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Abstract. Ellipsephic or Kempner-like harmonic series are series of inverses
of integers whose expansion in base B, for some B ≥ 2, contains no occurrence of
some fixed digit or some fixed block of digits. A prototypical example was pro-
posed by Kempner in 1914, namely the sum inverses of integers whose expansion
in base 10 contains no occurrence of a nonzero given digit. Results about such
series address their convergence as well as closed expressions for their sums (or
approximations thereof). Another direction of research is the study of sums of in-
verses of integers that contain only a given finite number, say k, of some digit or
some block of digits, and the limits of such sums when k goes to infinity. Gener-
alizing partial results in the literature, we give a complete result for any digit or
block of digits in any base.

1. Introduction

While the harmonic series
∑ 1

n
is divergent, restricting the indices in the

sum to integers satisfying innocent-looking conditions can yield convergent
series. One of the first such examples is probably the 1914 result of Kempner
[20] stating that the sum of inverses of integers whose expansion in base 10
contains no occurrence of a given digit ( 6= 0) converges. After Kempner’s pa-
per and the 1916 paper of Irwin [19], several papers addressed extensions or
generalizations of this result, as well as closed forms of numerical computa-
tions of the sums of the corresponding series: see, e.g., [1,6–11,13–16,21–32]
and the references therein.
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2 J.-P. ALLOUCHE, Y. HU and C. MORIN

We will revisit harmonic series with missing digits or missing blocks of
digits: these series are called Kempner-like harmonic series or ellipsephic
harmonic series in the literature (for the origin of the term ellipsephic coined
by C. Mauduit, one can look at [12, p. 12] and [17, Footnote, p. 6]; also see
the discussion in [5]). More precisely, let B an integer ≥ 2 and let aw,B(n)
denote the number of occurrences of the block (word / string) w in the base
B expansion of the integer n (where |w| is the length of the block w), and
sB(n) the sum of the digits of the base B expansion of n. It was proven by
Farhi [14] that, for any digit j in {0, 1, . . . , 9}, one has

lim
k→∞

∑

n≥1
aj,10(n)=k

1

n
= 10 log 10.

As explained in [5], a post on mathfun asked for the value of

lim
k→∞

∑

n≥1
s2(n)=k

1

n
.

It was proved in [5] that

(1.1) lim
k→∞

∑

n≥1
sB(n)=k

1

n
=

2 logB

B − 1
.

Thus we have of course

lim
k→∞

∑

n≥1
a1,2(n)=k

1

n
= lim

k→∞

∑

n≥1
s2(n)=k

1

n
= 2 log 2.

Here we will evaluate all such series, where a1,B(n) is replaced with aw,B(n),
where w is any block (string) of digits in base B, by proving the following
theorem.

Theorem 1. Let w any block of digits in base B. Let aw,B(n) be the
number of (possibly overlapping) occurrences of w in the base B expansion
of n. Then

(1.2) lim
k→∞

∑

n≥1
aw,B(n)=k

1

n
= B|w| logB.

To prove this result, we will replace 1/n with the seemingly more com-
plicated function logB(

n
n+1), and make use of results proved in (or inspired

by) [3,18]. In passing we will generalize [3,5] and re-prove [18].
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ELLIPSEPHIC HARMONIC SERIES REVISITED 3

2. “Reducing” the problem

Let B be an integer ≥ 2. Let w be a string of letters in {0, 1, . . . , B −
1}. Let aw,B(n) be the number of (possibly overlapping) occurrences of the
string w in the base B expansion of n. Recall that the base-B expansion
of 0 is the empty string. In particular aw,B(0) = 0. First we note that the
series

∑

n≥1
aw,B(n)=k

1

n

converges: the proof is the same as in [3, Lemma 1, p. 194], namely one uses
a counting argument for the case of a single digit, and one replaces the base
with some of its powers for the case of a block of digits. Now, to evaluate
the series, the idea is to replace it with a convergent series

∑

n≥1
aw,B(n)=k

bw(n)

whose sum, say Aw(k), tends to a limit, say Aw when k → ∞. Further-
more, if we have the property bw(n)− 1/(B|w|n) = Ow(1/n

2) when n tends
to infinity, then we obtain

∑

n≥1
aw,B(n)=k

1

n
converges, and lim

k→∞

∑

n≥1
aw,B(n)=k

1

n
= B|w|Aw.

(Note that if aw,B(n) tends to infinity, then n must also tend to infinity.)
Thus we have just showed the following result.

Proposition 2. Let B be an integer ≥ 2 and w a string of letters in

{0, 1, . . . ,B − 1}. Let aw,B(n) be the number of (possibly overlapping) occur-
rences of the string w in the base B expansion of n. To prove Theorem 1 it

suffices to find a sequence (bw(n))n such that

∗
∑

n≥1,aw,B(n)=k bw(n) converges. Let Aw(k) be its sum;

∗ Aw(k) tends to a limit, say Aw when k goes to infinity ;

∗ bw(n)− 1/(B|w|n) = Ow(1/n
2) when n tends to infinity.

Then

∑

n≥1
aw,B(n)=k

1

n
converges, and lim

k→∞

∑

n≥1
aw,B(n)=k

1

n
= B|w|Aw.
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4 J.-P. ALLOUCHE, Y. HU and C. MORIN

Inspired by [3,18], we define L(n) by L(0) := 0 and

L(n) := logB

( n

n+ 1

)

for n ≥ 1. For a string w over the alphabet {0, 1, . . . ,B− 1}, let v(w) denote
the integer whose expansion in base B is w (with possible leading 0’s if w
6= 0j).

Proposition 3. Let w be a nonempty string over the alphabet {0, 1, . . . ,
B − 1},

g = B|w|−1, h =
⌊v(w)

B

⌋

.

Then, for all k ≥ 0,

(2.1)
∑

n
aw,B(gn+h)=k

L(Bgn+ v(w)) = −1,

where the sum is over n ≥ 1 if w = 0j and n ≥ 0 otherwise.

Proof. Let c be the last letter of w. Let dw(k) be defined by

dw(k) =
∑

n≥0
aw,B(n)=k

L(Bn+ c).

(Note that this series converges since L(n) ∼ 1
n logB when n goes to infinity.)

By writing n = gr +m, with r ≥ 0 and 0 ≤ m ≤ g − 1, we see that

dw(k) =

g−1
∑

m=0

∑

r≥0
aw,B(gr+m)=k

L(Bgr +Bm+ c).

Similarly, if we let

ew(k) =
∑

n≥0
aw,B(Bn+c)=k

L(Bn+ c)

(which is convergent, like dw(k)), then

ew(k) =

g−1
∑

m=0

∑

r≥0
aw,B(Bgr+Bm+c)=k

L(Bgr +Bm+ c).
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ELLIPSEPHIC HARMONIC SERIES REVISITED 5

Note that

aw,B(Bgr +Bm+ c)− aw,B(gr +m) =

{

1 if m = h,

0 otherwise,

for r ≥ 0 if w 6= 0j and for r ≥ 1 if w = 0j . For w = 0j and r = 0, the above
difference is 0 for all m because we do not pad leading 0’s in this case.

Therefore
(2.2)

dw(k)− ew(k) =
∑

r
aw,B(gr+h)=k

L(Bgr+ v(w))−
∑

r
aw,B(gr+h)=k−1

L(Bgr+ v(w))

where the sum is over r ≥ 1 if w = 0j and r ≥ 0 otherwise.
If we could show that dw(k) = ew(k) for k > 0, then it would follow from

equation (2.2) that the value of the sum

∑

r
aw,B(gr+h)=k

L(Bgr + v(w))

is independent of k and hence equal to dw(0)− ew(0). To prove this, notice
that

(2.3) L(n)−
B−1
∑

j=0

L(Bn+ j) =

{

0 if n > 0,

1 if n = 0,

and

∑

n≥0
aw,B(n)=k

L(n) =
B−1
∑

j=0

∑

n≥0
aw,B(Bn+j)=k

L(Bn+ j)

=
∑

n≥0
aw,B(Bn+c)=k

L(Bn+ c) +
B−1
∑

j=0
j 6=c

∑

n≥0
aw,B(n)=k

L(Bn+ j).

Hence

ew(k) =
∑

n≥0
aw,B(Bn+c)=k

L(Bn+ c) =
∑

n≥0
aw,B(n)=k

(L(n)−
B−1
∑

j=0
j 6=c

L(Bn+ j))
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6 J.-P. ALLOUCHE, Y. HU and C. MORIN

=
∑

n≥0
aw,B(n)=k

(L(n)−

B−1
∑

j=0

L(Bn+ j)) +
∑

n≥0
aw,B(n)=k

L(Bn+ c).

By (2.3), the first sum is 1 if k = 0, and 0 if k > 0. The second sum is the
definition of dw(k). �

Lemma 4. Let t be an integer whose expansion in base B is t = b1b2 . . . bs.
For 1 ≤ r ≤ s,

If b1 . . . br is not a suffix of w, then
∑

n
aw,B(Brn+v(b1...br))=k

L(Bsn+ t) =
∑

n
aw,B(Br−1n+v(b1...br−1))=k

L(Bsn+ t).

If b1 . . . br is a suffix of w, then
∑

n
aw,B(Brn+v(b1...br))=k

L(Bsn+ t)(2.4)

=
∑

n
aw,B(Br−1n+v(b2...br))=k

L(Bs−1n+ t′)−
B−1
∑

j=0
j 6=b1

∑

n
aw,B(Br−1n+vj)=k

L(Bsn+ tj)

where t′ = v(b2 · · · bs), tj = v(jb2 · · · bs), and vj = v(jb2 . . . br−1) if r ≥ 2 and
vj = 0 if r = 1.

The proof is the same as in [3].

Theorem 5. There is a rational function bw(n) such that for all k ≥ 0
we have

(2.5)
∑

n
aw,B(n)=k

logB(bw(n)) = −1.

(the summation is over n ≥ 1 for w = 0j and n ≥ 0 otherwise) and

(2.6) log(bw(n)) = −
1

B|w|n
+O(1/n2).

Proof. The existence of bw(n) follows from Proposition 3 and iterated
applications of Lemma 4. The process of obtaining bw(n) can be visualized
by a tree T whose root is

∑

n
aw,B(gn+h)=k

L(Bgn+ v(w))
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ELLIPSEPHIC HARMONIC SERIES REVISITED 7

and a node is a leaf if the condition of n for sum is aw,B(n) = k, has a child
corresponding to the right side if we are in the first case in Lemma 4, and
has B children corresponding to the B terms (minus signs are included in
the terms) of the right side if we are in the second case. Then bw(n) is the
sum of the summands of the leaves of this tree. To prove (2.6), we first
notice that

logB · L(an+ b) = log
(

1−
1

an+ b+ 1

)

= −
1

an
+O(1/n2)

where a and b are positive constants. In particular, in (2.1),

L(Bgn+ v(w)) = −
1

logB ·B|w|n
+O(1/n2).

Then, we note that, in T , the first-order term in the summand of each node
that is not a leaf is the sum of the first-order term in its children. For
example, when a node has B children and the first-order term of the sum-
mand is − 1

logB·Bsn
, then the sum of first-order terms of the summands of its

children is

−
1

logB ·Bs−1n
−

B−1
∑

j=0
j 6=b1

(

−
1

logB ·Bsn

)

= −
1

logB ·Bsn
.

By induction we conclude that

logB(bw(n)) = −
1

logB ·B|w|n
+O(1/n2). �

Remark 6. Theorem 5 above generalizes the case B = 2 in [3] (also
see [4]). It can also give another proof of [18, Theorem 3].

Corollary 7. Theorem 1 (i.e., equality (1.2)) is true.

Proof. It suffices to apply Theorem 5 and Proposition 2. �

Remark 8. Actually the same “reducing trick” can be used to re-prove
equation (1.1) by using a result in [2]. Namely, up to notation, it was proved
in [2, Lemme, p. 142] that, for all k ≥ 0,

(2.7)
∑

sB(n)=k

log
( n+ 1

B⌊n/B⌋+B

)

= − logB.
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8 J.-P. ALLOUCHE, Y. HU and C. MORIN

Define the fractional part of n/B by {n/B} := n/B−⌊n/B⌋. Then, we have
when n tends to infinity,

log
( n+ 1

B⌊n/B⌋+ B

)

= log
(

1 +
1−B +B{n/B}

n+B(1− {n/B})

)

= log
(

1+
1−B+B{n/B}

n

)

+O(1/n2) =
1−B

n
+

(B{n/B}

n

)

+O(1/n2).

Thus (convergences are consequences of, e.g., equation 2.7, see [2]):

− logB =
∑

sB(n)=k

log
( n+ 1

B⌊n/B⌋+B

)

= (1− B)
∑

sB(n)=k

1

n
+

∑

sB(n)=k

B{n/B}

n
+O(1/n2).

Hence (note that the term O(1/n2) below can be chosen independent of k),

− logB = (1− B)
∑

sB(n)=k

1

n
+

∑

0≤j≤B−1

∑

sB(n)=k−j

j

Bn+ j
+O(1/n2)

= (1−B)
∑

sB(n)=k

1

n
+

∑

0≤j≤B−1

∑

sB(n)=k−j

j

Bn
+O(1/n2).

Now, if k tends to infinity, we have that k−j tends to infinity for j∈ [0,B−1],
and also that n must tend to infinity, hence, letting limk→∞

∑

sB(n)=k
1
n
:= ℓ,

− logB = (1−B) ℓ+
∑

0≤j≤B−1

j

B
ℓ = −

B − 1

2
ℓ, thus ℓ =

2 logB

B − 1
.

3. A few words about numerical verification

A referee asked whether it is possible to check numerically our main
equality (1.2), pointing that this seems to be a difficult task. Indeed, the nu-
merical computation of ellipsephic (or Kempner-like) sums is far from easy:
such series converge very slowly as indicated by the title of [28]. In the
same paper [28] there is a subtle algorithm to obtain close approximations
of some sums of such series; interestingly enough a step consists of replac-
ing 1/n with 1/nk (this idea was already present in [8]). Many more details
are given in [9]. Now, having precise values of such sums makes it possible
to compute their limits. We do not know whether there is a quicker or more
precise way of computing such limits.
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Added in text (April 11, 2024). We would like to mention five very
recent papers, where—in particular—the introduction of measures gives nice
results, both computational and theoretical, namely:

J.-F. Burnol, Moments in the exact summation of the curious series of Kempner
type, preprint, arXiv: 2402.08525 (2024).

J.-F. Burnol, Moments for the summation of Irwin series, preprint, arXiv:
2402.09083 (2024).

J.-F. Burnol, Summing the “exactly one 42” and similar subsums of the har-
monic series, preprint, arXiv: 2402.14761 (2024).

J.-F. Burnol, Sur l’asymptotique des sommes de Kempner pour de grandes bases,
preprint, arXiv: 2403.01957 (2024).

J.-F. Burnol, Digamma function and general Fischer series in the theory of
Kempner sums, preprint, arXiv: 2403.03912 (2024).
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