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Abstract. We discuss a sharpened Hausdorff–Young inequality and esti-
mate the maximal coefficients of orthogonal expansions in terms of Freud polyno-
mials when 1 < p < 2 and 2 < p < ∞. We also consider n-dimensional expansions
by orthogonal functions associated to Freud-type weights when 1 < p < 2.

In his influential work on orthogonal polynomials for general weights on
the real line, G. Freud considered weights w(x) of the form

w(x) = e−Q(x), x ∈ R ,

where Q(x) is nonnegative, even, convex and of smooth polynomial growth
at infinity [8,12]. By a Freud weight we mean a function w(x) on R that
satisfies these conditions.

Given polynomials pm, each of degree exactly equal to m, m = 0,1,2, . . . ,
we say that the family {pm} is associated to the Freud weight w(x), provided
that the pm’s satisfy the orthogonality relation

(0.1)
∫
R

pm(x)w(x) pk(x)w(x) dx = δm,k , m, k = 0, 1, 2, . . . .

An important class of Freud weights is given by

Wα(x) = e−
1

2
|x|α , α > 1 ,
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2 C. P. CALDERÓN and A. TORCHINSKY

corresponding to the functions

Qα(x) =
1
2
|x|α , α > 1 .

The associated family of orthogonal polynomials is then denoted {pm,α},
and includes the Hermite polynomials on R, which correspond to W2(x); in
general, no explicit expression for these (uniquely determined) polynomials
is available.

Let the Freud functions, Fm,α(x), be given by

Fm,α(x) = pm,α(x)Wα(x) , m = 0, 1, 2, . . . ,

and the Freud coefficients of f(x), cm(α), by

(0.2) cm(α) =
∫
R

f(x)Fm,α(x) dx , m = 0, 1, 2, . . . .

We indicate this correspondence by f(x) ∼
∑

m cm(α)Fm,α(x), and note
that the {Fm,α} constitute an ONS on L2(R), and that for f in L2(R) the
Parseval–Plancherel formula

(0.3)
∫
R

|f(x)|2dx =
∞∑

m=0

|cm(α)|2

holds.
When f is in Lp(R) for 1 < p < 2 and α > 1, expansions in terms of the

{pm,α} satisfy what Ditzian calls an analogue of the Hausdorff–Young in-
equality; more precisely, the Freud coefficients of f belong to a weighted
�q space, where q = p′, the conjugate index to p, with the corresponding
norm inequality [7, Theorem 2.2, p. 583]. On the other hand, a sharp-
ened Hausdorff–Young inequality holds for the Hermite expansions [4, The-
orem 4.1], [5]; we refer to the estimate as sharpened because it is of type
(p, q) with q < p′.

This note concerns a sharpened Hausdorff–Young inequality for the or-
thogonal expansions in terms of the {Fm,α} associated to the weights Wα(x)
when α < 3, including Lorentz and Orlicz space estimates, and n-dimen-
sional expansions. We also estimate the maximal coefficients of orthogonal
expansions in terms of the Freud polynomials when 1 < p < ∞ and p �= 2.

The paper is organized as follows. Section 1 contains the necessary back-
ground material, including the interpolation results that form the basis for
our estimates. In Section 2 we discuss the case n = 1, including maximal re-
sults when 1 < p < 2, and in Section 3 we consider n-dimensional estimates.
We close in Section 4 with the Hausdorff–Young inequality and estimation
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of the maximal coefficients of orthogonal expansions in terms of Freud poly-
nomials when 2 < p < ∞.

It is a pleasure to acknowledge the comments provided by the referee,
which contibuted to the improvement of the final presentation of this note.

1. Preliminaries

Given a function f defined on R
n, with ν the Lebesgue measure on R

n,
let m(f, λ) denote the distribution function of f ,

m(f, λ) = ν
(
{x ∈ R

n : |f(x)| > λ}
)
, λ > 0 .

m(f, λ) is nonincreasing and right continuous, and the nonincreasing rear-

rangement f∗ of f defined for t > 0 by

f∗(t) = inf
{
λ : m(f, λ) ≤ t

}
, inf ∅ = 0 ,

is informally its inverse (this statement is made precise in [13, p. 43]). f∗

is nonincreasing and right continuous and, at its points of continuity t,
f∗(t) = λ is equivalent to m(f, λ) = t .

The Lorentz space Lp,q(Rn) = L(p, q), 0 < p < ∞, 0 < q ≤ ∞, consists
of those measurable functions f with finite quasinorm ‖f‖p,q given by

‖f‖p,q =
(
q

p

∫ ∞

0

(
t1/pf∗(t)

) q dt
t

)1/q

, 0 < q < ∞ ,

and,

‖f‖p,∞ = sup
t>0

(
t1/pf∗(t)

)
= sup

λ>0
λm(f, λ)1/p , q = ∞ .

The Lorentz spaces are monotone with respect to the second index, that
is, if 0 < q < q1 ≤ ∞, then L(p, q) ⊂ L(p, q1), and ‖f‖p,q1 � ‖f‖p,q, with
L(p, p) being the Lebesgue space Lp(Rn), and L(p,∞) the space weak-
Lp(Rn).

As for the Lorentz sequence spaces, given n-tuples of nonnegative in-
tegers m, and a sequence c = {cm}, let {c∗k} denote the sequence obtained
by ordering {|cm|} in a nonincreasing fashion. The Lorentz sequence space

�p,q, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, consists of those sequences c = {cm} with finite
quasinorm ‖c‖�p,q given by

‖c‖�p,q =
( ∞∑

k=1

(
k1/pc∗k

) q 1
k

)1/q

, 1 ≤ q < ∞ ,
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and, with μ the atomic measure concentrated on the lattice of n-tuples of
nonnegative integer atoms m taking the value μ(m) = 1 on each such atom,

‖c‖�p,∞ = sup
k≥1

k1/pc∗k = sup
λ>0

λμ
(
{m : |cm| > λ}

) 1/p
, q = ∞ .

Now, for the Orlicz spaces, the letters A, B are reserved for Young’s

functions, i.e., for functions A(t) defined for t ≥ 0 that are zero at zero, in-
creasing, and convex, or, more generally, A(t)/t increasing to ∞ as t → ∞.
The Orlicz space LA(Rn) consists of those measurable functions f (modulo
equality a.e.) such that

∫
Rn A

(
|f(x)|/M

)
dx < ∞ for some M , normed by

‖f‖A = inf
{
λ > 0 :

∫
Rn

A
( |f(x)|

λ

)
dx ≤ 1

}
.

The Orlicz sequence space �A consists of those sequence c = {cm} such
that for some M , ∑

m

A
(
|cm|/M

)
< ∞ ,

normed by

‖c‖�A = inf
{
λ > 0 :

∑
m

A
( |cm|

λ

)
≤ 1

}
.

Finally, a mapping T of a class of functions f on (X,μ) into a class of
functions on (Y, ν) is said to be sublinear provided that,

(i) If T is defined for f0, f1, then T is defined for f0 + f1, and∣∣T (f0 + f1)(x)
∣∣ ≤ ∣∣T (f0)(x)

∣∣ + ∣∣T (f1)(x)∣∣ .
(ii)

∣∣T (λf)(x)∣∣ = |λ|
∣∣T (f)(x)∣∣ , for any scalar λ .

Clearly a linear operator T is sublinear.
A sublinear operator T defined for f ∈ LA(Rn) and taking values T (f) =

{cm} in �B is said to be bounded if there is a constant K > 0 such that

∑
m

B
( |cm|

K

)
≤ 1 whenever

∫
Rn

A
(
|f(x)|

)
dx ≤ 1.

Bounded sublinear operators T from �A to LB(Rn) or from LA(Rn) into
LB(Rn) are defined similarly. In either case, the smallest K above is called
the norm of T , is denoted by ‖T‖, and the operator is said to be of type
(A,B). In the former case T satisfies ‖T (f)‖B � ‖T‖ ‖f‖�A , and similar
norm inequalities in the other cases. When A(t) = tp and B(t) = tq, we say
that T is of type (p, q). A mapping T from Lp(Rn) into Lq,∞(Rn), or �q,∞,
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is said to be of weak-type (p, q). Similarly for mappings from �p into weak-
Lq(Rn) spaces.

To interpolate the Lorentz spaces we will use A. P. Calderón’s theo-
rem that asserts that if T is a sublinear mapping which simultaneously
maps L(p0, 1) into L(q0,∞) and L(p1, 1) into L(q1,∞), with 1 ≤ p0 �= p1
≤ ∞, then T maps L(p, s) into L(q, s) where, 1 ≤ s ≤ ∞, 0 < θ < 1, 1/p =
(1− θ)/p0 + θ/p1, and 1/q = (1− θ)/q0 + θ/q1, [3, Corollary to Theorem 10,
p. 293].

The underlying principle to interpolate the Orlicz spaces is the follow-
ing [18]. If a sublinear mapping T is of type, or weak-type, or mixed
types, (p0, q0) and (p1, q1), with 1 ≤ p0 �= p1 ≤ ∞, and the equation of
the straight line passing through the points (1/p0, 1/q0), (1/p1, 1/q1) is
given by y = εx+ δ, then, under appropriate growth conditions on the
Young’s functions A,B, the mapping T is of type (A,B) provided that
B−1(t) = tδ A−1(tε) .

For further consideration of the Lorentz and Orlicz spaces the reader
may consult [1,9,11,13,17].

2. Sharpened Hausdorff–Young Inequality on the line

Hille’s remarkable estimate for the Hermite functions, Hm(x), to wit,
∣∣Hm(x)

∣∣ � m−1/12 , m = 1, 2, . . . ,

is the key ingredient in proving the sharpened Hausdorff–Young inequality
for the Hermite expansions [4, Theorem 4.1]. Ditzian established similar
estimates for the Freud coefficients corresponding to Wα(x), α > 1, namely,

|c0(α)| �α ‖f‖1 , |cm(α)| �α m
1

6

(
(α−3)/α

)
‖f‖1 , m = 1, 2, . . .

Before stating our results we find it convenient to introduce the notation

(2.1)
1
γ
=

1
6
·
3− α

α
.

Note that 0 < 1/γ < 1/3 for 1 < α < 3, and that, in that case, Ditzian’s
estimates [7, (2.1), p. 583] assert that

(2.2) |c0(α)| �α ‖f‖1 , |cm(α)| �α m−1/γ ‖f‖1 , m = 1, 2, . . .

We then have:

Theorem 2.1. With 1 < α < 3, let γ be given by (2.1). Suppose that f
has the expansion f(x) ∼

∑
m cm(α)Fm,α(x), where the coefficients are de-

fined as in (0.2) above, and let T denote the mapping that assigns to f the
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sequence {cm(α)} of its Freud coefficients. Then, if 1 ≤ s ≤ ∞, and p, q
verify

(2.3) 1 < p < 2 and
(
1−

2
γ

) 1
p
+

1
q
= 1−

1
γ
,

we have

(2.4) ‖T (f)‖�q,s = ‖{cm(α)}‖�q,s �α,p,s ‖f‖p,s ,

and, in particular,

(2.5) ‖T (f)‖�q = ‖{cm(α)}‖�q �α,p ‖f‖p .

Moreover, if A, B are Young’s functions such that B(t)/t2 increases,
B(t)/tγ decreases, and

∫∞
t

(
B(s)/sγ

)
ds/s � B(t)/tγ , T maps LA(R) con-

tinuously into the Orlicz sequence space �B provided that A, B verify

(2.6) B−1(t) = t(γ−1)/γ A−1(t(2−γ)/γ), t > 0 .

Furthermore, if the maximal coefficients Cm(α) of f are given by

(2.7) Cm(α) = sup
β>0

∣∣∣
∫ β

−β
f(x)Fm,α(x) dx

∣∣∣ , m = 0, 1, 2, . . . ,

all norm inequalities above hold with Cm(α) in place of cm(α) there.

Proof. Let μ denote the atomic measure concentrated on the integer
atoms m = 0, 1, 2, . . . , taking the value μ(m) = 1 on each such atom. Given
λ > 0, let Iλ = {m : |cm(α)| > λ}; we are interested in estimating μ

(
Iλ

)
.

Now, if 0 �= m ∈ Iλ, on account of (2.2) we have

λ < |cm(α)| �α m−1/γ‖f‖1,

and, consequently, such m verify

m �α

( ‖f‖1
λ

)γ
.

Hence, it readily follows that

(2.8) λγ μ
({

m �= 0 : |cm(α)| > λ
})

�α ‖f‖γ1 ,

which gives the desired estimate for μ(Iλ) when 0 �∈ Iλ. And, if 0 ∈ Iλ, since
|c0(α)| �α ‖f‖1, it follows that λ < |c0(α)| �α ‖f‖1 , and so

λγ μ(0) = λγ �α ‖f‖γ1 ,
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which combined with (2.8) above gives that, also in this case, λγ μ
(
Iλ

)
�α ‖f‖γ1 . Hence,

(2.9) ‖{cm(α)}‖�γ,∞ = sup
λ>0

λμ
({

m : |cm(α)| > λ
}) 1/γ

�α ‖f‖1 ,

and T is continuous from L(1, 1) = L1(R) into the weak sequence space �γ,∞.
Also, since by (0.3) above T is of type (2, 2) and the Lorentz norms are

monotone with respect to the second index, we have

‖{cm(α)}‖�2,∞ � ‖{cm(α)}‖�2 � ‖f‖2 � ‖f‖2,1 ,

and T maps L(2, 1) continuously into �2,∞.
We are thus in the right framework to interpolate for Lorentz spaces, and,

consequently, it follows that T maps the Lorentz space L(p, s) continuously
into the Lorentz sequence space �(q, s), 1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1
p
= θ +

1− θ

2
,

1
q
=

θ

γ
+

1− θ

2
.

Now, from the above relations it follows that

1
p
−

1
q
= θ

(
1−

1
γ

)
, θ =

2
p
− 1 ,

which, upon eliminating θ, imply that
(
1−

2
γ

) 1
p
+

1
q
= 1−

1
γ
,

and (2.3) above holds.
Moreover, on account of the monotonicity of the Lorentz norms with

respect to the second index, since for p, q verifying (2.3) we have p < 2 < q,
setting s = q in (2.4), it follows that

‖{cm(α)}‖�q � ‖{cm(α)}‖�q,q �p ‖f‖p,q �p ‖f‖p.p �p ‖f‖p ,

(2.5) holds, and T is of type (p, q) .
Turning now to the Orlicz spaces, observe that the equation of the line

passing through (1, 1/γ) and (1/2, 1/2) is given by

y =
(2
γ
− 1

)
x+

(
1−

1
γ

)
,

and, consequently, (2.6) follows now by interpolation [18, Theorem 2.8,
p. 184].
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To proceed with the maximal estimates, we transfer the results from
the atomic measure to the Lebesgue measure on R by means of a technique
introduced in [3], and conclude that (2.5) holds with {Cm(α)} in place of
{cm(α)} there.

More precisely, let

Fα(u, x) = Fm,α(x) , m ≤ u < m+ 1, m = 0, 1, 2, . . . ,

and from

cm(α) =
∫ ∞

−∞
f(x)Fm,α(x) dx, m = 0, 1, 2, . . . ,

pass to

cα(f)(u) =
∫ ∞

−∞
f(x)Fα(u, x) dx, u ∈ R

+ .

Now, if p, q satisfy the relation (2.3) above, it follows that

‖cα(f)‖qq =
∫ ∞

0

∣∣∣∣
∫ ∞

−∞
f(x)Fα(u, x) dx

∣∣∣∣
q

du

=
∞∑

m=0

∫ m+1

m

∣∣∣∣
∫ ∞

−∞
f(x)Fm,α(x) dx

∣∣∣∣
q

du =
∞∑

m=0

∣∣cm(α)
∣∣ q,

and, consequently, by (2.5),

‖cα(f)‖q = ‖{cm(α)}‖�q �α,p ‖f‖p .

Now, since p < q and {χ[−β,β]} are filtrations in the sense of Christ–
Kiselev, the conditions of the maximal inequality are satisfied [6], [16, The-
orem 2.11.1, p. 169], and so, with

Cα(f)(u) = sup
β

∣∣cα(fχβ)(u)
∣∣ = sup

β

∣∣∣∣
∫ β

−β
f(x)Fα(u, x) dx

∣∣∣∣ ,
it follows that ‖Cα(f)‖q �α,p ‖f‖p . Again, as above,

‖Cα(f)‖qq =
∞∑

m=0

∫ m+1

m

(
sup
β

∣∣∣∣
∫ β

−β
f(x)Fm,α(x) dx

∣∣∣∣
)q

du =
∞∑

m=0

Cm(α)q,

and, consequently,

(2.10) ‖{Cm(α)}‖�q �α,p ‖f‖p ,

and (2.5) holds with {Cm(α)} in place of {cm(α)} there.
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Let now S be the sublinear mapping that assigns to f the sequence
{Cm(α)} of its maximal Freud coefficients. Then (2.10) holds for those p, q
that verify (2.3) above. The estimates for {Cm(α)} in the Lorentz and Or-
licz spaces follow now by interpolation; in the case of Lorentz spaces we use
[3, Corollary to Theorem 10, p. 293], and for the Orlicz spaces we essentially
repeat the argument for the {cm(α)}. The proof is thus finished. �

A companion result to the Hausdorff–Young inequality addresses under
what conditions {cm} is the sequence of Fourier coefficients of a function f
in the Hausdorff–Young range [2], [20, Vol. 2, Theorem 2.3, p. 101]. For the
Hermite expansions in R, this is done in [4, Theorem 4.2].

And, for the Freud expansions we have:

Theorem 2.2. With 1 < α < 3, let γ be given by (2.1). Let γ/(γ− 1) <
p < 2, and suppose that q is such that

(2.11)
1
p
+

(
1−

2
γ

) 1
q
= 1−

1
γ
.

Then, given {cm} ∈ �p,s, there is f ∈ L(q, s) such that cm(α) = cm, and

‖f‖q,s �α,p,s ‖{cm}‖�p,s ,

and, in particular, ‖f‖q �α,p ‖{cm}‖�p . Thus, if τ denotes the mapping that
assigns f to the sequence {cm}, τ is of type (p, q) whenever (2.11) holds.

Moreover, if A, B are Young’s functions such that B(t)/t2 increases, and
for some r > 2, B(t)/tr decreases and

∫∞
t

(
B(s)/sr

)
ds/s � B(t)/tr, then τ

maps the Orlicz sequence space �A continuously into the Orlicz space LB(R),
provided that A, B verify

(2.12) B−1(t) = t(γ−1)/(γ−2) A−1(tγ/(2−γ)) , t > 0 .

Furthermore, the maximal operator τ∗ associated to τ is of type (A,B),
and for f = τ({cm}) we have

f(x) = lim
M

M∑
m=0

cmFm,α(x) a.e.

Proof. Let b(x) = {Fm,α(x)}. Then, by (2.2), as in (2.9) it follows that
b(x) ∈ �γ,∞ uniformly in x, and so, for a sequence {cm} in �γ/(γ−1),1 we have∣∣∣∑

m

cmFm,α(x)
∣∣∣ �α ‖{cm}‖�γ/(γ−1),1 , uniformly in x .

Hence, if f(x) ∼
∑∞

m=0 cmFm,α(x), then f ∈ L∞(R), and

(2.13) ‖f‖∞,∞ = ‖f‖∞ �α ‖{cm}‖�γ/(γ−1),1 .
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And, by a now familiar argument, since τ is of type (2, 2) we have ‖f‖2,∞
� ‖{cm}‖�2,1 . We are thus in the right framework to interpolate for Lorentz
spaces, and, consequently, T maps the Lorentz space L(p, s) continuously
into the Lorentz sequence space �q,s, 1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1
p
=

γ − 1
γ

θ +
1− θ

2
,

1
q
=

1− θ

2
.

Now, from the above relations it follows that

1
p
−

1
q
= θ

(
1−

1
γ

)
, θ = 1−

2
q
,

which, upon eliminating θ, imply that

1
p
+
(
1−

2
γ

) 1
q
= 1−

1
γ
,

which gives (2.11) above, and, provided that (2.11) holds, we get that

‖f‖q,s �p,s ‖{cm}‖�p,s , 1 ≤ s ≤ ∞ .

And, since p < q, setting s = q gives that τ is of type (p, q) when (2.11)
holds.

As for the Orlicz spaces, since the equation of the line passing through
((γ − 1)/γ, 0) and (1/2, 1/2) is given by

y =
γ

2− γ
x+

γ − 1
γ − 2

,

(2.12) follows now by interpolation [18, Theorem 2.8, p. 184].
And, we can say more. Let

τ∗
(
{cm}

)
= sup

M

∣∣∣∣
M∑

m=0

cmFm,α(x)
∣∣∣∣ .

Then, by the Orlicz spaces discrete Christ–Kiselev maximal inequality es-
tablished in [4, Theorem 5.1], it follows that τ∗ maps �A continuously into
LB(R) whenever τ is of type (A,B). We will verify next that the conditions
for the Orlicz space convergence result [4, Corollary 3.2] are also met.

Let fM =
∑M

m=1 cmFm,α(x), and observe that by the linearity and
boundedness of τ , with cM2

M1
denoting the sequence with terms cm for M1 +1

≤ m ≤ M2 and 0 otherwise, we have

‖fM2
− fM1

‖B �A ‖cM2

M1
‖�A → 0 as M1,M2 → ∞,
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and, consequently, {fM} is Cauchy in LB(R). If we denote the limit of this
sequence by f , then f(x) ∼

∑∞
m=0 cmFm,α(x), ‖f‖B �A ‖{cm}‖�A , and

lim
M

∥∥∥∥f −
M∑

m=0

cmFm,α

∥∥∥∥
B

= 0 .

Also, for a dense subset of �A, namely, those sequences with finitely many
nonzero terms,

∑∞
m=0 cmFm,α(x) is actually a finite sum, and so,

lim
M→∞

M∑
m=0

cmFm,α(x) =
∞∑

m=0

cmFm,α(x) , all x ∈ R .

Hence, all the conditions for the Orlicz spaces pointwise convergence re-
sult are met, it follows that

f(x) = lim
M

M∑
m=0

cmFm,α(x) a.e.,

and the proof is finished. �

3. Sharpened Hausdorff–Young inequality in R
n

The n-dimensional Hermite functions are obtained as products of the
1-dimensional Hermite functions [5,15,19], and constitute an ONS in R

n

with respect to the Lebesgue measure there. The same is true for general
n-dimensional expansion in terms of the orthogonal functions Fm,α.

To the point, having fixed an n-tuple α = (α1, . . . , αn), where 1 < αk < 3
for k = 1, . . . , n, and given x = (x1, . . . , xn) in R

n and an n-tuple of nonnega-
tive integersm = (m1, . . . ,mn), let the Freud functions, Fm,α(x), be given by

Fm,α(x) = Fm1,α1
(x1) · · · Fmn,αn

(xn) ,

and the coefficients of f(x), cm(α), by

cm(α) =
∫
Rn

f(x)Fm,α(x) dx .

We indicate this correspondence by f(x) ∼
∑

m cm(α)Fm,α(x), and note
that, in particular, the n-dimensional Freud expansions satisfy the Parseval–
Plancherel formula in R

n, to wit,∫
Rn

|f(x)|2dx =
∑
m

∣∣cm(α)
∣∣2.
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In order to simplify the statement of our results, with 1 < αk < 3, 1 ≤ k
≤ n, we introduce the notation

(3.1)
1
γk

=
1
6
·
3− αk

αk
, 1 ≤ k ≤ n , and, Γ = γ1 + · · · + γn .

We then have:

Theorem 3.1. Let Γ be given by (3.1). If f(x) ∼
∑

m cmFm,α(x) de-

notes the expansion of a function f defined on R
n in a Freud series, let T de-

note the mapping that assigns to f its sequence of Freud coefficients {cm(α)}.
Then, T maps the Lorentz space L(p, s) continuously into the Lorentz se-

quence space �q,s, 1 ≤ s ≤ ∞, provided that p, q verify

(3.2) 1 < p < 2, and,
(
1−

2
Γ

) 1
p
+

1
q
= 1−

1
Γ
.

In particular,

(3.3) ‖T (f)‖�q = ‖{cm(α)}‖�q � ‖f‖p,

and T is of type (p, q) whenever (3.2) holds.
Moreover, if A, B are Young’s functions such that B(t)/t2 increases and∫ t

0

(
B(s)/sΓ

)
ds/s � B(t)/tΓ, T is of type (A,B), provided that A, B verify

(3.4) B−1(t) = t

(
(Γ−1)/Γ

)
A−1

(
t

(
(2−Γ)/Γ

) )
, t > 0 .

Proof. For simplicity, since no new ideas are required for general n,
we will carry out the proof for n = 2. With α = (α1, α2), let f(x) ∼∑

m cm(α)Fm,α(x) denote the Freud expansion of f .
Now, by (2.2), it readily follows that

|cm0
(α)| �α ‖f‖1 , m0 = (0, 0) ,

and also

(3.5)
∣∣cm(α)

∣∣ �α m1
−1/γ1‖f‖1 , m = (m1, 0) ,m1 ≥ 1,

and,

(3.6)
∣∣cm(α)

∣∣ �α m2
−1/γ2 ‖f‖1 , m = (0,m2) ,m2 ≥ 1 .

And, for m = (m1,m2) with m1 ·m2 �= 0, we have

(3.7)
∣∣cm(α)

∣∣ �α m
−1/γ1

1 m
−1/γ2

2 ‖f‖1 , m = (m1,m2) ,m1 ·m2 �= 0 .
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Let μ denote the atomic measure concentrated on the lattice of 2-tuples
of integer atoms m = (m1,m2) with m1,m2 = 0, 1, 2, . . . , taking the value
μ(m) = 1 on each such atom.

Given λ > 0, let Iλ = {m : |cm| > λ}; we are interested in estimating
μ(Iλ). Now, if m = (m1,m2) is in Iλ and m1 ·m2 �= 0, by (3.6) we have

λ < |cm(α)| �α m
−1/γ1

1 m
−1/γ2

2 ‖f‖1 ,

and, consequently,

m
1/γ1

1 m
1/γ2

2 �α ‖f‖1/λ ,

which, since m1,m2 ≥ 1 implies that m
1/γ1

1 �α

(
‖f‖1/λ

)
and that m

1/γ2

2
�α

(
‖f‖1/λ

)
, and so,

m1 �α

(
‖f‖1/λ

) γ1 , m2 �α

(
‖f‖1/λ

)γ2 .

Hence,

μ
(
{m = (m1,m2) ∈ Iλ : m1 ·m2 �= 0}

)
(3.8)

�α (‖f‖1/λ)
γ1(‖f‖1/λ)

γ2 =α (‖f‖1/λ)
γ1+γ2 .

Also, since from (3.5) and (3.6) above
∣∣cm(α)

∣∣ �α m
−1/γ1

1 ‖f‖1 �α m
−1/(γ1+γ2)
1 ‖f‖1 , m = (m1, 0) ,

and ∣∣cm(α)
∣∣ �α m

−1/γ2

2 ‖f‖1 �α m
−1/(γ1+γ2)
1 ‖f‖1 , m = (0,m2) ,

it follows that

μ
(
{m = (m1,m2) ∈ Iλ : m1 = 0 or m2 = 0}

)
�α (‖f‖1/λ)

γ1+γ2 ,

which combined with (3.8) above yields

λγ1 +γ2 μ
({

m=(m1,m2), (m1,m2) �=(0, 0) : |cm(α)|>λ
})

�α ‖f‖
γ1+γ2

1 .(3.9)

Now, if m0 = (0, 0) ∈ Iλ, since as observed above |cm0
(α)| �α ‖f‖1, it

follows that λ < |cm0
(α)| �α ‖f‖1 , and so

λγ1+γ2 μ(m0) = λγ1+γ2 �α ‖f‖γ1+γ2

1 ,

which combined with (3.9) above gives that

λγ1+γ2 μ
(
Iλ

)
�α ‖f‖γ1+γ2

1 .
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Therefore, as in (2.9), it follows that, with Γ = γ1 + γ2,

(3.10) ‖{cm(α)}‖�Γ,∞ = sup
λ>0

λμ
({

m : |cm(α)| > λ
})1/Γ

�α ‖f‖1 ,

and T is continuous from L(1, 1) = L1(R2) into the weak sequence space
�Γ,∞.

This estimate is precisely (2.9) above with γ replaced by Γ there. Also,
T is of type (2, 2) as established by the Parseval–Plancherel formula, and so
we have ‖{cm(α)}‖�2,∞ � ‖f‖2,1 . The proof now proceeds mutatis mutandis
as that of Theorem 2.1 replacing γ by Γ there. The details are left to the
reader. �

As for the companion result to the Hausdorff–Young inequality, for the
Freud expansions in n dimensions we have:

Theorem 3.2. Let Γ be given by (3.1), and suppose that p, q verify

(3.11)
Γ

Γ− 1
< p < 2, and,

1
p
+
(
1−

2
Γ

) 1
q
= 1−

1
Γ
.

Then, given {cm} in the Lorentz sequence space �p,s, there is f in the
Lorentz space L(q, s), 1 ≤ s ≤ ∞, such that f(x) ∼

∑
m cmFm,α(x), and

‖f‖q,s �α,p,s ‖{cm}‖�p,s .

In particular, if τ denotes the mapping that assigns f to the sequence
{cm}, τ is of type (p, q) whenever (3.11) holds.

Moreover, if A, B are Young’s functions such that B(t)/t2 increases,
and for some r > 2, B(t)/tr decreases and

∫∞
t

(
B(s)/sr

)
ds/s � B(t)/tr,

then τ is of type (A,B), provided that A, B verify

(3.12) B−1(t) = t(Γ−1)/(Γ−2) A−1(tΓ/(2−Γ) ) , t > 0 .

Proof. For simplicity we argue the case n = 2 as no new ideas are re-
quired for general n. Let b(x) = {Fm,α(x)}. Then, as it was shown in the
argument leading to (3.10), with Γ = γ1 + γ2 now, b(x) is in the Lorentz se-
quence space �Γ,∞, uniformly in x. Therefore, for a sequence {cm} in its
conjugate Lorentz sequence space, �Γ/(Γ−1),1, it follows that∣∣∣∣

∑
m

cmFm,α(x)
∣∣∣∣ �α ‖{cm}‖�Γ/(Γ−1),1 , uniformly in x ∈ R

2 .

Hence, if f(x) ∼
∑

m cmFm,α(x), then f ∈ L∞(R2), and

‖f‖∞,∞ = ‖f‖∞ �α ‖{cm}‖�Γ/(Γ−1),1 ,

which is estimate (2.13) with Γ in place of γ there.
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And, since by the Parseval–Plancherel formula τ is of type (2, 2) and we
have ‖f‖2,∞ � ‖{cm}‖�2,1 , the proof proceeds mutatis mutandis as that of
Theorem 2.2 replacing γ with Γ there. The details are left to the reader. �

A couple of remarks in this context. From (2.1), with α = 2 there, it fol-
lows that γ = 12, which is Hille’s estimate, and so our results include the
Hermite expansions. And, if all the αk’s are equal to 1 < α < 3, say, then,
Γ = nα, and so, as n → ∞, the expressions (3.2) and (3.11) above relating
p, q, become 1/p+ 1/q = 1, which is precisely the Hausdorff–Young range
in the case of Fourier expansions. And, naturally, the expressions (3.4) and
(3.12) above approach the formula B−1(t) = tA−1(1/t), which is the condi-
tion for the Hausdorff–Young inequality to hold for the Fourier transform in
the case of Orlicz spaces [10].

4. Hausdorff–Young and maximal coefficients estimates,

2 < p < ∞

In this section we complement the results for the Hausdorff–Young in-
equality and the estimation of the maximal Freud coefficients obtained in
Theorem 2.1 for 1 < p < 2, and consider the values of p between 2 and ∞.

We begin by noting the pointwise estimates for the Freud polynomials
{pm,α} obtained by Ditzian in [7, (2.1), p. 583], to wit,

(4.1)
∣∣pm,α(x)

∣∣ �α m−1/γ e
1

2
|x|α .

Now, the relation (0.1) with pm = pm,α and w = Wα there may be re-
stated as ∫

R

pm,α(x) pk,α(x)Wα(x)2 dx = δm,k, m, k = 0, 1, 2, . . . ,

and the {pm,α} may be considered as an ONS with respect to the measure
dμ(x) = Wα(x)2 dx, or the weight Wα(x)2, in R.

The Lp spaces in this setting are denoted by Lp
μ(R), and the Lorentz

spaces, which are defined with the measure ν in the Preliminaries replaced
by the measure μ in all the relevant definitions there, by Lμ(p, q).

We are particularly interested in Lμ(∞, 1). Now, by [3, p. 284],

lim
p→∞

‖f‖Lμ(p,1) = ‖f‖Lμ(∞,1) ,

and we are interested in evaluating the limit.
Recall that by [3, p. 283], an equivalent Lorentz norm is given by

‖f‖Lμ(p,q) =
(
p− 1
p2

∫ ∞

0

(
f∗∗(t) t1/p

) q dt

t

)1/q

, 1 ≤ p, q < ∞ ,
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where

t f∗∗(t) =
∫ t

0
f∗(s) ds = sup

μ(E)≤t

∫
E
|f(x)| dμ .

Then, to calculate the limit, note that since A = μ(R) < ∞, we have

‖f‖Lμ(p,1) =
p− 1
p2

∫ A

0
f∗∗(t) t1/p

dt

t
+

p− 1
p2

∫ ∞

A
f∗∗(t) t1/p

dt

t
,

where the second integral tends to 0 as p → ∞, and, since (p− 1)p−2t(1/p)−1

is the kernel of an approximate identity as p → ∞, it follows that

lim
p→∞

‖f‖Lμ(p,1) = lim
p→∞

p− 1
p2

∫ A

0
f∗∗(t) t1/p

dt

t
= f∗∗(0+) .

Likewise, as is discussed in [13, Teorema 6, pp. 69-70],

f∗∗(0+) = ‖f‖∞ ,

and, therefore, since L∞
μ (R) = L∞(R), with equality in norms, we have

lim
p→∞

‖f‖Lμ(p,1) = ‖f‖Lμ(∞,1) = ‖f‖∞ .

Furthermore, by the monotonicity of the Lorentz norms with respect to
the second index, L∞

μ (R) = Lμ(∞, q) for all 1 ≤ q ≤ ∞.
We denote the coefficients of f with respect to {pm,α} in this setting by

(4.2) dm(α) =
∫
R

f(x) pm,α(x)Wα(x)2 dx , m = 0, 1, . . . ,

indicating this correspondence by f(x) ∼
∑

m dm(α) pm,α(x), and noting
that for f in L2

μ(R) the Parseval–Plancherel formula

(4.3) ‖f‖2
L2

μ
=

∫
R

|f(x)|2 Wα(x)2 dx =
∞∑

m=0

|dm(α)|2 = ‖{dm(α)}‖2
�2

holds.
Now, more can be said about the Freud coefficients. Indeed, by (4.1),

∣∣dm(α)
∣∣ ≤

∫
R

|f(x)|
∣∣Fm,α(x)

∣∣ Wα(x) dx(4.4)

�α m−1/γ
(∫

R

Wα(x) dx
)
‖f‖∞ ,
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and, consequently, along the lines of (2.9) it follows that

(4.5) ‖{dm,α}‖�γ,∞ �α ‖f‖Lμ(∞,1) .

And, the estimate (4.5) assumes various useful forms. Indeed, (4.4) implies
that |dm(α)| �α ‖f‖L∞

μ
, and, consequently,

‖{dm(α}‖�∞ �α ‖f‖L∞

μ
,

which interpolated with the Parseval–Plancherel formula yields

(4.6) ‖{dm(α}‖�p �α,p ‖f‖Lp
μ
, 2 < p < ∞ .

Concerning the Hausdorff–Young inequality we then have:

Theorem 4.1. Given 1 < α < 3, let γ be defined by (2.1). Then, if f
has the expansion f(x) ∼

∑
m dm(α) pm,α(x), where the coefficients are de-

fined as in (4.2) above, let T denote the linear map that assigns the sequence
{dm(α)} to f . Then, if 1 ≤ s ≤ ∞, and p, q verify

(4.7) 2 < p < ∞ , and,
(2
γ
− 1

) 1
p
+

1
q
=

1
γ
,

it follows that

(4.8) ‖{dm(α)}‖�q,s �α,p,s ‖f‖Lμ(p,s) ,

and, in particular,

(4.9) ‖{dm(α)}‖�q,∞ �α,p ‖f‖Lp
μ
.

Moreover, if A, B are Young’s functions such that B(t)/t2 increases,
B(t)/tγ decreases, and∫ ∞

t

(
B(s)/sγ

)
ds/s � B(t)/tγ,

T maps LA(R) continuously into the Orlicz sequence space �B provided that
A, B verify

(4.10) B−1(t) = t1/γ A−1(t(γ−2)/γ), t > 0 .

Proof. Note that by (4.5), T maps continuously Lμ(∞, 1) into the se-
quence space �γ,∞. Also, by (4.3) and the monotonicity of the Lorentz norms
with respect to the second index, we have

‖{dm(α)}‖�2,∞ � ‖{dm(α)}‖�2 � ‖f‖L2
μ
� ‖f‖Lμ(2,1) ,

and T maps Lμ(2, 1) continuously into �2,∞.
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We are thus in the right framework to interpolate for Lorentz spaces, and,
consequently, by [3, Corollary to Theorem 10, p. 293], T maps the Lorentz
space L(p, s) continuously into the Lorentz sequence space �q,s, 1 ≤ s ≤ ∞,
where, for 0 < θ < 1,

1
p
=

θ

2
, and,

1
q
=

θ

2
+

1− θ

γ
.

Now, upon eliminating θ, from the above relations it follows that
(2
γ
− 1

) 1
p
+

1
q
=

1
γ
,

which gives (4.7) above.
Moreover, on account of the monotonicity of the Lorentz norms with

respect to the second index, since for p, q verifying (4.7) we have q < p,
setting s = p in (4.8), it follows that

‖{dm(α)}‖�q,∞ � ‖{dm(α)}‖�q,p �p ‖f‖Lμ(p,p) �p ‖f‖Lp
μ
,

(4.9) holds, and T is of weak-type (p, q) .
Turning now to the Orlicz spaces, observe that the equation of the line

passing through (0, 1/γ) and (1/2, 1/2) is given by

y =
(
1−

2
γ

)
x+

1
γ
,

and, consequently, (4.10) follows by interpolation [18, Theorem 2.8, p. 184].
�

As for the maximal coefficients of f , Dm(α), in analogy to (2.7), they
are defined by

(4.11) Dm(α) = sup
β>0

∣∣∣∣
∫ β

−β
f(x) pm,α(x)Wα(x)2 dx

∣∣∣∣, m = 0, 1, 2, . . . .

Note that since q < p in Theorem 4.1, the Christ–Kiselev maximal in-
equality does not apply in this context. We then have for the maximal
coefficients:

Theorem 4.2. Let 1 < α < 3 and γ be as in (2.1) above, and let T be the

sublinear mapping that assigns to f the sequence of its maximal Freud coeffi-

cients given by (4.11). Then, if f is a continuous function and 2 < p < ∞,
it follows that

(4.12) ‖{Dm,α}‖�p+1 �α,p ‖f‖Lp
μ
.
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Proof. Note that it suffices to prove the assertion for functions f sup-
ported on R

+. Suppose first that f is a nonnegative continuous function
on R

+ that belongs to Lp
μ(R). Then, on account of [4, Theorem 2.1], for

p > 2 we have

(∫ ξ

0
f(x) pm,α(x)Wα(x)2 dx

)p+1

(4.13)

= (p+ 1)
∫ ξ

0
f(x) pm,α(x)

(∫ x

0
f(s)pm,α(s)Wα(s)2 ds

)p

Wα(x)2 dx .

Now, by (4.1), the integral on the right–hand side above is dominated by

cα,p

∫ ∞

0
f(x) e|x|

α/2
∣∣∣∣
∫ x

0
f(s)pm,α(s)Wα(s)2ds

∣∣∣∣
p

Wα(x)2 dx ,

and, consequently, taking sup over ξ, it follows that

Dm(α)p+1 �α,p

∫ ∞

0
f(x) e|x|

α/2
∣∣∣∣
∫ x

0
f(s)pm,α(s)Wα(s)2ds

∣∣∣∣
p

Wα(x)2 dx .

Summing over m we then get that ‖{Dm(α)}‖
p+1
�p+1 is bounded by

cα,p

∫ ∞

0
e|x|

α/2 f(x)
∞∑

m=0

∣∣∣∣
∫ x

0
f(s)pm,α(s)Wα(s)2 ds

∣∣∣∣
p

Wα(x)2 dx ,

and so, on account of (4.6), it follows that

‖{Dm,α}‖
p+1
�p+1 �α,p

∫ ∞

0
e|x|

α/2 f(x)
(∫ x

0
f(s)Wα(s)2 ds

)p

Wα(x)2 dx

�α,p ‖f‖
p
Lp

μ

∫ ∞

0
e|x|

α/2 f(x)Wα(x)2 dx .

Now, by Hölder’s inequality with indices 1/p+1/q = 1, where q < 2 since
p > 2, the above expression does not exceed

(4.14) ‖{Dm(α)}‖
p+1
�p+1 �α,p ‖f‖

p
Lp

μ
‖f‖Lp

μ

(∫ ∞

0
e|x|

qα/2W 2
α(x) dx

)1/q

,

and, consequently,

(4.15) ‖{Dm(α)}‖�p+1 �α,p ‖f‖Lp
μ
.
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Now, given an arbitrary continuous function f ∈ Lp
μ(R), let f+(x) =

max(f(x), 0), and f−(x) = f+(x)− f(x). Then, f−(x), f+(x) are nonneg-
ative and continuous, and if D+

m(α),D−
m(α) denote the maximal Freud co-

efficients of f+(x) and f−(x), respectively, then Dm(α) ≤ D+
m(α) +D−

m(α),
and, consequently, by (4.15),

‖{Dm(α)}‖�p+1 ≤ ‖{Dm(α)+}‖�p+1 + ‖{Dm(α)−}‖�p+1

�α,p (‖f+‖Lp
μ
+ ‖f−‖Lp

μ) �α,p ‖f‖Lp
μ
,

(4.12) holds, and the proof is finished. �

And, for arbitrary functions in Lp
μ we have:

Theorem 4.3. Let 1 < α < 3 and γ be defined as in (2.1) above, and
let T be the sublinear mapping that assigns to f the sequence of its maximal

Freud coefficients given by (4.11). Then, given 2 < p < ∞, let ε > 0 be such

that p− ε > 2. Then, it follows that

(4.16) ‖{Dm(α)}‖�q,s �α,p ‖f‖Lμ(p,s) ,

where 1 ≤ s ≤ ∞, and

(4.17)
1
q
=

1
p

( p− ε

p− ε+ 1
+

ε

γ

)
.

Furthermore, T is of weak-type (p, q) whenever p, q verify (4.17).

Proof. Let χE denote the characteristic function of a measurable set E
with μ(E) < ∞. Then, on account of [4, Theorem 2.1], for p > 2 we have
that (4.13) holds with χE in place of the continuous function f there, and,
consequently, by (4.15), with {Dm(α)} the sequence of maximal coefficients
of χE , it follows that

‖{Dm(α)}‖�p−ε+1 �α,p ‖χE‖Lμ(p−ε,1) ,

and the mapping T is of restricted type (p− ε, p− ε+ 1).
Also, when f ∈ L∞(R) = L∞

μ (R), with {Dm(α)} the sequence of maxi-
mal coefficients of f ,

Dm(α) �α m−1/γ
∫
R

|f(x)|Wα(x) dx �α m−1/γ‖f‖∞ ,

and so, as the argument leading to (2.9) shows,

‖{Dm(α)}‖�γ,∞ �α ‖f‖Lμ(∞,1).
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Thus, we are in the framework to apply interpolation in Lorentz spaces,
and obtain that for 0 < θ < 1, and

1
r
=

θ

p− ε
,

1
q
=

θ

p− ε+ 1
+

1− θ

γ
.

it follows that

‖{Dm(α)}‖�q,s �α,p ‖f‖Lμ(r,s) .

Now, the choice θ = (p− ε)/p gives that 1− θ = ε/p, and that r = p,
and so

1
q
=

1
p

( p− ε

p− ε+ 1
+

ε

γ

)
,

(4.17) holds, and (4.16) has been established.
Finally, since q < p whenever (4.17) holds, T is of weak-type (p, q) on

account of the monotonicity of the Lorentz spaces with respect to the second
index. �

Because of the cumbersome expressions involved, the Orlicz spaces ver-
sion of Theorem 4.3 is left for the reader to verify.

We close the note with two remarks. The first concerns the assump-
tion that 1 < α < 3 throughout this note. When this is the case, γ as given
by (2.1) is positive, and, therefore, the Freud coefficients of integrable func-
tions tend to 0 as m−1/γ when m → ∞. This allows us to establish the
(unweighted) sharpened Hausdorff–Young inequality in this case.

Now, resting on [12, Theorem 13.2, p. 360], Ditzian showed that for
α > 1,

max
x∈R

∣∣Fm,α(x)
∣∣ = max

x∈R

∣∣pm,α(x)
∣∣ Wα(x) ≈ m1/6((α−3)/α) , m = 1, 2, . . . ,

thus hinting at the possible growth of the Freud coefficients when α > 3, [7,
(2.1), p. 583]. In this case, as noted above, Ditzian’s (weighted) analogue to
the Hausdorff–Young inequality holds for all α > 1.

Which brings us to the second remark. Unlike the unweighted case above,
where the coefficients are given by (0.2), the Freud coefficients in Ditzian’s
case are given by (4.2), and, as established in [7, Theorem 2.2, p. 583], they
are bounded by

|d0(α)| �α ‖fWα‖1 , |dm(α)| �α m(1− 3

α
) 1

6 ‖fWα‖1 , m = 1, 2, . . . .

Then, along the lines of the proof of Theorems 2.1 and 2.2, the reader
should have no difficulty in showing:
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Theorem 4.4. Suppose that f has the expansion

f(x) ∼
∞∑

m=0

dm(α) pm,α(x),

where the coefficients are defined as in (4.2) above. Then, with 1 < α < 3, if
1 ≤ s ≤ ∞, and p, q verify

1 < p < 2 , and,
4α− 3
3α

·
1
p
+

1
q
=

14α− 6
12α

,

we have

‖{dm(α)}‖�q,s �α,p,s ‖fWα‖p,s ,

and, in particular,

‖{dm(α)}‖�q �α,p ‖fWa‖p .

Furthermore, let (14− α)/12α < p < 2, and suppose that q is such that

1
p
+

4α− 3
3α

·
1
q
=

14α− 6
12α

.

Then, given {dm} ∈ �(p, s), there is f such that fWα ∈ L(q, s), dm(α) = dm,
and

‖fWα‖q,s �α,p,s ‖{dm(α)}‖�q,s ,

and, in particular, ‖fWα‖q �α,p ‖{dm(α)}‖�p .
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