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Abstract. We study mappings satisfying some estimate of distortion of
modulus of families of paths. Under some conditions on definition and mapped
domains, we prove that these mappings are logarithmic Hölder continuous at
boundary points.

1. Introduction

This paper is devoted to the so-called inverse Poletsky inequality estab-
lished in many classes of mappings (see, e.g., [1, Lemma 2, Lemma 3], [2,
Theorem B], [3, Lemma 3.1], [10, Theorem 3.2], [11, Theorem 8.5] and [15,
Theorem 6.7.II]). Recall that mappings with a bounded distortion as well as
quasiconformal mappings satisfy the inequalities

(1) M(Γ) ≤ N(f,D)KO(f)M(f(Γ))

for any family of paths Γ in D, where M denotes the modulus of families
of paths, 1 ≤ KO(f) < ∞ and N(f,D) is a maximal multiplicity of f in D
(see [10]). For more general classes of mappings, such an inequality has
some more general form (see below). Note that the inequalities M(f(Γ))
≤ K ·M(Γ), 1 ≤ K < ∞, are very similar to (1) and were established by
Poletsky for quasiregular mappings, see [14, Theorem 1, § 4]. Precisely for
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this reason, we call the mappings in (1) mappings satisfying the inverse Po-
letsky inequality. However, we even consider some more general class of
mappings.

A Borel function ρ : Rn → [0,∞] is called admissible for a family Γ of
paths γ in R

n if the relation

(2)
∫
γ
ρ(x) |dx| ≥ 1

holds for any locally rectifiable path γ ∈ Γ. A modulus of Γ is defined as

(3) M(Γ) = inf
ρ∈ adm Γ

∫
Rn

ρn(x) dm(x) .

Let Q : Rn → [0,∞] be a Lebesgue measurable function. We say that f sat-
isfies the inverse Poletsky inequality if the relation

(4) M(Γ) ≤
∫
f(D)

Q(y) · ρn∗ (y) dm(y)

holds for any family of paths Γ in D and any ρ∗ ∈ adm f(Γ). Note that
estimates (4) hold in many classes of mappings (see, e.g., [10, Theorem 3.2],
[15, Theorem 6.7.II] and [11, Theorem 8.5]).

Recently we proved logarithmic Hölder continuity for mappings in (4)
at the boundary of the unit ball (see [16]). In this paper, we study simi-
lar mappings between another type of domains. In particular, we deal with
mappings between the so-called quasiextremal distance domains and convex
domains. Note that quasiextremal distance domains (abbreviated as QED-
domains) are introduced by Gehring and Martio in [5] and are structures in
which the modulus of the families of paths is metrically related to the diam-
eter of the sets. As for these domains, we have obtained logarithmic Hölder
continuity at the corresponding points of the boundary. In the next parts
we also study mappings of a domain with a locally quasiconformal boundary
(collared domains) onto a convex domain. Besides that, we consider map-
pings of some regular domains which are defined as quasiconformal images of
domains with a locally quasiconformal boundary. For these classes of map-
pings, we also prove the Hölder logarithmic continuity at the corresponding
boundary points. It should be noted that for the case of regular domains,
this property is formulated in terms of prime ends, and not in the Euclidean
sense.

A mapping f : D → R
n is called discrete if {f−1(y)} consists of isolated

points for any y ∈ R
n, and open if the image of any open set U ⊂ D is an

open set in R
n. A mapping f between domains D and D ′ is said to be closed

if f(E) is closed in D ′ for any closed set E ⊂ D (see, e.g., [20, Section 3]).
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In accordance with [5], a domain D in R
n is called a quasiextremal dis-

tance domain (QED-domain for short) if

(5) M(Γ(E,F,Rn)) ≤ A0 ·M(Γ(E,F,D))

for some finite number A0 ≥ 1 and all continua E and F inD. Observe that a
half-space or a ball are quasiextremal distance domains, see [21, Lemma 4.3].

Subsequently, in the extended Euclidean space Rn = R
n ∪ {∞} we use

the spherical (chordal) metric h(x, y) = |π(x)− π(y)|, where π is a stereo-
graphic projection of Rn onto the sphere Sn(1

2en+1,
1
2) in R

n+1, and

h(x,∞) =
1√

1+ |x|2
, h(x, y) =

|x− y|√
1+ |x|2

√
1+ |y|2

, x 	= ∞ 	= y(6)

(see e.g. [19, Definition 12.1]). In what follows, given A,B ⊂ Rn we set

h(A,B) = inf
x∈A,y∈B

h(x, y) , h(A) = sup
x,y∈A

h(x, y) ,

where h is a chordal metric in (6). Similarly, we define the Euclidean dis-
tance between sets and the Euclidean diameter by the formulae

d(A,B) = inf
x∈A,y∈B

|x− y| , d(A) = sup
x,y∈A

|x− y| .

Sometimes we also write dist(A,B) instead d(A,B) and diamE instead
d(E), as well. As usually, we set

B(x0, r) = {x ∈ R
n : |x− x0| < r} , B

n = B(0, 1) ,

S(x0, r) = {x ∈ R
n : |x− x0| = r} .

Given δ > 0, domains D,D ′ ⊂ R
n, n ≥ 2, a non-degenerate continuum

A ⊂ D ′ and a Lebesgue measurable function Q : D ′ → [0,∞] we denote by
Sδ,A,Q(D,D ′) a family of all open discrete and closed mappings f of D
onto D ′ satisfying the relation (4) such that h(f −1(A), ∂D) ≥ δ.

Theorem 1. Let Q ∈ L1(D ′), let D be a quasiextremal distance domain,
and let D ′ be a convex bounded domain. Then any f ∈ Sδ,A,Q(D,D ′) has a

continuous extension f : D → D ′ and for any x0 ∈ ∂D, x0 	= ∞, there exists
a neighborhood U and C = C(n,A,D,D ′) > 0 such that

(7) |f(x)− f(y)| ≤
C · (‖Q‖1)1/n

log1/n(1 + δ
|x−y|

)
for any x, y ∈ U ∩D, where ‖Q‖1 is a norm of the function Q in L1(D ′).
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Consider the following definition that has been proposed by Näkki [13]
(cf. [8]). The boundary of a domain D is called locally quasiconformal if
every point x0 ∈ ∂D has a neighborhood U , for which there exists a quasi-
conformal mapping ϕ of U onto the unit ball Bn ⊂ R

n such that ϕ(∂D ∩U)
is the intersection of the unit sphere Bn with a coordinate hyperplane xn = 0,
where x = (x1, . . . , xn). Note that with slight differences in the definition,
domains with such boundaries are also called collared domains.

Theorem 2. Let Q ∈ L1(D ′), let D be a domain with a locally qua-
siconformal boundary, and let D ′ be a bounded convex domain. Then any
f ∈ Sδ,A,Q(D,D ′) has a continuous extension f : D → D′, while, for any
x0 ∈ ∂D, x0 	= ∞, there exists a neighborhood V of x0 and some numbers
C = C(n,A,D,D ′, x0) > 0 and 0 < α = α(x0) ≤ 1 such that

(8)
∣∣f(x)− f(y)

∣∣ ≤ C · (‖Q‖1)1/n

log1/n (1 + δ
|x−y|α

)
for any x, y ∈ V ∩D, where ‖Q‖1 is a norm of Q in L1(D ′).

Using the previous theorem, it is also possible to obtain a statement
about Hölder’s logarithmic continuity for bad boundaries in terms of prime
ends.

The definition of a prime end used below may be found in [6], cf. [8]. We
say that a bounded domain D in R

n is regular, if D can be quasiconformally
mapped to a domain with a locally quasiconformal boundary whose closure
is a compact in R

n, and, besides that, every prime end in D is regular.
Note that the space DP = D ∪ED is metric, which can be demonstrated as
follows. If g : D0 → D is a quasiconformal mapping of a domain D0 with a
locally quasiconformal boundary onto some domain D, then for x, y ∈ DP

we put

(9) ρ(x, y) := |g−1(x)− g−1(y)| ,

where the element g−1(x), x ∈ ED, is to be understood as some (single)
boundary point of the domain D0. The specified boundary point is unique
and well-defined, see e.g. [7, Theorem 2.1, Remark 2.1], cf. [13, Theorem 4.1].
The following statement holds.

Theorem 3. Let Q ∈ L1(D ′), let D be regular domain, and let D ′ be
a bounded convex domain. Then any f ∈ Sδ,A,Q(D,D ′) has a continuous

extension f : DP → D ′; in addition, for any P0 ∈ ED there exists a neigh-
borhood V of this point in (DP , ρ) and numbers C = C(n,A,D,D ′, P0) > 0
and 0 < α = α(P0) ≤ 1 such that

(10)
∣∣f(P1)− f(P2)

∣∣ ≤ C · (‖Q‖1)1/n

log1/n (1 + δ
ρα(P1,P2)

)
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for any P1, P2 ∈ V , where ‖Q‖1 is a norm of Q in L1(D ′).

2. Auxiliary lemmas

Before proving the main statements, we prove the following important
lemma, which is proved in [16, Lemma 2.1] for the case of the unit ball.

Lemma 4. Let D and D ′ be domains satisfying the conditions of The-
orem 1, and let E be a continuum in D ′, Q ∈ L1(D ′). Then there exists
δ1 > 0 such that Sδ,A,Q ⊂ Sδ1,E,Q. In other words, if f is an open dis-
crete and closed mapping of D onto D ′ satisfying the condition (4) such
that h(f −1(A), ∂D) ≥ δ, then there exists δ1 > 0, which does not depend on
f , such that h(f −1(E), ∂D) ≥ δ1.

Proof. We will generally use the scheme of the proof [16, Lemma 2.1].
Let us prove Lemma 4 from the opposite. Suppose that its conclusion is not
true. Then there are sequences ym ∈ E, fm ∈ Sδ,A,Q and xm ∈ D such that
fm(xm) = ym and h(xm, ∂D) → 0 as m → ∞. Without loss of generality,
we may assume that xm → x0 as m → ∞, where x0 may be equal to ∞ if
D is unbounded. By [18, Theorem 3.1], it follows that fm has a continuous
extension to x0, moreover, the family {fm}∞m=1 is equicontinuous at x0 (see,
e.g., [18, Theorem 1.2]). Then, for any ε > 0 there is m0 ∈ N such that
h(fm(xm), fm(x0)) < ε for m ≥ m0. On the other hand, since fm is closed,
fm(x0) ∈ ∂D ′. Due to the compactness of the space Rn and the closure of
∂D ′, we may assume that fm(x0) converges to some B ∈ ∂D ′ as m → ∞.
Therefore, by the triangle inequality,

h(fm(xm), fm(x0)) ≥ h(fm(xm), B)− h(B, fm(x0)) ≥
1
2
· h(E, ∂D ′)

for sufficiently large m ∈ N. Finally, we have a contradiction:

h(fm(xm), fm(x0)) ≥ δ0, δ0 :=
1
2
· h(E, ∂D ′)

and, at the same time, h(fm(xm), fm(x0)) < ε for m ≥ m0. The resulting
contradiction refutes the original assumption. The lemma is proved. �

The following lemma was proved in the case where the domain D ′ is the
unit ball (see the proof of [16, Theorem 1.1]). For an arbitrary convex do-
main, its proof is significantly more difficult, since the previous methodology
relied on the geometry of the ball.

Lemma 5 [4]. Let D ′ be a bounded convex domain in R
n, n ≥ 2, and let

B(y∗, δ∗/2) be a ball centered at the point y∗ ∈ D ′, where δ∗ := d(y∗, ∂D ′).
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Let z0 ∈ ∂D ′. Then for any points A,B ∈ B(z0, δ∗/8) ∩D ′ there are points

C,D ∈ B(y∗, δ∗/2), for which the segments [A,C] and [B,D] are such that

(11) dist([A,C], [B,D]) ≥ C0 · |A− C| ,

where C0 > 0 is some constant that depends only on δ∗ and d(D ′).

3. Proof of Theorem 1

The possibility of a continuous extension of the mapping f to the bound-
ary of the domain D follows by [18, Theorem 3.1]. In particular, the weak
flatness of ∂D is a consequence of the fact that D is a QED domain (see,
e.g., [17, Lemma 2]), in addition, any convex domain is locally connected at
its boundary because its intersection with the ball centered at the boundary
point is also a convex set.

Let us prove the logarithmic Hölder continuity (7). Put x0 ∈ ∂D, and
let y∗ ∈ D ′ be an arbitrary point of the domain D ′. Put δ∗ := d(y∗, ∂D ′).
Let E = B(y∗, δ∗/2) ⊂ D ′. By Lemma 4 there exists δ1 > 0 such that
h(f −1(E), ∂D) ≥ δ1 for all f ∈ Sδ,A,Q. In addition, due to Theorem 1.2
in [18] the family Sδ,A,Q is equicontinuous in D. This implies that for
a number δ∗/8 there is a neighborhood U ⊂ B(x0, δ1/2) of x0 such that
|f(x)− f(x0)| < δ∗/8 for all x ∈ U ∩D and all f ∈ Sδ,A,Q. Let x, y ∈ U ∩D
and

ε0 := |f(x)− f(y)| < δ0 := δ∗/4 .

Let us apply Lemma 5 for the points A = f(x), B = f(y) and z0 = f(x0).
According to this lemma, there are segments I ⊃ A and J ⊃ B in D ′ such
that I ∩E 	= ∅ 	= J ∩E, and

(12) dist(I, J) ≥ C0 · |f(x)− f(y)| ,

where C0 is some constant which depends only on E and D ′.
Let α1, β1 be total f -liftings of paths I and J starting at the points x

and y,, respectively (they exist due to [20, Lemma 3.7], see Figure 1). By
definition, |α1| ∩ f −1(E) 	= ∅ 	= |β1| ∩ f −1(E). Since h(f −1(E), ∂D) ≥ δ1
and x, y ∈ B(x0, δ1/2), then

(13) d(α1) ≥ δ1/2 , d(β1) ≥ δ1/2 .

Let Γ := Γ(α1, β1,D). Then, on the one hand, by the inequality (5)

(14) M(Γ) ≥ (1/A0) ·M(Γ(α1, β1,R
n)) ,
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Figure 1: To proving Theorem 1

and on the other hand, by [22, Lemma 7.38],

(15) M(Γ(α1, β1,R
n)) ≥ cn · log

(
1 +

1
m

)
,

where cn > 0 is some constant that depends only on n, and

m =
dist(α1, β1)

min{diam(α1),diam(β1)}
.

Combining (13), (14) and (15) and taking into account that dist(α1, β1) ≤
|x− y|, we have

(16) M(Γ) ≥ c̃n · log
(
1 +

δ1

2 dist(α1, β1)

)
≥ c̃n · log

(
1 +

δ1

2|x− y|

)
,

where c̃n > 0 is some constant depending only on n and A0 from the defini-
tion of the QED-domain.

Now, let us to find some upper estimate for M(Γ). Put

ρ(y) =

{
1

C0ε0
, y ∈ D ′,

0, y 	∈ D ′ .

Note that ρ satisfies the relation (2) for f(Γ) by virtue of (11). By the
definition of the family Sδ,A,Q, we obtain that

(17) M(Γ) ≤
1

Cn
0 ε

n
0

∫
D ′

Q(y) dm(y) = C −n
0 ·

‖Q‖1

|f(x)− f(y)|n
.
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By (16) and (17), it follows that

c̃n · log
(
1 +

δ1

2|x− y|

)
≤ C −n

0 ·
‖Q‖1

|f(x)− f(y)|n
.

The desired inequality (7) follows from the last relation, where C :=
C−1

0 · c̃n
−1/n, taking into account that according to L’Hospital’s rule,

log
(
1 +

1
nt

)
∼ log

(
1 +

1
kt

)
as t → +0

for any different k, n > 0.
We have proved Theorem 1 for the inner points x, y ∈ U ∩D. For points

x, y ∈ U ∩D, this statement follows by passing to the limit x → x and y → y,
x, y ∈ D. �

An analogue of Theorem 1 is also valid for mappings with a fixed point
in D. In order to formulate and prove the corresponding statement, let us
introduce the following definition. For a ∈ D and b ∈ D ′, and a Lebesgue
measurable function Q : D ′ → [0,∞] denote by Fa,b,Q the family of all open
discrete and closed mappings f of the domain D onto D ′ satisfying the
relation (4) such that f(a) = b.

Theorem 6. Let Q ∈ L1(D ′), let D be a domain with a locally qua-
siconformal boundary, and let D ′ be a bounded convex domain. Then any
mapping f ∈ Sa,b,Q has a continuous extension to the mapping f : D → D ′,
while, for any point x0 ∈ ∂D there is a neighborhood U of this point and a
number C = C(n,A,D,D ′) > 0 such that the relation (7) is fulfilled for some
δ > 0.

Proof. The possibility of a continuous extension of f to ∂D follows
by [18, Theorem 3.1]. Let us prove the logarithmic Hölder continuity of the
cooresponding family of extended mappings (7). Put E = B(b, ε∗), where
ε∗ < dist(b, ∂D ′). Two cases are possible:

1) There exists δ > 0 such that dist(f −1(E), ∂D) ≥ δ for all f ∈ Sδ,A,Q.
In in this case, the desired statement follows by Theorem 1.

2) There are sequences fm ∈ Sδ,A,Q and xm ∈ D, ym ∈ D ′, m = 1, 2, . . . ,
such that fm(xm) = ym, ym ∈ E and dist(xm, ∂D) → 0 as m → ∞. Reason-
ing in the same way as in the proof of Lemma 4, we come to the conclusion
that the family Sδ,A,Q is not equicontinuous at at least one point x0 ∈ ∂D,
however, this contradicts the statement of [18, Theorem 7.1].

Thus, the Case 2 is impossible, and, consequently, Theorem 6 is proved.
�
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Figure 2: To the proof of Theorem 2

4. Proof of Theorem 2

The possibility of a continuous extension of the mapping f to the bound-
ary of D follows by [18, Theorem 3.1]. In particular, locally quasiconformal
boundaries are weakly flat (see [6, Proposition 2.2], see also [19, Theo-
rem 17.10]). In addition, convex domains are obviously locally connected
at its boundary.

Put x0 ∈ ∂D. Let y∗ ∈ D ′ be an arbitrary point of D ′, δ∗ := d(y∗, ∂D ′)
and E = B(y∗, δ∗/2) ⊂ D ′. By Lemma 4, there exists δ1 > 0 such that
h(f −1(E), ∂D) ≥ δ1 for all f ∈ Sδ,A,Q. Then d(f −1(E), ∂D) ≥ δ1 for any
f ∈ Sδ,A,Q. In addition, since by [18, Theorem 1.2] the family Sδ,A,Q is
equicontinuous at D, for δ∗/8 there is a neighborhood U ⊂ B(x0, δ1/4) of x0
such that |f(x)− f(x0)| < δ∗/8 for any x, y ∈ U ∩D and all f ∈ Sδ,A,Q.

By the definition of a locally quasiconformal boundary, there exist a
neighborhood U ∗ of the point x0 and a quasiconformal mapping ϕ : U ∗

→ B
n, ϕ(U ∗) = B

n, such that ϕ(D ∩ U ∗) = B
n
+, where B

n
+ = {x ∈ B

n : x =
(x1, . . . , xn), xn > 0} is a half-ball, see Figure 2. We may assume that
ϕ(x0) = 0 and U ∗ ⊂ U (see the proof of [19, Theorem 17.10]). Let V be
any neighborhood in U ∗ such that V ⊂ U ∗, and let

(18) δ2 := dist(∂V, ∂U ∗) .

Consider the auxiliary mapping

(19) F (w) := f(ϕ−1(w)) , F : Bn
+ → U ∗ .
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Let x, y ∈ V ∩D and

ε0 := |f(x)− f(y)| < δ0 := δ∗/4 .

Apply Lemma 5 for points A = f(x), B = f(y) and z0 = f(x0). According
to this lemma, there are exist segments I ⊃ A and J ⊃ B in D ′ such that
I ∩E 	= ∅ 	= J ∩E, moreover

(20) dist(I, J) ≥ C0 · |f(x)− f(y)| ,

where C0 depends only on E and d(D ′).
Let α1, β1 be the whole f -lifts of the paths I and J starting at the

points x and y, respectively (they exist by [20, Lemma 3.7]). Then, by the
definition, |α1| ∩ f −1(E) 	= ∅ 	= |β1| ∩ f −1(E). Then

|α1| ∩ U 	= ∅ 	= |α1| ∩ (Rn \ U )

and

|β1| ∩ U 	= ∅ 	= |β1| ∩ (Rn \ U ) .

Then, by [9, Theorem 1.I.5.46]

(21) |α1| ∩ ∂U 	= ∅ , |β1| ∩ ∂U 	= ∅ .

Similarly,

(22) |α1| ∩ ∂V 	= ∅ , |β1| ∩ ∂V 	= ∅ .

Due to (21), α1 and β1 contain subpaths α ∗
1 and β ∗

1 with origins at the
points x and y which belong entirely in U ∗ and have endpoints at ∂U ∗.
Due to (18), (21) and (22)

(23) d(α ∗
1 ) ≥ δ2 , d(β ∗

1 ) ≥ δ2 .

Consider the paths ϕ(α ∗
1 ) and ϕ(β ∗

1 ). Since ϕ is a quasiconformal map-
ping, so ϕ−1 is also quasiconformal. Thus, ϕ−1 is locally Hölder continuous
with some constant C̃ > 0 and some exponent 0 < α ≤ 1 (see [15, Theo-
rem 1.11.III]). We may consider that ϕ−1 is quasiconformal in B

n. Then

(24)
1

(C̃)
1

α

|x− y|
1

α ≤ |ϕ−1(x)− ϕ−1(y)| ≤ C̃ · |x− y|α ∀x, y ∈ B
n .

Let x, y ∈ U ∗ be points in α∗
1 such that d(α ∗

1 ) = |x− y|. We put x ∗ = ϕ(x)
and y ∗ = ϕ(y). Then

|x ∗ − y ∗|α ≥
1

C̃
· |x− y| = d(α ∗

1 ) ≥
1

C̃
δ2 ,
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or

(25) |x ∗ − y ∗| ≥
( 1

C̃
δ2

)1/α
.

From (25), we obtain that d(ϕ(α ∗
1 )) ≥

( 1
C̃
δ2
)1/α. Similarly, d(ϕ(β ∗

1 )) ≥( 1
C̃
δ2
) 1/α

. Let

Γ := Γ
(
ϕ(α ∗

1 ), ϕ(β
∗
1 ),B

n
+
)
.

Note that Bn
+ is a bounded convex domain, so it is a John domain (see [12,

Remark 2.4]). Hence it is a uniform domain (see [12, Remark 2.13(c)]), there-
fore it is also a QED-domain with some A ∗

0 < ∞ in (5) (see [5, Lemma 2.18]).
Then, on the one hand, by (5)

(26) M(Γ) ≥ (1/A ∗
0 ) ·M

(
Γ(ϕ(α ∗

1 ), ϕ(β
∗
1 ),R

n)
)
,

and on the other hand, by [22, Lemma 7.38]

(27) M(Γ(ϕ(α ∗
1 ), ϕ(β

∗
1 ),R

n)) ≥ cn · log
(
1 +

1
m

)
,

where cn > 0 is some constant that depends only on n,

m =
dist(ϕ(α ∗

1 ), ϕ(β
∗
1 ))

min{diam(ϕ(α ∗
1 )),diam(ϕ(β ∗

1 ))}
.

Then, combining (26) and (27) and taking into account that

dist(ϕ(α ∗
1 ), ϕ(β

∗
1 )) ≤ |ϕ(x)− ϕ(y)|,

we obtain that

M(Γ) ≥ c̃n · log
(
1 +

δ
1/α
2

(C̃)1/α dist(α ∗
1 , β

∗
1 )

)
(28)

≥ c̃n · log
(
1 +

δ
1/α
2

(C̃)1/α|ϕ(x)− ϕ(y)|

)
,

where c̃n > 0 is some constant that depends only on n and A ∗
0 from the

definition of QED-domain.
Let us now establish an upper bound for M(Γ). Note that F in (19)

satisfies the relation (4) with the function Q̃(x) = K0 ·Q(x) instead of Q,
where K0 ≥ 1 is the constant of a quasiconformality of ϕ−1. Let us put

ρ(y) =

{
1

C0ε0
, y ∈ D ′,

0, y 	∈ D ′ ,
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where C0 is the universal constant in inequality (20). Note that ρ satisfies
the relation (2) for F (Γ) due to the relation (11). Then, by the definition of
Sδ,A,Q, due to the definition of F in (19), we obtain that

(29) M(Γ) ≤
1

Cn
0 ε

n
0

∫
D ′

K0Q(y) dm(y) = C −n
0 K0 ·

‖Q‖1

|f(x)− f(y)|n
.

It follows by (28) and (29) that

c̃n · log
(
1 +

δ
1/α
2

(C̃)1/α|ϕ(x)− ϕ(y)|

)
≤ C −n

0 K0 ·
‖Q‖1

|f(x)− f(y)|n
.

From the left side of inequality (24) it follows that

|ϕ(x)− ϕ(y)| ≤ C̃|x− y|α , x, y ∈ U ∗ .

Now, from the last two relations, it follows that

|f(x)− f(y)| ≤ C −1
0 c̃n

−1/nK
1/n
0 ·

(‖Q‖1)1/n

log1/n(1 + δ1/α2

(C̃)1/α|ϕ(x)−ϕ(y)|

)
≤ C −1

0 c̃n
−1/nK

1/n
0 ·

(‖Q‖1)1/n

log1/n(1 + δ1/α2

(C̃)(1/α)+1|x−y|α

) ,

which is the desired inequality (8), where C := C −1
0 · c̃n

−1/n ·K
1/n
0 and

r0 = δ
1/α
2

(C̃)1/α+1
instead of δ. However, we may replace r0 by δ here, because,

by L’Hospital’s rule, log
(
1 + 1

nt

)
∼ log

(
1 + 1

kt

)
as t → +0 for any different

k, n > 0.
We proved Theorem 2 for the inner points x, y ∈ V ∩D. For x, y ∈

V ∩D, this statement follows by means of the transition to the limit x → x
and y → y, x, y ∈ D. �

5. Proof of Theorem 3

Let f ∈ Sδ,A,Q(D,D ′). It is sufficient to restrict ourselves to the case
P1, P2 ∈ V ∩D. Since D is a regular domain, there exists a quasiconformal
mapping g−1 of the domain D onto a domain D0 with a locally quasicon-
formal boundary, and, by the definition of the metric ρ in (9),

(30) ρ(P1, P2) :=
∣∣g−1(P1)− g−1(P2)

∣∣ .
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Consider the auxiliary mapping

(31) F (x) = (f ◦ g)(x) , x ∈ D0 .

Since g−1 is quasiconformal, there is a constant 1 ≤ K1 < ∞ such that

(32)
1
K1

·M(Γ) ≤ M(g(Γ)) ≤ K1 ·M(Γ)

for any family of paths Γ in D0. Considering inequalities (32) and taking into
account that f satisfies the relation (4), we obtain that also F satisfies the
relation (4) with a new function Q̃(x) := K1 ·Q(x). In addition, since g is a
fixed homeomorphism, then h(F −1(A), ∂D0) ≥ δ0 > 0, where δ0 > 0 is some
fixed number. Then Theorem 2 may be applied to the map F . Applying this
theorem, we obtain that for any point x0 ∈ D0 there are a neighborhood U of
this point and numbers C ∗ = C ∗(n,A,D0,D

′) > 0 and 0 < α = α(x0) ≤ 1
such that

(33) |F (x)− F (y)| ≤
C ∗K

1

n

1 · (‖Q‖1)1/n

log1/n (1 + δ0
|x−y|α )

for all x, y ∈ V ∩D0, where ‖Q‖1 is the norm of the function Q in L1(D ′).
Let U := g(V ), P0 := g(x0). Then, by definition, V is a neighborhood of
the prime end P0 ∈ ED. If P1, P2 ∈ DP ∩ V , then P1 = g(x) and P2 = g(y)
for some x, y ∈ U ∩D0. Taking into account the relation (33) and using the
relation |x− y| = |g−1(P1)− g−1(P2)| = ρ(P1, P2), we obtain that

∣∣F (g−1(P1))− F (g−1(P2))
∣∣ ≤ C∗K

1

n

1 · (‖Q‖1)1/n

log1/n (1 + δ0
ρα(P1,P2))

,

or, due to (31),

∣∣f(P1)− f(P2)
∣∣ ≤ C∗K

1

n

1 · (‖Q‖1)1/n

log1/n (1 + δ0
ρα(P1,P2))

.

The last ratio is desired if we put here C := C∗K
1

n

1 . Here we also take into
account that by L’Hopital’s rule, log

(
1 + 1

nt

)
∼ log

(
1 + 1

kt

)
as t → +0 for

any different k, n > 0. Thus, in the last relation, we may write δ instead δ0.
�

ON BOUNDARY HÖLDER LOGARITHMIC CONTINUITY 511



Acta Mathematica Hungarica 172, 2024

14 O. DOVHOPIATYI and E. SEVOST’YANOV: ON BOUNDARY HÖLDER . . .
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