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Abstract. Elsner, Luca and Tachiya proved in [4] that the values of the
Jacobi-theta constants θ3(mτ ) and θ3(nτ ) are algebraically independent over Q

for distinct integers m, n under some conditions on τ . On the other hand, in [3]
Elsner and Tachiya also proved that three values θ3(mτ ), θ3(nτ ) and θ3(ℓτ ) are al-
gebraically dependent over Q. In this article we prove the non-vanishing of linear
forms in θ3(mτ ), θ3(nτ ) and θ3(ℓτ ) under various conditions on m, n, ℓ, and τ .
Among other things we prove that for odd and distinct positive integers m,n > 3
the three numbers θ3(τ ), θ3(mτ ) and θ3(nτ ) are linearly independent over Q

when τ is an algebraic number of some degree greater or equal to 3. In some
sense this fills the gap between the above-mentioned former results on theta con-
stants. A theorem on the linear independence over C(τ ) of the functions θ3(a1τ ),
. . . , θ3(amτ ) for distinct positive rational numbers a1, . . . , am is also established.

1. Introduction

For a complex number τ from the upper complex half plane H, the theta
functions are defined as follows;

θ2(τ)=2
∞
∑

n=0

q(n+1/2)2, θ3(τ)=1+2
∞
∑

n=1

qn
2

, and θ4(τ)=1+2
∞
∑

n=1

(−1)nqn
2

,

where q = eiπτ . For the sake of brevity we sometimes write θi instead of
θi(τ), i = 2, 3, 4.
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We define the j-function as follows;

j(τ) = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
, where λ = λ(τ) =

θ42
θ43

,

which is a modular function with respect to the group SL(2,Z).
The motivation of this article comes from the following sources: C. El-

sner and Y. Tachiya [3] proved that for distinct integers ℓ, m and n, the
functions θ3(ℓτ), θ3(mτ) and θ3(nτ) are algebraically dependent over Q.
C. Elsner, F. Luca and Y. Tachiya [4] proved the following: let τ be any
complex number with Im(τ) > 0 such that eiπτ is algebraic. Let m,n ≥ 1
be distinct positive integers. Then the numbers θ3(mτ) and θ3(nτ) are al-
gebraically independent over Q. In a subsequent paper [5] this occurs as a
special case of [5, Theorem 1.1].

Naturally the following two questions arise.

Question 1. Let m ≥ 2 and let a1, a2, . . . , am be distinct positive inte-
gers. Are the functions

θ3(a1τ), θ3(a2τ), . . . , θ3(amτ)

linearly independent over C(τ)?

By [5, Theorem1.1] we know that for distinct positive integers m,n, and
an algebraic number eiπτ with τ ∈ H, the two numbers θ3(mτ) and θ3(nτ)
are algebraically independent over Q. Then, for algebraic numbers α1 and
α2, which do not vanish simultaneously, the linear form

α1θ3(mτ) + α2θ3(nτ)

does not vanish. So it seems natural to consider linear forms in three values
of the theta constant θ3.

Question 2. What are the values of τ and α0, α1, α2 such that the
linear form

L := α0θ3(τ) + α1θ3(mτ) + α2θ3(nτ)

does not vanish?

In this article, we give the complete answer to the Question 1 and answer
the Question 2 in the following way: We consider linear forms with integers
n > m > 1, certain numbers τ ∈ H, and algebraic numbers α0, α1, α2, and
give conditions on α0, α1, α2 such that L 6= 0.

We divide the remaining part of our article into three sections: In Sec-
tion 2, we state our theorems, in Section 3 we collect all the tools to prove
our results, and in the last section we give the proof of all the theorems from
Section2.
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2. The results

2.1. The linear independence over C(τ ) of the functions θ3(a1τ ),
. . . , θ3(amτ ) in τ . We begin with the following result on the linear in-
dependence over C(τ) of Jacobi-theta constants.

Theorem 2.1. (i) Let a1, a2, . . . , am be distinct positive rational num-

bers. Then the m functions

θ3(a1τ), θ3(a2τ), . . . , θ3(amτ)

in τ ∈ H are linearly independent over C(τ).
(ii) Let α1, α2, . . . , αm be distinct positive real numbers. Then the m

functions

θ3(α1τ), θ3(α2τ), . . . , θ3(αmτ)

are linearly independent over C.

2.2. On the linear independence of values of Jacobi-theta con-
stants for θ3(τ ), θ3(mτ ), θ3(nτ ) with odd integers m,n.

Theorem 2.2. Let 3 ≤ n < m be two odd integers. If one of the follow-

ing conditions holds, namely

1. τ is an algebraic number of degree ≥ 3,
2. τ ∈ H such that q = eiπτ is algebraic over Q,

then the three numbers

θ3(τ), θ3(mτ), θ3(nτ)

are linearly independent over Q.

2.3. Results on linear forms α0θ3(τ )+α1θ3(mτ )+α2θ3(nτ ) for
mn ≡ 0 (mod 2) under certain restrictions on the coefficients. Let
m, n be two distinct positive integers, and let τ ∈ H satisfy the conditions
in Theorem 2.2. Since the numbers θ3(mτ) and θ3(nτ) are algebraically
independent when eiπτ is algebraic by [5, Theorem1.1], we consider linear
relations

α0θ3(τ) + α1θ3(mτ) + α2θ3(nτ)

for real algebraic numbers α1, α2, α3 with α0α1α2 6= 0. In order to state our
next result we introduce the following set. Let s ≥ 3 be any odd integer. Set

Ms :=
{

±
√
u,±i

√
u : u ∈ N ∧ s ≡ 0 (mod u)

}

.
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Theorem 2.3. Let m = 2as1 and n = 2bs2 be two distinct integers with

a, b ≥ 1 and odd integers s1, s2 ≥ 3. Let τ ∈ H such that eiπτ is an algebraic

number. Then, the inequality

α0θ3(τ) + α1θ3(mτ) + α2θ3(nτ) 6= 0

holds, if β = α2α
−1
0 satisfies at least one of the following conditions:

β−1 6∈ Ms2 , β4 6∈ Q, Rn,0(β
−4) 6= 0,

where Rn,0(X) is the polynomial defined by formula (3.5) in Lemma 3.5 in

Section 3.

In the case when additionally s1 and s2 are coprime odd integers, we
have Ms1 ∩Ms2 = {±1, ±i}. Then we obtain from Theorem 2.3 the following
corollary.

Corollary 2.4. Let m = 2as1 and n = 2bs2 be two distinct integers

with a, b ≥ 1 and odd coprime integers s1, s2 ≥ 3. Let τ ∈ H such that eiπτ

is an algebraic number. Then, the inequality

α0θ3(τ) + α1θ3(mτ) + α2θ3(nτ) 6= 0

holds for all algebraic numbers α0, α1, α2, whenever at least one of the num-

bers α0/α1 or α0/α2 is not a unit in the ring of Gaussian integers Z[i].

For any integer n > 1 let

ψ(n) := n
∏

p|n

(

1 +
1

p

)

,

where p runs through all primes dividing n and for n = 1, we define ψ(1) = 1.

Theorem 2.5. Let m = 2as be an integer with a ≥ 1 and an odd integer

s ≥ 3 and let n ≥ 3 be an odd integer. Let τ ∈ H be as in Theorem 2.2. Then,
the inequality

α0θ3(τ) + α1θ3(mτ) + α2θ3(nτ) 6= 0

holds, if β := α2α
−1
0 satisfies one of the following conditions:

degQ
(

β4
)

> ψ(n), Sn,0(n
2β−4)Sn,dn

(n2β−4) 6= 0,

where Sn,0(X) and Sn,dn
(X) are polynomials defined in (3.2) in Theorem 3.3

below.
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The preceding theorems do not treat θ3(τ), θ3(2τ), and θ3(3τ) simulta-
neously. For this situation we cite a result from [3, Example 1.5]: Let τ ∈ H,
and define

P (X,Y,Z) := 27X8−18X4Y 4−64X2Y 4Z2+64X2Y 2Z4−8X2Z6−Z8.

Then P (X0, Y0, Z0) = 0 holds for

X0 := θ3(3τ), Y0 := θ3(2τ), Z0 := θ3(τ).

This shows that θ3(τ), θ3(2τ), θ3(3τ) are homogeneously algebraically de-
pendent of degree 8.

Proposition 2.6. Let m ≥ 0 be an integer. Let τ ∈ H be as in Theo-
rem 2.2. Then the three numbers

θ3(2
mτ), θ3(2

m+1τ), θ3(2
m+2τ)

are linearly independent over Q.

In Proposition 2.6 it is not possible to avoid the condition degQ(τ) ≥ 3.
This follows for τ = i and m = 0 from the nontrivial relation

√

2 +
√
2 θ3(i)− 2θ3(2i) = 0

due to Ramanujan, cf. [1, p. 325]. We can also find similar linear relations
for the theta-constants θ2 and θ4:

√

2−
√
2 θ2(i)− 4

√
8 θ2(2i) = 0,

8
√
2 θ4(i)− θ4(2i) = 0.

Moreover, we have for τ = 1 + i
√
3 (with q = −e−π

√
3 ) the following linear

identity involving values of θ2 and θ3,

2θ2
(

1 + i
√
3
)

− (1 + i)
4

√

28− 16
√
3 θ3(1 + i

√
3) = 0.

3. Main tools towards the proof of our results

Theorem 3.1 [9, p. 5]. Let τ ∈ H be an algebraic number of degree dif-
ferent than 2. Then j(τ) is transcendental.

Theorem 3.2 [2, Theorem 4]. For any τ ∈ H, if q = eiπτ is an algebraic
number, and for integers j, k, ℓ ∈ {2, 3, 4} with j 6= k, then the three values
θj(τ), θk(τ) and Dθℓ(τ) are algebraically independent over Q. Here,

D :=
1

πi

d

dτ

is a differential operator.

Acta Mathematica Hungarica 173, 2024

C. ELSNER and V. KUMAR 396



6

Theorem 3.3 [7, Theorem 1, Corollary 4]. For any odd integer n ≥ 3
there exists an integer polynomial Pn(X,Y ) with degX Pn(X,Y ) = ψ(n) such
that

Pn

(

n2 θ
4
3(nτ)

θ43(τ)
, 16

θ42(τ)

θ43(τ)

)

= 0

holds for all τ ∈ H. Moreover, the polynomial Pn(X,Y ) is of the form

Pn(X,Y ) := Xψ(n)+R1(Y )Xψ(n)−1+ · · · +Rψ(n)−1(Y )X+Rψ(n)(Y )(3.1)

=

ψ(m)
∑

k=0

Rk(Y )Xψ(m)−k,

where Rj(Y ) ∈ Z[Y ] for j = 1, . . . , ψ(n), and

degRk(Y ) ≤ k · n− 1

n
(1 ≤ k ≤ ψ(n)).

Let

dn := max
1≤k≤ψ(n)

degY Rk(Y ) .

Then, Pn(X,Y ) can be written as

(3.2) Pn(X,Y ) =
dn
∑

j=0

Sn,j(X)Y j ,

where Sn,j(X) ∈ Z[X] with 0 ≤ j ≤ dn and dn > 0, such that

Sn,j(0) = 0 (1 ≤ j ≤ dn), Sn,dn
(X) 6≡ 0,(3.3)

Sn,0(0) = Pn(0, 0) ∈ Z \ {0} .(3.4)

The properties (3.2) to (3.4) of Pn(X,Y ) follow from the proof of [4,
Lemma 7]; cf. formula (9).

Remark 3.4. From (3.1), we can observe that for any complex number
α, the polynomial Pn(X,α) is non-zero.

The following lemmas are crucial for the proof of our results.

Lemma 3.5 [3, Lemma 2.5]. Let n = 2as be an integer with a ≥ 1 and
an odd integer s ≥ 3. Then there exists a polynomial Qn(X,Y ) with integral
coefficients such that

Qn

(

θ43(nτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0
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holds for all τ ∈ H. Moreover, the polynomial Qn(X,Y ) is of the form

(3.5) Qn(X,Y ) = c2
a

n Y 2aψ(s) +

2aψ(s)−1
∑

j=0

Rn,j(X)Y j ,

where cn is a non-zero integer. Moreover,

(3.6) degRn,j(X) ≤ 2aψ(s)− j (0 ≤ j < 2aψ(s)),

and

Qn(0, Y ) = c2
a

n Y 2aψ(s) ,(3.7)

Rn,0(X) = Qn(X, 0) = 24(2
a−1)ψ(s)X(2a−1)ψ(s)Ps(X, 0) .(3.8)

Proof. Apart from formula (3.8) the statements are given in [3,
Lemma2.5]. It remains to prove (3.8). We proceed by induction with re-
spect to a and follow the lines of the proof of [3, Lemma2.5]. As in the first
part of the proof of Lemma2.5 (corresponding to a = α = 1) we construct

the polynomials B2s(X,Y ), Q̃2s(X,Y ), and Q2s(X,Y ), where

Q̃2s(X
4, Y 4) = B2s(X,Y )B2s(X, iY )

and

Q2s(X,Y ) = Q̃2s(X, 1− Y ).

From the proof of Lemma2.5 we obtain

B2s(X, 1) = 22ψ(s)Ps(X
4, 0), B2s(X, i) = 22ψ(s)X4ψ(s).

We sketch the proof of these two identities. We take the polynomials
B2s(X,Y ) from formula (19) in [3] by setting n = 2s:

B2s(X,Y ) =
∑

ν,µ

22νaν,µX
4ν
(

1− Y 2
) 2µ(

1 + Y 2
) 2(ψ(s)−ν−µ)

;

where the variables aν,µ are the coefficients of the polynomial

Ps(X,Y ) =
∑

ν,µ

aν,µX
νY µ

from Theorem 3.3. Thus, on the one hand, we obtain

B2s(X, 1) =
∑

ν

22νaν,0X
4ν22(ψ(s)−ν) = 22ψ(s)

∑

ν

aν,0X
4ν = 22ψ(s)Ps

(

X4, 0
)

,

Acta Mathematica Hungarica 173, 2024

C. ELSNER and V. KUMAR 398



8

on the other hand,

B2s(X, i) =
∑

ν,µ
ν+µ=ψ(s)

22νaν,µX
4ν22µ = 22ψ(s)

∑

ν,µ
ν+µ=ψ(s)

aν,µX
4ν = 22ψ(s)X4ψ(s).

The last identity follows from the fact that aν,µ = 0 for ν + µ = ψ(s) with
µ ≥ 1, which is a consequence of (3.1) and degRk(Y ) < k for k ≥ 1. For
µ = 0 and ν = ψ(s) we have a0,ψ(s) = R0(Y ) = 1, cf. [7, p. 154].

This gives

Q̃2s(X
4, 1) = B2s(X, 1)B2s(X, i) = 24ψ(s)X4ψ(s)Ps(X

4, 0),

and, consequently,

Q2s(X, 0) = Q̃2s(X, 1) = 24ψ(s)Xψ(s)Ps(X, 0).

This shows that (3.8) holds for a = 1. Next, let (3.8) be already proven
for some fixed a ≥ 1. For the induction step we construct the polynomials
B2a+1s(X,Y ), Q̃2a+1s(X,Y ), and Q2a+1s(X,Y ), where

Q̃2a+1s(X
4, Y 4) = B2a+1s(X,Y )B2a+1s(X, iY ),

Q2a+1s(X,Y ) = Q̃2a+1s(X, 1− Y ).

Since degX Q2as(X,Y ) = 2aψ(s), we obtain by applying the induction hy-
pothesis,

B2a+1s(X, 1) = 22·2
aψ(s)Q2as(X

4)

= 22
a+1ψ(s)

(

24(2
a−1)ψ(s)X4(2a−1)ψ(s)Ps(X

4, 0)
)

,

B2a+1s(X, i) = 22·2
aψ(s)X4·2aψ(s) = 22

a+1ψ(s)X4·2aψ(s).

Therefore, it turns out that

Q̃2a+1s(X
4, 1) = B2a+1s(X, 1)B2a+1s(X, i)

= 22·2
a+1ψ(s)+4(2a−1)ψ(s)X4·2aψ(s)+4(2a−1)ψ(s)Ps(X

4, 0)

= 24(2
a+1−1)ψ(s)X4(2a+1−1)ψ(s)Ps(X

4, 0).

We complete the proof of the lemma by observing that

Q2a+1s(X, 0) = Q̃2a+1s(X, 1) = 24(2
a+1−1)ψ(s)X(2a+1−1)ψ(s)Ps(X, 0) ,

which is the identity in (3.8) with a replaced by a+ 1. �

Acta Mathematica Hungarica 173, 2024

LINEAR FORMS IN JACOBI THETA-CONSTANTS399



9

Lemma 3.6. Let s ≥ 3 be an odd integer and let Ps(X,Y ) be the integer

polynomial from Theorem 3.3 with n replaced by s. Then we have

Ps(X, 0) =
∏

u|s
u≥1

(

X − u2
)w(u,s/u)

,

where w(a, b) is defined by the number of integers k with

0 ≤ k < b and gcd(a, b, k) = 1.

Proof. The statement follows from the identity given in [4, Lemma 4].
�

Lemma 3.7. Let τ ∈ H be as in Theorem 2.2. Then the numbers θ3/θ4
and θ2/θ3 are transcendental.

Proof. Case 1: τ is an algebraic number of degree ≥ 3. By Theorem
3.1, the number

j(τ) = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2

is transcendental. This implies that λ = θ42/θ
4
3 is transcendental, and so is

θ2/θ3. Now by using the identity θ42 + θ44 = θ43 , we conclude that the number
θ3/θ4 is transcendental.

Case 2: τ ∈ H such that q = eiπτ is algebraic over Q. Since q = eiπτ

is an algebraic number, θ3 and θ4 are algebraically independent as well as
θ2 and θ3 (cf. Theorem 3.2). Therefore, the numbers θ3/θ4 and θ2/θ3 are
transcendental. By Cases 1 and 2, we complete the proof of the lemma. �

Lemma 3.8. Let m ≥ 3 be an integer which is either odd or an even

number of the form 2as, where a ≥ 1, and s ≥ 3 is an odd integer. Then,

for any τ ∈ H satisfying the conditions in Theorem 2.2, the number
θ3(mτ)
θ3(τ)

is

transcendental.

Proof. We assume that θ3(mτ)/θ3(τ) is algebraic. By Theorem 3.3
and Lemma 3.5, there exists an integer polynomial Tm(X,Y ) defined by

Tm(X,Y ) :=

{

Pm(m2X, 16Y ), if m ≡ 1 (mod 2),

Qm(X,Y ), if m ≡ 0 (mod 2),

such that

(3.9) Tm

(

θ43(mτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0.
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Now we consider the polynomial Rm(Y ) = Tm

( θ4
3(mτ)
θ4
3(τ)

, Y
)

∈ Q[Y ] having al-

gebraic coefficients by our assumption. The polynomial Rm(Y ) does not
vanish identically: for odd integers m this follows from [3, Lemma 2.1], for
even m this is a consequence of Lemma 3.5, cf. (3.5). Hence, by (3.9), we
obtain

Rm

(

θ42(τ)

θ43(τ)

)

= Tm

(

θ43(nτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0.

This implies that θ2/θ3 is algebraic, which is a contradiction to Lemma 3.7.
Therefore, we conclude that the number θ3(mτ)/θ3(τ) is transcendental. �

4. The proofs of our results

Proof of Theorem 2.1. (i) Suppose that the functions θ3(a1τ), . . . ,
θ3(amτ) are linearly dependent over C(τ). Then there exist c1(τ), . . . , cm(τ)
∈ C[τ ], not all zero and with minimal degree, such that

(4.1) c1(τ)θ3(a1τ) + · · · + cm(τ)θ3(amτ) = 0 for all τ ∈ H.

Let M be the common denominator of the rational numbers a1, . . . , am.
Then Maj ∈ Z for every j = 1, . . . ,m, and we notice that for all j =
1, 2, . . . ,m,

θ3(aj(τ + 2M)) = 1+2

∞
∑

n=1

eiπajτn2

e2Majπin2

= 1+2

∞
∑

n=1

eiπajτn2

= θ3(ajτ).

Hence, the functions θ3(a1τ), θ3(a2τ), . . . , θ3(amτ) are periodic.
Replacing τ by τ + 2M and using the periodicity, we have

(4.2) c1(τ + 2M)θ3(a1τ) + · · · + cm(τ + 2M)θ3(amτ) = 0 for all τ ∈ H.

Thus, from (4.1) and (4.2), we obtain

(c1(τ)− c1(τ + 2M))θ3(a1τ) + · · · + (c1(τ)− cm(τ + 2M))θ3(amτ) = 0

for all τ ∈ H. Note that the degree of the polynomial cj(τ + 2M)− cj(τ)
is strictly less than the degree of the polynomial cj(τ). Therefore, by the
minimality of the polynomials c1(τ), . . . , cm(τ), we get cj(τ + 2M) = cj(τ)
for all j = 1, 2, . . . ,m, which in turns implies that c1(τ), . . . , cm(τ) are con-
stant polynomials. Hence, in order to prove that these functions are linearly
independent over C(τ), it suffices to prove the linear independence over C.

Therefore we can consider the identity

c1θ3(a1τ) + · · · + cmθ3(amτ) = 0, for all τ ∈ H and fixed cj ∈ C.
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This can be rewritten as
(4.3)

c1

(

1+2
∞
∑

n=1

eiπτa1n2

)

+ · · · +cm

(

1+2
∞
∑

n=1

eiπτamn2

)

= 0 for all τ ∈ H.

Putting τ = iX and letting X → ∞ in the above equality, we have

(c1 + · · · + cm) + 2 lim
X→∞

(

c1

∞
∑

n=1

e−πXa1n2

+ · · · + cm

∞
∑

n=1

e−πXamn2

)

= 0.

Since limX→∞
(
∑∞

n=1 e
−πXajn2)

= 0 for all j = 1, 2, . . . ,m, we have

c1 + c2 + · · · + cm = 0.

Therefore (4.3) becomes

(4.4) c1

∞
∑

n=1

e−πXa1n2

+ · · · + cm

∞
∑

n=1

e−πXamn2

= 0 for all X > 0.

Without loss of generality we can assume that a1 < a2 < · · · < am. Multi-
plying the above equality by ea1πX , we get

−c1 = c1

∞
∑

n=2

e−πXa1n2+πXa1(4.5)

+

(

c2

∞
∑

n=1

e−πXa2n2+πXa1 + · · · + cm

∞
∑

n=1

e−πXamn2+πXa1

)

Since −πa1n
2+πa1<0 for n ≥ 2 and −πajn

2+πa1<0 for all j=2, 3, . . . ,m,
we see that the right-hand side of (4.5) tends to zero as X → ∞. Therefore,
we conclude that c1 = 0, and (4.4) becomes

c2

∞
∑

n=1

e−πXa2n2

+ · · · + cm

∞
∑

n=1

e−πXamn2

= 0 for all X ∈ N.

Now we multiply the above equality by ea2πX and proceed by the same
process in order to get c2 = 0. Hence, by continuing this process, we get
c1 = c2 = · · · = cm = 0, which gives a contradiction.

(ii) As we have seen in the above proof of the first statement in Theo-
rem 2.2(1), the assumption that the numbers a1, . . . , am are integers, is only
used to reduce the arguments on the linear independence of m-theta func-
tions θ3(a1τ), . . . , θ3(amτ) over the field C. Therefore, by using the similar
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approach as above, one can prove the second statement in Theorem 2.2(1).
�

Proof of Theorem 2.2. Throughout this proof, we denote the degree
of a polynomial T (X,Y ) with respect to X and Y by degX T (X,Y ) and
degY T (X,Y ), respectively; and by degT (X,Y ) we denote the total degree
of the polynomial T (X,Y ).

It is sufficient to prove that the three numbers 1, θ3(mτ)
θ3(τ)

, θ3(nτ)
θ3(τ)

are lin-

early independent over Q. Suppose that these numbers are linearly depen-
dent over Q. Then, there exist algebraic integers α0, α1, α2 not all zero such
that

(4.6) α0 + α1
θ3(mτ)

θ3(τ)
+ α2

θ3(nτ)

θ3(τ)
= 0.

It is clear that neither α1 nor α2 vanishes, sine otherwise (when α1 = 0,
α2 6= 0 or α1 6= 0, α2 = 0) there is a contradiction to Lemma 3.8, as both

the numbers θ3(mτ)
θ3(τ)

and θ3(nτ)
θ3(τ)

are transcendental. This implies that both,

α1 and α2, are non-zero. Then, when α0 = 0, we get a contradiction to
[5, Theorem1.1]. Thus, it implies that α0α1α2 6= 0. Then from (4.6) and
Theorem 3.3, we have

(4.7) Pm

(

m2

(

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

, 16
θ42(τ)

θ43(τ)

)

= 0.

By the explicit form of the polynomials Pm(X,Y ) and Pn(X,Y ), we see that
the polynomials

Hm(X) = Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16
θ42(τ)

θ43(τ)

)

and

Sn(X) = Pn

(

n2X4, 16
θ42(τ)

θ43(τ)

)

are non-zero. The polynomials

Pm

(

m2

(

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

, 16Y

)

and Pn

(

n2 θ
4
3(nτ)

θ43(τ)
, 16Y

)

have the same common root Y0 := θ42(τ)/θ
4
3(τ). Hence, the resultant

(4.8) R(X) := ResY

(

Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

, Pn(n
2X4, 16Y )

)
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is given by the determinant of a square matrix where the dimensions and
elements of the corresponding Sylvester matrix depend on the degrees and
on the coefficients, respectively, of the polynomials

Pm

(

m2
(

−α0

α1
− α2

α1

)

X, 16Y
)

and Pn(n
2X, 16Y ). By Lemma 3.8 we know that θ3(nτ)/θ3(τ) is transcen-

dental. Then, from Sn,dn
6≡ 0 in (3.3), we have

Sm,dm

(

m2
(

−α0

α1
− α2

α1
· θ3(nτ)
θ3(τ)

)4)

6= 0 and Sn,dn

(

n2 θ
4
3(nτ)

θ43(τ)

)

6= 0.

Hence, there is some real number δ > 0 depending on n,m,α0, α1, α2, and τ
such that

Sm,dm

(

m2
(

−α0

α1
− α2

α1
X
)4)

6= 0 and Sn,dn(n
2X4) 6= 0

hold for
∣

∣

∣

∣

X − θ3(nτ)

θ3(τ)

∣

∣

∣

∣

< δ .

Then, for all X inside this circle, we have

degY Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

= degY Pm

(

m2

(

−α0

α1
− α2

α1
· θ3(nτ)
θ3(τ)

)4

, 16Y

)

= dm,

and, similarly,

degY Pn

(

n2X4, 16Y
)

= degY Pn

(

n2 θ
4
3(nτ)

θ43(τ)
, 16Y

)

= dn.

For X restricted to the inside of the circle with radius δ mentioned above,
R(X) can be considered as a polynomial in X depending on the elements
of a Sylvester matrix with fixed dimensions dn + dm. On the scale of things
R(X) is some polynomial with algebraic coefficients such that

(4.9) R

(

θ3(nτ)

θ3(τ)

)

= 0,
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since Y0 is a common root of the polynomials under consideration. First
we note that the polynomial R(X) is not identically zero. We assume the
contrary, namely that

(4.10) R(X) ≡ 0.

Then, by (4.8) and (4.10),

ResY

(

Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

, Pn(n
2X4, 16Y )

)

= R(X) ≡ 0,

and so there exists a common factor H(X,Y ) ∈ C[X,Y ] with positive degree
in Y of the polynomials

Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

and Pn(n
2X4, 16Y ).

Let

(4.11) Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

= H(X,Y )G(X,Y ).

By substituting Y = λ(τ) defined in the introduction into the above equa-
tion, we have

(4.12) Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16λ(τ)
)

= H(X,λ(τ))G(X,λ(τ)).

Using the definition of Pm(X,Y ) in Theorem 3.3, we have

degY Rk(Y ) ≤ k
m− 1

m
< k (1 ≤ k ≤ ψ(m))

and, for k = 0,

degY R0(Y ) = 0, since R0(Y ) = 1.

Thus, we obtain by the right-hand side of formula (3.1),

degPm(X,Y ) = max
0≤k≤ψ(m)

{

ψ(m)− k + degY Rk(Y )
}

(4.13)

= ψ(m) = degX Pm(X,Y ) = degX Pm(X, 16λ(τ)).

The last two identities in (4.13) are a consequence of

Pm(X,Y ) = Xψ(m) +OY

(

Xψ(m)−1
)

.
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Replacing X in (4.13) by

m2
(

−α0

α1
− α2

α1
X
)4

,

we obtain the identity
(4.14)

degX Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16λ(τ)
)

= degPm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y
)

.

Hence, by the above identities, we obtain

degX H
(

X,λ(τ)
)

+ degX G
(

X,λ(τ)
)

= degX H
(

X,λ(τ)
)

G
(

X,λ(τ)
)

(4.15)

(4.12)
= degX Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16λ(τ)
)

(4.14)
= degPm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16Y

)

(4.11)
= degH(X,Y )G(X,Y ) = degH(X,Y ) + degG(X,Y ).

Additionally, we have the obvious inequalities
(4.16)
degX H

(

X,λ(τ)
)

≤ degH(X,Y ) and degX G
(

X,λ(τ)
)

≤ degG(X,Y ).

Thus, we obtain from (4.15) and (4.16) that degX H(X,λ(τ)) = degH(X,Y )
(and, similarly, degX G(X,λ(τ)) = degG(X,Y )), consequently

(4.17) degX H(X,λ(τ)) ≥ degY H(X,Y ) ≥ 1.

By Lemma 3.7, θ2(τ)
θ3(τ)

is transcendental in each of the two cases τ algebraic

of degree ≥ 3 and τ such that eiπτ is algebraic, hence the number 16λ(τ) is
transcendental over Q. So, it is also transcendental over Q. Let

βm :=
θ3(mτ)

θ3(τ)
.

By Theorem 3.3, we know that Pm

(

m2β4
m, 16λ(τ)

)

= 0. Moreover, it fol-

lows from [4, Lemma2] that the polynomial Pm

(

X, 16λ(τ)
)

is irreducible

over the field K := Q
(

λ(τ)
)

. Overall, we may consider βm as an algebraic
number over K, where, by (3.1),

(4.18) degK βm = 4degX Pm(X,Y ) = 4ψ(m).

Acta Mathematica Hungarica 173, 2024

C. ELSNER and V. KUMAR 406



16

Let us assume that the polynomial

(4.19) Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16λ(τ)
)

is reducible over K. Then we obtain the inequality

degK

(

m2
(

−α0

α1
− α2

α1
βm

)4)

< 4ψ(m).

But this is impossible by (4.18), and by

m2,
α0

α1
,
α2

α1
∈ Q \ {0},

since βm is transcendental over Q by the identity Pm(m2β4
m, 16λ(τ)) = 0 and

by the transcendence of λ(τ), as noticed earlier. The contradiction proves
the irreducibility of the polynomial in (4.19).

Thus, from (4.11) and (4.17), we obtain

Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16
θ42(τ)

θ43(τ)

)

= β1H(X,λ(τ))

for some non-zero complex number β1. Similarly, there exists a non-zero
complex number β2 such that

Pn

(

n2X4, 16λ(τ)
)

= β2H(X,λ(τ)),

and hence

Pm

(

m2
(

−α0

α1
− α2

α1
X
)4

, 16λ(τ)
)

= cPn(n
2X4, 16λ(τ)), c := β1/β2.

This polynomial identity holds for all complex numbers τ ∈ H. We know
that for τ → i∞ the function λ(τ) tends to zero. Hence, taking τ → i∞ into
the above equality, we have by Lemma 3.6,

∏

d|m

(

m2
(

−α0

α1
− α2

α1
X
)4

− d2
)w(d,m/d)

= c
∏

d|n
(n2X4 − d2)w(d,n/d).

Then, comparing the multiplicity of the zero of these polynomials at X =
−
(

α0 + α1/
√
m
)

/α2 (and d = 1 on the left-hand side), we obtain

m = w(1,m) ≤ max
d

w(d, n/d) ≤ n,

which is a contradiction to the condition n < m from the theorem. Hence,
the polynomial R(X) is non-zero. Therefore, it follows from (4.9) that the

Acta Mathematica Hungarica 173, 2024

LINEAR FORMS IN JACOBI THETA-CONSTANTS407



17

number θ3(nτ)/θ3(τ) is algebraic, which is a contradiction to the fact from
Lemma 3.8 that the number θ3(nτ)/θ3(τ) is transcendental. This proves the
assertion. �

Proof of Theorem 2.3. Let m = 2as1 and n = 2bs2 be two different
integers with a, b ≥ 1 and odd integers s1, s2 ≥ 3. By Lemma 3.5 there exist
integer polynomials Qm(X,Y ) and Qn(X,Y ) such that

Qm

(

θ43(mτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0 and Qn

(

θ43(nτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0.

We assume that the linear equation (4.6) holds, where α0, α1, α2 are
algebraic numbers satisfying the hypothesis in Theorem 2.3. As in the
proof of Theorem 2.2, we have α0α1α2 6= 0. By the hypotheses of the
theorem, we may assume without loss of generality that β := α2/α0 sat-
isfies Rn,0(β

−4) 6= 0. Namely, it is obvious by (3.8) and Lemma 3.6 that
Rn,0(β

−4) 6= 0 holds particularly for β−1 6∈ Ms2 and for β 6∈ Q.

Then we obtain

Qm

((

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

,
θ42(τ)

θ43(τ)

)

= 0.

By the explicit form of the polynomials Qm(X,Y ) and Qn(X,Y ), we see
that the polynomials

Qm

(

(

−α0

α1
− α2

α1
X
)4

,
θ42(τ)

θ43(τ)

)

and Qn

(

X4,
θ42(τ)

θ43(τ)

)

are non-zero. Hence, the polynomials

Qm

((

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

, Y

)

and Qn

(

θ43(nτ)

θ43(τ)
, Y

)

have the same common root Y0 = θ42(τ)/θ
4
3(τ).

Let

Hm(X,Y ) := Qm

((

−α0

α1
− α2

α1
X
)4

, Y
)

and

W (X) := ResY
(

Hm(X,Y ), Qn(X
4, Y )

)

∈ Q[X] .

From Lemma 3.5 we know that both degY Qm(X,Y ) and degY Qn(X,Y ) do
not depend on X , since the coefficients of the leading terms with respect to
Y are non-zero integers. Thus, W (X) can be considered as a polynomial for
all X .
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In order to show that the polynomial W (X) does not vanish identically,
we shall prove the existence of a number η satisfying W (η) 6= 0, or, equiva-
lently, that the polynomials Hm(η, Y ) and Qn(η

4, Y ) are coprime. Let

η := − 1

β
= −α0

α2
.

On the one hand, by using (3.7), we obtain

Hm(η, Y ) = Qm(0, Y ) = c2
a

mY 2aψ(s1).

Therefore, Hm(η, Y ) is a nonvanishing polynomial in Y having exclusively a
multiple root at Y = 0.

On the other hand, by applying formulas (3.5) and (3.6) in Lemma 3.5,
we have

Qn(η
4, Y ) = c2

b

n Y 2bψ(s2) +

2bψ(s2)−1
∑

j=0

Rn,j(η
4)Y j

with cn ∈ Z \ {0} and Rn,0(X) 6≡ 0 by (3.8) and Lemma 3.6. We already
know by η = −1/β that Rn,0(η

4) 6= 0. Consequently, we have Qn(η
4, 0) =

Rn,0(η
4) 6= 0.

Altogether, the polynomials Hm(η, Y ) and Qn(η
4, Y ) have no common

root. More precisely, we obtain for W (X),

W (η) = ResY
(

Hm(η, Y ), Qn(η
4, Y )

)

6= 0.

This shows that W (X) does not vanish identically. By construction, we

know that W (X0) vanishes for X0 :=
θ3(nτ)
θ3(τ)

, which implies the algebraicity

of θ3(nτ)/θ3(τ), a contradiction to Lemma 3.8. This finally shows that the
linear relation (4.6) cannot hold. �

Proof of Theorem 2.5. Let m = 2as and n be two integers with a
≥ 1 and odd integers n, s ≥ 3. By Theorem 3.3 and Lemma 3.5 there exist
integer polynomials Pn(X,Y ) and Qm(X,Y ) such that

Qm

(

θ43(mτ)

θ43(τ)
,
θ42(τ)

θ43(τ)

)

= 0 and Pn

(

n2 θ
4
3(nτ)

θ43(τ)
, 16

θ42(τ)

θ43(τ)

)

= 0.

We assume that the linear equation (4.6) holds. As in the proof of Theo-
rem 2.2 we have α0α1α2 6= 0. By the hypotheses of the theorem, we may
assume that β := α2/α0 satisfies either

degQ(β
4) > ψ(n), or Sn,0(n

2β−4)Sn,dn
(n2β−4) 6= 0.
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Then we obtain

Qm

((

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

,
θ42(τ)

θ43(τ)

)

= 0.

By the explicit form of the polynomials Qm(X,Y ) and Pn(X,Y ) given by
Theorem 3.3 and Lem- ma 3.5, we see that the polynomials

Qm

(

(

−α0

α1
− α2

α1
X
)4

,
θ42(τ)

θ43(τ)

)

and Pn

(

n2X4, 16
θ42(τ)

θ43(τ)

)

are non-zero. Hence, the polynomials

Qm

((

−α0

α1
− α2

α1

θ3(nτ)

θ3(τ)

)4

, Y

)

and Pn

(

n2 θ
4
3(nτ)

θ43(τ)
, 16Y

)

have the same common root Y0 = θ42(τ)/θ
4
3(τ). Let

Hm(X,Y ) := Qm

((

−α0

α1
− α2

α1
X
)4

, Y
)

and

W (X) := ResY
(

Hm(X,Y ), Pn(n
2X4, 16Y )

)

.

From Lemma 3.5, formula (3.5), we know that degY Qm(X,Y ) (and, con-
sequently, degY Hm(X,Y )) does not depend on X , since the coefficient of
the leading term with respect to Y is the non-zero integer c2

a

m . For all real
numbers X which are not a root of the polynomial Sn,dn

(X) in (3.2), the
leading term of Pn(X,Y ) with respect to Y does not vanish. Consequently,
W (X) is given by the same polynomial for all these X , since the degrees
degY Hm(X,Y ) and degY Pn(n

2X4, 16Y ) do not depend on all X satisfying
Sn,dn

(n2X4) 6= 0. Note that Sn,dn
(X) 6≡ 0 by (3.3).

In order to show that W (X) does not vanish identically for X with
Sn,dn

(n2X4) 6= 0, we shall prove the existence of a number η satisfying
W (η) 6= 0, or, equivalently, that the polynomialsHm(η,Y ) and Pn(n

2η4,16Y )
are coprime. Let

η := − 1

β
= −α0

α2
.

On the one hand, by using (3.7), we obtain

Hm(η, Y ) = Qm(0, Y ) = c2
a

mY 2aψ(s) .

Therefore, Hm(η, Y ) is a nonvanishing polynomial in Y having only a mul-
tiple root at Y = 0.
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On the other hand, by the hypothesis on β in Theorem 2.5 and by

degX Sn,dn
(X) ≤ degX Pn(X,Y ) = ψ(n)

(cf. (3.2) in Theorem 3.3), we know that

Sn,dn

(

n2η4
)

= Sn,dn

(

n2

β4

)

= Sn,dn

(

n2α4
0

α4
2

)

6= 0.

This shows that the degree with respect to Y of the polynomial on the
right-hand side of (3.2) does not change for the particular choice ofX = n2η4.
Moreover, it follows from (3.4) that Sn,0 6≡ 0, and therefore the inequality

degX Sn,0(X) ≤ degX Pn(X,Y ) = ψ(n)

and the conditions on β imply that

Sn,0

(

n2η4
)

= Sn,dn

(

n2

β4

)

= Sn,0

(

n2α4
0

α4
2

)

6= 0.

Thus, again the application of (3.2) gives Pn

(

n2η4, 0
)

6= 0. Altogether, the

polynomials Hm(η, Y ) and Pn(n
2η4, 16Y ) have no common root. More pre-

cisely, we obtain that

W (η) = ResY
(

Hm(η, Y ), Pn(n
2η4, 16Y )

)

6= 0.

This shows that W (X) does not vanish identically for all X satisfying
Sn,dn

(n2X4) 6= 0. By construction, we know that W (X0) vanishes for

X0 :=
θ3(nτ)
θ3(τ)

, and since θ3(nτ)/θ3(τ) is transcendental by Lemma 3.8, we

have by (3.3) that

Sn,dn

(

n2 θ
4
3(nτ)

θ43(τ)

)

6= 0.

Thus, X = X0 is a zero of the function W (X), which restricted to all values
X satisfying Sn,dn

(n2X4) 6= 0 results in the same nonvanishing polynomial
W (X). This implies the algebraicity of θ3(nτ)/θ3(τ), a contradiction to
Lemma 3.8. This finally shows that the linear relation (4.6) cannot hold.
�

Proof of Proposition 2.6. Replacing τ by 2mτ , it suffices to prove
the assertion for the three numbers

θ3(τ), θ3(2τ), θ3(4τ).
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We have the following identities:

2θ23(2τ) = θ23 + θ24, 2θ3(4τ) = θ3 + θ4.(4.20)

Suppose there exist algebraic numbers α, β, γ not all zero such that

(4.21) 2αθ3(τ) + 2βθ3(2τ) + 2γθ3(4τ) = 0.

Substituting (4.20) into (4.21), we get

2αθ3 + 2β

√

θ23 + θ24
2

+ γ(θ3 + θ4) = 0.

By rearranging this formula, we get

(4.22)
(

(2α+ γ)2 − 2β2
) 2

θ23 + (γ2 − 2β2)θ24 + 2γ(2α+ γ)θ3θ4 = 0.

Dividing (4.22), by θ23 , we obtain

(

(2α+ γ)2 − 2β2
) 2

+ (γ2 − 2β2)
(θ4
θ3

)2
+ 2γ(2α+ γ)

θ4
θ3

= 0.

Hence, by Lemma 3.7, we have

(2α+ γ)2 − 2β2 = 0, γ2 − 2β = 0, 2γ(2α+ γ) = 0.

Thus, we conclude that α = β = γ = 0. �

5. Concluding remarks

In the case when τ ∈ H such that eiπτ is algebraic, the number θ3(τ) is
transcendental due to the algebraic independence of the values θ3(mτ) and
θ3(nτ) for distinct positive integers m,n. By our Theorem 2.2, we know that
at least two of the numbers among θ3(τ), θ3(mτ) and θ3(nτ) are transcen-
dental for any τ ∈ H such that either τ is algebraic of degree ≥ 3 or eiπτ is
algebraic. In this context, it is interesting to consider the following problem:

Problem 1. Let τ and m, n be as in Theorem 2.2. Then 1, θ3(τ),
θ3(mτ) and θ3(nτ) are Q-linearly independent.

As a consequence of this problem, one can conclude the transcendence
of θ3(τ) for algebraic τ of degree ≥ 3, which is not known in this case.

In this paper we considered linear forms in three values of theta con-
stant θ3. It is natural to consider the following more general problem:
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Problem 2. Let a1, a2, . . . , am be distinct positive integers. Let α0,
. . . , αm be non-zero algebraic numbers. For what values of τ ∈ H, will the
linear form

L := α1θ3(a1τ) + · · ·+ αmθ3(amτ)

vanish? In the case αi’s are rational and τ = i log b
2π , where b ≥ 2 is an integer,

L 6= 0 by the result from [6] and [8].
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