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Abstract. Many real-world networks exhibit the phenomenon of edge clus-
tering, which is typically measured by the average clustering coefficient. Recently,
an alternative measure, the average closure coefficient, is proposed to quantify lo-
cal clustering. It is shown that the average closure coefficient possesses a number
of useful properties and can capture complementary information missed by the
classical average clustering coefficient. In this paper, we study the asymptotic dis-
tribution of the average closure coefficient of a heterogeneous Erdés—Rényi random
graph. We prove that the standardized average closure coefficient converges in dis-
tribution to the standard normal distribution. In the Erdés—Rényi random graph,
the variance of the average closure coefficient exhibits the same phase transition
phenomenon as the average clustering coefficient.

1. Introduction

A network or graph G = (V, E) is a pair of node set V' and edge set E.
The edges in E represent the interactions between nodes. Networks are
widely used to understand and model many complex systems [7,10]. In so-
ciology, relationships among social actors can be depicted by networks and
network analsyis is used to study structures of interdependencies among so-
cial units [11]. In biology, network is an important tool for understanding
how the interactions between molecules determine the function of cells [2].
In psychology, network analysis is applied to identify and analyse patterns
of pairwise conditional dependencies in multivariate psychological data [3].

Many real-world networks exhibit a trait that the edges tend to cluster.
For instance, in a social network, the friends of a friend are more likely to be
friends [1]. In co-authorship networks, the collaborators of an author tend to
be co-authors [9]. The average clustering coefficient is the standard metric
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to measure the extent of clustering [13]. The local clustering coefficient of a
node is defined as the fraction of pairs of its neighbors that are connected
by an edge. The average clustering coefficient is the average of the local
clustering coefficients of all nodes. The average clustering coefficient has
wide applications in network data analysis [5,6,12].

Recently, [14] introduced an alternative metric, the average closure co-
efficient, to measure the extent of clustering of a network. The local closure
coefficient of a node is the fraction of closed wedges that emanate from the
node. The average of the local closure coefficients of all nodes is called the
average closure coefficient. It is shown that the local (or average) closure
coefficient has remarkably different properties from the local (or average)
clustering coefficient [14]. For example, as the degree of a node increases,
the local closure coefficient tends to increase, but the average clustering coef-
ficient tends to decrease [14]. Therefore, the closure coefficients can capture
complementary information missed by the clustering coefficients and are use-
ful in link prediction, role discovery, outlier detection, etc.

Understanding the asymptotic properties of network statistics is a fun-
damental research topic in network analysis [4,8,15-19]. In this paper, we
are interested in the limiting distribution of the average closure coefficient
in a heterogeneous Erdés—Rényi random graph. The average closure coeffi-
cient is a sum of dependent terms. The classic central limit theorem can not
be directly applied to obtain its asymptotic distribution. We prove that the
standardized average closure coefficient converges in distribution to the stan-
dard normal distribution. We find that the variance of the average closure
coefficient exhibits the same phase transition phenomenon as the average
clustering coefficient.

The rest of the paper is organized as follows. In section 2, we introduce
the definition of the average closure coefficient and the heterogeneous Erdés—
Rényi random graph and present the main result. The proof is deferred to
Section 3.

Notation. We adopt the Bachmann-Landau notation throughout this
paper. Let a, and b, be two positive sequences. Denote a,, = ©(b,) if
c1bn, < an < by, for some positive constants ¢q,ce. Denote a, = w(b,) if
lim,, 00 Zn = 00. Denote a,, = O(b,) if a,, < ¢b, for some positive constants
c. Denote a,, = o(by,) if lim,,_, o Zn = 0. Let N(0,1) be the standard normal
distribution and X, be a sequence of random variables. Then X,, = N (0, 1)
means X,, converges in distribution to the standard normal distribution as
n goes to infinity. Denote X,, = Op(a,,) if f: is bounded in probability. De-
note X,, = op(ay,) if ff: converges to zero in probability as n goes to infinity.

Let E[X,,] and Var(X,,) denote the expectation and variance of a random
variable X, respectively. P[E] denote the probability of an event E. Let

f = f(x) be a function. Denote f*)(z) = gi{: (x) for any positive integer k.
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exp(z) denote the exponential function e®. For positive integer n, denote
[n] ={1,2,...,n}. Given a finite set E, |E| represents the number of ele-
ments in F. For positive integers i, j, k, ¢ # j # k means i # j,j # k, k # i.
Given positive integer t, Zil Lirt. £, N€ans summation over all integers
i1,%2, ..., in [n] such that [{i1,4a,... 0t }| =¢. > ; _; ., meanssumma-
tion over all integers 1,49, . .., in [n] such that iy < is < --- < ;. For two
sets U,V, U — V represents the set of elements in U but not in V. U +V
means the union of U and V.

2. Main results

An undirected graph on V = [n] is the pair G = (V, ), where £ is a set
of subsets with cardinality 2 of V. The elements in V are called nodes or
vertexes and elements in & are called edges. A symmetric adjacency matrix
A is usually used to represent a graph. In A, A;; =1 indicates {7,j} is an
edge. Otherwise, A;; = 0. The degree d; of node 7 is the number of edges
connecting it, that is, d; = Z?:l A;j. A wedge or 2-path in a graph is two
edges that share exactly one common node. The common node is called the
center of the wedge. A wedge is closed if nodes at both ends are connected
by an edge. For example, edge {1,2} and edge {2,3} form a wedge. Node 2
is the center of this wedge. The head of this wedge is node 1 or 3. If nodes 1
and 3 are connected by an edge, that is, {1,3} is an edge, then the wedge is
closed. A graph is said to be random if 4;;(1 <14 < j < n) are random.

DEFINITION 2.1. Let o and S be constants between zero and one, that
is, a, 5 € (0,1), and

W= {wij e B U1 <4, j<n, wji = wy, wii:O}.
Define a heterogeneous random graph G, («, 5, W) as

P(Ai; = 1) = prwij,

(67

where A;; (1 <i < j <n) are independent, A;; = Aj; and p, =n~?.

In G, (v, B, W), E[d;] = > _, prwik. Generally speaking, E[d;] # E[d;] if
i # j. The random graph G, (c, 8, W) is therefore heterogeneous. When w;;
(1 <i<j<n)areequal toone, G,(a, 5, W) is the well-known Erdés—Rényi
random graph. We simply denote it as G,(«). The Erd6és—Rényi random
graph is homogeneous because the expected degrees of nodes are the same.
The inhomogeneous Erdés—Rényi random graphs in [8,16,19] are a special
case of G, («, 8,W). Moreover, the random graph G, (a, 8, W) is studied in
[15,17,18]. We adopt G,,(«, 5, W) as the benchmark model in this paper.
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The average closure coefficient of a graph is defined as

n 2 Aij AR Ak

1 J#k
(1) HTL = )
nim 2 A
J#k

where any summation term with denominator zero is set to be zero [14]. The
denominator in (1) is the number of 2-path that starts at node i and the nu-
merator is 2 times the number of triangles involving node i. The difference
between the average closure coefficient and the average clustering coefficient
lies in the denominator. The denominator in the average clustering coeffi-
cient is the number of wedges centered at node i. In real-world networks,
the average closure coefficient and the average clustering coefficient can be
positively correlated, negatively correlated, or weakly correlated. The local
closure coefficient can therefore capture complementary information on fun-
damental clustering structure missed by the classical clustering coefficient
[14].

The theoretical properties of the average closure coefficient are not well
studied. [14] obtained the expectation of the local average closure coefficient
in the configuration model. In this paper, we derive the asymptotic distri-
bution of the average closure coefficient H,, in G,(a, 3, W). This is not a
straightforward task because H,, is an average of dependent terms and each
term is a ratio of dependent quantities.

THEOREM 2.2. For the heterogeneous random graph G,(«, 5, W), we
have

H, —EH
n B v,
On
where 02 = 0%, + 03, and
4 1 1 1\2
2
Olp = n? Z <Vi + v; + Vk) pnwij(l _pnwij)
1<j<k
X pnwik(1 = ppwjn) pnwii(1 — prwgs),
1
O3y = 2 D (2bij + 245 + 2¢5i — (i + a5) — (esj + €50))? prwis (1 — powyy),
1<J
n n
PrnWikPnWjk PrnWikPnWijk
j=1k=1 k k ’

o PrnWij PnW; kP Wi PnWis - PrnWijPnW;kPn Wi PnWst
ag = E 2 ,  Eis = § 2 .
Z"j7k Z j,k7t Z
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According to Theorem 2.2, the standardized average closure coefficient
converges in distribution to the standard normal distribution. Due to the
dependence of the summation terms in H,, the proof of Theorem 2.2 is not
straightforward. Our proof strategy is as follows: expand each summation
term to kg = [111&] + 1 order by Taylor expansion, single out the leading
term and prove the remainder terms are negligible and the leading term
converges in distribution to the standard normal distribution.

For the Erdés-Rényi random graph G, (), the variance o2

= can be greatly
simplified. For G, (), straightforward calculations yields

V; = (n— 1)(72—2)]9721, bij :cij = ni 1,
v — n—3 o (n—3)(n—4)
T n=1)(n-2) Y (n—-12n-2)

2 2
Then o7, and o5, are equal to

, 1 <n>< 6 2(n — 3) 2(n — 3)(n — 4)

7 p2\2) \n-1" n-1)(n-2) " (n-12n-2)

2
) 1)
= (1 o(1).

Hence we have the following corollary.

COROLLARY 2.3. For the Erdés—Rényi random graph G,(«), we have

n - E n
" [Fal = N(0,1),
On
where 02 = 03, +03,, 01, = S .(1+0(1)) and 03, = 2.(1+0(1)). Hence

we have
. (l+0(1), if a> 3,
Ui = nfi/n(l + 0(1))7 Zf o = %a
nre (L4 0(1)), if a < ).

For fixed large integer n, it is easy to verify that

I 2 2 8 I 6 6 8
1m = 1m - .
() 2t T n2y/n T n2y/n’ as(ys 0o T 02y T n2y/n

2
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1

As a function of a, o2 does not change continuously at a = 5. From this

point of view, the scale o2 has a phase change at o = %

Interestingly, the leading order of o2 of the average closure coefficient
in G, () is exactly the same as the average clustering coefficient [18]. The
average closure coefficient and the average clustering coefficient exhibit the
same phase change phenomenon. In this sense, they are not significantly
different in the Erdés—Rényi random graph G, ().

3. Proof of the main result

In this section, we provide detailed proof of Theorem 2.2. Firstly,
we present several lemmas. For convenience, denote p;; = ppw;j, Vi =

LEmMMA 3.1 [16]. Let G,(«,3,W) be defined in Definition 2.1, &, =

(10g(7749n))_2 and M be a constant greater than 1—8;;5' For any i € [n], we

have
P(d; = k) < e P PreM) -k < §,mp,,
P(d; = k) < e_”p"ﬁ(lJrO(l)), k > Mnp,.

LEMMA 3.2. Let ¢, = (log(np,)) > and 6, = (log(np,)) 2. For the het-
erogeneous random graph Gp(a, 8, W), we have

]P(‘/l _ k) < e—ﬁnpn(l-‘ro(l)) + €—5n(ﬂpn)25(1+0(1)7 k< En(npn)2'

PROOF. For each j # 1, denote d;(;) = Zkg{]yl} Aj. Then

Vi= ZAljdj(l)-
j=1

Note that Aja, A13, ..., A1, are independent of dy(yy, d3(1), .-, dp(1)- By
the property of conditional probability and Lemma 3.1, we have
n—1
(2) P(Vi=k) =) P(Vi=kldi =t)P(d; =)
t=1
OnNpPn n—1
=Y PWVi=kld=t)Pd=t)+ Y PVi=kld =t)P(d=1t)
t=1 t=Mnp,,
Mnp,—1
+ Y P(Vi=kld =t)P(dy =)
t=0,npn+1
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Mnp,—1
< 2 oo o N P(Vy = k|dy = t)P(dy = 1).
t=0n,npn+1

Next we find an upper bound of the second term of (2). Note that d; = ¢

implies there are exactly t of Ayo, A13,..., A1, areequal to land n —1 —+¢
of them are equal to zero. There are (”;1) possible choices. Without loss of
generality, let A12 - A13 = Al(t_;’_l) - 1 and Al(t+2) = Al(t+3) —_ ... =
A1, = 0. Then

(3) ]}D(V1 =k|Ap == Ay = L Ajpyo) = = Ain = o)

= P(do) +dsa) + - + dyy) = k)
< P(do) +dgay + -+ + dynyy < k).

It is easy to verify that

t+1 n t+1 n
d2(1) +d3(1) +d(t+1 Z A’L] + Z Z AZ] > Z Z AZ]
2<i<j<t+1 1=2 j=t+42 =2 j=t+2

Then

t+1 n

i=2 j=t+2

Let Ny = {(i,j)[2 < i < t+1,t+2 < j <n} and 8, = {pawy;| (i, ) € N;}.
Then Zfi; ;L:t 4o Aij follows the Poisson-Binomial distribution PB(6;).
Recall that 8 < w;; < 1. Then

t+1 n
(5) ]P’<Z > Aij=k>= > I pawy I = pawy)

1=2 j=t42 SCN,|S|=k (i,j)€S (i,5)esS¢

< > I e J] O=puB) < < >pn(1—pnﬂ)”t rok,

SCN,|S|=k (i,5)eS  (i,5)€S°

Note that (7;:) < ek log(nt)—klogk+k 414 (1 _pnﬁ)"t—tz—t—k — e(nt—tQ—t—k) log(1—pnB)
Then by (5) we get

t+1 n
P(Z 3 Al-j:k> < eo®),

i=2 j=t+2
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where g(k) = klog(ntp,) — klogk + k + (nt — t> —t — k) log(1 — p,3). Con-
sidering k as continuous variable, the derivative of g(k) with respect to k is
equal to

lpn
g (k) :10g< nep ) —logk.

1- pnﬂ
Clearly, ¢'(k) >0 for k< ™. and ¢'(k) <0 for k > "tpnﬁ. Then g(k)
achieves its maximum at k = ”tp" . Let ¢, = (log(npy))” 2. For k < ¢,ntp,,

g(k) < g(cyntp,). Note that —cn log(cn) = o(1). Hence
t+1 n
IP’(Z > Ay = k>
=2 j=t+2

< oCnitPn 10g e (L ) +cnntpn+ntlog(1—pnﬁ)e— ’fift log(1—p.3) < e~ ntpnB(140(1))
Note that §,np, <t < Mnp, in the second term of (2). Then

(npn)2 < (npn)2

k<en(np,)? =
< en(npn) (log(npn)) (log(npy)) \/log (npn)

< cpnitpy,.

Hence, for k < &, (np,)?, we have
t+1 n
(6) ]p(Z Z Ay = k> < e (npa)*B(1+0(1)
=2 j=t+2
Combining (2)—(6), one has

Mnp,—1

(7) Y. P(Vi=kld =t)P(dy =1)

< Mnp, <” N 1) e8P )2 B(1+0(1)) _ o—b(npaB(L+o(1)

Based on (2) and (7), the result of Lemma 3.2 holds. O

LEMMA 3.3. For the heterogeneous random graph G, (o, B, W) and a pos-
itive integer t, we have

E[(V; — 13)*] = O((npn)™),
uniformly for all i € [n].
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PROOF. It is straightforward to get that

(8) _VZ ZA’L]A k+ZA1]N]k+ZN1] gk

J#k J#k J#k
Then
) 2 o2
9) (Vi —v)* < 3% [(ZAnggk> (ZAiijk> + <ZuijAjk> ]
JF#k J#k J#k

Next we find upper bound of the expectation of each term in (9).
Consider the first term in (9). Note that

2t
W E[(Saan) |- X Rl A
J#k Ji#k1,.JacF ke
Note that E[A;jAg] =0 if {i,5} # {s,t} and E[\AZH = O(py) for any
positive integer t. If {3, j1} # {4, js} for all s > 2 and {i, 71} # {Ji, k;} for all
le{1,2,...,2t}, then

B[ Ay Ajik, - Aij Ajoiks | = B[ A | E[Ajik, - - - Aijo, Ajpika] = 0.

Hence, for the expectation in (10) to be non-zero, {i,j1} = {i,js} for
some s > 2 or {i,71} = {Jji, ki} for some [ € {1,2,...,2t}. Note that j; # ¢
and k; # 14 for all [. It is impossible that {i,j1} = {ji, k;} for some [ €
{1,2,...,2t}. Hence {i,j1} ={i,js} for some s> 2. Similarly, for each
se€{1,2,...,2t}, there exists s; € {1,2,...,s —1,s+1,...,2t} such that
{i,7s} = {i,js, }- Hence, [{j1,72,...,j2u}| <t. Without loss of generality,
assume {ji, jo, ..., j2t} = {Jj1,J2,.--,Js}t for some s <t and |{j1, jo, ..., js}|
= s. Let ¢; be the number of elements in {j1, j2,. .., j2¢} that are equal to jj,
1<1<s. Thenty +1t3+--- +ts = 2t. Suppose j,,, = j; for ¢ =1,2,...,1,
1 <l<sandrge{1,2,...,2t}. In this case,

s s 4
(11) E Aij1Aj1k1 .. 'Aij2tA_j2tk2t] = E|:<HE {AZZ} > <H HAjlk”q>:|
=1 1=1q=1
s 4
s E[H H Ajzknq:| .

I=1¢=1

If Aj g #A;

k
T Foryy gy

for any Iy, q; with [y # 1 or ¢; # 1, then

s 1
E[HHAjlk%] =E[4,,|E HAyl o, HH o,

1=1q=1 1=2 g=1
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Hence Ajlkm = Ajzlk for some [y, q; with 1 #£ 1 or ¢; # 1. Similarly, for

Tl1qy - _
each [, g, there exist Iy, g1 with I # [ or 1 # g such that Aj, = Aj k.
q 191

That is, (ji,kr,) = (i, kr,,, ). Otherwise, the expectation in (11) is zero.
In this case, one has
(12)

‘{(jh kru)a (jla kT12)7 ey (jla k?“ltl)a tey (j87 k?”51)7 ey (j57 krsts)}‘ =m <t
Then
S tl
(13) E [H 11 Ajl,%q] =O0(pm).
1=1¢g=1
Note that (ji, k) = (ji,, kr,,,, ) With Iy # 1 or q1 # q implies

|{jl7 kTLqulUlelql }‘ S 3

That is, if one pair (ji, k) is equal to another pair, the number of distinct
indices will reduce by at least 1. By (12), the number of pairs (j;, k) is
reduced by 2t —m. Hence, the number of distinct indices j;, k., is reduced
by at least 2t — m. Then

(14) |{jl7j27”’ 7j57k7“117k7”127"' 7k7“1t17"' 7k7”517”’ 7k7”5¢3}|
<(s+2t)—(2t—m)=s+m.

There are at most n*t" choices of indices j;, k, satisfying (14). Combining
(10), (11) and (13) yields

2
15 B[S udn) | =0(tmn ) =0((n).
7k
Then similarly to the proof of Lemma 3.2 in [18], it is easy to get

(16) E[(Z Aijujk> zt} = O ((npn)™),

7k
o2
(17) E |:<Z/LijAjk> :| = O((npn)%p%) .
jk
By (9), (15), (16) and (17), the proof is complete. [

Acta Mathematica Hungarica 172, 2024



CENTRAL LIMIT THEOREM FOR THE AVERAGE CLOSURE COEFFICIENT 553

3.1. Proof of Theorem 2.2. For convenience, denote

Aijk = AnggkAkz and Al = ZAZ]A]kAkZ
7.k

1

Let ko = [, * ]+ 1. Applying Taylor expansion to the function f(z) = ! at

Vi = 3k Hijhj Yields

L= A 1A 1 &AW —VZ
=2 Ty a2
=1 =1 =1
ko—1 n n
: 1 A-(V—y-)t i 1 vi)ko
+ _1t 7 7 7
tg ME yan ng Xkoﬂ

where X; is between V; and v;. Then we have

n

(18) HoEH -3 A —VE[Ai] - 712 5 Ai(Vi — ;) —VE[Ai(X/; — )]

n ; 2
i=1 ¢ i=1 (
ko—1 n
2 1 Al(‘/; — I/Z')t — E[AZ(V; — Vi)t]
FY ety
t=2 =1 (]

n AZ )k’o
Z Xko-‘rl ZE|: Xko-‘rl :| :

z:l

Next we prove the first two terms of (18) are the leading terms and the last
three terms are negligible.

Consider the first term of (18). By the proof of [18], we have the following
result. If o > %, then

1A —E[A] 1 Aij Ai Ajy,
ao) X, T =2 +or(
=1 i#j#k

If a < %, then

(20) ; Z A —UE [A]

i—1 g

1 Z (Ajiiipan + Aijpinitie + Aigpbjntiis ) Yo (\/pn)
P .
V; n

" itk
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If o= %, then

1<~ A; —E[A]
(21) y ; "
1 (Aijlez‘k/_ljk + x‘_ljk,uijuik + f_lijﬂjk,uik + Az’k,u«jk,u«ij) VPn
Z + Op( n )

vy

" ikt
Consider the last two terms of (18). Let &,, be defined in Lemma 3.3. It
is easy to get that

LB oL (Rl (49 9% [peearih
. ZEH Xk0+12)ko

Note that ko =[,* 1+1>, By Lemma 3.3 and the Cauchy—
Schwarz inequality, we have

) e H e
nekot (np,,)2ko+2 Z \/IE ATIE[(V = vi) o]

_ Pn (npn) 2ko+2 _ (DPn
=0\ 41 = 0( 2).
5n0 (npn)2ko+2 n
Recall that v; = ©((np,)?) and X; is between v; and V;. When X; <
En(npn)z, we have V; < X;. Otherwise, X; can not be between v; and Vj.
Moreover, if V; = 0, then the i-th term in the definition of the average clus-

tering coefficient in (1) vanishes. Hence, we assume V; > 1 and then X; > 1.
It is easy to verify that A; < n? and Vi — | < n2. By Lemma 3.2, we have

(21) iiEHAM L

ko+1
i=1 Xi

116 2 20’

I[X; < 6n(npn)2]].

.)ko

I, > %(npn)ﬂ

I[X; < en(npn)?]

_ 2ko+2
=0(n ) max P(V; < en(npn)?)

en(npn)?
< n2k0+2 Z ]P)(‘/‘l — k) — e—npnﬁ(l-i-o(l).
k=1
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Combining (22), (23) and (24) yields

L= Ai(Vi—w)ho 1 s [A(Vi—wy)Pe 1 VPn
2 — E = .
o9 2 Mt T o

Consider the second term of (18). By (8), it is easy to verify that

1 " Az(‘/z — Vi) 1 Al 'A'kAkiAiSAst
(26) Z 2 - Z T
n “ 1% n . U
i=1 t 1#jF#k,s#t v

1 Aij A Ak Adispist 1 Aij A Aripvis Ast
DY L2 DY L2 :
i#j#k,s7 ! i#j#k,s7#t !
Next we show the first term of (26) is negligible and the last two terms are
leading terms.
Consider the first term of (26). If {j,k} = {s,t} in the summation of the

first term of (26), then
1
} N O(n(npn))

1

S s
i#£j#k

Suppose |{j,k} N{s,t}| =1 in the summation of the first term of (26). With-

out loss of generality, let s = j and t # k. Then

1 A 2
m () A
" itk Vi

Aij Ak Ak Aij A
p

v

_ 1 E[AijAjkAkiAijAthiljlAj1k1Ak1i1/_1i1j1/_1j1t1]
~ n? Z v2u? '
iF£jFkFL 170
hWF 1 Fk#

If (4,t) € {(i1, 1), (J1, k1), (k1,41), (1. t1) }, then Ajy is independent of A; ;,,
Aijyy Ajikys Ak, - In this case,

E[Aij AjiAriAij Aje A g Ajii A Aivjy Ajos
= E[Aj) B[ Aij AjrAriAij Aivju Ajok Ak Ai i Ajuns ] = 0.
Hence (jat) S {(i17j1)7 (jlakl)a (klail)a (jlatl)}' SlmllaIIY7 (jl7tl) S {(Zaj)a
(ja k)v (k>2)7 (]7t)} Denote e; = (Zaj)a €2 = (]a k)a €3 = (k‘,l), €4 = (]7t)7
es = (i1,J1), e6 = (J1, k1), er = (k1,i1), es = (J1,t1),
E = {61762763764765766767768}7 F= {i7j7k7t7i17jl7kl7tl}-
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Then |E| < 7. If |[E| = 7, then (j1,t1) = (j,t), |F| = 6. There are at most n%
choices of the indices in F'. Suppose |E| < 6. Let ¢;, € E and ¢, € E with
l1 #lo. If ¢, = ey,, then |F'| will reduce by at least 1. Hence, |F| < |E| < 6.
In this case, there are at most n/Zl choices of the indices in F. Note that

E[Aij Ajs AkiAij Aji Aiy j, Ajok, Ay Aijy Aji, ] = O(pIEY).
By (28) we conclude

(29) o
(25 Y0 S5 ~0l)

" ikt i

Suppose [{j,k} N {s,t}| = 0 in the summation of the first term of (26).
Then

1 7 2
(30) EKl Z AijAjkAl;iAisAst> }
n . . v
i j kAt i
_ 1 E[AZ]A‘]kAkZAZSA_StAZ1]1A]1k1AklllA_’LlSlA_Sltl]
=2 2 V202 -
itj At s i Vi,
A1 Fk1FtL #s1

By a similar argument as in (29),

(i73)7 (S,t) € {(i17j1)7 (j17k1)7 (klﬂil)ﬂ (i1731)7 (Sl7tl)}7
(i17j1)7(j17t1) € {(%J)?(L k)?(k7i)7(i73)7(37t)}’
Denote
E = {(%])7(]7 k)>(kvi)>(i73)>(Svt)>(ilvjl)v(jlvkl)v(klvil)v(i1731)>(81>t1)}>
F = {’i,j,k,S,t,il,jl,kl,Sl,tl}

Then |E| < 8. If |E| = 8, then {(i1,s1), (s1,t1)} = {(4,7), (j,t)} and |F| = 7.
There are at most n’ choices of the indices in F. Suppose |E| = 7. Then
{(il, Sl), (Sl,tl), 61} = {(Z,]), (], t),e} for some €] € {(il,jl), (j17k1)7 (kl,il)}
and some e € {(4,7),(j,k), (k,i)}. Then |F| < 6. Suppose |E| < 6. Then |F|
< |E| < 6. In this case, there are at most nl”! choices of the indices in F.
Note that

E [AZ]A]kAkZAZSAStAlljl Ajlkl Aklil Ailsl A81t1} - O(p’InEI)‘
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By (30) we conclude

(31)

1 AijAjrApiAisAg | n"pd + np8 1
¢ [( Z Y 2 > =0 2 8 - 0( 2 ) :
" ikithttts Vi n?(npn) n2(npy)

Combining (27)—(31) yields

(32) 1 Z AijAjp AriAis Ayt _E [ 1 Z AijAjkAkiAisAst]
2 2
" ittt Vi " ittt Vi

—or (n\/ilpn ) ’

Consider the second term of (26). The second term of (26) can be ex-
pressed as
(33) 1 Z Aij AjrAiAispse 1 Z Aij A Ari Aispist

2 2
n V; n V;
i£j Ak, sHt ? 1£jFk#s,t ?

1 AijAijAj Agipge 1 Aij Ajk Agi Aig o
+ > 2 + > 2 .
ikt i ik i

Now we find the order of each term in (33).
By a similar argument as in (29), we have

< 2
(34) E 1 Z Aij A Api Ags st :O<pn)
" it Ehtsit v n?/-

The variance of the second term of (33) is equal to

(35) E|:< 1 Z Aij—’zlijAjkAki,U/jt - IE[AiinjAjkAkiﬂjt] >2:|
I

n
i#jFkt i

1 1 - _
= 5 Z 2 o E {(AiinjAjkAki,U«jt — E[Ay; Aij Aji Agitie])
ke ViV
hW#j1#£k b

X (Ai1j1Ai1j1Aj1k1 Ak1i1uj1t1 - E[Ailh Ailjl Aj1k1Ak1i1:u’j1t1]) } .
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Let S = {(Zaj)7 (]7 k)a (k,l)} N {(ilajl)a (jlakl)a (klyil)}' If §= (2)7 then the
expectation in (35) is zero. If |S| =1, then |{4, 4, k, 41,1, k1}| = 4. Denote
Bijit = AijAij Aji Apiptje — B [Aij Aij Ajp Apigije] . Then

E| BijitBiyjikit, ] = O(py,).

Hence we have

1 1 nSp? 1
(36) n2 Z 2,2 E[BijktBiljlkltl] = O( > - O<n2( )

ikt T1T0 n?(npn)® npn)?

L1 # 17kt
[S|=1

If |S| = 2, then |{4, 4, k,i1,71,k1}| = 3 and

1 1 nSp8 1
(37) > 2,2 E[ BijktBirjikats] = O< ) = O(nz( )

iZjAht ViV n?(npn)® npn)?

L1 £ 17kt
5=

If ‘S‘ = 37 then |{i,j,/€,i1,j1,k1}| =3 and

1 1 npd 1
(38) > gygE[BijktBiljlkltl] :O< > :O<n2( )

ikt V1V n?(npn)® npn)?

L1 # 17kt
[S]=3

Combining (35)—(38) yields

(39)
E[(l Z Aij Aij A At _IE[AiinjAjkAkith]>T _ O( ) Dn 2>‘
Wittt Vi n?(npy)

By (33), (34) and (39), we get

(40) 1 Z Aij A A Aispist — B[ A Ajp Api Ais st

2
" it b st Yi
1 Z AijAjkA;ciAis/Lst +0P( 1 n \/pn)'
" it phts,t Vi P
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Consider the last term of (26). Suppose {s,t} N {i,j,k} = 0 in the sum-
mation of the last term of (26). Similar to (34), we have

" ikttt vi n/

Suppose {s,t} C {i,7,k} in the summation of the last term of (26). Since
s # i and t # i, then {s,t} = {j,k}. Hence
1
] N O(nz)'

Suppose |{s,t} N {4, J,k}| = 1. Without loss of generality, let s = j and
t & {i,7,k}. By a similar argument as in (29), one has

(43) E[(l > AijAjkf;emz‘jflﬁﬂ:o<n2(1 )

" ikt i npn)

(42) EH 1 3 Aij A Apifuig Aji
n & v?
i#j#k v

By (41)—(43), the last term of (26) is equal to

(44)
1 Z AijAjk:Aki/LisAst N 1 Z AszjkAkz,Uzs st (\/pn)
' _
" it st Vi " it bkttt vi

Next we isolate the leading terms of (44). It is easy to get that

1 Api g Apipis A
(45) . Z i ]kyéczﬂzs st
i#j#kA s :
! > (Aij A Api — g kb ) is Ast 4! 1 ,Ufm,Uf]k,UkaMwAst
" ititht st Vi " ititht st Vi

The second moment of the first term of (45) is equal to

(46) E[<1 Z (AijAjkAki—Mijﬂjk#ki)msz‘lst>2]
2
W it j bttt v
_1 E[Bijkttis Ast Bi, jkey iy sy Asit]
- n? Z V202 )
i#jFkFsFt (2T
i1 7k 51t
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where By, = Aij AjpApi — Hijhjrpiri. Let
S ={(i,4), (4, k), (k, ), (s, )} N {(é1, 1), (Jr, k1), (K1, 21), (s1,81) -
If (s, t) & {(i1,51), (1, k1), (k1,41), (s1,t1) }, then
E| BijittisAstBiyjok tivs: Asit,| = E[Aat)E| BijiptisBi ji iy ivs, Asytn ] = 0.
If
{G,5), G k), (ki) } 0 { (i, 1), (s k), (Rsin), (s1,t1) b =0,

(47) E | BijrttisAst Biy jiky Hiys, Asit, |
= E[Biji) B[ BijkttisAst Biyjue, tir sy Asity | = 0.
Hence (s,t) € {(i1,71), (41, k1), (k1,1), (s1,t1)} and
{Gy5), G k), (ky i)} 0 { (i, 1), (Gus k), (Kayin), (s ) ) # 0.
Then |S| > 2. If |S| = 2, then {4, j, k, s, t,i1,71, k1, $1,t1}| < 6 and

E [BijkMiSAStBi1j1k1:u’l'181AS1t1] = O(p?l,)

Then
(48) 12 Z E [BijkMiSAsty-fli;;h:U’i181AS1t1]
i j kst Lo
i # 1 FkF#Es1 7t
[5]=2

nSpb
- O<n2(nzn)8> - O<n2(7jpn)2)'

If |S| Z 37 then ‘{iﬂjak787t7i17j17k17317t1}| S ) and

E [Bijttis Ast Biyjyey v s, Asity | = O(p3).

Then
(49) 1 Z E[Bijk#islzlstBiljlklﬂilslAsltl]
n? V22
i#jFEkFs#t vl
L F1Fk1F#s1#£

I5|=3

nopd
- O<n2<n§on>8> =0, (pys)

Acta Mathematica Hungarica 172, 2024



CENTRAL LIMIT THEOREM FOR THE AVERAGE CLOSURE COEFFICIENT 561

By (46), (48) and (49), we have

(50) EKl 3 (AijAjrApi _N;jﬂjkﬂki)ﬂisAst>2} _ O<n2( 1 )

2
" ikithtstt vi npn)

Combining (44), (45) and (50) yields

1 Z Aij A AiprisAst — B[Aij A Arittis Ast]

(51)

2
" ikt Vi
_ 1 Z Nz’jﬂjkﬂl;iﬂis;lst +0P< 1 n \/Pn>‘
n . . V? n+/NPn n
i kst i

Similarly, we have

1 Ais A Avs A
(52) . Z i ]kyéﬂ istst
ik st i
_ 1 Mz‘j#jk#l;iz‘iis#st n 0P< 1 n \/pn>'
n S ry v n+/NpPn n

Consider the third term of (18). Let r1,79,73 be non-negative integers
such that r; +7r9 +r3 =t¢. Let C,,,,,, be constants dependent on 1,72, 73.
By (8), we have

(53)

(Vvl —I/Z')t — Z CT17”27”3 <ZAZ]AJIC> ! <ZAZ]M]k> ’ <Z,U/Z]A]k> 3.

7”1+7”2+’I“3:t ];ék ];ék ]#k
It is easy to obtain that
(54) AijAjrAri = Aij A Aj + Aij Airpijre + Aij Ajeiiie + Aie Ajrfii;
+ Ajppiigpvin + Aijpgrpic + Aiklinitig 4 gk

Given non-negative integer r < 2¢, denote D={4,j,k, j1,...,Jt, k1,. .., ki }
and

Ir:{(z‘,j,k,jl,...,jt,kl,...,kt)e M3 | D] =2t+3 -,
i# AR oA ke £, sE [t}
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Given a set of indices in D, denote e; = (i,75), e = (4, k), es = (k,1),
es = (1,51), es = (J1, k1), - .-, €2t12 = (i, ]t), €ary3 = (js, k) and

S - {617 €2,... 7€2t+27 €2t+3}7

where we assume (i,j) = (j,7). Then

1 1 ’ 1\
) Y dudadn( X A (ZAW) (o mta)
izizk Vi 7k i#k %k

1 AZ]AZkA]k
o Z S+l H
izizk Vi s=1
j17“'7jt7
7"1+7‘2 t
><< 1T Aijs:ujsks>< 1T Mz’jsAjsks>
s=ri+1 s=ri+reo+1
1 A Al (1T 1 x
= n Z I/t+1 H AZ]sAjsks
Iy T s=1
’I“1+7”2 t
><< 1T Aijs:ujsks>< 1T Mz’jsAjsm)
s=ri+1 s=ri+ra+1
1 A A A oo
e A (T Au A
V.
I ? s=1
’I“1+7”2 t
><< 11 Aijs:ujsks>< 11 Mz’jsAjsm)
s=ri+1 s=ri+rs+1
1 AngzkA]k
Ly (s
I.,r>2 Vi
7‘1+7"2 t
><< 11 Az‘js/tjsks>< 11 NijsAjsks>'
s=r;+1 s=ri+r2+1

Next we bound each term in (55).

Consider the last term in (55). Suppose r > 2. Let e, e, € S with
Il # m. If ¢, = e, then there exist at least two elements a,b € D such that
a =0b. That is, when the number of distinct elements in S reduces by 1,
the number of distinct elements in D reduces by at least 1. Hence |[S| < u
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implies |D| < u for any integer 4 < u < 2¢t+3. Then |D| > u implies |S| > u
Hence |D| =2t + 3 — r implies | S| > 2t + 3 — r. In this case, one has

T1 ’I“1+7”2 t
E Hx‘_lz‘jf_likfijk < 11 Az’jsAjsm) < 11 Aijsﬂjsks> < 11 Mz’jsAjsm) H
s=1 s=ri+1 s=ri1+ra+1
— O(p2t+3—r)
- .
elements in I.. Then for r > 2, we get

Note that there are at most n2+3~"

NS EH A”/iffl " (H > ( bl Amﬂm)

I r>2 s=r;+1
1 ) =0t 2 ) =0 ()

(I o

s=ri+ra+1

Consider the first term in (55). Suppose r = 0. Let
P A

D/ = {’L’/?j/7 k/7j:/L?"‘ 7jt/7

[ ]2t+3 |

and
AR
c [t]}.

1= {0 K 3 G
| =2t 43—, i #7 #K, ji#k, #7,

|D'| =
Denote ¢} = (¢, j'), 5 = (j ,k) 63 = (K','), e}y = (i, 1), e5 = (J1. k1),
/ ST Z o / / / 7
€aty2 = (@', 5t), €2t+3 = (ju. k1), S {617627 . a€2t+2>€2t+3}7
U= { jT1+17 kT1+1)7 R (jT1+7”27 7”1+7”2)7 (Z jT1+T2+1) (i7jt)}7
-,(i’,jé)}-

_{ Jrl—i-l? r1+1) (j;“1+r27 r1+r2) ( 7jr1+r2+1)
5) is equal to

The second moment of the first term in (5

A A A
o[ (e ([

(57)
In
r1+72 t 2
X ( H Aijsﬂjsks>< H mjsf_ljsks» ]
s=ri1+1 s=ri+ra+1
r14+rs
= .2 ZE AZ]éflAjk <HA2J jok >< 11 lAz'js/thk:s>
s=r,+

1,1}
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i O\ Ay A Ay
(I ) (T e

s=r147r2+1 Vi s=1
7“1+7”2 t

><< 11 Ai/j;#j;k;)( 11 Mz"a’;Aj.;k;>
s=ri+1 s=ri+ra+1

For any ¢ € S — U A, is independent of A, for e, € S —U — {e}.
If A, # Ae, for any ¢}, € ' — U’, then A, is independent of A, for e, €

S—-U- {el} and A for e, € 8" —U'. In this case, the expectation in (57)

is zero. Hence, for the expectatlon in (57) to be non-zero, we have that
A, = Ae/ for some e €S —U'. Thatis, ¢, = e’q for some e’q € S'"—U’'. Then
we get

S-U=95-U"

When r = 0, the elements in S — U are distinct. Hence each element in S — U
is equal to exactly one element in S — U’. Then by (57) we have

(58) E[(nZA”‘?ffﬂ“ <HAZJ ik )

1o

ri+re B t B 2
><< 11 Az’jsujsks>< 11 uijsAj5k3>>}

s=ri+1 s=ri+ra+1

1 oy - L
= O(nz(npn)4t+4) Z E Ang?kA?k(gAng§k>

Io, U’
S—-U=S'-U’

r1+7ra t r1+72 t
><< H A?jsujsks>< H Mu@k)( H Myk)( H Mj;)]-

s=ri+1 s=ri+ra+1 s=ri+1 s=ri+ra+1

Note that S —U = S’ — U’ implies j. € D fors =ry+1,...,t and i/ € D.
By (58) and the fact that ro < ¢, we have

Az Az A ritre
(59) E[<nz ’ t—fl ]k<HAZJ Jsk s>< H Aijsﬂjsks>

Iy s=ri+1
t 2 243415, 2+3+ra+rs
- n f 1
X < H 'uijsAjsks>> ] :O< 2 4t4+4 >:O( 2 t+1>'
s=ri+rs+1 n (npn) n (npn)

Consider the second term in (55). Suppose r = 1. In this case, |D| = 2t +
3 — 1. There are several cases: (a) js = j or js = k for some s € [r| + r2]; (b)
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js=7jorjs=kforsomer;+ro+1<s<t;(c)js =Js, for distinct s1,s9 €
[r1 + 725 (d) js, = Js, for s1 € [t] and 71 + 19+ 1 < 59 < t; (e) js, = ks, for
distinct s1, s9; (f) ks, = ks, for distinct s1,s9; (g) ks = j or ks = k.

Case (b): |S| =2t +2. Without loss of generality, we can assume j; = k.
In this case, A, (¢, € S —U + {i,k}) are independent and there are at most
n?*2 elements in I;. By a similar argument as in (57)—(59) yields

1 Az AzkAk
(60) E[(n 2 e <HAUS ok )

Ii,j.=k
r1+72 B t ~ 2 1
X <S:1:1[+1 Azjsujsks> <SZTH2+1MZ]3AJSks>> ] = O(’I’L2(’I’Lpn)4t+4>
r1+ro
X > E | A} 4G A <HA2 A >< II A?js:ujsks>
I.,5:=k,U’ s=ri+1

S—U-+{ik}=8"—U'+{i" k'}

) (T we)( 11 )

s=ri+ra+1 s=ri1+1 s=ri+ra+1

2t+2+7‘2 2t+3+7‘2+7‘3
—o(" P ~0 ! .
n2(np,,)it+4 n2(npy)t+2
The cases (d), (e), (f), (g) can be similarly bounded as in (60).
Case (a). Without loss of generality, we assume j; = j. Then

A% A A Aj i,

(61) E[(iz i e <HAUS >

Il?jlzj
1472 t 2
X < 11 Az’jsﬂjsks>< 11 MijsAjsks» }
s=ri+1 s=ri1+ro+1
12 A A 1 r r1+7
1 Z AL A AjAjk (13 i AR i
- n2 Vt+l H ijS jsks H ijsujsks
Ii,5:1=j ¢ s=2 s=r;+1
117]1_]

t A2 A A A T
A AvjAiw A Aji (71 4 4
X | | g, Ag kg 41 I | gLk
|29
7 =

s=ri1+ro+1 s=2
7‘1+7"2 t
< IT Avjons k>< 11 #z"j;f‘b’;k;)
s=ri+1 s=ri+ra+1
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For any (I,m) € S —U — {(i,7)}, A is independent of Ay, for (a,b) €
S—U—{(l,m)}. If Ay, # Apyg for any (h',g') € &' = U’, then Ay, is in-
dependent of Ay, for (a,b) € S—U — {(I,m)} and (a,b) € S’ —U’. In this
case, the expectation in (61) is zero. Hence, for the expectation in (61) to
be non-zero, we have that A, = Ay, for some (h/,¢') € S’ —U’. That is,
(I,m) = (h',¢") for some (h',g") € S’ — U’. Then we get

62) S—-U—{(i,j)ycs U, §—U —{{j)cS—U

There are at most7n2t+2+’”27 elements in I; and I} satisfying (62). Note that
|A;j| < 1. Then |A;|™ < Afj for m > 2. By (61), we have

1 A AZkA]kAjlkl LS -
<n ) s <HAijsAjsks>
Z s=2

I,j1=j

ri+7r2 B t B 2
><< 11 Aijsﬂjsks>< 11 Mz’jsAjsks»

s=ri+1 s=ri+ro+1

AQ A2 AQ A2k T1 ri+ra B
1K1 2
= (2 ) (11 At )

s=ri+1

I pen ()]

s=ri+ra+1 s=ri1+1 s=ri+ra+1

_0 n2t+2+r2p%t+2+r2+r3 _0 1

- n2(np,, )4+ - n2(npy, )t+2 )
Case (c) can be similarly bounded as in (63).
By (55), (56), (59), (60) and (63), we get

" A A A NG NG NG
(64) Tll > Jytfl ]k< > AijAjk> ( > Aiijk) < > ,U«i]'Ajk>

izjzk Vi

(63) E

Ty ey ey
1 = A A AL . A\™ B T2
-E " Z Z]Vti-l ’ < Z AijAjk> < Z Aij#jk)
itk Vi Ty Ty
_ 3 1
X ( Z 'MijAjk> = Op(n\/np)’
JFkFL

Acta Mathematica Hungarica 172, 2024



CENTRAL LIMIT THEOREM FOR THE AVERAGE CLOSURE COEFFICIENT 567

Similarly, it is easy to show that

1 <~ Biji =\ ’
©) 3 (X A (X 4 ) (z o)
i#j£k 0 N jEk# kA kA
1 <~ Bk =\ "
Bl 2 (3 ) (3 Au) (3 e
R Y P kA kA
=0 up)
— op n\/np7

where
Biji € { Aij Aittji, AijvinAjis pij Aie Aj, Aj pin i,
Nz’inkﬂjka Nijﬂiklzljk» Mz’jmkug’k} .
Based on (54), (53), (64) and (65), the third term of (18) is bounded by

k n
0 1 Az(‘/z — I/Z')t — E[AZ(V; — I/Z')t] 1
(66) Z t+1 =or :
e v; (n\/np)
By (3.1), (3.1), (21), (51) and (52), we have the following result.
If > ;, then

Hn—E[Hn]:Q > (5+ ! )Zl A; A'k+0p(

n V; I/
i<j<k J k

1
n\/NPn ) '

If a< ;, then

1
H, — E[H,) = N Z (Zbij + 2¢5 + 2¢j — (a; +aj) — (e + eji)) Aij
1<j
\/Dn
+ 0p< n )

H, — E[H,] = 2 Z (14 + ! + ! )f_lijz‘_lik/_ljk

n Vi 1%
i<j<k J k

1 - p
+ n Z (2035 + cij + cji — (ai + aj) — (eij + e5i)) Aij + OP(\/nn>'
i<j
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By a similar proof of Lemma 3.4 in [18], we get the limiting distribution
of H,, — E[H,] as given in Theorem 2.2.

Acknowledgement. The author thanks the anonymous referees for
valuable comments.
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