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Abstract. Elsner, Luca and Tachiya proved in [4] that the values of the
Jacobi-theta constants 63(m7) and 03(n7) are algebraically independent over Q
for distinct integers m, n under some conditions on 7. On the other hand, in [3]
Elsner and Tachiya also proved that three values 03(m7),03(n7) and 03(¢7) are al-
gebraically dependent over Q. In this article we prove the non-vanishing of linear
forms in O3(m7), O3(n7) and O3(¢T) under various conditions on m, n, ¢, and 7.
Among other things we prove that for odd and distinct positive integers m,n > 3
the three numbers 03(7), 03(m7) and O3(n7) are linearly independent over Q
when 7 is an algebraic number of some degree greater or equal to 3. In some
sense this fills the gap between the above-mentioned former results on theta con-
stants. A theorem on the linear independence over C(7) of the functions 03(a17),
..., O3(an) for distinct positive rational numbers a, ..., an, is also established.

1. Introduction

For a complex number 7 from the upper complex half plane H, the theta
functions are defined as follows;

02()=23 g 0(r) =142 31", and 6u(r) =142 (~1)"¢"
n=0 n=1 n=1

where ¢ = ™. For the sake of brevity we sometimes write #; instead of
0;(1), 1 =2,3,4.
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393 LINEAR FORMS IN JACOBI THETA-CONSTANTS

We define the j-function as follows;

(A2 =X +1)3
A2(A—1)2 7

0

j(r) = 256 = gt

where A = A\(7)

which is a modular function with respect to the group SL(2,Z).

The motivation of this article comes from the following sources: C. El-
sner and Y. Tachiya [3] proved that for distinct integers ¢, m and n, the
functions 03(¢7), 63(m7) and O3(nt) are algebraically dependent over Q.
C. Elsner, F. Luca and Y. Tachiya [4] proved the following: let 7 be any
complex number with Im(7) > 0 such that e is algebraic. Let m,n > 1
be distinct positive integers. Then the numbers 03(m7) and 03(n7) are al-
gebraically independent over Q. In a subsequent paper [5] this occurs as a
special case of [5, Theorem 1.1].

Naturally the following two questions arise.

QUESTION 1. Let m > 2 and let aq, as, ..., an be distinct positive inte-
gers. Are the functions
93((117'), 93(0’27—)7 R 93(am7)

linearly independent over C(1)?

By [5, Theorem 1.1] we know that for distinct positive integers m,n, and
an algebraic number ™™ with 7 € H, the two numbers 3(m7) and 63(n7)
are algebraically independent over Q. Then, for algebraic numbers oy and
«z, which do not vanish simultaneously, the linear form

a103(mT) + agfs(nT)

does not vanish. So it seems natural to consider linear forms in three values
of the theta constant 3.

QUESTION 2. What are the values of T and «g, oy, ao such that the
linear form

L := apls(1) + a103(m7) + aeb3(nt)
does not vanish?

In this article, we give the complete answer to the Question 1 and answer
the Question 2 in the following way: We consider linear forms with integers
n >m > 1, certain numbers 7 € H, and algebraic numbers «g, a1, a2, and
give conditions on ag, a1, ag such that L # 0.

We divide the remaining part of our article into three sections: In Sec-
tion 2, we state our theorems, in Section3 we collect all the tools to prove
our results, and in the last section we give the proof of all the theorems from
Section 2.

Acta Mathematica Hungarica 173, 2024



C. ELSNER and V. KUMAR 394

2. The results

2.1. The linear independence over C(7) of the functions 03(a17),
«evy 03(anm,T) in 7. We begin with the following result on the linear in-
dependence over C(7) of Jacobi-theta constants.

THEOREM 2.1. (i) Let a1, ag, ..., ay, be distinct positive rational num-
bers. Then the m functions

93(&1’7’), 93(&27’), ceey 93(am7—)

in 7 € H are linearly independent over C(7).
(il) Let oy, ag, ..., au, be distinct positive real numbers. Then the m
functions

Os(a17), O3(asT), ..., O3(am,T)
are linearly independent over C.
2.2. On the linear independence of values of Jacobi-theta con-
stants for 03(7), 03(mT), 63(nT) with odd integers m,n.

THEOREM 2.2. Let 3 <n < m be two odd integers. If one of the follow-
ing conditions holds, namely

1. 7 is an algebraic number of degree > 3,

2. 7 € H such that ¢ = €™ is algebraic over Q,
then the three numbers

93(7’), 93(7717’), 93(TLT)
are linearly independent over Q.

2.3. Results on linear forms ap03(7) + a103(m7) + a203(nT) for
mn =0 (mod 2) under certain restrictions on the coefficients. Let
m, n be two distinct positive integers, and let 7 € H satisfy the conditions
in Theorem 2.2. Since the numbers 635(m7) and 03(nT) are algebraically
independent when €™ is algebraic by [5, Theorem 1.1], we consider linear
relations

04093(7') + a193(m7') + 04293(TL7')

for real algebraic numbers oy, s, ag with agajas # 0. In order to state our
next result we introduce the following set. Let s > 3 be any odd integer. Set

M, = {:E\/U,:Ei\/UZUGN/\SEO (modu)}.
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395 LINEAR FORMS IN JACOBI THETA-CONSTANTS

THEOREM 2.3. Let m = 2%s; and n = 2%sy be two dz’sﬂnct integers with
a,b>1 and odd integers si,s9 > 3. Let T € H such that €™ s an algebraic
number. Then, the inequality

apls3(T) + ar03(m7) + azfs(nt) # 0
holds, if 5 = agao_l satisfies at least one of the following conditions:

ﬂ_l g M82> /64 ¢ Qa Rn,O(/B_4) 7é Oa

where Ry, o(X) is the polynomial defined by formula (3.5) in Lemma 3.5 in
Section 3.

In the case when additionally s; and so are coprime odd integers, we
have My, N M, = {£1, +i}. Then we obtain from Theorem 2.3 the following
corollary.

COROLLARY 2.4. Let m = 2%; and n = 2bsy be two distinct integers
with a,b > 1 and odd coprime integers si,s9 > 3. Let 7 € H such that ™"
1 an algebraic number. Then, the inequality

apls(7) + arb3(mT) + agf3(nt) # 0

holds for all algebraic numbers g, aq, as, whenever at least one of the num-
bers ap /o or ag /g is not a unit in the ring of Gaussian integers Z][i].

For any integer n > 1 let
1
P(n) = nH(l + ),
pln P

where p runs through all primes dividing n and for n = 1, we define ¥)(1) = 1.

THEOREM 2.5. Let m = 2%s be an integer with a > 1 and an odd integer
s> 3 and let n > 3 be an odd integer. Let T € H be as in Theorem 2.2. Then,
the inequality

apbs(1) + a103(m7) + azfs(nt) # 0
holds, if B := agaal satisfies one of the following conditions:
degg (BY) > ¥(n), Spo(n*B~*)Sna, (n*87) #0,

where Sy 0(X) and S, 4, (X) are polynomials defined in (3.2) in Theorem 3.3
below.
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The preceding theorems do not treat 65(7), 03(27), and 63(37) simulta-
neously. For this situation we cite a result from [3, Example 1.5]: Let 7 € H,
and define

P(X,Y,Z) :=21X® —18X1Y* —64X?Y*Z? + 64X2Y?Z* —8X? 75 - 78,
Then P(Xy, Yy, Zp) = 0 holds for
Xo :=03(37), Yo:=03(27), Zy:=05(7).

This shows that 03(7), 03(27), 03(37) are homogeneously algebraically de-
pendent of degree 8.

PROPOSITION 2.6. Let m > 0 be an integer. Let 7 € H be as in Theo-
rem 2.2. Then the three numbers

03(2"7), 05(2™F1r),  03(2FPr)

are linearly independent over Q.

In Proposition 2.6 it is not possible to avoid the condition degg(7) > 3.
This follows for 7 =4 and m = 0 from the nontrivial relation

\/2 +V/203(i) — 203(2i) =0

due to Ramanujan, cf. [1, p.325]. We can also find similar linear relations
for the theta-constants 05 and 64:

\/2 —V205(i) — V/8605(2i) =0, V/204(i) — 04(2i) = 0.

Moreover, we have for 7 = 1 + i1/3 (with ¢ = —e‘”\/?’) the following linear
identity involving values of 65 and 63,

205(1+iv3) — (1 + i)</28 —16V/365(1 +iV3) = 0.

3. Main tools towards the proof of our results
THEOREM 3.1 [9, p. 5]. Let 7 € H be an algebraic number of degree dif-
ferent than 2. Then j(T) is transcendental.

THEOREM 3.2 [2, Theorem 4]. For any 7 € H, if ¢ = €™ is an algebraic
number, and for integers j, k,¢ € {2,3,4} with j # k, then the three values
0;(7), 0x(7) and DOy(T) are algebraically independent over Q. Here,

1 d
D =

i dT

is a differential operator.
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397 LINEAR FORMS IN JACOBI THETA-CONSTANTS

THEOREM 3.3 [7, Theorem 1, Corollary 4]. For any odd integer n > 3
there exists an integer polynomial P,(X,Y) with degx Pn(X,Y) = 1(n) such

that
L B4m) | B _
P"( 9§<r>’169§<r>>‘0

holds for all T € H. Moreover, the polynomial P,(X,Y) is of the form

(3.1) Po(X,Y) == X" 4 Ry(Y)XY™ ™ o 4 Ry 1 (V)X + Ry (V)

P(m)
k=0

where R;(Y) € Z[Y] for j =1,...,¢(n), and
deg Ri(Y) < k - n; ! (1<k<y(n)).
Let

d, = d Y).
| nax | degy Ry(Y)

Then, P,(X,Y) can be written as

dn
(3.2) Po(X,Y) = S (X)Y7,

‘]:
where Sy, j(X) € Z[X] with 0 < j < d,, and d,, > 0, such that

(3.3) Sni(0)=0 (1<j<d,), Sna (X)#O0,
.9 5,0(0) = Pa(0.0) € 27, {0}

The properties (3.2) to (3.4) of P,(X,Y) follow from the proof of [4,
Lemma 7]; cf. formula (9).

REMARK 3.4. From (3.1), we can observe that for any complex number
a, the polynomial P, (X, «) is non-zero.

The following lemmas are crucial for the proof of our results.

LEMMA 3.5 [3, Lemma 2.5]. Let n = 2%s be an integer with a > 1 and
an odd integer s > 3. Then there exists a polynomial Q,(X,Y") with integral

coefficients such that
03(nT) 03(T)
Qn< s ) > =0
03(r) " 05(7)
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holds for all T € H. Moreover, the polynomial Q,(X,Y) is of the form

291)(s)—1
(3.5) Qn(X,Y) =2 y*¥O + N R, (X)Y7,
j=0

where ¢, is a non-zero integer. Moreover,

(3.6) deg Ry, ;(X) <2%(s) —j (0 <7 < 2%(s)),
and
(3.7) Qn(0,Y) =2 y20) |

(3.8) Ruo(X) = Qn(X,0) = 242 ~D¥(s) x @' ~1v(s) p (X 0) .

PrROOF. Apart from formula (3.8) the statements are given in [3,
Lemma2.5]. It remains to prove (3.8). We proceed by induction with re-
spect to a and follow the lines of the proof of [3, Lemma2.5]. As in the first
part of the proof of Lemma 2.5 (corresponding to a = o = 1) we construct

the polynomials Bos(X,Y), QQS(X,Y), and Q25(X,Y), where
Qos(X1,Y") = Bao(X,Y) By (X, 1Y)
and
Qas(X,Y) = Qas(X,1-Y).
From the proof of Lemma 2.5 we obtain
Byy(X,1) = 22O P(X*0),  Boy(X,i) = 22() x4(),

We sketch the proof of these two identities. We take the polynomials
Bys(X,Y) from formula (19) in [3] by setting n = 2s:
st(X’ Y) — Z 22VCLVMX4V ( 1— Y2) 2:“‘(1 + Y2) 2(1/}(8)_1/_“') ;
v,p
where the variables a,,,, are the coefficients of the polynomial
P(X,Y)=> a,,X"Y"
v,p
from Theorem 3.3. Thus, on the one hand, we obtain
st (X, 1) _ Z 22uay’0X4u22(w(s)—u) _ 227,[)(3) Z au,0X4V _ 227,[)(3)Ps (X4, 0) ’
12 v
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on the other hand,

Bos(X, i) 2%, , XM = 9% ay X = 22() x4ls),
l/+u:w(8) v+u=y(s)

The last identity follows from the fact that a,, =0 for v + u = 1(s) with
> 1, which is a consequence of (3.1) and deg Ri(Y) < k for k > 1. For
p =0 and v = 1(s) we have ag ) = Ro(Y) =1, cf. [7, p. 154].
This gives
Q25 (X4, 1) = Bog(X, 1) Bag (X, i) = 2% X#() p (x4 0),
and, consequently,

Q2s(X,0) = Qos(X,1) = 2 XV p (X 0).

This shows that (3.8) holds for a = 1. Next, let (3.8) be already proven
for some fixed a > 1. For the induction step we construct the polynomials
Bga+15(X, Y), Q2a+1S(X, Y), and Q2a+18(X,Y), where

Qoet15( X4 YY) = Boair (X, Y)Boar14(X, 1Y),
Qaer15(X,Y) = Qoo o(X, 1= Y).

Since degy Q2:5(X,Y) = 2%Y(s), we obtain by applying the induction hy-
pothesis,

Baarig(X,1) = 222¥) Qga g (X4
= 22“+1¢(8)(24(2“—1) (s) x42*=1)¢(s) p Py(X*, 0))
By (X, i) = 222°06) X206 _ 9271000 X 42°005)
Therefore, it turns out that

Qoet15(X?%,1) = Boat14(X, 1) Boat14(X,17)
_ 22-2‘”11/;(8)4-4(2“—l)w(s)X4-2“w(s)+4(2“—1)1/;(3)PS(X4’ O)

= 42 =1)u(s) x4 =) p (x4 ).
We complete the proof of the lemma by observing that
Qae15(X,0) = Qs (X, 1) = 21T WO X ETDRO B (X ),
which is the identity in (3.8) with a replaced by a +1. O
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LEMMA 3.6. Let s > 3 be an odd integer and let Ps(X,Y") be the integer
polynomial from Theorem 3.3 with n replaced by s. Then we have

Py(x,0) = ] (X —u?) "™,
I
where w(a,b) is defined by the number of integers k with
0<k<b and gcd(a,bk)=1.

PRrOOF. The statement follows from the identity given in [4, Lemma 4].
u

LEMMA 3.7. Let T € H be as in Theorem 2.2. Then the numbers 0s/0,
and 05 /0s are transcendental.

PRrROOF. Cuase 1: 7 is an algebraic number of degree > 3. By Theorem
3.1, the number

(A2 = A+1)3
AZ(\ —1)2

is transcendental. This implies that A = 951 / 9§ is transcendental, and so is
02/03. Now by using the identity 05 + 6} = 65, we conclude that the number
03/, is transcendental.

Case 2: 7€ H such that ¢ = €™ is algebraic over Q. Since ¢ = ™"
is an algebraic number, 63 and 04 are algebraically independent as well as
0y and 03 (cf. Theorem 3.2). Therefore, the numbers 63/6, and 65/03 are
transcendental. By Cases 1 and 2, we complete the proof of the lemma. [J

(1) = 256

LEMMA 3.8. Let m > 3 be an integer which is either odd or an even
number of the form 2%s, where a > 1, and s > 3 is an odd integer. Then,

for any T € H satisfying the conditions in Theorem 2.2, the number 0;32;) 18
transcendental.

PROOF. We assume that 03(m7)/05(7) is algebraic. By Theorem 3.3
and Lemma 3.5, there exists an integer polynomial T}, (X,Y") defined by

P,(m?X,16Y), if m=1 (mod 2),

Tm(X,Y) = {Qm(ny)a fm=0 (mOd 2)7

such that

05(mt) 65(7) B
39 (i i) =°

Acta Mathematica Hungarica 173, 2024
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Now we consider the polynomial Ry, (Y) = Ty, ( egggg) ,Y) € Q[Y] having al-
gebraic coefficients by our assumption. The polynomial R,,(Y’) does not
vanish identically: for odd integers m this follows from [3, Lemma 2.1], for

even m this is a consequence of Lemma 3.5, cf. (3.5). Hence, by (3.9), we

obtain
e git)) = (i) =

This implies that 62 /603 is algebraic, which is a contradiction to Lemma 3.7.
Therefore, we conclude that the number 65(m7)/03(7) is transcendental. [

4. The proofs of our results

PROOF OF THEOREM 2.1. (i) Suppose that the functions 65(ay7), ...,
05(a,7) are linearly dependent over C(7). Then there exist ¢1(7), ..., ¢p(T)
€ C|7], not all zero and with minimal degree, such that

(4.1) c1(7)03(arT) + -+ + cm(7)03(amm) =0 for all 7 € H.

Let M be the common denominator of the rational numbers aq, ..., a,.
Then Maj; € Z for every j=1,...,m, and we notice that for all j =
1,2,....m,

oo oo
93(&j(’7’ + 2M)) _ 1+2Zei7mj7n2e2Maj7rin2 _ 1+2Zei7raj7'n2 _ 93(&j’7’).

n=1 n=1

Hence, the functions 03(a17), 03(as7), ..., 03(a;,7) are periodic.
Replacing 7 by 7 + 2M and using the periodicity, we have

(4.2) c(t+2M)b5(ar7) + -+ + e (7 + 2M)03(a,7) =0 for all 7 € H.
Thus, from (4.1) and (4.2), we obtain
(ci(r) — (T +2M))bs5(ar7) + - - - + (c1(7) — em (T + 2M))03(a,T) = 0

for all 7 € H. Note that the degree of the polynomial ¢;(7 + 2M) — ¢;(7)

is strictly less than the degree of the polynomial ¢;(7). Therefore, by the

minimality of the polynomials ¢1(7), ..., ¢y (), we get ¢ (T + 2M) = ¢;(7)

for all 7 =1,2,...,m, which in turns implies that c1(7), ..., ¢;n(7) are con-

stant polynomials. Hence, in order to prove that these functions are linearly

independent over C(7), it suffices to prove the linear independence over C.
Therefore we can consider the identity

c103(a17) + - + embs(an,,7) =0, for all 7 € H and fixed ¢; € C.
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This can be rewritten as
(4.3)

o0 o0
el <1+2Zeiml”2> + e <1+22e”mm”2> —0 for all 7 € H.

n=1 n=1

Putting 7 = iX and letting X — oo in the above equality, we have

o o
(c14+-+em)+ 2X11_r>noo<01 Ze_”X‘“" + —i—cmZe_”X“m” > =0.

n=1 n=1

Since limx o0 (D oney e_”X“J'”2) =0 forall j =1,2,...,m, we have

ci+ecy+ - +cepy =0
Therefore (4.3) becomes

(o] o0
(4.4) Y e et e, Y e ™ e =0 for all X > 0.
n=1

n=1

Without loss of generality we can assume that a; < as < - < a,. Multi-

plying the above equality by e®™X we get
o
2
(45) — Z e—ﬂXaln +rXa,
n=2
[o¢] o0
- 2+rXa —rXa,n’*+rXa
+<C2Z€ T Xaxn®+m 1+"'+cmze m 1>
n=1 n=1
Since —ma;n?+may <0 for n > 2 and —7Tajn2+7TCL1 <0forall j=2,3,...,m,

we see that the right-hand side of (4.5) tends to zero as X — oo. Therefore,
we conclude that ¢; = 0, and (4.4) becomes

o o
c Z e X e Z e~™Xamm® — 0 for all X € N.
n=1

n=1

asmX

Now we multiply the above equality by e and proceed by the same
process in order to get co = 0. Hence, by continuing this process, we get
c] =cy = -+ = ¢y =0, which gives a contradiction.

(ii) As we have seen in the above proof of the first statement in Theo-
rem 2.2(1), the assumption that the numbers aq, ..., a,, are integers, is only
used to reduce the arguments on the linear independence of m-theta func-
tions O3(ai7), ..., 03(a,7) over the field C. Therefore, by using the similar
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approach as above, one can prove the second statement in Theorem 2.2(1).
O

PROOF OF THEOREM 2.2. Throughout this proof, we denote the degree
of a polynomial T'(X,Y’) with respect to X and Y by degy T'(X,Y) and
degy T(X,Y), respectively; and by deg T'(X,Y’) we denote the total degree
of the polynomial T'(X,Y).

It is sufficient to prove that the three numbers 1, egg?g), 0933((":))
early independent over Q. Suppose that these numbers are linearly depen-
dent over Q. Then, there exist algebraic integers g, a1, as not all zero such

that

are lin-

93(m7-) o 93(TLT)
b3(r) 7 0s(7)

It is clear that neither oy nor ap vanishes, sine otherwise (when oy =0,
ag #0 or a; #0, ag =0) there is a contradiction to Lemma 3.8, as both

the numbers QZET(T)') and 95’3(87)) are transcendental. This implies that both,

(4.6) ap + a = 0.

a1 and a9, are non-zero. Then, when ag =0, we get a contradiction to
[5, Theorem 1.1]. Thus, it implies that agaiae # 0. Then from (4.6) and
Theorem 3.3, we have

an (o= ) e <o

By the explicit form of the polynomials P,,(X,Y) and P,(X,Y"), we see that
the polynomials

and

are non-zero. The polynomials

4 4
P, <m2 <— a0 Os (m')> , 16Y> and P, <n2 03(n7) , 16Y>

a;  ap O3(7) 03(7)
have the same common root Yy := 65(7)/03(7). Hence, the resultant

(4.8)  R(X):= Resy (Pm (m2<—0‘° 2 X)4, 16Y>,Pn(n2X4, 16Y)>

aq aq
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is given by the determinant of a square matrix where the dimensions and
elements of the corresponding Sylvester matrix depend on the degrees and
on the coefficients, respectively, of the polynomials

Pl (0 =220

and P,(n?X,16Y). By Lemma 3.8 we know that #3(n7)/65(7) is transcen-
dental. Then, from S, 4, # 0 in (3.3), we have

4
Sm.d., <m2 (_ao 2 93(m-)) ) #0 and Spg4, <n2 9§(n7)> #0.

(05) (05) 93(7’) 9§(T)

Hence, there is some real number § > 0 depending on n,m, ag, a1, as, and T
such that

S, (m2 (—Z? - Z?X)4) #0 and Sn7d"(n2X4) # 0

hold for

93 (TLT)
03(7)

Then, for all X inside this circle, we have

x-

4
degy Pm<m2 (_ao — a2X> ,16Y)
(05} (05)

= degy P <m2<—0‘0 2 93("T)>4 16Y> —d

and, similarly,

94
degy P (n2X* 16Y) = degy P, <n2 ;’4(2”)) , 16Y> = d,.
3 T

For X restricted to the inside of the circle with radius é mentioned above,
R(X) can be considered as a polynomial in X depending on the elements
of a Sylvester matrix with fixed dimensions d,, + d,,. On the scale of things
R(X) is some polynomial with algebraic coefficients such that

(4.9) R<93("T)> —0,
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since Yy is a common root of the polynomials under consideration. First
we note that the polynomial R(X) is not identically zero. We assume the
contrary, namely that

(4.10) R(X) = 0.

Then, by (4.8) and (4.10),

Resy (Pm <m2 (—Z(l’ - Zf X)4, 16Y> , Py(n?X*4, 16Y)> — R(X) =0,

and so there exists a common factor H(X,Y') € C[X,Y] with positive degree
in Y of the polynomials

4
Pm<m2 (—O‘O - O”"X) ,16Y) and P, (n’X* 16Y).

(05} (05}
Let
2 0 ap\? B
(4.11) Pm(m ( o alX) ,16Y> = H(X,Y)G(X,Y).

By substituting Y = A(7) defined in the introduction into the above equa-
tion, we have

412) P, (m2(_3(1] - fo)4, 16A(7)) = H(X.A()G(X.A(7)).

Using the definition of P,,(X,Y) in Theorem 3.3, we have

degy Ri(Y) < ka; Lok a<k<om)

and, for kK =0,
degy Ro(Y) =0, since Ry(Y) = 1.
Thus, we obtain by the right-hand side of formula (3.1),

4.13 deg P, (X,Y) = — k + degy Rp(Y
(118) e P(X.Y) = max {(m) — k+ degy RilY))

— (m) = degy P(X,Y) = deg Pn(X,16)(7)).
The last two identities in (4.13) are a consequence of

Pp(X,Y) = XY 4 Oy (X¥m71)
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Replacing X in (4.13) by

we obtain the identity

(4.14)
a(_0_ 02 \1 _ 2 0 az . \*
deg x Pm<m ( o alX) ,16)\(7')) —deng<m ( o alX) ,16Y>.
Hence, by the above identities, we obtain
(4.15)
degy H(X,)\(T)) + degy G(X,)\(T)) =degy H (X )\(T))G(X,)\(T))
4. 12
( )degx (m2< Z(l) ) , 16X (T ))
(4.14 ap
< (- " ) ,16Y>

LY Qeg H(X,Y)G(X,Y) = deg H(X,Y) + deg G(X, Y).

Additionally, we have the obvious inequalities
(4.16)

degx H(X,A(7)) < deg H(X,Y) and degy G(X,\(7)) <degG(X,Y).

Thus, we obtain from (4.15) and (4.16) that degy H(X, (7)) =deg H(X,Y)
(and, similarly, degy G(X, (7)) = deg G(X,Y)), consequently

(4.17) degy H(X,\(1)) > degy H(X,Y)>1

By Lemma 3.7, 328 is transcendental in each of the two cases 7 algebraic

of degree > 3 and 7 such that ™ is algebraic, hence the number 16\(7) is
transcendental over Q. So, it is also transcendental over Q. Let

Os(mT)
O3(7)

By Theorem 3.3, we know that Pm(mzﬂﬁl, 16)\(7')) = 0. Moreover, it fol-
lows from [4, Lemma 2] that the polynomial P, (X,16A(t)) is irreducible

over the field K := Q()\(T)). Overall, we may consider (3, as an algebraic
number over K, where, by (3.1),

Bm =

(4.18) degsg B = 4degy Pr(X,Y) = 40(m).

Acta Mathematica Hungarica 173, 2024



407 LINEAR FORMS IN JACOBI THETA-CONSTANTS

Let us assume that the polynomial

(4.19) P, <m2 (— @ X)4, 16>\(T))

aq aq

is reducible over K. Then we obtain the inequality
4
degye (m*(= " = ©8,,) ") < 4p(m),
ar a1

But this is impossible by (4.18), and by

2040 Q2

€ Q\ {0},

041

since 3, is transcendental over Q by the identity P,,(m?32,16A(7)) = 0 and
by the transcendence of A(7), as noticed earlier. The contradiction proves
the irreducibility of the polynomial in (4.19).

Thus, from (4.11) and (4.17), we obtain

P, <m2(—0‘0 - O‘QX) 162207 )> = BLH(X,\(7))

(05) (05} 94( )

for some non-zero complex number ;. Similarly, there exists a non-zero
complex number S5 such that

Py (n®X*,16A(7)) = B2H (X, A(7)),

and hence

4
P (W(—Zi - Z?X) ,16)\(7')) = cPy(n2X4,16A(7)), c:= B1/Bo.

This polynomial identity holds for all complex numbers 7 € H. We know
that for 7 — ioco the function A(7) tends to zero. Hence, taking 7 — ico into
the above equality, we have by Lemma 3.6,

af Qo _ g N\t p\wldm/d) 294 2yw(dn/d)
g(m( o alX) d) cH(nX d2) .

Then, comparing the multiplicity of the zero of these polynomials at X =
— (o + a1/y/m) /as (and d = 1 on the left-hand side), we obtain

m=w(l,m) < mgxw(d,n/d) <n,

which is a contradiction to the condition n < m from the theorem. Hence,
the polynomial R(X) is non-zero. Therefore, it follows from (4.9) that the
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number 03(n7)/03(7) is algebraic, which is a contradiction to the fact from
Lemma 3.8 that the number 03(n7)/65(7) is transcendental. This proves the
assertion. [J

PROOF OF THEOREM 2.3. Let m = 2%s; and n = 2bsy be two different
integers with a,b > 1 and odd integers s, so > 3. By Lemma 3.5 there exist
integer polynomials @,,(X,Y) and @, (X,Y’) such that

Oimr) O3\ oi(nr) 04(r)\ _
Qm(&ém’egfm)‘o 4 Q”(&ém’egm) .

We assume that the linear equation (4.6) holds, where «p, a1, ag are
algebraic numbers satisfying the hypothesis in Theorem 2.3. As in the
proof of Theorem 2.2, we have agajag # 0. By the hypotheses of the
theorem, we may assume without loss of generality that 5 := ay/ap sat-
isfies R, 0(87*) #0. Namely, it is obvious by (3.8) and Lemma 3.6 that
Rn0(B7%) # 0 holds particularly for 3= ¢ M;, and for B & Q.

Then we obtain
0 <<_a0_a293(n7)>4 95‘(7)):0
m ap  ap O3(7) ’9§(7’) ’

By the explicit form of the polynomials @,,(X,Y) and Q,(X,Y), we see
that the polynomials

(o= i) i e(xai)

are non-zero. Hence, the polynomials
ag  ag BO3(nT) 4 03(nt)
m - - ) Y d n ) Y
“ << ar oq B3(7) > nd @ 05(7)

have the same common root Yy = 03(7)/05(7).
Let

o ag ap 4
Ho(X,Y) = Qm(< o alX) ,Y)
and
W(X) = Resy (Hn(X,Y),Qn(X"Y)) € QX].

From Lemma 3.5 we know that both degy @, (X,Y) and degy @, (X,Y) do
not depend on X, since the coefficients of the leading terms with respect to
Y are non-zero integers. Thus, W (X)) can be considered as a polynomial for
all X.
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In order to show that the polynomial W (X) does not vanish identically,
we shall prove the existence of a number 7 satisfying W (n) # 0, or, equiva-
lently, that the polynomials H,,(n,Y) and Q,(n* Y) are coprime. Let

a9 ’
On the one hand, by using (3.7), we obtain
Hp(,Y) = Qun(0,Y) = &y > v,

Therefore, H,,(n,Y’) is a nonvanishing polynomial in Y having exclusively a
multiple root at Y = 0.

On the other hand, by applying formulas (3.5) and (3.6) in Lemma 3.5,
we have

. 2°9p(s2)—1 '
Qu(n',Y) = Y200 ¢ Roj(n")Y?
=0

with ¢, € Z\ {0} and R, o(X) # 0 by (3.8) and Lemma 3.6. We already
know by n = —1/8 that R, o(n*) # 0. Consequently, we have Q,(n* 0) =
Rn70(774) 7é 0.

Altogether, the polynomials H,,(n,Y) and Q,(n* Y) have no common
root. More precisely, we obtain for W (X),

W (n) = Resy (Hm(n,Y),@Qn(n*,Y)) #0.

This shows that W(X) does not vanish identically. By construction, we

know that W (Xj) vanishes for X, := 95’3(87)) , which implies the algebraicity
of 05(nt)/05(7), a contradiction to Lemma 3.8. This finally shows that the

linear relation (4.6) cannot hold. [J

ProOOF OF THEOREM 2.5. Let m = 2%s and n be two integers with a
> 1 and odd integers n,s > 3. By Theorem 3.3 and Lemma 3.5 there exist
integer polynomials P,(X,Y) and @,,(X,Y") such that

01 (mr) 0(
Qm(@ﬁﬂ’éﬁ

\]

)0 (i) -

We assume that the linear equation (4.6) holds. As in the proof of Theo-
rem 2.2 we have agajas # 0. By the hypotheses of the theorem, we may
assume that 3 := as/«q satisfies either

degQ(54) > (n), or Sn,o(nzﬁ_‘l)Sn,dn (n26_4) #0.
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Then we obtain

Qm((_ao o 93(m)>4 9§(T)> o

a1 (651 93(7’) ’ 9§(T)

By the explicit form of the polynomials @,,(X,Y) and P,(X,Y) given by
Theorem 3.3 and Lem- ma 3.5, we see that the polynomials

Qm<<_ao B azX)4 93(7)> and Pn<n2X47169§(7)>

ar ar /7 03(7) 03(7)

are non-zero. Hence, the polynomials

(0= ) p () o)

have the same common root Yy = 03(7)/03(7). Let

)= (-2 22x) )

and
W(X) = Resy (Hpn(X,Y), P,(n*X*,16Y)).

From Lemma 3.5, formula (3.5), we know that degy Q@ (X,Y) (and, con-
sequently, degy H,,(X,Y’)) does not depend on X, since the coefficient of
the leading term with respect to Y is the non-zero integer c2,. For all real
numbers X which are not a root of the polynomial S, 4, (X) in (3.2), the
leading term of P,(X,Y’) with respect to Y does not vanish. Consequently,
W(X) is given by the same polynomial for all these X, since the degrees
degy H,,(X,Y) and degy P,(n?>X*%,16Y) do not depend on all X satisfying
Sp.a, (n2X*) # 0. Note that S, 4, (X) # 0 by (3.3).

In order to show that W (X) does not vanish identically for X with
Sh.d, (n2X%*) #0, we shall prove the existence of a number 7 satisfying
W (n) # 0, or, equivalently, that the polynomials H,,(n,Y) and P,(n*n*, 16Y)
are coprime. Let

(6 %) '
On the one hand, by using (3.7), we obtain
Ho(,Y) = Qm(0,Y) = c3, Y1)

Therefore, H,,(n,Y’) is a nonvanishing polynomial in ¥ having only a mul-
tiple root at Y = 0.
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On the other hand, by the hypothesis on 8 in Theorem 2.5 and by
degx Sp,a, (X) < degx Po(X,Y) = ¢(n)

(cf. (3.2) in Theorem 3.3), we know that
n? n2ag
Sn,dn (TL2774) = Sn,dn <64> = Sn,dn ( 0> 7é 0.

4
%)

This shows that the degree with respect to Y of the polynomial on the
right-hand side of (3.2) does not change for the particular choice of X = n?n?.
Moreover, it follows from (3.4) that S, o # 0, and therefore the inequality

degx Spo(X) < degy Pp(X,Y) = ¢(n)
and the conditions on S imply that
2 2 4
o 4y n =\ nay
Smo(n n ) = Sn’d"<54> = Sn,o< o ) # 0.

Thus, again the application of (3.2) gives Pn(n2n4, O) # 0. Altogether, the
polynomials H,,(n,Y) and P,(n*y*,16Y) have no common root. More pre-
cisely, we obtain that

W (n) = Resy (Hm(n,Y), Pu(n®n*,16Y)) # 0.

This shows that W(X) does not vanish identically for all X satisfying
Sn.a,(n?X*) #0. By construction, we know that W(Xy) vanishes for

Xo = 95’3(?:)), and since 03(n7)/03(7) is transcendental by Lemma 3.8, we

have by (3.3) that
03 (n7)
Sn.d, <n2 3 > # 0.
AN C)

Thus, X = Xj is a zero of the function W (X)), which restricted to all values
X satisfying S, 4, (n?X?) # 0 results in the same nonvanishing polynomial
W(X). This implies the algebraicity of #3(n71)/03(7), a contradiction to
Lemma 3.8. This finally shows that the linear relation (4.6) cannot hold.
O

PROOF OF PROPOSITION 2.6. Replacing 7 by 27, it suffices to prove
the assertion for the three numbers

Os(1), 03(27), 6O5(47).
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We have the following identities:
(4.20) 202(27) = 03 + 603, 203(41) = 03 + 04.
Suppose there exist algebraic numbers «, 3, v not all zero such that
(4.21) 2a03(7) + 2805(27) + 2v05(47) = 0.

Substituting (4.20) into (4.21), we get

02 + 62 4

20&93 + 2,3\/ ’7(93 + 94) = 0.

By rearranging this formula, we get
(4.22) (20 +7)2 = 262) %62 + (7% — 28267 + 29(20 + ) 0304 = 0.

Dividing (4.22), by 63, we obtain

((2a+7)? 2827+ (4% - 28%) (Zi)z +29(20+ ) zz = 0.

Hence, by Lemma 3.7, we have
(2a+7)*=28°=0, 7*=28=0, 2y(2a+7)=0.

Thus, we conclude that « = =~v=0. O

5. Concluding remarks

In the case when 7 € H such that €™ is algebraic, the number 63(7) is
transcendental due to the algebraic independence of the values 63(m7) and
03 (nT) for distinct positive integers m,n. By our Theorem 2.2, we know that
at least two of the numbers among 05(7), 03(m7) and 65(n7) are transcen-
dental for any 7 € H such that either 7 is algebraic of degree > 3 or €7 is
algebraic. In this context, it is interesting to consider the following problem:

PROBLEM 1. Let 7 and m, n be as in Theorem 2.2. Then 1, 03(7),
Os(mT) and O3(nt) are Q-linearly independent.

As a consequence of this problem, one can conclude the transcendence
of f5(7) for algebraic 7 of degree > 3, which is not known in this case.

In this paper we considered linear forms in three values of theta con-
stant f3. It is natural to consider the following more general problem:
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PROBLEM 2. Let ay, asz, ..., a, be distinct positive integers. Let oy,
., Quy be mon-zero algebraic numbers. For what values of T € H, will the
linear form

L= 01193(CL17') + -+ am93(am7)

vanish? In the case a;’s are rational and T = “;fb, where b > 2 is an integer,

L # 0 by the result from [6] and [8].

Acknowledgements. We would like to express our deep gratitude to
Professor Y. Tachiya for his useful comments. We are also indebted to the
unknown reviewer for his helpful comments to improve the manuscript.

References

[1] B.C. Berndt, Ramanugjan’s Notebook, part V, Springer-Verlag (New York, 1998).

[2] D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), 339-350.

[3] C. Elsner and Y. Tachiya, Algebraic results for certain values of the Jacobi theta-
constant @3(7), Math. Scand., 123, (2018), 249-272.

[4] C. Elsner, F. Luca and Y. Tachiya, Algebraic results for the values 05(m) and 05(n7)
of the Jacobi-theta constant, Mosc. J. Comb. Number Theory, 8 (2019), 71-79.

[5] C. Elsner, M. Kaneko and Y. Tachiya, Algebraic independence results for the values of
the theta-constants and some identities, J. Ramanujan Math. Soc., 35 (2020),
71-80.

[6] D. Karmakar, V. Kumar and R. Thangadurai, Linear independence of special values
of Jacobi theta-constants (submitted).

[7] Yu.V. Nesterenko, On some identities for theta-constants, in: Diophantine Analysis and
Related Fields 2006, Sem. Math. Sci., 35, Keio University (Yokohama, 2006),
pp. 151-160.

[8] M. Shintaro and Y. Tachiya, Linear independence of certain numbers in the base-b
number system, Arch. Math. (Basel) 122 (2024), 31-40.

[9] Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann., 113
(1937), 1-13.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.

Acta Mathematica Hungarica 173, 2024



	On algebraic conditions for the non-vanishing of linear forms in Jacobi theta-constants
	Abstract
	Introduction
	The results
	The linear independence over C(tau) of the functions theta3(a1 tau), …, theta3(amtau) in tau.
	On the linear independence of values of Jacobi-theta constants for theta3(tau) , theta3(mtau), theta3(ntau) with odd integers m,n.
	Results on linear forms alpha0theta3(tau) + alpha1theta3(mtau) + alpha2theta3(ntau) for mn0 8mu(mod6mu2) under certain restrictions on the coefﬁcients.

	Main tools towards the proof of our results
	The proofs of our results
	Concluding remarks
	Acknowledgements.

	References




