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Abstract. A k-uniform family F ⊂
(
[n]
k

)
is called non-trivial r-wise inter-

secting if F1 ∩ F2 ∩ · · · ∩ Fr �= ∅ for every F1, F2, . . . , Fr ∈ F and ∩F = ∅. O’Neill
and Verstraëte determined the maximum size of a non-trivial r-wise intersecting
family for n sufficiently large. Actually, the Hilton–Milner–Frankl Theorem im-
plies O’Neill–Verstraëte’s result for n ≥ r(k − r + 2). In the present paper, we
show that the same result holds for a certain range when n is close to 2k.

1. Introduction

Let [n] = {1, 2, . . . , n} be the standard n-element set and 2[n] its power
set. For 0 ≤ k ≤ n let

([n]
k

)
denote the collection of all k-subsets of [n]. Sub-

sets of 2[n] are called families. If F ⊂ 2[n] satisfies F ⊂
([n]
k

)
, it is called

k-uniform.
For integers r, t where r ≥ 2, t ≥ 1 a family F ⊂ 2[n] is called r-wise

t-intersecting if |F1 ∩ · · · ∩Fr| ≥ t for all F1, . . . , Fr ∈ F . In case of r = 2 the
term t-intersecting and in case of t = 1 the terms r-wise intersecting and
intersecting are used.

For a family F ⊂ 2[n] one defines its dual F c =
{
[n] \F : F ∈ F

}
. Note

that the r-wise t-intersecting property of F is equivalent to |G1 ∪ · · · ∪Gr|
≤ n− t for all G1, . . . , Gr ∈ F c. Families satisfying the latter property are
called r-wise t-union.

Let us recall the Erdős–Ko–Rado Theorem, one of the cornerstones of
extremal set theory.
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Theorem 1.1 [5]. Suppose that F ⊂ 2[n] is intersecting. Then

(1.1) |F| ≤ 2n−1.

Moreover, if F ⊂
([n]
k

)
and n ≥ 2k then

(1.2) |F| ≤

(
n− 1
k − 1

)
.

Most readers could guess that equality in (1.1) and (1.2) can be achieved
by stars, families in which a fixed element of [n] is contained in all mem-
bers. However, for (1.1) and in the special case n = 2k also for (1.2) there
are many other families attaining equality. Hilton and Milner [14] proved a
strong stability result for (1.2), n > 2k.

Theorem 1.2 [14]. If n > 2k and F ⊂
([n]
k

)
is intersecting and is not a

star, then

(1.3) |F| ≤

(
n− 1
k − 1

)
−

(
n− k − 1
k − 1

)
+ 1.

Note that an r-wise intersecting family is always r′-wise intersecting if
r > r′ ≥ 2.

Definition 1.3 (Brace–Daykin Families). Let r ≥ 2, n > r.
(a) A(n, r) =

{
A ⊂ [n] : |A ∩ [r + 1]| ≥ r

}
,

(b) B(n, r) =
{
B ⊂ [n] : |B ∩ [n− r, n]| ≤ 1

}
.

It is easy to see that A(n, r) is r-wise intersecting, B(n, r) is r-wise union
and A(n, r)c is isomorphic to B(n, r).

For a family F ⊂ 2[n] define
⋃
F =

⋃
F∈F F . If

⋃
F = [n] then F is called

covering. One of the early gems of extremal set theory is the following.

Theorem 1.4 (Brace–Daykin Theorem [2]). Suppose that r ≥ 3, B ⊂ 2[n]

is r-wise union and covering. Then

(1.4) |B| ≤ |B(n, r)| = (r + 2)2n−r−1

with equality holding if and only if B is isomorphic to B(n, r).

For the proof of our main results we need a stronger result. To state it
let us make a definition. A subset H ⊂ [n] is called a hole for the family
F ⊂ 2[n] if |F ∩H| ≤ 1 for all F ∈ F . Note that B(n, r) has a hole of size
r + 1, namely [n− r, n]. On the other hand possessing a hole of size r + 1
guarantees the r-wise union property.
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Theorem 1.5 [12]. Let r ≥ 3, n ≥ r + 2 and F ⊂ 2[n]. Suppose that F
is r-wise union, covering and it possesses no hole of size r + 1. Then

(1.5) |F| ≤ (r + 6)2n−r−2.

Even that (1.5) is only a slight improvement on (1.4), it will be sufficient
for our proofs. Actually, (1.5) is best possible.

Example 1.6. For n ≥ r + 2 ≥ 5 define

D(n, r) =
{
D ⊂ [n] : |D ∩ [r+2]| ≤ 1 or D ∩ [r+2] ∈

(
{r, r+1, r+2}

2

)}
.

Note that [r], [r − 1] ∪ {r + 1} and [r − 1] ∪ {r + 2} are holes of size r in
D(n, r). They permit to show that D(n, r) is r-wise union.

The extension of the uniform part, (1.2) of the Erdős–Ko–Rado Theorem
to r-wise intersecting families was one of the first results of the first author.
Let us state it for r-wise union families.

Theorem 1.7 [6,10]. Let n, k, r be positive integers, k ≤ n ≤ rk. Sup-

pose that F ⊂
([n]
k

)
is r-wise union. Then

(1.6) |F| ≤

(
n− 1
k

)
.

Moreover, in case of equality F is isomorphic to
([n−1]

k

)
.

We should note that for n ≤ 2k, (1.6) is a consequence of (1.2). However
for n > 2k it is no longer the case.

For F ⊂ 2[n] and 1 ≤ k ≤ n, define

F (k) :=
{
F ∈ F : |F | = k

}
.

There are two natural constructions for relatively large covering k-uniform
families that are r-wise union. The first is B(k)(n, r). The second is from [8]

H(n, k, r) =
{
H ∈

(
[n]
k

)
: [r − 1] ⊂ H, H ∩ [r, k + 1] �= ∅

}
∪

(
[k + 1]

k

)
.

Note that H(n, k, r) is r-wise intersecting. Therefore the actual example
that is needed is its dual H(n, k, r)c, which is r-wise union.

Let us note that both B(n, r) and H(n, k, r)c are s-wise (r+1− s)-union
for all s, 2 ≤ s < r. This is no coincidence.

Claim 1.8. Suppose that F ⊂ 2[n] is r-wise union and covering, r ≥ 3.
Then F is s-wise (r + 1− s)-union for all s, 2 ≤ s < r.

P. FRANKL and J. WANG512



Acta Mathematica Hungarica 169, 2023

4 P. FRANKL and J. WANG

Proof. Suppose the contrary and fix F1, . . . , Fs ∈ F such that

|F1 ∪ · · · ∪ Fs| ≥ n− (r − s).

Then Y := [n] \ (F1 ∪ · · · ∪ Fs) satisfies |Y | ≤ r − s. Since F is covering we
may choose Fs+1, . . . , Fr ∈ F satisfying Y ⊂ Fs+1 ∪ · · · ∪ Fr. Then F1 ∪ · · ·
∪ Fr = [n], a contradiction. �

Theorem 1.9 (O’Neill, Verstraëte [18]). Let k ≤ n− r, n > n0((n− k)).
Suppose that F ⊂

([n]
k

)
is r-wise union and covering. Then

(1.7) |F| ≤ max
{
|B(k)(n, r)|, |H(n, k, r)|

}
.

Let us recall two results concerning 2-wise t-intersecting families for
t ≥ 2.

Theorem 1.10 (Exact Erdős–Ko–Rado Theorem [5], [7], [20]). Suppose

that F ⊂
([n]
k

)
is (2-wise) t-intersecting, n ≥ (k − t+ 1)(t+ 1). Then

(1.8) |F| ≤

(
n− t

k − t

)
.

Note that Erdős, Ko, Rado proved (1.8) for n > n0(k, t). The exact
bound (k− t+1)(t+1) was proved in [7] for t ≥ 15 and later by Wilson [20]
for all t ≥ 2.

Let us state the corresponding stability result.

Theorem 1.11 (Hilton–Milner–Frankl Theorem [8], [7], [1]). Suppose

that F ⊂
([n]
k

)
is (r− 1)-intersecting and non-trivial, n ≥ r(k− r+2). Then

(1.9) |F| ≤ max{|A(k)(n, r)|, |H(n, k, r)|}.

In view of Claim 1.8 one can deduce Theorem 1.9 from Theorem 1.11. In
the dual version, that is, for r-wise intersecting families in

([n]
k

)
the condition

on (n, k, r) is

(1.10) k ≤
n

r
+ r − 2.

Being linear in n, this bound is rather strong however compared with the
restriction k ≤ r−1

r
n of Theorem 1.7 the gap is still very large. The aim

of the present paper is to show that (1.7) holds for a certain range close
to n

2 . The proof is completely different from the above results. It relies on
Theorem 1.5.
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Theorem 1.12. Let ε > 0, n ≥ 4
ε2

+ 7,
( 1

2 + ε
)
n ≤ k ≤ 3n

5 − 3 and let

F ⊂
([n]
k

)
be a 3-wise union covering family. Then

|F| ≤ |B(k)(n, 3)|.

Theorem 1.13. Let ε > 0, n ≥ 4
ε2

+ 8,
( 1

2 + ε
)
n ≤ k ≤ 0.65n− 4 and

let F ⊂
([n]
k

)
be a 4-wise union covering family. Then

|F| ≤ |B(k)(n, 4)|.

By the same method, we can also show that if F ⊂
([n]
k

)
is 5-wise

union and covering then |F| ≤ |B(k)(n, 5)| for n ≥ 3.2
ε2

+ 8,
( 1

2 +ε
)
n ≤ k

≤ 0.675n−4. Moreover, if F ⊂
([n]
k

)
is 6-wise union and covering then |F|

≤ |B(k)(n, 6)| for n ≥ 3.3
ε2

+ 9,
( 1

2 + ε
)
n ≤ k ≤ 0.65n− 4.

For r ≥ 11, we prove the following theorem.

Theorem 1.14. Let F ⊂
([n]
k

)
be r-wise union and covering. If (1

2 + ε)n
≤ k <

( 1
2 + 1

4(r+5)

)
n− r, ε > 0, r ≥ 11 and n ≥ 2 log(r + 10)/ε2, then

(1.11) |F| ≤ |B(k)(n, r)|.

For F ⊂
([n]
k

)
and 0 ≤ � < k, define the �th shadow ∂(�)F as

∂(�)F =
{
E ∈

(
[n]
�

)
: there exists F ∈ F such that E ⊂ F

}
.

The celebrated Kruskal–Katona Theorem [16,17] gives the best possible
lower bounds on |∂(�)F| for given size of F .

For every positive integerm, one can writem in k-cascade form uniquely:

m =
(
ak
k

)
+
(
ak−1

k − 1

)
+ · · ·+

(
as
s

)

with ak > ak−1 > · · · > as ≥ 1. We need the following version of the Kruskal–
Katona Theorem (see [9] for a short proof).

Theorem 1.15 (The Kruskal–Katona Theorem [16,17]). If F ⊂
([n]
k

)
,

|F| = m =
(
ak

k

)
+
(
ak−1

k−1

)
+ · · · +

(
as

s

)
, then

(1.12) |∂(�)F| ≥

(
ak
�

)
+
(
ak−1

�− 1

)
+ · · · +

(
as

�− k + s

)
.

Let us recall the following version of the Chernoff bound.

P. FRANKL and J. WANG514
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Theorem 1.16 [4,15]. Let X1, X2, . . . , Xn be independent random
variables with Xi = 1 with probability p and Xi = 0 with probability 1− p,
i = 1, 2, . . . , n. Let X = X1 +X2 + · · · +Xn and λ = np. Then for t ≥ 0

(1.13) Pr (X ≤ EX − t) ≤ exp
(
−

t2

2λ

)
.

The following inequality concerning the tails of sum of binomial coeffi-
cients is an easy consequence of the Chernoff bound.

Lemma 1.17. Let n be a positive integer and let m =
( 1

2 − ε
)
n with

ε > 0. Then

(1.14)
∑

0≤i≤m

(
n

i

)
≤ e−ε2n 2n.

Proof. Consider independent random variables X1, X2, . . . , Xn with
Xi = 1 with probability 1

2 and Xi = 0 with probability 1
2 , i = 1, 2, . . . , n. Let

X = X1 +X2 + · · ·+Xn. Then it is easy to see that

Pr(X ≤ m) =

∑
0≤i≤m

(
n
i

)
2n

.

By applying (1.13) with t = εn and λ = n
2 , (1.14) follows. �

2. Non-trivial 3-wise union families

In this section, we prove Theorem 1.12. The following lemma gives a
lower bound on |B(k)(n, 3)| in the k-cascade form, which admits the use of
the Kruskal–Katona Theorem.

Lemma 2.1. For n ≥ 5
3k + 4,

(2.1)
(
n− 4
k

)
+ 4

(
n− 4
k − 1

)
>

(
n− 2
k

)
+
(
n− 5
k − 1

)
+

(
n− 7
k − 2

)
.

Proof. Note that(
n− 4
k

)
+ 4

(
n− 4
k − 1

)
=

(
n− 3
k

)
+ 3

(
n− 4
k − 1

)

=
(
n− 3
k

)
+
((

n− 4
k − 1

)
+
(
n− 4
k − 2

))
+ 2

(
n− 4
k − 1

)
−

(
n− 4
k − 2

)

=
(
n− 2
k

)
+ 2

(
n− 4
k − 1

)
−

(
n− 4
k − 2

)
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=
(
n− 2
k

)
+
(
n− 5
k − 1

)
+
(
n− 5
k − 2

)
+
(
n− 4
k − 1

)
−

(
n− 4
k − 2

)

=
(
n− 2
k

)
+
(
n− 5
k − 1

)
+
(
n− 5
k − 2

)
+
(
n− 5
k − 1

)
−

(
n− 5
k − 3

)
.

To prove (2.1), it suffices to show that(
n− 5
k − 1

)
+
(
n− 5
k − 2

)
>

(
n− 7
k − 2

)
+
(
n− 5
k − 3

)
.

By expanding,(
n− 7
k − 1

)
+ 2

(
n− 7
k − 2

)
+

(
n− 7
k − 3

)
+
(
n− 7
k − 2

)
+ 2

(
n− 7
k − 3

)
+
(
n− 7
k − 4

)

>

(
n− 7
k − 2

)
+
(
n− 7
k − 3

)
+ 2

(
n− 7
k − 4

)
+
(
n− 7
k − 5

)
.

Equivalently,

(2.2)
(
n− 7
k − 1

)
+ 2

(
n− 7
k − 2

)
+ 2

(
n− 7
k − 3

)
>

(
n− 7
k − 4

)
+
(
n− 7
k − 5

)
.

Set n = ck + 4. Using c− 1 > 1
2 , we have(

n−7
k−1

)
(
n−7
k−3

) =
(n− k − 4)(n− k − 5)

(k − 1)(k − 2)
≥ (c− 1)2,

(
n−7
k−2

)
(
n−7
k−3

) =
n− k − 4
k − 2

≥ c− 1,

(
n−7
k−4

)
(
n−7
k−3

) =
k − 3

n− k − 3
≤

1
c− 1

,

(
n−7
k−5

)
(
n−7
k−3

) =
(k − 3)(k − 4)

(n− k − 2)(n− k − 3)
≤

1
(c− 1)2

.

Then it is sufficient to show that

(2.3) (c− 1)2 + 2(c− 1) + 2 >
1

c− 1
+

1
(c− 1)2

.

Let

f(x) = (x− 1)2 + 2(x− 1) + 2−
1

x− 1
−

1
(x− 1)2

.

Now by (2.3) it suffices to show that f(x) > 0 for x ≥ 5
3 . Note that

f ′(x) = 2(x− 1) + 2 +
1

(x− 1)2
+

2
(x− 1)3

> 0 for x > 1

and f
( 5

3

)
= 1

36 . Thus f(x) > 0 for x ≥ 5
3 and the lemma follows. �
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Proof of Theorem 1.12. Let F ⊂
([n]
k

)
be a 3-wise union covering

family. Assume indirectly that |F| > |B(k)(n, 3)| =
(
n−4
k

)
+ 4

(
n−4
k−1

)
. Define

F∗ =
{
G ⊂ [n] : ∃F ∈ F , G ⊂ F

}
.

Obviously, F∗ ⊂ 2[n] is 3-wise union,
⋃

F∗ = [n]. Since |F
(k)
∗ | = |F| >

|B(k)(n, 3)|, F∗ is not contained in a copy of B(n, 3), i.e., it possesses no
hole of size 4. Thus by (1.5) we infer that

(2.4) |F∗| ≤
9
32

2n.

By (2.1), we have

|F| >

(
n− 4
k

)
+ 4

(
n− 4
k − 1

)
>

(
n− 2
k

)
+
(
n− 5
k − 1

)
+
(
n− 7
k − 2

)
.

Then by (1.12)

(2.5) |F
(�)
∗ | = |∂(�)F| ≥

(
n− 2
�

)
+
(
n− 5
�− 1

)
+
(
n− 7
�− 2

)
.

Summing (2.5) for 0 ≤ � ≤ k gives

|F∗| ≥
∑

0≤�≤k

((
n− 2
�

)
+
(
n− 5
�− 1

)
+
(
n− 7
�− 2

))
= 2n−2 + 2n−5 + 2n−7

(2.6)

−

( ∑
k<j≤n−2

(
n−2
j

)
+

∑
k−1<j≤n−5

(
n−5
j

)
+

∑
k−2<j≤n−7

(
n−7
j

))

≥
9
32

2n + 2n−7 −

( ∑
k<j≤n−2

(
n− 2
j

)

+
∑

k−1<j≤n−5

(
n− 5
j

)
+

∑
k−2<j≤n−7

(
n− 7
j

))
.

Since k ≥
( 1

2 + ε
)
n implies n− k − 3 <

( 1
2 − ε

)
(n− 2), by (1.14) we infer

that ∑
k<j≤n−2

(
n− 2
j

)
=

∑
0≤j≤n−k−3

(
n− 2
j

)
≤ e−ε2(n−2)2n−2.
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Similarly, we have

∑
k−1<j≤n−5

(
n−5
j

)
≤ e−ε2(n−5) 2n−5,

∑
k−2<j≤n−7

(
n−7
j

)
≤ e−ε2(n−7) 2n−7.

Since n ≥ 4
ε2

+ 7 > log 37
ε2

+ 7,

∑
k<j≤n−2

(
n−2
j

)
+

∑
k−1<j≤n−5

(
n−5
j

)
+

∑
k−2<j≤n−7

(
n−7
j

)

≤ (32e−ε2(n−2) + 4e−ε2(n−5) + e−ε2(n−7))2n−7 ≤ 37e−ε2(n−7) 2n−7 < 2n−7.

By (2.6) it follows that |F∗| >
9
32 2

n, contradicting (2.4). Thus the theorem
holds. �

3. Non-trivial 4-wise union families

By a similar argument as in Section 2, we prove Theorem 1.13.

Lemma 3.1. For n ≥ 1.53k + 5,

(3.1)
(
n− 5
k

)
+ 5

(
n− 5
k − 1

)
>

(
n− 3
k

)
+
(
n− 5
k − 1

)
+
(
n− 8
k − 2

)
.

Proof. Using
(
n−3
k

)
=

(
n−5
k

)
+2

(
n−5
k−1

)
+
(
n−5
k−2

)
, we see that (3.1) is equiv-

alent to

2
(
n− 5
k − 1

)
>

(
n− 5
k − 2

)
+
(
n− 8
k − 2

)
.

Equivalently,

2
(
n− 8
k − 1

)
+ 4

(
n− 8
k − 2

)
+ 3

(
n− 8
k − 3

)
>

(
n− 8
k − 4

)
+
(
n− 8
k − 5

)
.

Set n = ck + 5. Then by c− 1 > 1
2(

n−8
k−1

)
(
n−8
k−3

) =
(n− k − 5)(n− k − 6)

(k − 1)(k − 2)
≥ (c− 1)2,

(
n−8
k−2

)
(
n−8
k−3

) =
n− k − 5
k − 2

≥ c− 1,

(
n−8
k−4

)
(
n−8
k−3

) =
k − 3

n− k − 4
≤

1
c− 1

,

(
n−8
k−5

)
(
n−8
k−3

) =
(k − 3)(k − 4)

(n− k − 3)(n− k − 4)
≤

1
(c− 1)2

.
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Then it is sufficient to show that

(3.2) 2(c− 1)2 + 4(c− 1) + 3 >
1

c− 1
+

1
(c− 1)2

.

Let

f(x) = 2(x− 1)2 + 4(x− 1) + 3−
1

x− 1
−

1
(x− 1)2

.

Now by (3.2), it suffices to show that f(x) > 0 for x ≥ 1.53. Note that

f ′(x) = 4(x− 1) + 4 +
1

(x− 1)2
+

2
(x− 1)3

> 0 for x > 1

and f(1.53) = 0.235022. Thus f(x) > 0 for x ≥ 1.53 and the lemma follows.
�

Proof of Theorem 1.13. Assume indirectly that |F| > |B(k)(n, 4)| =(
n−5
k

)
+ 5

(
n−5
k−1

)
. Define

F∗ =
{
G ⊂ [n] : ∃F ∈ F , G ⊂ F

}
.

Obviously, F∗ ⊂ 2[n] is 4-wise union,
⋃

F∗ = [n]. Since |F
(k)
∗ | = |F| >

|B(k)(n, 4)|, F∗ is not contained in a copy of the Brace–Daykin family. Thus
by (1.5) we infer that

(3.3) |F∗| ≤
5
32

2n.

By (3.1) we have

|F| >

(
n− 5
k

)
+ 5

(
n− 5
k − 1

)
>

(
n− 3
k

)
+
(
n− 5
k − 1

)
+
(
n− 8
k − 2

)
.

Then by (1.12)

(3.4) |F
(�)
∗ | = |∂(�)F| ≥

(
n− 3
�

)
+
(
n− 5
�− 1

)
+
(
n− 8
�− 2

)
.

Summing (3.4) for 0 ≤ � ≤ k gives

|F∗| ≥
∑

0≤�≤k

((
n−3
�

)
+

(
n−5
�− 1

)
+
(
n−8
�− 2

))
= 2n−3 + 2n−5 + 2n−8(3.5)

−

( ∑
k<j≤n−3

(
n− 3
j

)
+

∑
k−1<j≤n−5

(
n− 5
j

)
+

∑
k−2<j≤n−8

(
n− 8
j

))
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≥
5
32

2n + 2n−8 −

( ∑
k<j≤n−3

(
n− 3
j

)

+
∑

k−1<j≤n−5

(
n− 5
j

)
+

∑
k−2<j≤n−8

(
n− 8
j

))
.

Since k ≥
( 1

2 + ε
)
n implies n− k − 4 <

( 1
2 − ε

)
(n− 3), by (1.14) we infer

that ∑
k<j≤n−3

(
n− 3
j

)
=

∑
0≤j≤n−k−4

(
n− 3
j

)
≤ e−ε2(n−3) 2n−3.

Similarly, we have

∑
k−1<j≤n−5

(
n−5
j

)
≤ e−ε2(n−5) 2n−5,

∑
k−2<j≤n−8

(
n−8
j

)
≤ e−ε2(n−8) 2n−8.

Since n ≥ 4
ε2

+ 8 > log 41
ε2

+ 8,

∑
k<j≤n−3

(
n− 3
j

)
+

∑
k−1<j≤n−5

(
n− 5
j

)
+

∑
k−2<j≤n−8

(
n− 8
j

)

≤ (32e−ε2(n−3) + 8e−ε2(n−5) + e−ε2(n−8))2n−8 ≤ 41e−ε2(n−8) 2n−8 < 2n−8.

By (3.5) it follows that |F∗| >
5
32 2

n, contradicting (3.3). Thus the theorem
holds. �

4. The general case

In the general case, we fail to find the proper k-cascade form lower
bound on |B(k)(n, r)|. Instead of the Kruskal–Katona Theorem, we shall
use Sperner’s shadow bound [19] as follows: For F ⊂

([n]
k

)
and 0 ≤ � < k,

|∂(�)F|(
n
�

) ≥
|F|(
n
k

) .(4.1)

Proof of Theorem 1.14. Assume indirectly that |F| > |B(k)(n, r)| =(
n−r−1

k

)
+ (r + 1)

(
n−r−1
k−1

)
. Define

F∗ =
{
G ⊂ [n] : ∃F ∈ F , G ⊂ F

}
.
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Obviously, F∗ ⊂ 2[n] is r-wise union,
⋃

F∗ = [n]. Since |F
(k)
∗ | = |F| >

|B(k)(n, r)|, F∗ is not contained in a copy of the Brace–Daykin family. Thus
by (1.5) we infer that

(4.2) |F∗| ≤
r + 6
2r+2 2n.

On the other hand we define α = |F|

(n
k
) and note

α >

(
n−r
k

)
+ r

(
n−r−1
k−1

)
(
n
k

) =
(
1 +

rk

n− r

)(n−r
k

)(
n
k

) ≥
n+ (k − 1)r

n− r

(n− k − r

n− r

)r

.

Let k =
( 1

2 −β
)
n− r =

( 1
2 +β− r

n

)
n ≥ n

2 + ε. Then ε+ r
n
≤ β ≤ 1

4(r+5) and

α >
n+ kr

n

(n− k − r

n

)r

≥
r + 2
2

(1
2
− β

)r

.

By (4.1), |F
(�)
∗ | = |∂(�)F| ≥ α

(
n
�

)
for all 0 ≤ � ≤ k. Then by (1.14) and

n− k =
( 1

2 − β + r
n

)
n we have

|F∗| ≥
∑

0≤�≤k

α

(
n

�

)
= α2n −

∑
0≤�≤n−k−1

α

(
n

�

)
(4.3)

> α(1− e−(β− r

n
)2n)2n ≥

r + 2
2

(1
2
− β

)r

(1− e−ε2n)2n.

Comparing with (4.2) we get

(4.4)
r + 6

2(r + 2)
> (1− 2β)r(1− e−ε2n) ≥ (1− 2rβ)(1− e−ε2n).

Note that n ≥ 2 log(r + 10)/ε2 and r ≥ 11 imply

1− e−ε2n >
(r + 5)(r+ 6)
(r + 2)(r + 10)

.

By β ≤ 1
4(r+5) , we infer

(1− 2rβ)(1− e−ε2n) >
r + 10
2(r + 5)

·
(r + 5)(r + 6)
(r + 2)(r + 10)

=
r + 6

2(r + 2)
,

contradicting (4.4). �
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5. Concluding remarks

We should mention that the bounds of Theorem 1.9 on n0(n− k) were
greatly improved by Cao, Lv, Wang [3]. Our result shows that the same
bounds hold for k close to n/2.

Theorem 1.7 suggests that one should put the bar even higher and try
to determine the maximum size of k-uniform non-trivial r-wise intersecting
families for the range k < r−1

r
n.

Let us mention two related results.

Theorem 5.1 [11,12]. Let F ⊂ 2[n] be r-wise t-union, n ≥ t. If r ≥ 3
and t ≤ 2r − r − 1, then

(5.1) |F| ≤ 2n−t.

Theorem 5.2 [13]. Let m, p, r be positive integers, r ≥ 3. Suppose that

F1, . . . ,Fr ⊂
([m]

p

)
are non-empty and cross-union. For m

r−1 ≤ p ≤ r−1
r
m,

(5.2)
∑

1≤i≤r

|Fi| ≤ r

(
m− 1

p

)
.

Let us note for non-trivial r-wise union families F ⊂
([n]
k

)
that under the

assumption that F has a hole of size r one can use Theorem 5.2 to prove
that |F| ≤ |B(k)(n, r)|. However the general case appears to be very difficult
to handle.
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