all odd prime factors of m are congruent to 1 modulo 4.

The following result plays a crucial role in the proofs of our results.

LEMMA $3 \left[15 \right]$. Let F be a real quadratic number field with fundamental unit ε and discriminant D. Suppose that $N_{F/\mathbb{Q}}(\varepsilon) = 1$. Then, there exists a positive square free integer m dividing D such that me is a square in F .

REMARK 1. As in the proof of Lemma [3,](#page-3-0) the integer m is norm in the extension F/\mathbb{Q} .

PROPOSITION 1 [\[1\]](#page-12-11). Let p, q and r be distinct prime numbers with

$$
p \equiv -q \equiv -s \equiv 1 \pmod{4}
$$

and let $k = \mathbb{Q}(\sqrt{qs}, \sqrt{pq})$. Then the rank of 2-Sylow subgroup of the ideal class group of k equal to 2, if and only if the condition

$$
\left(\frac{p}{q}\right)=\left(\frac{p}{s}\right)=1
$$

is satisfied,

Add to the above proposition the following theorem which plays an important role in the proof of our main theorem.

THEOREM 2 [[3](#page-12-12)]. Let k_{∞}/k be any \mathbb{Z}_p -extension such that any prime of k_{∞} which is ramified in k_{∞}/k is totally ramified.

(1) If rank $(A_1) = \text{rank}(A)$, then $\text{rank}(A_k) = \text{rank}(A)$ for all $n \geq 1$.

(2) If $#A_1 = #A$, then $#A(k_n) = #A$ for all $n \ge 1$.

Let us close this preliminary reminder by recalling the following known result that we shall use through our computations.

THEOREM 3 [\[9\]](#page-12-13). Let k be a number field containing the m-th roots of unity and K be a finite extension of K. Let $\alpha \in k^*$, and $\beta \in K^*$. For an ideal prime P of k we have

$$
\prod_{\overline{\mathcal{P}}} \left(\frac{\beta, \alpha}{\overline{\mathcal{P}}} \right)_m = \left(\frac{N_{K/k}(\beta), \alpha}{\mathcal{P}} \right)_m,
$$

where the product is taken over all the prime ideals of K above \mathcal{P} .

3. Rank of Iwasawa module of the cyclotomic \mathbb{Z}_2 -extensions of certain real biquadratic fields

PROPOSITION 2. Let q and s be prime numbers such that $q \equiv s \equiv -1$ (mod 4). Then we have

$$
\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}) \quad or \quad \sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}).
$$

Consequently $\varepsilon_{qs} = qu^2$ or $\varepsilon_{qs} = sv^2$ where u and v are two elements in $\mathbb{Q}(\sqrt{qs}).$

PROOF. The discriminant of $\mathbb{Q}(\sqrt{qs})$ is equal to qs. By Lemma [2](#page-3-1) we have $N_{\mathbb{Q}(\sqrt{qs})/\mathbb{Q}}(\varepsilon_{qs}) = 1$. Lemma [3](#page-3-0) gives that there exists an integer m | qs such $\sqrt{m\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})$. Since ε_{qs} is the fundamental unit of $\mathbb{Q}(\sqrt{qs})$ then m must be contained in ${q, s}$. Either way, we can conclude that

$$
\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})
$$
 or $\sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})$.

Therefore $\varepsilon_{qs} = qu^2$ or $\varepsilon_{qs} = sv^2$ where u and v are two elements in $\mathbb{Q}(\sqrt{qs})$ as desired. \square

PROPOSITION 3. Let q and s be prime numbers such that $q \equiv 3$ $(mod 8)$ and $s \equiv 7 \pmod{8}$. Then,

$$
\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs}).
$$

Consequently, $\varepsilon_{2qs} = sa^2$ where a is an element in $\mathbb{Q}(\sqrt{2qs})$.

PROOF. The discriminant of $\mathbb{Q}(\sqrt{2qs})$ is equal to 8qs, and

$$
N_{\mathbb{Q}(\sqrt{2qs})/\mathbb{Q}}(\varepsilon_{2qs}) = 1
$$

(see Lemma [2\)](#page-3-1). By Lemma [3](#page-3-0) and Remark [1](#page-3-2) there exists an integer $m \mid 2qs$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{2qs})/\mathbb{Q}$ and $\sqrt{mes_{qs}} \in \mathbb{Q}(\sqrt{2qs})$. By the facts $\left(\frac{2}{a}\right)$ $\left(\frac{2}{q}\right) = -1, 2$ and q are not norms in the extension $\mathbb{Q}(\sqrt{2qs})/\mathbb{Q},$ hence we deduce

$$
\sqrt{s\varepsilon_{2qs}} \in \mathbb{Q}\left(\sqrt{2qs}\right).
$$

Therefore $\varepsilon_{2qs} = sa^2$ where a is an element in $\mathbb{Q}(\sqrt{2qs})$. This establishes the proposition. \square

PROPOSITION 4. Let p and q be prime numbers such that $p \equiv 5 \pmod{8}$ and $q \equiv 3 \pmod{8}$. Then,

$$
\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})
$$
 or $\sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq}).$

PROOF. The discriminant of $\mathbb{Q}(\sqrt{pq})$ is equal to 4pq, and

 $N_{\mathbb{Q}(\sqrt{pq})/\mathbb{Q}}(\varepsilon_{pq})=1.$

By Lemma [3](#page-3-0) there exists an integer $m \mid 2pq$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{pq})/\mathbb{Q}$ (see Remark [1](#page-3-2)) and $\sqrt{m\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. Since ε_{pq} is the fundamental unit of $\mathbb{Q}(\sqrt{pq})$ then m must be contained in $\{2, p, q, 2p, 2q, 2pq\}$. On the other hand we have $p \equiv 5 \pmod{8}$ and $q \equiv 3$ (mod 8), which means: $\left(\frac{2}{n}\right)$ $\left(\frac{2}{p}\right) = \left(\frac{2}{q}\right)$ $\left(\frac{2}{q}\right) = -1$. Then 2, 2p, 2q and 2pq are not norms in the extension $\mathbb{Q}(\sqrt{pq})/\mathbb{Q}$. Therefore

$$
\sqrt{p\varepsilon_{pq}}\in \mathbb{Q}(\sqrt{pq})\ \ \text{or}\ \ \sqrt{q\varepsilon_{pq}}\in \mathbb{Q}(\sqrt{pq}).
$$

This shows the statement. \square

LEMMA 4. Let q and s be distinct prime numbers with

$$
q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}
$$

and let L be the biquadratic field $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$. Then, $\{\sqrt{\epsilon_{2qs}\epsilon_{qs}}, \epsilon_{qs}, \epsilon_2\}$ is a fundamental system of units of biquadratic field L. Therefore the Hasse unit index Q_L is equal to 2.

PROOF. By Proposition [2](#page-4-0) we have

$$
\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})
$$
 or $\sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs}).$

Proposition [3](#page-4-1) gives that $\sqrt{s \varepsilon_{2qs}} \in \mathbb{Q}(\sqrt{2qs})$. Therefore,

$$
\sqrt{\varepsilon_{qs}\varepsilon_{2qs}}\in L.
$$

Since $N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(\varepsilon_2) = -1$, ε_2 is not a square root of an element of L. It follows that $\{\sqrt{\varepsilon_{2qs}\varepsilon_{qs}}, \varepsilon_{qs}, \varepsilon_{2}\}\$ is a fundamental system of units of biquadratic field L, which gives that the Hasse unit index Q_L is equal to 2. \Box

LEMMA 5. Let q and s be distinct prime numbers with

$$
q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}.
$$

Then the class number of $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$ is odd.

PROOF. Assume that q and s satisfy the conditions in Lemma [5](#page-5-0). By Lemma [4](#page-5-1) the Hasse unit index for the biquadratic number field L is equal to 2. On the other hand, the class number formula gives that

$$
h(L) = \frac{2h(2qs)h(qs)h(2)}{4}.
$$

Wehave $h(2) = 1$ and $h(qs)$ is odd [[19](#page-12-14)]. Moreover since $q \equiv 3 \pmod{8}$, from [[10\]](#page-12-15) we have $h(2qs) \equiv 2 \pmod{4}$. This allows us to conclude that the class number of biquadratic number field $L = \mathbb{Q}(\sqrt{qs}, \sqrt{2})$ is odd. \square

PROPOSITION 5. Let p, q and r be distinct prime numbers with

$$
p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}
$$

and

$$
\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.
$$

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the Hasse unit index Q_F is equal to 2.

PROOF. By Proposition [3](#page-4-1) we have $\sqrt{\overline{{\mathcal{S}}{\mathcal{E}}_{2q}}s} \in \mathbb{Q}(\sqrt{2q}s)$, and Proposition [4](#page-5-2) gives that $\sqrt{p \varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{q \varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. On the other hand, the discriminant of $\mathbb{Q}(\sqrt{2ps})$ is equal to 8ps, and $N_{\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}}(\varepsilon_{2ps})=1$. By Lemma [3](#page-3-0) there exists an integer $m \mid 2ps$ such that m is a norm in the extension $\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}$ and $\sqrt{m\varepsilon_{2ps}} \in \mathbb{Q}(\sqrt{2ps})$. On account of the fact that ε_{2ps} is the fundamental unit of $\mathbb{Q}(\sqrt{2ps})$, m must be contained in $\{2, p, s, 2p, 2s\}$. By the facts $p \equiv 5 \pmod{8}$, we have 2, 2p and 2s are not norms in the extension $\mathbb{Q}(\sqrt{2ps})/\mathbb{Q}$, hence we deduce $\sqrt{p \varepsilon_{2ps}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{\overline{\mathcal{E}_{2ps}}}\in\mathbb{Q}(\sqrt{2ps})$. Therefore, $\sqrt{\overline{\mathcal{E}_{pq}\mathcal{E}_{2ps}}}$, $\sqrt{\overline{\mathcal{E}_{2ps}\mathcal{E}_{2qs}}}$ or $\sqrt{\overline{\mathcal{E}_{pq}\mathcal{E}_{2ps}}}$ is in the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. It follows that, a system of the fundamental units of F is one of the types $\{\sqrt{\varepsilon_{pq}\varepsilon_{2qs}}, \varepsilon_{2qs}, \varepsilon_{2ps}\}, \{\sqrt{\varepsilon_{2ps}\varepsilon_{2qs}}, \varepsilon_{pq}, \varepsilon_{2ps}\}$ or $\{\sqrt{\varepsilon_{pq}\varepsilon_{2ps}}, \varepsilon_{2qs}, \varepsilon_{2ps}\}.$ (See a system of the fundamental units of biquadratic fields at the beginning of page 4). Either way, we can conclude that the Hasse unit index Q_F is equal to 2. \Box

PROPOSITION 6. Let p, q and r be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8}$

and

$$
\left(\frac{p}{q}\right)=\left(\frac{p}{s}\right)=1.
$$

Let k be the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Then, the Hasse unit index Q_k is equal to 4.

8 A. EL MAHI

PROOF. By Proposition [2,](#page-4-0) $\sqrt{q\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{s\varepsilon_{qs}} \in \mathbb{Q}(\sqrt{qs})$. On the other hand, Proposition [4](#page-5-2) gives that $\sqrt{p\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$ or $\sqrt{q\varepsilon_{pq}} \in \mathbb{Q}(\sqrt{pq})$. Then

 $\sqrt{\varepsilon_{pq}\varepsilon_{qs}},\quad \sqrt{\varepsilon_{pq}\varepsilon_{ps}}\quad\text{and}\quad \sqrt{\varepsilon_{ps}\varepsilon_{qs}},$

are in the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. This allows us to conclude that a fundamental system of units of the biquadratic number field k , is $\{\sqrt{\varepsilon_{pq}\varepsilon_{qs}},\sqrt{\varepsilon_{pq}\varepsilon_{ps}},\sqrt{\varepsilon_{ps}\varepsilon_{qs}}\}$. Therefore, the Hasse unit index Q_k for the biquadratic number field k is equal to 4. Thus, we have proved the desired result. \square

In order to prove Theorem [1,](#page-1-0) we use the following proposition.

PROPOSITION 7. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8},$

and $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Assume that the condition

$$
\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.
$$

is satisfied. Then the rank of 2-Sylow subgroup of the ideal class group of $k_1 = k(\sqrt{2}) = \mathbb{Q}(\sqrt{pq}, \sqrt{qs}, \sqrt{2})$ is equal to 2.

PROOF. We see that $k_1 = L(\sqrt{pq})$. From Lemma [5](#page-5-0) the class number L is odd, moreover the number of primes of L which are ramified in k_1 is equal to 3. Consequently for Lemma [1](#page-2-0) the rank of 2-Sylow subgroup of the ideal class group of k_1 is equal to $r(k_1/L) - e - 1$ such that $r(k_1/L) = 3$ and $2^e =$ $[U_L: U_L \cap N(k_1^{\times})]$. Then to prove that the rank of 2-Sylow subgroup of the ideal class group of k_1 is equal to 2, it suffices to show that all units of L are norms in the extension k_1/L . Since $\left(\frac{qs}{p}\right)$ $\left(\frac{qs}{p}\right) = 1$, the rational prime p splits in $\mathbb{Q}(\sqrt{qs})$. Then $pO_{\mathbb{Q}(\sqrt{qs})} = \mathcal{P}_1\mathcal{P}_2$, where \mathcal{P}_1 and \mathcal{P}_2 are two prime ideals of $\mathbb{Q}(\sqrt{qs})$ lying above p. By assumption $\left(\frac{2}{n}\right)$ $\left(\frac{2}{p}\right) = -1$, we have $\mathcal{P}_1O_L = \mathfrak{B}_1$ and $P_2O_L = \mathfrak{B}_2$, where \mathfrak{B}_1 , \mathfrak{B}_2 the two prime ideals of L lying respectively above \mathcal{P}_1 and \mathcal{P}_2 . So from the properties of the norm residue symbol we get

$$
\left(\frac{\varepsilon_{qs}, pq}{\mathfrak{B}_1}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(\varepsilon_{qs}), pq}{\mathcal{P}_1}\right) = \left(\frac{\varepsilon_{qs}^2, pq}{\mathcal{P}_1}\right) = 1,
$$
\n
$$
\left(\frac{\sqrt{\varepsilon_{qs}}, pq}{\mathfrak{B}_1}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(\sqrt{\varepsilon_{qs}}, pq}{\mathcal{P}_1}\right) = \left(\frac{\pm \varepsilon_{qs}, p}{\mathcal{P}_1}\right)
$$
\n
$$
= \left(\frac{\pm qu^2}{p}\right) = \left(\frac{\pm q}{p}\right) = 1,
$$

ON THE STRUCTURE OF THE IWASAWA MODULE

$$
\left(\frac{\varepsilon_2, pq}{\mathfrak{B}_1}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(\varepsilon_2), pq}{\mathcal{P}_1}\right) = \left(\frac{-1, p}{\mathcal{P}_1}\right) = \left(\frac{-1}{p}\right) = 1,
$$

$$
\left(\frac{-1, pq}{\mathfrak{B}_1}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(-1), pq}{\mathcal{P}_1}\right) = \left(\frac{1, pq}{\mathcal{P}_1}\right) = 1.
$$

On the other hand by Proposition [3,](#page-4-1) $\varepsilon_{2qs} = sa^2$. By the facts $\left(\frac{p}{q}\right)$ $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right)$ $\frac{p}{s}$) = 1, and $\left(\frac{2}{n}\right)$ $\binom{2}{p}$ = -1, if we denote by P' the prime ideal of $\mathbb{Q}(\sqrt{2qs})$ lying above the prime p, we have $pO_{\mathbb{Q}(\sqrt{2q}s)} = \mathcal{P}'$ and $\mathcal{P}'O_L = \mathfrak{B}_1\mathfrak{B}_2$, then

$$
\left(\frac{\sqrt{\varepsilon_{2qs}}, pq}{\mathfrak{B}_1}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{2qs})}(\sqrt{\varepsilon_{2qs}}), pq}{\mathcal{P}'}\right) = \left(\frac{\varepsilon_{2qs}, p}{\mathcal{P}'}\right)
$$

$$
= \left(\frac{sa^2, p}{\mathcal{P}'}\right) = \left(\frac{s, p}{\mathcal{P}'}\right) = \left(\frac{s}{p}\right) = 1.
$$

By the condition $q \equiv 3 \pmod{8}$ and $s \equiv 7 \pmod{8}$ we can see that rational prime 2, remain inert in $\mathbb{Q}(\sqrt{qs})$. Hence $2\hat{O}_{\mathbb{Q}(\sqrt{qs})} = S$ and $SO_L = \mathfrak{R}^2$. For all unit u in L we have

$$
\left(\frac{u,qs}{\mathfrak{R}}\right) = \left(\frac{N_{L/\mathbb{Q}(\sqrt{qs})}(u),pq}{\mathcal{S}}\right) = 1.
$$

Consequently all units of L are norms in the extension k_1/L . This allows us to conclude that $e = 0$ and complete the proof of the proposition. \Box

THEOREM 4. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8}$

and let k be one of the following biquadratic fields

$$
\mathbb{Q}(\sqrt{qs},\sqrt{2pq}), \mathbb{Q}(\sqrt{qs},\sqrt{pq}) \text{ or } \mathbb{Q}(\sqrt{2qs},\sqrt{pq}).
$$

Assume that the condition

$$
\left(\frac{p}{q}\right)=\left(\frac{p}{s}\right)=1.
$$

is satisfied. Then the rank of the Iwasawa module $X(k_{\infty})$ is equal to 2.

PROOF. The extension k_1/k is ramified this means that the extension k_{∞}/k is totally ramified. In Proposition [1](#page-3-3) the rank of the 2-Sylow subgroup of the ideal class group of k is equal to 2. From Proposition [7](#page-7-0) the rank of the 2-Sylow subgroup of the ideal class group of k_1 is equal to 2. Therefore we obtain

$$
rank(A) = rank(A_1) = 2.
$$

By using Theorem [2,](#page-3-4) the rank of $X(k_{\infty})$ is equal to 2. \Box

4. Proof of main Theorem 1

Before giving the proof of the main theorem, we are going to give some preliminary results.

It is known ([[7](#page-12-16), Ch. 5, Theorem 4.5]) that there exist exactly three infinite families of non-abelian finite 2-groups G of which the largest abelian factor groups G^{ab} are isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Namely, the generalized quaternion groups Q_m , dihedral groups D_m and the semidihedral groups S_m , of order exactly 2^m , with $m \geq 3$ for the first two families and $m \geq 4$ for the last. A representation by generators and relations of these three families are given by

$$
Q_m = \langle x, y \mid x^{2^{m-2}} = y^2, y^4 = 1, y^{-1}xy = x^{-1} \rangle \text{ with } m \ge 3,
$$

\n
$$
D_m = \langle x, y \mid x^{2^{m-1}} = y^2 = 1, y^{-1}xy = x^{-1} \rangle \text{ with } m \ge 3,
$$

\n
$$
S_m = \langle x, y \mid x^{2^{m-1}} = y^2, y^{-1}xy = x^{2^{m-2}-1} \rangle \text{ with } m \ge 4.
$$

In this section we will use the following known properties of these groups G (see, for instance, [\[12](#page-12-17), pp. 2[7](#page-12-16)2–273] and [7, Ch. 5]). The commutator subgroup $[G, G]$ of G is always cyclic: $[G, G] = \langle x^2 \rangle$. These groups G possess exactly three sub-groups of index 2. Namely, $H_1 = \langle x \rangle$, $H_2 = \langle x^2, y \rangle$, $H_3 = \langle x^2, xy \rangle$. When G is not the quaternion group of order 8, only one of the three maximal sub-groups of G is cyclic. When $m \geq 4$, the other two maximal sub-groups of G are not abelian and their maximal abelian factor groups, are again isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Of course, when G is the quaternion group of order 8, its three maximal subgroups are cyclic and when G is the dihedral group of order 8, its three subgroups are abelian.

Now let k be a number field whose 2-class group is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ $\times \mathbb{Z}/2\mathbb{Z}$ $\times \mathbb{Z}/2\mathbb{Z}$ $\times \mathbb{Z}/2\mathbb{Z}$. By Taussky [[18\]](#page-12-18), the Hilbert 2-class field tower of k terminates in at most two steps. Denote by $L(k)$ the Hilbert 2-class field of k and by $L^2(k)$ that of $L(k)$. Let H_i $(i = 1, 2, 3)$ be the subgroups of $G = \text{Gal}(L^2(k)/k)$ associated to the above notations. There are just three quadratic subextensions F_i/k $(i = 1, 2, 3)$ such that $H_i = \text{Gal}(L^2(k)/F_i)$ and the 2-Sylow subgroup of the ideal class group $A(F_i) \simeq H_i^{ab}$. If $G \simeq Q_8$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, all the three 2-class groups $A(F_i)(i = 1, 2, 3)$ are cyclic. If $G \simeq Q_{2^m}(m \ge 4)$ or D_{2^m} , SD_{2^m} , then $A(F_1)$ is cyclic and $A(F_2) \simeq A(F_3) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

LEMMA 6. Let p, q and s be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8}$

and

$$
\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.
$$

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the 2-class numbers of F is equal to 4.

Proof. By Proposition [5](#page-6-0) the Hasse unit index for biquadratic number field F is equal to 2. The class number formula gives that:

$$
h(F) = \frac{h(2qs)h(2ps)h(pq)}{2}.
$$

Moreover, since $\left(\frac{p}{q}\right)$ $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right)$ $\left(\frac{p}{s}\right) = -\left(\frac{2}{p}\right)$ $\binom{2}{p} = 1$ $\binom{2}{p} = 1$ $\binom{2}{p} = 1$, from [[10\]](#page-12-15) we have $h(2qs) \equiv h(pq)$ $\equiv h(2ps) \equiv 2 \pmod{4}$. This allows us to conclude that the 2-class number of biquadratic number field F is equal to 4. \Box

LEMMA 7. Let p, q and s be distinct prime numbers with

$$
p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}
$$

and

$$
\left(\frac{p}{q}\right)=\left(\frac{p}{s}\right)=1.
$$

Let k be the biquadratic field $k = \mathbb{Q}(\sqrt{pq}, \sqrt{qs})$. Then, the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Proposition [6](#page-6-1) the Hasse unit index for biquadratic number field k is equal to 4. On the other hand, the class number formula gives that:

$$
h(k) = h(pq)h(qs)h(ps),
$$

we have $h(qs)$ is odd [\[19](#page-12-14)]. Moreover since $\left(\frac{p}{q}\right)$ $\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right)$ $\frac{p}{s}$) = - $\left(\frac{2}{p}\right)$ $\frac{2}{p}$ = 1. From [[10\]](#page-12-15) we have $h(pq) \equiv h(ps) \equiv 2 \pmod{4}$. This allows us to conclude that the 2-class number of biquadratic number field k is equal to 4. By Proposition [1](#page-3-3) the rank of the 2-ideal class group of k is equal to 2. From the above results, we have the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Thus, we have proved the desired result. \Box

LEMMA 8. Let p, q and r be distinct prime numbers with

$$
p \equiv 5 \pmod{8}, \quad q \equiv 3 \pmod{8} \quad and \quad s \equiv 7 \pmod{8}
$$

and

$$
\left(\frac{p}{q}\right) = \left(\frac{p}{s}\right) = 1.
$$

12 A. EL MAHI

Let F be the biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$. Then, the 2-Sylow subgroup of the ideal class group of F is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Proposition [5](#page-6-0) the 2-class numbers of F is equal to 4, we can see that the Hilbert 2-class field of F is the field $L(F) = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{s}, \sqrt{2})$. The three quadratic unramified subextensions of $L(F)/F$ are: $k_1 = \mathbb{Q}(\sqrt{qs})$, $\sqrt{pq}, \sqrt{2}$, $F_1 = \mathbb{Q}(\sqrt{q}, \sqrt{p}, \sqrt{2s})$ and $F_2 = \mathbb{Q}(\sqrt{2q}, \sqrt{2p}, \sqrt{s})$. Then the 2-Sylow subgroup of the ideal class group of \hat{F} is not cyclic. This allows us to conclude that $A(F) \simeq Gal(L(F)/F) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. \Box

THEOREM 5. Let p , q and r be distinct prime numbers with

 $p \equiv 5 \pmod{8}, q \equiv 3 \pmod{8} \text{ and } s \equiv 7 \pmod{8},$

Assume that the condition

$$
\left(\frac{p}{q}\right)=\left(\frac{p}{s}\right)=1
$$

is satisfied. Then, the 2-Sylow subgroup of the ideal class group of $k_1 =$ $\mathbb{Q}(\sqrt{pq}, \sqrt{qs}, \sqrt{2})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. By Lemma [8](#page-10-0) the 2-Sylow subgroup of the ideal class group of biquadratic field $F = \mathbb{Q}(\sqrt{2qs}, \sqrt{pq})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The three quadratic unramified subextensions of F are: $k_1 = \mathbb{Q}(\sqrt{qs}, \sqrt{pq}, \sqrt{2})$, $F_1 = \mathbb{Q}(\sqrt{q}, \sqrt{p}, \sqrt{2s})$ and $F_2 = \mathbb{Q}(\sqrt{2q}, \sqrt{2p}, \sqrt{s})$. By Proposition [7](#page-7-0) we have, the rank of the 2-ideal class group of k_1 is equal to 2. This means that the 2-Sylow subgroup of the ideal class group of k_1 is not cyclic. So we conclude that the 2-Sylow subgroup of the ideal class group of k_1 is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, (see the properties of 2-group G such that G^{ab} is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ at the beginning of this section). Thus, we have proved the desired result. \Box

Now, we are ready to prove Theorem [1](#page-1-0).

The extension k_1/k is ramified, i.e. k_{∞}/k is totally ramified. It was noted in Lemma [7](#page-10-1) that the 2-Sylow subgroup of the ideal class group of k is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and from Theorem [5](#page-11-0) we have the 2-Sylow subgroup of the ideal class group of k_1 is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ therefore we obtain

$$
A \simeq A_1 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.
$$

By applying Theorem [2](#page-3-4) we get $X(k_{\infty}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. This means that $\lambda = \mu = 0$ and $\nu = 2$. Finally, the three biquadratic fields

$$
\mathbb{Q}(\sqrt{qr}, \sqrt{pq}), \mathbb{Q}(\sqrt{2qr}, \sqrt{pq}) \text{ and } \mathbb{Q}(\sqrt{qr}, \sqrt{2pq}),
$$

have the same cyclotomic \mathbb{Z}_2 -extension k_{∞} , so the Iwasawa invariants are also the same.

Acknowledgement. The author thanks the anonymous referee for careful reading of the manuscript and helpful comments.

References

- [1] A. El mahi and M. Ziane, The Iwasawa invariant μ -vanishes for \mathbb{Z}_2 -extensions of certain real biquadratic fields, Acta Math. Hungar., 165 (2021), 146–155.
- [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2), 109 (1979), 377-–395.
- [3] T. Fukuda, Remarks on \mathbb{Z}_p -extensions of number fields, *Proc. Japan Acad. Ser. A*, 70 (1994), 264–266.
- [4] T. Fukuda and K. Komatsu, On the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_{2} extensions of $\mathbb{Q}(\sqrt{p})$. II, *Funct. Approx. Comment. Math.*, **51** (2014), 167–179.
- [5] T. Fukuda, K. Komatsu, M. Ozaki and T. Tsuji, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_2 -extensions of $\mathbb{Q}(\sqrt{p})$, III, Funct. Approx. Comment. Math., 54 $(2016), 7-17.$
- [6] G. Gras, Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier l, Ann. Inst. Fourier (Grenoble), 23 (1973), 1–48.
- [7] D. Gorensten, *Finite Groups*, 2nd ed., Chelsea Publishing Co. (New York, 1980).
- [8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263–284.
- [9] H. Hasse, Neue Begründung der Theorie der Normenrestsymbols, Journal Reine Angew. Math., 162 (1930), 134–144.
- [10] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math., 283/284 (1976), 313-363.
- [11] G. Karpilovsky, Unit Groups of Classical Rings, Oxford University Press (1988).
- [12] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory, 8 (1976), 271–279.
- [13] T. Kubota, Uber den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65–85.
- [14] S. Kuroda, Über den Dirichletschen Körper, *J. Fac. Sc. Imp. Univ. Tokyo sec. I*, 4 (1943), 383–406.
- [15] A. Mouhib, On the parity of the class number of multiquadratic number fields, J. Number Theory, 129 (2009), $1205-1211$.
- [16] Y. Mizusawa, On the Iwasawa invariants of \mathbb{Z}_2 -extensions of certain real quadratic fields, Tokyo J. Math., 27 (2004), 255–261.
- [17] M. Ozaki and H. Taya, On the Iwasawa invariants λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math., 94 (1997), 437–444.
- [18] O. Taussky, A remark on the class fields tower, J. London Math. Soc., 12 (1937), 82–85.
- [19] M. Saito and H. Wada, Tables of ideal class group of real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci., **64** (1988), 347-349.
- [20] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Math., vol. 83, Springer (1997).

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.