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Abstract. Many real-world networks exhibit the phenomenon of edge clus-
tering, which is typically measured by the average clustering coefficient. Recently,
an alternative measure, the average closure coefficient, is proposed to quantify lo-
cal clustering. It is shown that the average closure coefficient possesses a number
of useful properties and can capture complementary information missed by the
classical average clustering coefficient. In this paper, we study the asymptotic dis-
tribution of the average closure coefficient of a heterogeneous Erdős–Rényi random
graph. We prove that the standardized average closure coefficient converges in dis-
tribution to the standard normal distribution. In the Erdős–Rényi random graph,
the variance of the average closure coefficient exhibits the same phase transition
phenomenon as the average clustering coefficient.

1. Introduction

A network or graph G = (V,E) is a pair of node set V and edge set E.
The edges in E represent the interactions between nodes. Networks are
widely used to understand and model many complex systems [7,10]. In so-
ciology, relationships among social actors can be depicted by networks and
network analsyis is used to study structures of interdependencies among so-
cial units [11]. In biology, network is an important tool for understanding
how the interactions between molecules determine the function of cells [2].
In psychology, network analysis is applied to identify and analyse patterns
of pairwise conditional dependencies in multivariate psychological data [3].

Many real-world networks exhibit a trait that the edges tend to cluster.
For instance, in a social network, the friends of a friend are more likely to be
friends [1]. In co-authorship networks, the collaborators of an author tend to
be co-authors [9]. The average clustering coefficient is the standard metric
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to measure the extent of clustering [13]. The local clustering coefficient of a
node is defined as the fraction of pairs of its neighbors that are connected
by an edge. The average clustering coefficient is the average of the local
clustering coefficients of all nodes. The average clustering coefficient has
wide applications in network data analysis [5,6,12].

Recently, [14] introduced an alternative metric, the average closure co-
efficient, to measure the extent of clustering of a network. The local closure
coefficient of a node is the fraction of closed wedges that emanate from the
node. The average of the local closure coefficients of all nodes is called the
average closure coefficient. It is shown that the local (or average) closure
coefficient has remarkably different properties from the local (or average)
clustering coefficient [14]. For example, as the degree of a node increases,
the local closure coefficient tends to increase, but the average clustering coef-
ficient tends to decrease [14]. Therefore, the closure coefficients can capture
complementary information missed by the clustering coefficients and are use-
ful in link prediction, role discovery, outlier detection, etc.

Understanding the asymptotic properties of network statistics is a fun-
damental research topic in network analysis [4,8,15–19]. In this paper, we
are interested in the limiting distribution of the average closure coefficient
in a heterogeneous Erdős–Rényi random graph. The average closure coeffi-
cient is a sum of dependent terms. The classic central limit theorem can not
be directly applied to obtain its asymptotic distribution. We prove that the
standardized average closure coefficient converges in distribution to the stan-
dard normal distribution. We find that the variance of the average closure
coefficient exhibits the same phase transition phenomenon as the average
clustering coefficient.

The rest of the paper is organized as follows. In section 2, we introduce
the definition of the average closure coefficient and the heterogeneous Erdős–
Rényi random graph and present the main result. The proof is deferred to
Section 3.

Notation. We adopt the Bachmann–Landau notation throughout this
paper. Let an and bn be two positive sequences. Denote an = Θ(bn) if
c1bn ≤ an ≤ c2bn for some positive constants c1, c2. Denote an = ω(bn) if
limn→∞ an

bn
= ∞. Denote an = O(bn) if an ≤ cbn for some positive constants

c. Denote an = o(bn) if limn→∞ an

bn
= 0. Let N (0, 1) be the standard normal

distribution and Xn be a sequence of random variables. Then Xn ⇒ N (0, 1)
means Xn converges in distribution to the standard normal distribution as
n goes to infinity. Denote Xn = OP (an) if Xn

an
is bounded in probability. De-

note Xn = oP (an) if Xn

an
converges to zero in probability as n goes to infinity.

Let E[Xn] and Var(Xn) denote the expectation and variance of a random
variable Xn respectively. P[E] denote the probability of an event E. Let
f = f(x) be a function. Denote f (k)(x) = dkf

dxk (x) for any positive integer k.
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exp(x) denote the exponential function ex. For positive integer n, denote
[n] = {1, 2, . . . , n}. Given a finite set E, |E| represents the number of ele-
ments in E. For positive integers i, j, k, i �= j �= k means i �= j, j �= k, k �= i.
Given positive integer t,

∑
i1 �=i2 �=...�=it

means summation over all integers
i1, i2, . . . , it in [n] such that |{i1, i2, . . . , it}| = t.

∑
i1<i2<···<it

means summa-
tion over all integers i1, i2, . . . , it in [n] such that i1 < i2 < · · · < it. For two
sets U, V , U − V represents the set of elements in U but not in V . U + V
means the union of U and V .

2. Main results

An undirected graph on V = [n] is the pair G = (V , E), where E is a set
of subsets with cardinality 2 of V . The elements in V are called nodes or
vertexes and elements in E are called edges. A symmetric adjacency matrix
A is usually used to represent a graph. In A, Aij = 1 indicates {i, j} is an
edge. Otherwise, Aij = 0. The degree di of node i is the number of edges
connecting it, that is, di =

∑n
j=1Aij . A wedge or 2-path in a graph is two

edges that share exactly one common node. The common node is called the
center of the wedge. A wedge is closed if nodes at both ends are connected
by an edge. For example, edge {1, 2} and edge {2, 3} form a wedge. Node 2
is the center of this wedge. The head of this wedge is node 1 or 3. If nodes 1
and 3 are connected by an edge, that is, {1, 3} is an edge, then the wedge is
closed. A graph is said to be random if Aij(1 ≤ i < j ≤ n) are random.

Definition 2.1. Let α and β be constants between zero and one, that
is, α, β ∈ (0, 1), and

W =
{
wij ∈ [β, 1] | 1 ≤ i, j ≤ n, wji = wij , wii = 0

}
.

Define a heterogeneous random graph Gn(α, β,W ) as

P(Aij = 1) = pnwij,

where Aij (1 ≤ i < j ≤ n) are independent, Aij = Aji and pn = n−α.

In Gn(α,β,W ), E[di] =
∑n

k=1 pnwik. Generally speaking, E[di] �= E[dj] if
i �= j. The random graph Gn(α, β,W ) is therefore heterogeneous. When wij

(1 ≤ i < j ≤ n) are equal to one, Gn(α,β,W ) is the well-known Erdős–Rényi
random graph. We simply denote it as Gn(α). The Erdős–Rényi random
graph is homogeneous because the expected degrees of nodes are the same.
The inhomogeneous Erdős–Rényi random graphs in [8,16,19] are a special
case of Gn(α, β,W ). Moreover, the random graph Gn(α, β,W ) is studied in
[15,17,18]. We adopt Gn(α, β,W ) as the benchmark model in this paper.
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The average closure coefficient of a graph is defined as

(1) Hn =
1
n

n∑
i=1

∑
j �=k

AijAjkAki∑
j �=k

AijAjk

,

where any summation term with denominator zero is set to be zero [14]. The
denominator in (1) is the number of 2-path that starts at node i and the nu-
merator is 2 times the number of triangles involving node i. The difference
between the average closure coefficient and the average clustering coefficient
lies in the denominator. The denominator in the average clustering coeffi-
cient is the number of wedges centered at node i. In real-world networks,
the average closure coefficient and the average clustering coefficient can be
positively correlated, negatively correlated, or weakly correlated. The local
closure coefficient can therefore capture complementary information on fun-
damental clustering structure missed by the classical clustering coefficient
[14].

The theoretical properties of the average closure coefficient are not well
studied. [14] obtained the expectation of the local average closure coefficient
in the configuration model. In this paper, we derive the asymptotic distri-
bution of the average closure coefficient Hn in Gn(α, β,W ). This is not a
straightforward task because Hn is an average of dependent terms and each
term is a ratio of dependent quantities.

Theorem 2.2. For the heterogeneous random graph Gn(α, β,W ), we
have

Hn − E[Hn]
σn

⇒ N (0, 1),

where σ2
n = σ2

1n + σ2
2n and

σ2
1n =

4
n2

∑
i<j<k

( 1
νi

+
1
νj

+
1
νk

)2
pnwij(1− pnwij)

× pnwjk(1− pnwjk)pnwki(1− pnwki),

σ2
2n =

1
n2

∑
i<j

(2bij + 2cij + 2cji − (ai + aj)− (eij + eji))
2 pnwij(1− pnwij),

νi =
n∑

j=1

n∑
k=1

p2
nwijwjk, bij =

∑
k

pnwikpnwjk

νk
, cij =

∑
k

pnwikpnwjk

νi
,

as =
∑
i,j,k

pnwijpnwjkpnwkipnwis

ν2
i

, eis =
∑
j,k,t

pnwijpnwjkpnwkipnwst

ν2
i

.
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According to Theorem 2.2, the standardized average closure coefficient
converges in distribution to the standard normal distribution. Due to the
dependence of the summation terms in Hn, the proof of Theorem 2.2 is not
straightforward. Our proof strategy is as follows: expand each summation
term to k0 = � 4

1−α
�+ 1 order by Taylor expansion, single out the leading

term and prove the remainder terms are negligible and the leading term
converges in distribution to the standard normal distribution.

For the Erdős–Rényi random graph Gn(α), the variance σ2
n can be greatly

simplified. For Gn(α), straightforward calculations yields

νi = (n− 1)(n− 2)p2
n, bij = cij =

1
n− 1

,

ai =
n− 3

(n− 1)(n− 2)
, eij =

(n− 3)(n− 4)
(n− 1)2(n− 2)

.

Then σ2
1n and σ2

2n are equal to

σ2
1n =

4
n2

(
n

3

)(
3

(n− 1)(n− 2)p2
n

)2

p3
n(1− pn)3 =

6
n3−α

(1 + o(1)),

σ2
2n =

1
n2

(
n

2

)(
6

n− 1
− 2(n− 3)

(n− 1)(n− 2)
− 2(n− 3)(n− 4)

(n− 1)2(n− 2)

)2

pn(1− pn)

=
2

n2+α
(1 + o(1)).

Hence we have the following corollary.

Corollary 2.3. For the Erdős–Rényi random graph Gn(α), we have

Hn − E [Hn]
σn

⇒ N (0, 1),

where σ2
n = σ2

1n+σ2
2n, σ

2
1n = 6

n3−α (1+ o(1)) and σ2
2n = 2

n2+α (1+ o(1)). Hence
we have

σ2
n =

⎧⎪⎨
⎪⎩

6
n3−α (1 + o(1)), if α > 1

2 ,
8

n2
√
n
(1 + o(1)), if α = 1

2 ,
2

n2+α (1 + o(1)), if α < 1
2 .

For fixed large integer n, it is easy to verify that

lim
α→( 1

2
)−

2
n2+α

=
2

n2√n
�= 8

n2√n
, lim

α→( 1

2
)+

6
n3−α

=
6

n2√n
�= 8

n2√n
.
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As a function of α, σ2
n does not change continuously at α = 1

2 . From this
point of view, the scale σ2

n has a phase change at α = 1
2 .

Interestingly, the leading order of σ2
n of the average closure coefficient

in Gn(α) is exactly the same as the average clustering coefficient [18]. The
average closure coefficient and the average clustering coefficient exhibit the
same phase change phenomenon. In this sense, they are not significantly
different in the Erdős–Rényi random graph Gn(α).

3. Proof of the main result

In this section, we provide detailed proof of Theorem 2.2. Firstly,
we present several lemmas. For convenience, denote μij = pnwij , Vi =∑

j,k �∈{i}AijAjk and Āij = Aij − μij .

Lemma 3.1 [16]. Let Gn(α, β,W ) be defined in Definition 2.1, δn =
(log(npn))

−2
and M be a constant greater than e2

1−pnβ
. For any i ∈ [n], we

have

P(di = k) ≤ e−npnβ(1+o(1)), k ≤ δnnpn,

P(di = k) ≤ e−npnβ(1+o(1)), k ≥ Mnpn.

Lemma 3.2. Let εn = (log(npn))−5 and δn = (log(npn))−2. For the het-
erogeneous random graph Gn(α, β,W ), we have

P(V1 = k) ≤ e−βnpn(1+o(1)) + e−δn(npn)2β(1+o(1), k ≤ εn(npn)2.

Proof. For each j �= 1, denote dj(1) =
∑

k �∈{j,1}Ajk. Then

V1 =
n∑

j=1

A1jdj(1).

Note that A12, A13, . . . , A1n are independent of d2(1), d3(1), . . . , dn(1). By
the property of conditional probability and Lemma 3.1, we have

P(V1 = k) =
n−1∑
t=1

P(V1 = k|d1 = t)P(d1 = t)(2)

=
δnnpn∑
t=1

P(V1 = k|d1 = t)P(d1 = t) +
n−1∑

t=Mnpn

P(V1 = k|d1 = t)P(d1 = t)

+
Mnpn−1∑

t=δnnpn+1

P(V1 = k|d1 = t)P(d1 = t)
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≤ 2e−βnpn(1+o(1)) +
Mnpn−1∑

t=δnnpn+1

P(V1 = k|d1 = t)P(d1 = t).

Next we find an upper bound of the second term of (2). Note that d1 = t
implies there are exactly t of A12, A13, . . . , A1n are equal to 1 and n− 1− t
of them are equal to zero. There are

(
n−1
t

)
possible choices. Without loss of

generality, let A12 = A13 = · · · = A1(t+1) = 1 and A1(t+2) = A1(t+3) = · · · =
A1n = 0. Then

P
(
V1 = k|A12 = · · · = A1(t+1) = 1, A1(t+2) = · · · = A1n = 0

)
(3)

= P
(
d2(1) + d3(1) + · · · + d(t+1)(1) = k

)
≤ P

(
d2(1) + d3(1) + · · · + d(t+1)(1) ≤ k

)
.

It is easy to verify that

d2(1)+d3(1)+ · · · +d(t+1)(1) = 2
∑

2≤i<j≤t+1

Aij +
t+1∑
i=2

n∑
j=t+2

Aij ≥
t+1∑
i=2

n∑
j=t+2

Aij .

Then

P
(
d2(1) + d3(1) + · · · + d(t+1)(1) ≤ k

) ≤ P

( t+1∑
i=2

n∑
j=t+2

Aij ≤ k

)
.(4)

Let Nt = {(i, j)|2 ≤ i ≤ t+1, t+2 ≤ j ≤ n} and θt = {pnwij |(i, j) ∈ Nt}.
Then

∑t+1
i=2

∑n
j=t+2 Aij follows the Poisson-Binomial distribution PB(θt).

Recall that β ≤ wij ≤ 1. Then

P

( t+1∑
i=2

n∑
j=t+2

Aij = k

)
=

∑
S⊂Nt,|S|=k

∏
(i,j)∈S

pnwij

∏
(i,j)∈SC

(1− pnwij)(5)

≤
∑

S⊂Nt,|S|=k

∏
(i,j)∈S

pn
∏

(i,j)∈SC

(1− pnβ) ≤
(
nt

k

)
pkn(1− pnβ)nt−t2−t−k.

Note that
(
nt
k

) ≤ ek log(nt)−k log k+k and (1−pnβ)nt−t2−t−k = e(nt−t2−t−k) log(1−pnβ).
Then by (5) we get

P

( t+1∑
i=2

n∑
j=t+2

Aij = k

)
≤ eg(k),
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Acta Mathematica Hungarica 172, 2024

8 M. YUAN

where g(k) = k log(ntpn)− k log k + k + (nt− t2 − t− k) log(1− pnβ). Con-
sidering k as continuous variable, the derivative of g(k) with respect to k is
equal to

g′(k) = log
(

ntpn

1− pnβ

)
− log k.

Clearly, g′(k) > 0 for k < ntpn

1−pnβ
and g′(k) < 0 for k > ntpn

1−pnβ
. Then g(k)

achieves its maximum at k = ntpn

1−pnβ
. Let cn = (log(npn))

− 1

2 . For k ≤ cnntpn,
g(k) ≤ g(cnntpn). Note that −cn log(cn) = o(1). Hence

P

( t+1∑
i=2

n∑
j=t+2

Aij = k

)

≤ e
cnntpn log 1

cn(1−pnβ)
+cnntpn+nt log(1−pnβ)

e−
t2+t

nt
log(1−pnβ) ≤ e−ntpnβ(1+o(1)).

Note that δnnpn ≤ t ≤ Mnpn in the second term of (2). Then

k ≤ εn(npn)2 =
(npn)2

(log(npn))
5 ≤ (npn)2

(log(npn))
2 √

log(npn)
≤ cnntpn.

Hence, for k ≤ εn(npn)2, we have

P

( t+1∑
i=2

n∑
j=t+2

Aij = k

)
≤ e−δn(npn)2β(1+o(1)).(6)

Combining (2)–(6), one has

Mnpn−1∑
t=δnnpn+1

P(V1 = k|d1 = t)P(d1 = t)(7)

≤ Mnpn

(
n− 1
t

)
ke−δn(npn)2β(1+o(1)) = e−δn(npn)2β(1+o(1)).

Based on (2) and (7), the result of Lemma 3.2 holds. �

Lemma 3.3. For the heterogeneous random graph Gn(α,β,W ) and a pos-

itive integer t, we have

E[(Vi − νi)2t] = O((npn)3t),

uniformly for all i ∈ [n].
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Proof. It is straightforward to get that

Vi − νi =
∑
j �=k

ĀijĀjk+
∑
j �=k

Āijμjk+
∑
j �=k

μijĀjk.(8)

Then

(Vi − νi)2t ≤ 32t
[( ∑

j �=k

ĀijĀjk

)2t

+
(∑

j �=k

Āijμjk

)2t

+
(∑

j �=k

μijĀjk

)2t]
.(9)

Next we find upper bound of the expectation of each term in (9).
Consider the first term in (9). Note that

E

[( ∑
j �=k

ĀijĀjk

)2t]
=

∑
j1 �=k1,...,j2t �=k2t

E
[
Āij1Āj1k1

. . . Āij2tĀj2tk2t

]
.(10)

Note that E[ĀijĀst] = 0 if {i, j} �= {s, t} and E[|Āt
ij |] = O(pn) for any

positive integer t. If {i, j1} �= {i, js} for all s ≥ 2 and {i, j1} �= {jl, kl} for all
l ∈ {1, 2, . . . , 2t}, then

E
[
Āij1Āj1k1

. . . Āij2tĀj2tk2t

]
= E

[
Āij1

]
E

[
Āj1k1

. . . Āij2tĀj2tk2t

]
= 0.

Hence, for the expectation in (10) to be non-zero, {i, j1} = {i, js} for
some s ≥ 2 or {i, j1} = {jl, kl} for some l ∈ {1, 2, . . . , 2t}. Note that jl �= i
and kl �= i for all l. It is impossible that {i, j1} = {jl, kl} for some l ∈
{1, 2, . . . , 2t}. Hence {i, j1} = {i, js} for some s ≥ 2. Similarly, for each
s ∈ {1, 2, . . . , 2t}, there exists s1 ∈ {1, 2, . . . , s− 1, s+ 1, . . . , 2t} such that
{i, js} = {i, js1}. Hence, |{j1, j2, . . . , j2t}| ≤ t. Without loss of generality,
assume {j1, j2, . . . , j2t} = {j1, j2, . . . , js} for some s ≤ t and |{j1, j2, . . . , js}|
= s. Let tl be the number of elements in {j1, j2, . . . , j2t} that are equal to jl,
1 ≤ l ≤ s. Then t1 + t2 + · · · + ts = 2t. Suppose jrlq = jl for q = 1, 2, . . . , tl,
1 ≤ l ≤ s and rlq ∈ {1, 2, . . . , 2t}. In this case,

E

[
Āij1Āj1k1

. . . Āij2tĀj2tk2t

]
= E

[( s∏
l=1

E

[
Ātl

ijl

])( s∏
l=1

tl∏
q=1

Ājlkrlq

)]
(11)

= O(psn)E
[ s∏
l=1

tl∏
q=1

Ājlkrlq

]
.

If Āj1kr11
�= Ājl1krl1q1

for any l1, q1 with l1 �= 1 or q1 �= 1, then

E

[ s∏
l=1

tl∏
q=1

Ājlkrlq

]
= E[Āj1kr11

]E

⎡
⎣

⎛
⎝ t1∏

q=2

Āj1kr1q

⎞
⎠ s∏

l=2

tl∏
q=1

Ājlkrlq

⎤
⎦ = 0.
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Hence Āj1kr11
= Ājl1krl1q1

for some l1, q1 with l1 �= 1 or q1 �= 1. Similarly, for
each l, q, there exist l1, q1 with l1 �= l or q1 �= q such that Ājlkrlq

= Ājl1krl1q1
.

That is, (jl, krlq) = (jl1 , krl1q1
). Otherwise, the expectation in (11) is zero.

In this case, one has
(12)∣∣∣{(j1, kr11), (j1, kr12), . . . , (j1, kr1t1 ), . . . , (js, krs1), . . . , (js, krsts )}

∣∣∣ = m ≤ t.

Then

(13) E

[ s∏
l=1

tl∏
q=1

Ājlkrlq

]
= O(pmn ).

Note that (jl, krlq) = (jl1 , krl1q1
) with l1 �= l or q1 �= q implies

|{jl, krlq , jl1 , krl1q1
}| ≤ 3.

That is, if one pair (jl, krlq) is equal to another pair, the number of distinct
indices will reduce by at least 1. By (12), the number of pairs (jl, krlq) is
reduced by 2t−m. Hence, the number of distinct indices jl, krlq is reduced
by at least 2t−m. Then∣∣{j1, j2, . . . , js, kr11 , kr12 , . . . , kr1t1 , . . . , krs1 , . . . , krsts }∣∣(14)

≤ (s+ 2t)− (2t−m) = s+m.

There are at most ns+m choices of indices jl, kr satisfying (14). Combining
(10), (11) and (13) yields

E

[( ∑
j �=k

ĀijĀjk

)2t]
= O

(
(npn)s+m

)
= O

(
(npn)2t

)
.(15)

Then similarly to the proof of Lemma 3.2 in [18], it is easy to get

E

[(∑
j �=k

Āijμjk

)2t]
= O

(
(npn)3t

)
,(16)

E

[(∑
j �=k

μijĀjk

)2t]
= O

(
(npn)2tptn

)
.(17)

By (9), (15), (16) and (17), the proof is complete. �
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3.1. Proof of Theorem 2.2. For convenience, denote

Δijk = AijAjkAki and Δi =
∑
j,k

AijAjkAki.

Let k0 = � 4
1−α

�+ 1. Applying Taylor expansion to the function f(x) = 1
x
at

νi =
∑

j,k μijμjk yields

H =
1
n

n∑
i=1

Δi

Vi
=

1
n

n∑
i=1

Δi

νi
− 1

n

n∑
i=1

Δi(Vi − νi)
ν2
i

+
k0−1∑
t=2

(−1)t
1
n

n∑
i=1

Δi(Vi − νi)t

νt+1
i

+ (−1)k0
1
n

n∑
i=1

Δi(Vi − νi)k0

Xk0+1
i

.

where Xi is between Vi and νi. Then we have

H− E[H] =
1
n

n∑
i=1

Δi − E[Δi]
νi

− 1
n

n∑
i=1

Δi(Vi − νi)− E[Δi(Vi − νi)]
ν2
i

(18)

+
k0−1∑
t=2

(−1)t
1
n

n∑
i=1

Δi(Vi − νi)t − E[Δi(Vi − νi)t]
νt+1
i

+ (−1)k0
1
n

n∑
i=1

Δi(Vi − νi)k0

Xk0+1
i

− (−1)k0
1
n

n∑
i=1

E

[
Δi(Vi − νi)k0

Xk0+1
i

]
.

Next we prove the first two terms of (18) are the leading terms and the last
three terms are negligible.

Consider the first term of (18). By the proof of [18], we have the following
result. If α > 1

2 , then

1
n

n∑
i=1

Δi − E [Δi]
νi

=
1
n

∑
i �=j �=k

ĀijĀikĀjk

νi
+ oP

( 1
n
√
npn

)
.(19)

If α < 1
2 , then

1
n

n∑
i=1

Δi − E [Δi]
νi

(20)

=
1
n

∑
i �=j �=k

(
Ājkμijμik + Āijμjkμik + Āikμjkμij

)
νi

+ oP

(√
pn

n

)
.
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If α = 1
2 , then

1
n

n∑
i=1

Δi − E[Δi]
νi

(21)

=
1
n

∑
i �=j �=k

(
ĀijĀikĀjk + Ājkμijμik + Āijμjkμik + Āikμjkμij

)
νi

+ oP

(√
pn

n

)
.

Consider the last two terms of (18). Let εn be defined in Lemma 3.3. It
is easy to get that

1
n

n∑
i=1

E

[∣∣∣∣Δi(Vi−νi)k0

Xk0+1
i

∣∣∣∣
]
=

1
n

n∑
i=1

E

[∣∣∣∣Δi(Vi−νi)k0

Xk0+1
i

∣∣∣∣I[Xi ≥ εn(npn)2]
]

(22)

+
1
n

n∑
i=1

E

[∣∣∣∣Δi(Vi − νi)k0

Xk0+1
i

∣∣∣∣I[Xi < εn(npn)2]
]
.

Note that k0 = � 4
1−α

�+ 1 > 4
1−α

. By Lemma 3.3 and the Cauchy–
Schwarz inequality, we have

1
n

n∑
i=1

E

[∣∣∣∣Δi(Vi − νi)k0

Xk0+1
i

∣∣∣∣I[Xi ≥ εn(npn)2]
]

(23)

≤ 1
nεk0+1

n (npn)2k0+2

n∑
i=1

√
E[Δ2

i ]E[(Vi − νi)2k0 ]

= O

(
pn(npn)

3

2
k0+2

εk0+1
n (npn)2k0+2

)
= o

(pn

n2

)
.

Recall that νi = Θ((npn)2) and Xi is between νi and Vi. When Xi <
εn(npn)2, we have Vi < Xi. Otherwise, Xi can not be between νi and Vi.
Moreover, if Vi = 0, then the i-th term in the definition of the average clus-
tering coefficient in (1) vanishes. Hence, we assume Vi ≥ 1 and then Xi ≥ 1.
It is easy to verify that Δi ≤ n2 and |Vi − νi| ≤ n2. By Lemma 3.2, we have

1
n

n∑
i=1

E

[∣∣∣∣Δi(Vi − νi)k0

Xk0+1
i

∣∣∣∣I[Xi < εn(npn)2]
]

(24)

= O
(
n2k0+2) max

1≤i≤n
P(Vi < εn(npn)2)

≤ n2k0+2
εn(npn)2∑

k=1

P(V1 = k) = e−npnβ(1+o(1).
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Combining (22), (23) and (24) yields

1
n

n∑
i=1

Δi(Vi−νi)k0

Xk0+1
i

− 1
n

n∑
i=1

E

[
Δi(Vi−νi)k0

Xk0+1
i

]
= oP

(
1

n
√
npn

+
√
pn

n

)
.(25)

Consider the second term of (18). By (8), it is easy to verify that

1
n

n∑
i=1

Δi(Vi − νi)
ν2
i

=
1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisĀst

ν2
i

(26)

+
1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisμst

ν2
i

+
1
n

∑
i �=j �=k,s �=t

AijAjkAkiμisĀst

ν2
i

.

Next we show the first term of (26) is negligible and the last two terms are
leading terms.

Consider the first term of (26). If {j, k} = {s, t} in the summation of the
first term of (26), then

E

[
1
n

∑
i �=j �=k

∣∣∣∣AijAjkAkiĀijĀjk

ν2
i

∣∣∣∣
]
= O

( 1
n(npn)

)
.(27)

Suppose |{j, k}∩{s, t}| = 1 in the summation of the first term of (26). With-
out loss of generality, let s = j and t �= k. Then

E

[(
1
n

∑
i �=j �=k �=t

AijAjkAkiĀijĀjt

ν2
i

)2]
(28)

=
1
n2

∑
i �=j �=k �=t

i1 �=j1 �=k1 �=t1

E
[
AijAjkAkiĀijĀjtAi1j1Aj1k1

Ak1i1Āi1j1Āj1t1

]
ν2
i ν

2
i1

.

If (j, t) �∈ {(i1, j1), (j1, k1), (k1, i1), (j1, t1)}, then Ājt is independent of Ai1j1 ,
Ai1j1 , Aj1k1

, Ak1i1 . In this case,

E
[
AijAjkAkiĀijĀjtAi1j1Aj1k1

Ak1i1Āi1j1Āj1t1

]
= E[Ājt]E

[
AijAjkAkiĀijAi1j1Aj1k1

Ak1i1Āi1j1Āj1t1

]
= 0.

Hence (j, t) ∈ {(i1, j1), (j1, k1), (k1, i1), (j1, t1)}. Similarly, (j1, t1) ∈ {(i, j),
(j, k), (k, i), (j, t)}. Denote e1 = (i, j), e2 = (j, k), e3 = (k, i), e4 = (j, t),
e5 = (i1, j1), e6 = (j1, k1), e7 = (k1, i1), e8 = (j1, t1),

E =
{
e1, e2, e3, e4, e5, e6, e7, e8

}
, F =

{
i, j, k, t, i1, j1, k1, t1

}
.
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Then |E| ≤ 7. If |E| = 7, then (j1, t1) = (j, t), |F | = 6. There are at most n6

choices of the indices in F . Suppose |E| ≤ 6. Let el1 ∈ E and el2 ∈ E with
l1 �= l2. If el1 = el2 , then |F | will reduce by at least 1. Hence, |F | ≤ |E| ≤ 6.
In this case, there are at most n|E| choices of the indices in F . Note that

E
[
AijAjkAkiĀijĀjtAi1j1Aj1k1

Ak1i1Āi1j1Āj1t1

]
= O(p|E|

n ).

By (28) we conclude

E

[(
1
n

∑
i �=j �=k �=t

AijAjkAkiĀijĀjt

ν2
i

)2]
= O

(
(npn)6

n2(npn)8

)
= O

( 1
n2(npn)2

)
.

(29)

Suppose |{j, k} ∩ {s, t}| = 0 in the summation of the first term of (26).
Then

E

[(
1
n

∑
i �=j �=k �=t�=s

AijAjkAkiĀisĀst

ν2
i

)2]
(30)

=
1
n2

∑
i �=j �=k �=t�=s

i1 �=j1 �=k1 �=t1 �=s1

E
[
AijAjkAkiĀisĀstAi1j1Aj1k1

Ak1i1Āi1s1Ās1t1

]
ν2
i ν

2
i1

.

By a similar argument as in (29),

(i, s), (s, t) ∈ {
(i1, j1), (j1, k1), (k1, i1), (i1, s1), (s1, t1)

}
,

(i1, j1), (j1, t1) ∈
{
(i, j), (j, k), (k, i), (i, s), (s, t)

}
.

Denote

E =
{
(i, j), (j, k), (k, i), (i, s), (s, t), (i1, j1), (j1, k1), (k1, i1), (i1, s1), (s1, t1)

}
,

F =
{
i, j, k, s, t, i1, j1, k1, s1, t1

}
Then |E| ≤ 8. If |E| = 8, then {(i1, s1), (s1, t1)} = {(i, j), (j, t)} and |F | = 7.
There are at most n7 choices of the indices in F . Suppose |E| = 7. Then
{(i1, s1), (s1, t1), e1} = {(i, j), (j, t), e} for some e1 ∈ {(i1, j1), (j1, k1), (k1, i1)}
and some e ∈ {(i, j), (j, k), (k, i)}. Then |F | ≤ 6. Suppose |E| ≤ 6. Then |F |
≤ |E| ≤ 6. In this case, there are at most n|E| choices of the indices in F .
Note that

E
[
AijAjkAkiĀisĀstAi1j1Aj1k1

Ak1i1Āi1s1Ās1t1

]
= O(p|E|

n ).
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By (30) we conclude

E

[(
1
n

∑
i �=j �=k �=t�=s

AijAjkAkiĀisĀst

ν2
i

)2]
= O

(
n7p8

n + n6p6
n

n2(npn)8

)
= o

( 1
n2(npn)

)
.

(31)

Combining (27)–(31) yields

1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisĀst

ν2
i

− E

[
1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisĀst

ν2
i

]
(32)

= oP

( 1
n
√
npn

)
.

Consider the second term of (26). The second term of (26) can be ex-
pressed as

1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisμst

ν2
i

=
1
n

∑
i �=j �=k �=s,t

AijAjkAkiĀisμst

ν2
i

(33)

+
1
n

∑
i �=j �=k,t

AijĀijAjkAkiμjt

ν2
i

+
1
n

∑
i �=j �=k,t

AijAjkAkiĀikμkt

ν2
i

.

Now we find the order of each term in (33).
By a similar argument as in (29), we have

E

[(
1
n

∑
i �=j �=k �=s,t

AijAjkAkiĀisμst

ν2
i

)2]
= O

(pn

n2

)
.(34)

The variance of the second term of (33) is equal to

E

[(
1
n

∑
i �=j �=k,t

AijĀijAjkAkiμjt − E
[
AijĀijAjkAkiμjt

]
ν2
i

)2]
(35)

=
1
n2

∑
i �=j �=k,t

i1 �=j1 �=k1,t1

1
ν2
i ν

2
i1

E

[(
AijĀijAjkAkiμjt − E[AijĀijAjkAkiμjt]

)

× (
Ai1j1Āi1j1Aj1k1

Ak1i1μj1t1 − E[Ai1j1Āi1j1Aj1k1
Ak1i1μj1t1 ]

)]
.
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Let S = {(i, j), (j, k), (k, i)} ∩ {(i1, j1), (j1, k1), (k1, i1)}. If S = ∅, then the
expectation in (35) is zero. If |S| = 1, then |{i, j, k, i1, j1, k1}| = 4. Denote
Bijkt = AijĀijAjkAkiμjt − E

[
AijĀijAjkAkiμjt

]
. Then

E
[
BijktBi1j1k1t1

]
= O(p7

n).

Hence we have

1
n2

∑
i �=j �=k,t

i1 �=j1 �=k1,t1
|S|=1

1
ν2
i ν

2
i1

E
[
BijktBi1j1k1t1

]
= O

(
n6p7

n

n2(npn)8

)
= O

( 1
n2(npn)2

)
.(36)

If |S| = 2, then |{i, j, k, i1, j1, k1}| = 3 and

1
n2

∑
i �=j �=k,t

i1 �=j1 �=k1,t1
|S|=2

1
ν2
i ν

2
i1

E
[
BijktBi1j1k1t1

]
= O

(
n5p6

n

n2(npn)8

)
= O

( 1
n2(npn)3

)
.(37)

If |S| = 3, then |{i, j, k, i1, j1, k1}| = 3 and

1
n2

∑
i �=j �=k,t

i1 �=j1 �=k1,t1
|S|=3

1
ν2
i ν

2
i1

E
[
BijktBi1j1k1t1

]
= O

(
n5p5

n

n2(npn)8

)
= O

( 1
n2(npn)3

)
.(38)

Combining (35)–(38) yields

E

[(
1
n

∑
i �=j �=k,t

AijĀijAjkAkiμjt − E[AijĀijAjkAkiμjt]
ν2
i

)2]
= O

( pn

n2(npn)2
)
.

(39)

By (33), (34) and (39), we get

1
n

∑
i �=j �=k,s �=t

AijAjkAkiĀisμst − E[AijAjkAkiĀisμst]
ν2
i

(40)

=
1
n

∑
i �=j �=k �=s,t

AijAjkAkiĀisμst

ν2
i

+ oP

( 1
n
√
npn

+
√
pn

n

)
.
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Consider the last term of (26). Suppose {s, t} ∩ {i, j, k} = ∅ in the sum-
mation of the last term of (26). Similar to (34), we have

E

[(
1
n

∑
i �=j �=k �=s �=t

AijAjkAkiμisĀst

ν2
i

)2]
= O

(pn

n2

)
.(41)

Suppose {s, t} ⊂ {i, j, k} in the summation of the last term of (26). Since
s �= i and t �= i, then {s, t} = {j, k}. Hence

E

[∣∣∣∣ 1n
∑

i �=j �=k

AijAjkAkiμijĀjk

ν2
i

∣∣∣∣
]
= O

( 1
n2

)
.(42)

Suppose |{s, t} ∩ {i, j, k}| = 1. Without loss of generality, let s = j and
t �∈ {i, j, k}. By a similar argument as in (29), one has

E

[(
1
n

∑
i �=j �=k �=t

AijAjkAkiμijĀjt

ν2
i

)2]
= O

( 1
n2(npn)2

)
.(43)

By (41)–(43), the last term of (26) is equal to

1
n

∑
i �=j �=k,s �=t

AijAjkAkiμisĀst

ν2
i

=
1
n

∑
i �=j �=k �=s �=t

AijAjkAkiμisĀst

ν2
i

+ oP

(√pn

n

)
.

(44)

Next we isolate the leading terms of (44). It is easy to get that

1
n

∑
i �=j �=k �=s �=t

AijAjkAkiμisĀst

ν2
i

(45)

=
1
n

∑
i �=j �=k �=s �=t

(AijAjkAki − μijμjkμki)μisĀst

ν2
i

+
1
n

∑
i �=j �=k �=s �=t

μijμjkμkiμisĀst

ν2
i

.

The second moment of the first term of (45) is equal to

E

[(
1
n

∑
i �=j �=k �=s �=t

(AijAjkAki − μijμjkμki)μisĀst

ν2
i

)2]
(46)

=
1
n2

∑
i �=j �=k �=s �=t

i1 �=j1 �=k1 �=s1 �=t1

E[BijkμisĀstBi1j1k1
μi1s1Ās1t1 ]

ν2
i ν

2
i1

,
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where Bijk = AijAjkAki − μijμjkμki. Let

S = {(i, j), (j, k), (k, i), (s, t)} ∩ {(i1, j1), (j1, k1), (k1, i1), (s1, t1)}.
If (s, t) �∈ {(i1, j1), (j1, k1), (k1, i1), (s1, t1)}, then

E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
= E[Āst]E

[
BijkμisBi1j1k1

μi1s1Ās1t1

]
= 0.

If {
(i, j), (j, k), (k, i)

} ∩ {
(i1, j1), (j1, k1), (k1, i1), (s1, t1)

}
= ∅,

then

E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
(47)

= E[Bijk]E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
= 0.

Hence (s, t) ∈ {(i1, j1), (j1, k1), (k1, i1), (s1, t1)} and{
(i, j), (j, k), (k, i)

} ∩ {
(i1, j1), (j1, k1), (k1, i1), (s1, t1)

} �= ∅.
Then |S| ≥ 2. If |S| = 2, then |{i, j, k, s, t, i1, j1, k1, s1, t1}| ≤ 6 and

E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
= O(p6

n).

Then

1
n2

∑
i �=j �=k �=s �=t

i1 �=j1 �=k1 �=s1 �=t1
|S|=2

E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
ν2
i ν

2
i1

(48)

= O

(
n6p6

n

n2(npn)8

)
= O

( 1
n2(npn)2

)
.

If |S| ≥ 3, then |{i, j, k, s, t, i1, j1, k1, s1, t1}| ≤ 5 and

E
[
BijkμisĀstBi1j1k1

μi1s1Ās1t1

]
= O(p5

n).

Then

1
n2

∑
i �=j �=k �=s �=t

i1 �=j1 �=k1 �=s1 �=t1
|S|≥3

E[BijkμisĀstBi1j1k1
μi1s1Ās1t1 ]

ν2
i ν

2
i1

(49)

= O

(
n5p5

n

n2(npn)8

)
= O

( 1
n2(npn)3

)
.
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By (46), (48) and (49), we have

E

[(
1
n

∑
i �=j �=k �=s �=t

(AijAjkAki − μijμjkμki)μisĀst

ν2
i

)2]
= O

( 1
n2(npn)2

)
.(50)

Combining (44), (45) and (50) yields

1
n

∑
i �=j �=k,s �=t

AijAjkAkiμisĀst − E[AijAjkAkiμisĀst]
ν2
i

(51)

=
1
n

∑
i �=j �=k �=s �=t

μijμjkμkiμisĀst

ν2
i

+ oP

(
1

n
√
npn

+
√
pn

n

)
.

Similarly, we have

1
n

∑
i �=j �=k �=s,t

AijAjkAkiĀisμst

ν2
i

(52)

=
1
n

∑
i �=j �=k �=s,t

μijμjkμkiĀisμst

ν2
i

+ oP

(
1

n
√
npn

+
√
pn

n

)
.

Consider the third term of (18). Let r1, r2, r3 be non-negative integers
such that r1 + r2 + r3 = t. Let Cr1r2r3 be constants dependent on r1, r2, r3.
By (8), we have

(Vi−νi)t =
∑

r1+r2+r3=t

Cr1r2r3

( ∑
j �=k

ĀijĀjk

)r1
(∑

j �=k

Āijμjk

)r2
( ∑

j �=k

μijĀjk

)r3

.

(53)

It is easy to obtain that

AijAjkAki = ĀijĀikĀjk + ĀijĀikμjk + ĀijĀjkμik + ĀikĀjkμij(54)

+ Ājkμijμik + Āijμjkμik + Āikμjkμij + μijμjkμki.

Given non-negative integer r ≤ 2t, denoteD={i, j, k, j1, . . . , jt, k1, . . . , kt}
and

Ir =
{
(i, j, k, j1, . . . , jt, k1, . . . , kt) ∈ [n]2t+3 ∣∣ |D| = 2t+ 3− r,

i �= j �= k, js �= ks �= i, s ∈ [t]
}
.
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Given a set of indices in D, denote e1 = (i, j), e2 = (j, k), e3 = (k, i),
e4 = (i, j1), e5 = (j1, k1), . . . , e2t+2 = (i, jt), e2t+3 = (jt, kt) and

S =
{
e1, e2, . . . , e2t+2, e2t+3},

where we assume (i, j) = (j, i). Then

1
n

n∑
i �=j �=k

1
νt+1
i

ĀijĀikĀjk

( ∑
j �=k

ĀijĀjk

)r1
(∑

j �=k

Āijμjk

)r2
(∑

j �=k

μijĀjk

)r3

(55)

=
1
n

∑
i �=j �=k
j1,...,jt,
k1,...,kt

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

)

=
1
n

∑
I0

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

)

+
1
n

∑
I1

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

)

+
1
n

∑
Ir,r≥2

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

)
.

Next we bound each term in (55).
Consider the last term in (55). Suppose r ≥ 2. Let el, em ∈ S with

l �= m. If el = em, then there exist at least two elements a, b ∈ D such that
a = b. That is, when the number of distinct elements in S reduces by 1,
the number of distinct elements in D reduces by at least 1. Hence |S| < u
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implies |D| < u for any integer 4 ≤ u ≤ 2t+3. Then |D| ≥ u implies |S| ≥ u.
Hence |D| = 2t+ 3− r implies

∣∣S∣∣ ≥ 2t+ 3− r. In this case, one has

E

[∣∣∣∣ĀijĀikĀjk

( r1∏
s=1

ĀijsĀjsks

)( r1+r2∏
s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

)∣∣∣∣
]

= O(p2t+3−r
n ).

Note that there are at most n2t+3−r elements in Ir. Then for r ≥ 2, we get

1
n

∑
Ir ,r≥2

E

[∣∣∣∣ ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)( r1+r2∏
s=r1+1

Āijsμjsks

)
(56)

×
( t∏

s=r1+r2+1

μijsĀjsks

)∣∣∣∣
]
= O

(
(npn)2t+3−r

n(npn)2t+2

)
= O

(
1

n(npn)

)
.

Consider the first term in (55). Suppose r = 0. Let

D′ = {i′, j′, k′, j′1, . . . , j′t, k′1, . . . , k′t}
and

I ′r =
{
(i′, j′, k′, j′1, . . . , j

′
t, k

′
1, . . . , k

′
t) ∈ [n]2t+3 ∣∣

|D′| = 2t+ 3− r, i′ �= j′ �= k′, j′s �= k′s �= i′, s ∈ [t]
}
.

Denote e′1 = (i′, j′), e′2 = (j′, k′), e′3 = (k′, i′), e′4 = (i′, j′1), e
′
5 = (j′1, k

′
1), . . . ,

e′2t+2 = (i′, j′t), e′2t+3 = (j′t, k′t), S′ =
{
e′1, e

′
2, . . . , e

′
2t+2, e

′
2t+3},

U =
{
(jr1+1, kr1+1), . . . , (jr1+r2 , kr1+r2), (i, jr1+r2+1), . . . , (i, jt)

}
,

U ′ =
{
(j′r1+1, k

′
r1+1), . . . , (j

′
r1+r2

, k′r1+r2
), (i′, j′r1+r2+1), . . . , (i

′, j′t)
}
.

The second moment of the first term in (55) is equal to

E

[(
1
n

∑
I0

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)
(57)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

))2
]

=
1
n2

∑
I0,I

′

0

E

[
ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)( r1+r2∏
s=r1+1

Āijsμjsks

)
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×
( t∏

s=r1+r2+1

μijsĀjsks

)
Āi′j′Āi′k′Āj′k′

νt+1
i′

( r1∏
s=1

Āi′j′sĀj′sk
′

s

)

×
( r1+r2∏

s=r1+1

Āi′j′sμj′sk
′

s

)( t∏
s=r1+r2+1

μi′j′sĀj′sk
′

s

)]
.

For any el ∈ S − U , Āel is independent of Āem for em ∈ S − U − {el}.
If Āel �= Āe′q for any e′q ∈ S′ − U ′, then Āel is independent of Āem for em ∈
S − U − {el} and Āe′q for e′q ∈ S′ − U ′. In this case, the expectation in (57)
is zero. Hence, for the expectation in (57) to be non-zero, we have that
Āel = Āe′q

for some e′q ∈ S′−U ′. That is, el = e′q for some e′q ∈ S′−U ′. Then
we get

S − U = S′ − U ′.

When r = 0, the elements in S−U are distinct. Hence each element in S−U
is equal to exactly one element in S′ − U ′. Then by (57) we have

E

[(
1
n

∑
I0

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)
(58)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

))2]

= O
( 1
n2(npn)4t+4

) ∑
I0,U

′

S−U=S′−U ′

E

[
Ā2

ijĀ
2
ikĀ

2
jk

( r1∏
s=1

Ā2
ijs
Ā2

jsks

)

×
( r1+r2∏

s=r1+1

Ā2
ijsμjsks

)( t∏
s=r1+r2+1

μijsĀ
2
jsks

)( r1+r2∏
s=r1+1

μj′sk
′

s

)( t∏
s=r1+r2+1

μi′j′s

)]
.

Note that S−U = S′−U ′ implies j′s ∈ D for s = r1+1, . . . , t and i′ ∈ D.
By (58) and the fact that r2 ≤ t, we have

E

[(
1
n

∑
I0

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)( r1+r2∏
s=r1+1

Āijsμjsks

)
(59)

×
( t∏

s=r1+r2+1

μijsĀjsks

))2]
= O

(
n2t+3+r2p2t+3+r2+r3

n

n2(npn)4t+4

)
=O

( 1
n2(npn)t+1

)
.

Consider the second term in (55). Suppose r = 1. In this case, |D| = 2t+
3− 1. There are several cases: (a) js = j or js = k for some s ∈ [r1 + r2]; (b)

M. YUAN564



Acta Mathematica Hungarica 172, 2024

CENTRAL LIMIT THEOREM FOR THE AVERAGE CLOSURE COEFFICIENT 23

js = j or js = k for some r1 + r2 +1 ≤ s ≤ t; (c) js1 = js2 for distinct s1, s2 ∈
[r1 + r2]; (d) js1 = js2 for s1 ∈ [t] and r1 + r2 + 1 ≤ s2 ≤ t; (e) js1 = ks2 for
distinct s1, s2; (f) ks1 = ks2 for distinct s1, s2; (g) ks = j or ks = k.

Case (b): |S| = 2t+2. Without loss of generality, we can assume jt = k.
In this case, Āel (el ∈ S −U + {i, k}) are independent and there are at most
n2t+2 elements in I1. By a similar argument as in (57)–(59) yields

E

[(
1
n

∑
I1,jt=k

ĀijĀikĀjk

νt+1
i

( r1∏
s=1

ĀijsĀjsks

)
(60)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

))2]
= O

( 1
n2(npn)4t+4

)

×
∑

I1,jt=k,U ′

S−U+{i,k}=S′−U ′+{i′,k′}

E

[
Ā2

ijĀ
2
ikĀ

2
jk

( r1∏
s=1

Ā2
ijs
Ā2

jsks

)( r1+r2∏
s=r1+1

Ā2
ijs
μjsks

)

×
( t∏

s=r1+r2+1

μijsĀ
2
jsks

)( r1+r2∏
s=r1+1

μj′sk
′

s

)( t∏
s=r1+r2+1

μi′j′s

)]

= O

(
n2t+2+r2p2t+3+r2+r3

n

n2(npn)4t+4

)
= O

(
1

n2(npn)t+2

)
.

The cases (d), (e), (f), (g) can be similarly bounded as in (60).
Case (a). Without loss of generality, we assume j1 = j. Then

E

[(
1
n

∑
I1,j1=j

Ā2
ijĀikĀjkĀj1k1

νt+1
i

( r1∏
s=2

ĀijsĀjsks

)
(61)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

))2]

=
1
n2

∑
I1,j1=j
I′

1,j
′

1=j′

E

[
Ā2

ijĀikĀjkĀj1k1

νt+1
i

( r1∏
s=2

ĀijsĀjsks

)( r1+r2∏
s=r1+1

Āijsμjsks

)

×
( t∏

s=r1+r2+1

μijsĀjsks

)
Ā2

i′j′Āi′k′Āj′k′Āj′1k
′

1

νt+1
i′

( r1∏
s=2

Āi′j′s
Āj′sk

′

s

)

×
( r1+r2∏

s=r1+1

Āi′j′s
μj′sk

′

s

)( t∏
s=r1+r2+1

μi′j′s
Āj′sk

′

s

)]
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For any (l,m) ∈ S − U − {(i, j)}, Ālm is independent of Āab for (a, b) ∈
S − U − {(l,m)}. If Ālm �= Āh′g′ for any (h′, g′) ∈ S′ − U ′, then Ālm is in-
dependent of Āab for (a, b) ∈ S − U − {(l,m)} and (a, b) ∈ S′ − U ′. In this
case, the expectation in (61) is zero. Hence, for the expectation in (61) to
be non-zero, we have that Ālm = Āh′g′ for some (h′, g′) ∈ S′ − U ′. That is,
(l,m) = (h′, g′) for some (h′, g′) ∈ S′ − U ′. Then we get

(62) S − U − {(i, j)} ⊂ S′ − U ′, S′ − U ′ − {(i′, j′)} ⊂ S − U.

There are at most n2t+2+r2 elements in I1 and I ′1 satisfying (62). Note that
|Āij | ≤ 1. Then |Āij |m ≤ Ā2

ij for m ≥ 2. By (61), we have

E

[(
1
n

∑
I1,j1=j

Ā2
ijĀikĀjkĀj1k1

νt+1
i

( r1∏
s=2

ĀijsĀjsks

)
(63)

×
( r1+r2∏

s=r1+1

Āijsμjsks

)( t∏
s=r1+r2+1

μijsĀjsks

))2
]

≤ 1
n2

∑
I1,j1=j
I′

1,j
′

1=j′

(62)

E

[
Ā2

ijĀ
2
ikĀ

2
jkĀ

2
j1k1

νt+1
i νt+1

i′

( r1∏
s=2

Ā2
ijsĀ

2
jsks

)( r1+r2∏
s=r1+1

Ā2
ijsμjsks

)

×
( t∏

s=r1+r2+1

μijsĀ
2
jsks

)( r1+r2∏
s=r1+1

μj′sk
′

s

)( t∏
s=r1+r2+1

μi′j′s

)]

= O

(
n2t+2+r2p2t+2+r2+r3

n

n2(npn)4t+4

)
= O

(
1

n2(npn)t+2

)
.

Case (c) can be similarly bounded as in (63).
By (55), (56), (59), (60) and (63), we get

1
n

n∑
i �=j �=k

ĀijĀikĀjk

νt+1
i

( ∑
j �=k �=i

ĀijĀjk

)r1
( ∑

j �=k �=i

Āijμjk

)r2
( ∑

j �=k �=i

μijĀjk

)r3

(64)

− E

[
1
n

n∑
i �=j �=k

ĀijĀikĀjk

νt+1
i

( ∑
j �=k �=i

ĀijĀjk

)r1
( ∑

j �=k �=i

Āijμjk

)r2

×
( ∑

j �=k �=i

μijĀjk

)r3
]
= oP

( 1
n
√
np

)
.
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Similarly, it is easy to show that

1
n

n∑
i �=j �=k

Bijk

νt+1
i

( ∑
j �=k �=i

ĀijĀjk

)r1
( ∑

j �=k �=i

Āijμjk

)r2
( ∑

j �=k �=i

μijĀjk

)r3

(65)

− E

[
1
n

n∑
i �=j �=k

Bijk

νt+1
i

( ∑
j �=k �=i

ĀijĀjk

)r1( ∑
j �=k �=i

Āijμjk

)r2( ∑
j �=k �=i

μijĀjk

)r3]

= oP

( 1
n
√
np

)
,

where

Bijk ∈ {
ĀijĀikμjk, ĀijμikĀjk, μijĀikĀjk, Āijμikμjk,

μijĀikμjk, μijμikĀjk, μijμikμjk

}
.

Based on (54), (53), (64) and (65), the third term of (18) is bounded by

k0∑
t=2

1
n

n∑
i=1

Δi(Vi − νi)t − E[Δi(Vi − νi)t]
νt+1
i

= oP

( 1
n
√
np

)
.(66)

By (3.1), (3.1), (21), (51) and (52), we have the following result.
If α > 1

2 , then

Hn − E[Hn] =
2
n

∑
i<j<k

( 1
νi

+
1
νj

+
1
νk

)
ĀijĀikĀjk + oP

( 1
n
√
npn

)
.

If α < 1
2 , then

Hn − E[Hn] =
1
n

∑
i<j

(
2bij + 2cij + 2cji − (ai + aj)− (eij + eji)

)
Āij

+ oP

(√pn

n

)
.

If α = 1
2 , then

Hn − E[Hn] =
2
n

∑
i<j<k

( 1
νi

+
1
νj

+
1
νk

)
ĀijĀikĀjk

+
1
n

∑
i<j

(
2bij + cij + cji − (ai + aj)− (eij + eji)

)
Āij + oP

(√pn

n

)
.
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By a similar proof of Lemma 3.4 in [18], we get the limiting distribution
of Hn − E[Hn] as given in Theorem 2.2.
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