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Abstract. A k-uniform family F C ([Z]) is called non-trivial r-wise inter-

secting if Iy N FaN---NF,. # ( for every Fi, Fs,...,F. € F and NF = 0. O’Neill
and Verstraéte determined the maximum size of a non-trivial r-wise intersecting
family for n sufficiently large. Actually, the Hilton—Milner-Frankl Theorem im-
plies O’Neill-Verstraéte’s result for n > r(k —r +2). In the present paper, we
show that the same result holds for a certain range when n is close to 2k.

1. Introduction

Let [n] = {1,2,...,n} be the standard n-element set and 2/ its power
set. For 0 < k <n let ([Z}) denote the collection of all k-subsets of [n]. Sub-

sets of 2" are called families. If F C 2" satisfies F C ([z}), it is called
k-uniform.

For integers 7, t where > 2, t > 1 a family F C 2" is called r-wise
t-intersecting if |[F1N---NE,| >tforall Fy,...,F, € F. In case of r = 2 the
term t-intersecting and in case of t = 1 the terms r-wise intersecting and
intersecting are used.

For a family F C 2" one defines its dual F¢ = {[n]\F:F e F}. Note
that the r-wise t-intersecting property of F is equivalent to |G1 U --- U G,|
<n—tforall Gy,...,G, € F°. Families satisfying the latter property are
called r-wise t-union.

Let us recall the Erdés—Ko—Rado Theorem, one of the cornerstones of
extremal set theory.
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THEOREM 1.1 [5]. Suppose that F C 2I" is intersecting. Then
(1.1) |F| <2t

Moreover, if F C ([z}) and n > 2k then

(12) 7= (5 2)):

Most readers could guess that equality in (1.1) and (1.2) can be achieved
by stars, families in which a fixed element of [n] is contained in all mem-
bers. However, for (1.1) and in the special case n = 2k also for (1.2) there
are many other families attaining equality. Hilton and Milner [14] proved a
strong stability result for (1.2), n > 2k.

THEOREM 1.2 [14]. Ifn > 2k and F C ([Z]) is intersecting and is not a
star, then

n—1 n—k—1
1.3 < - 1.
(1.3 = () - (")
Note that an r-wise intersecting family is always r’-wise intersecting if
r>r > 2.

DEFINITION 1.3 (Brace-Daykin Families). Let r > 2, n > r.

(a) A(n.r) = {AC [n] : [AQ[r + 1] 2 7},

(b) B(n,r)={B C[n]:|BNn—rn] <1}.

It is easy to see that A(n,r) is r-wise intersecting, B(n,r) is r-wise union
and A(n,r)¢ is isomorphic to B(n,r).

For a family F C 2" define JF = gz F. If JF = [n] then F is called
covering. One of the early gems of extremal set theory is the following.

THEOREM 1.4 (Brace-Daykin Theorem [2]). Suppose thatr >3, B C 2"
18 r-wise union and covering. Then

(1.4) 1B| < |B(n,r)| = (r +2)2" "

with equality holding if and only if B is isomorphic to B(n,r).

For the proof of our main results we need a stronger result. To state it
let us make a definition. A subset H C [n] is called a hole for the family
Fc2lif [FNH| <1 for all F € F. Note that B(n,r) has a hole of size
r 4+ 1, namely [n — r,n]. On the other hand possessing a hole of size r + 1
guarantees the r-wise union property.
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THEOREM 1.5 [12]. Let r >3, n>r+2 and F C 2", Suppose that F
s T-wise union, covering and it possesses no hole of size v + 1. Then

(1.5) |F| < (r+6)2"" 2

Even that (1.5) is only a slight improvement on (1.4), it will be sufficient
for our proofs. Actually, (1.5) is best possible.

EXAMPLE 1.6. For n > r +2 > 5 define

D(n,r) = {D Cln):DNr+2[<lor DNr+2] e <{T’T+;’T+2}>}.

Note that [r], [r —1]U{r+1} and [r — 1] U {r + 2} are holes of size r in
D(n,r). They permit to show that D(n,r) is r-wise union.

The extension of the uniform part, (1.2) of the Erdés—Ko—Rado Theorem
to r-wise intersecting families was one of the first results of the first author.
Let us state it for r-wise union families.

THEOREM 1.7 [6,10]. Let n, k, r be positive integers, k < n < rk. Sup-
pose that F C ([Z}) is r-wise union. Then

(1.6) 7l < <n . 1).

Moreover, in case of equality F is isomorphic to ([";1}).

We should note that for n < 2k, (1.6) is a consequence of (1.2). However
for n > 2k it is no longer the case.
For Fc 2 and 1 <k < n, define

FR ={FeF:|F|=k}.

There are two natural constructions for relatively large covering k-uniform
families that are r-wise union. The first is B%*)(n,r). The second is from [8]

H(n,k,r) = {He <[Z]> =1 C H, HN[rk+1] #@}u <U€Z”>.

Note that H(n,k,r) is r-wise intersecting. Therefore the actual example
that is needed is its dual H(n, k,r)¢, which is r-wise union.

Let us note that both B(n,r) and H(n, k,r)¢ are s-wise (r 4+ 1 — s)-union
for all s, 2 < s < r. This is no coincidence.

CLAIM 1.8. Suppose that F C 21" is r-wise union and covering, r > 3.
Then F is s-wise (r + 1 — s)-union for all s,2 < s <.
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PROOF. Suppose the contrary and fix Fy,..., Fy; € F such that
|[F1U---UFg| >n—(r—s).

Then Y := [n] \ (F1 U--- U Fj) satisfies |Y| <r — s. Since F is covering we
may choose Fyiq,...,F, € F satisfying Y C Fy1qU---UF,.. Then FiU---
U F, = [n], a contradiction. [

THEOREM 1.9 (O’Neill, Verstraéte [18]). Letk <n—r, n > no((n—k)).
Suppose that F C ([Z]) 18 r-wise union and covering. Then

(1.7) \F| < max{ [B® (n,r)], [H(n, k,7)|}.

Let us recall two results concerning 2-wise t-intersecting families for
t>2.

THEOREM 1.10 (Exact Erdés-Ko-Rado Theorem [5], [7], [20]). Suppose
that F C ([Z]) is (2-wise) t-intersecting, n > (k —t+1)(t +1). Then

(1) 1= (7 7))

Note that Erdés, Ko, Rado proved (1.8) for n > ng(k,t). The exact
bound (k —t+1)(t+ 1) was proved in [7] for ¢ > 15 and later by Wilson [20]
for all t > 2.

Let us state the corresponding stability result.

THEOREM 1.11 (Hilton—Milner—Frankl Theorem [8], [7], [1]). Suppose
that F C ([Z}) is (r — 1)-intersecting and non-trivial, n > r(k —r +2). Then

(1.9) 7| < max {|A®) (n,7)|, [H(n, k,7)|}.

In view of Claim 1.8 one can deduce Theorem 1.9 from Theorem 1.11. In
the dual version, that is, for r-wise intersecting families in ([Z}) the condition
on (n,k,r) is

(1.10) k<" 4r—2.
T

Being linear in n, this bound is rather strong however compared with the
restriction k < ’"Zln of Theorem 1.7 the gap is still very large. The aim
of the present paper is to show that (1.7) holds for a certain range close
to 5. The proof is completely different from the above results. It relies on
Theorem 1.5.
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THEOREM 1.12. Let e >0, n > ;42 + 7, (% —i—fs)n <k< 35" — 3 and let
F C ([Z}) be a 3-wise union covering family. Then
|7 < 1BW)(n,3)].

THEOREM 1.13. Let € >0, n> 4 +8, (5 +¢&)n <k <0.65n — 4 and

let F C ([Z}) be a 4-wise union covering family. Then

|F| < 1B% (n,4)].

By the same method, we can also show that if F C ([Z]) is 5-wise
union and covering then |F| < |B%®)(n,5)| for n > 32438, (3+e)n<k
< 0.675n—4. Moreover, if F C ([Z]) is 6-wise union and covering then |F]|
< |B(k)(n, 6)| for n > 3;23 +9, (% +€)n < k <0.65n — 4.

For r > 11, we prove the following theorem.

THEOREM 1.14. Let F C ([Z}) be r-wise union and covering. If (% +e)n
<k<(3+ 4(T£r5))n—r, e>0,r>11 and n > 2log(r + 10)/e2, then
(1.11) \F| < |1B®(n,r)].

For F C ([Z}) and 0 < /¢ < k, define the ¢th shadow OO F as

OO F = {E S <[Z]> : there exists F' € F such that E C F} .

The celebrated Kruskal-Katona Theorem [16,17] gives the best possible
lower bounds on |9() F| for given size of F.
For every positive integer m, one can write m in k-cascade form uniquely:

o (5) () )

with ag > ag_1 > --- > as > 1. We need the following version of the Kruskal—-
Katona Theorem (see [9] for a short proof).

THEOREM 1.15 (The Kruskal-Katona Theorem [16,17]). If F C ([Z]),
Fl=m= ()4 )+ (2, then

O~ (% k-1 s
i () () e ()

Let us recall the following version of the Chernoff bound.
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THEOREM 1.16 [4,15]. Let X1, X, ..., X, be independent random
vartables with X; = 1 with probability p and X; = 0 with probability 1 — p,
i=1,2,...,n. Let X =X14+Xo+ -+ X,, and A =np. Then fort >0

t2
(1.13) Pr(XﬁEX—t)ﬁexp(—z)\).

The following inequality concerning the tails of sum of binomial coeffi-
cients is an easy consequence of the Chernoff bound.

LEMMA 1.17. Let n be a positive integer and let m = (é — 5)n with

€ > 0. Then
(1.14) 3 <n> < e snon,
0<i<m !

Proor. Consider independent random variables X1, Xo, ..., X,, with
X; = 1 with probability 5 and X; = 0 with probability %, i1=1,2,...,n. Let
X=X14+Xo+ -+ X,. Then it is easy to see that

_ ZOSiSm (?) )

Pr(X <m) on

By applying (1.13) with ¢ = en and A = 7, (1.14) follows. [

2. Non-trivial 3-wise union families
In this section, we prove Theorem 1.12. The following lemma gives a

lower bound on |[B*)(n,3)| in the k-cascade form, which admits the use of
the Kruskal-Katona Theorem.

LEMMA 2.1. Forn > gk—|—4,
n—4 n—4 -2 n—>5 n—7
2.1 4 .

()
o G {5y B G ) R B Gy
()6 ()
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_(n— 2 n n—>5 n n—>5 n n—4 _(n - 4
o\ k E—1 k—2 k—1 k—2
_(n— 2 + n—>5 + n—>5 + n—>5 _(n—= 5
o\ k E—1 k—2 E—1 E—3)

To prove (2.1), it suffices to show that

+

n—> n n—2> o n—17 n—>=5
k—1 k—2 k—2 k—-3)
By expanding,

(o) r2(ems) + (o) + () (i) + ()
»(ioa) = (o) G+ (G2d)
Equivalently,
(2.2) @:D+a@:9+a@:9><gj>+@:9.

Set n =ck +4. Usingc—1 > %, we have

n—="7 n—"7

(ﬁ:;) _ (n—k—4)(n—k—5) > (c—1)? (712:?) - n—k—4 Seo1,

(k:—3) (k=1)(k=2) (k—S) k=2

n—7 n—7

(+-4) _ k=3 < 1 (r22) _ (k—3)(k—4) - 1
(g:?f) n—k—-3 " c—1’ (;;:g) n—k—-2)(n—k—-3) = (c—1)2
Then it is sufficient to show that

Y B 1 1
(23) e-1pr2te-n+2> Low L
Let
1 1

f(x):(x—1)2+2(x—1)+2—x_1—(w_1)2.

Now by (2.3) it suffices to show that f(z) > 0 for > 3. Note that

1+2>Of >1
T
(@—1)2 " (@—1) o

and f( g) = 316. Thus f(z) > 0 for x > g and the lemma follows. [J

fllx)y=2(x—1)+2+
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Proor or THEOREM 1.12. Let F C ([Z]) be a 3-wise union covering
family. Assume indirectly that |F| > |B*)(n,3)| = (";4) + 4(2:?‘). Define

Fo={GcC[n]:3F e F, GCF}.

Obviously, F, c 2" is 3-wise union, |JF, =[n]. Since |]-:£k)\ =|F| >
IB%)(n,3)|, F. is not contained in a copy of B(n,3), i.e., it possesses no
hole of size 4. Thus by (1.5) we infer that

9
2.4 o < 2",
(24) LR

By (2.1), we have
n—4 n—4 n—2 n—>5 n—7
= () ) - () o)+ ()
Then by (1.12)

O _ 190 7| > n—2 n—>5 n—17
(2.5) |Fe’| =0 f|_< ’ + 01 + 09

Summing (2.5) for 0 < ¢ < k gives

(2.6)

n—2 n—>5 n—7 n—2 n—>s n—"7
*> =
\f|_0<%:<k<< , >+<£_1>+<£_2>> =2 4 on5 1 9
-2 -5 -7
(0 2 ) 2 ()
k<jen—2 N J k—1<j<n—5 N 7 k—2<j<n—7 N 7
9 7 n—2
> n n—7 _
> 2 +2 ( > < . )

k<j<n—2 J

-5 —7
D DI G D DI ))
k—1<j<n—5 J k—2<j<n—7 J

Since k > (4 4+¢)n implies n —k —3 < (5 —¢) (n —2), by (1.14) we infer

that
2 (75, () e

k<j<n—2 0<j<n—k—3 J
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Similarly, we have

n—>~o 2 n—"7 2
' <e € (n—5) 2n—5’ < ' ) <e € (n—=7) gn—T.
2 < J ) B 2 J )

k—1<j<n—5 k—2<j<n—-7

Since n > £42 + 7> 105237 + 7,

2 U 2 00 2 )

k<j<n—2 k—1<j<n—5 k—2<j<n—T7

< (326—52(11—2) + 46—82(n—5) + 6—82(n—7))2n—7 < 376—52(11—7) 2n—7 < 2n—7.

By (2.6) it follows that |F,| > ., 2", contradicting (2.4). Thus the theorem
holds. [

3. Non-trivial 4-wise union families

By a similar argument as in Section 2, we prove Theorem 1.13.

LEMMA 3.1. Forn > 1.53k + 5,

s (") (D)) (2D (DY)

Proor. Using (”g?’) = (”gs) —1—2(2:?) + (Z:g), we see that (3.1) is equiv-
alent to
9 n—>5 - n—>5 n n—3_8
k-1 k—2 k-2)
Equivalently,

(320 (e S) +2 (o) = (o) + (od):

Set n = ck + 5. Thenbyc—1>%

G —k-5)n-k-6_, . (5 n-k-5
0T k-p-2 STV e = oy 2T
D) _ k=3 _ 1 G5 (k=3k-4  _ 1
T8 n—k—4"c-1 ("‘2)_(n—k—3)(n—k—4)_(c—1)2'

k=3
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Then it is sufficient to show that

1 1
3.2 2(c—1)> +4(c—1)+3 :
(3.2) (c=1)"+4(c—1)+ >c_1+(c_1)2
Let
1 B 1
r—1 (z—1)2
Now by (3.2), it suffices to show that f(x) > 0 for 2 > 1.53. Note that

f’(x):4(az—1)+4+(x_11)2+($_21)3 >0 forx>1

and f(1.53) = 0.235022. Thus f(z) > 0 for x > 1.53 and the lemma follows.
(]

flx) =2z 12 +4(x—1)+3 -

PROOF OF THEOREM 1.13. Assume indirectly that |F| > |[B®)(n,4)| =
("25) + 5(2:?) Define

Fo={GcC[n]:3F e F, GCF}.
Obviously, F. C 2" is 4-wise union, |JF. =[n]. Since |]-:£k)\ =|F| >

|B®¥)(n,4)|, F, is not contained in a copy of the Brace-Daykin family. Thus
by (1.5) we infer that

)
3.3 W < 2m
(33) PAEI

By (3.1) we have
n—>9 n—>5 n—3 n—>5 n—38
= (1)) - () )+ ()
Then by (1.12)
O _ 190 7| > n—3 n—>5 n—38
(3.4) |F:’| =10 f|_< ‘ + 01 + 0_9)

Summing (3.4) for 0 < ¢ < k gives

a9 151> £ ((77)+ (7))« (7)) e

0<e<k

(Z 0z (02 ()
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5 n—3
> on 2n—8_
“at T ( 2 ( j >

k<j<n—3

n—>5 n—_8
oy () 2 (7 ))
k—1<j<n—5 J k—2<j<n—8 J

Since k > (4 4+¢)n implies n —k —4 < (5 —¢) (n—3), by (1.14) we infer

that
Z <n - 3> _ Z <n - 3) < o= (n=3) gn—3
J J a

k<j<n—3 0<j<n—k—4

Similarly, we have

n—>o 2 n—_ 2
‘ <eE (n—>5) 2n—5’ < ‘ ) <e € (n—8) gn—8.
25 >

k—1<j<n—5 h—2<j<n—8 \ J
Since n > 542 +8> 105241 + 8,
n—3 n—>5 n—_§
2 < j ) to2 < j ) to2 < j >
k<j<n—3 k—1<j<n—5 k—2<j<n—8

< (326—82(71—3) + 86—52(11—5) + 6—52(n—8))2n—8 <41 e—az(n—8) 2n—8 < 2n—8‘

By (3.5) it follows that |F,| > 352 2", contradicting (3.3). Thus the theorem
holds. [

4. The general case

In the general case, we fail to find the proper k-cascade form lower
bound on |B®)(n,r)|. Instead of the Kruskal-Katona Theorem, we shall

use Sperner’s shadow bound [19] as follows: For F C ([Z}) and 0 < ¢ < k,

90 F _ 7]
@ G
PROOF OF THEOREM 1.14. Assume indirectly that |F| > [B®) (n,r)| =
(" A+ (r+ 1) (") Define

(4.1)

F.={GcCn]:3F e F, GC F}.
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Obviously, F, C 2" is r-wise union, |JJF. =[n]. Since |f | =|F| >
|B®)(n, )|, F, is not contained in a copy of the Brace-Daykin family. Thus
by (1.5) we infer that

r+6

|]:|— 2r+22'

(4.2)

n
k

On the other hand we define o = ‘(f)| and note

("5 (e TE YD s U nk ey

n—r (Z) = n—r n—r

() +

<

o >

—~
>3
~—

Letk:(é—ﬂ)n—r:(§+ﬁ )n> +ée. Thene+ " <ﬁ<4(+5) and
n+kr/m—k—r\m_r+2/1 r
> — .
S G N )

By (4.1), |.7: |—|8 JF| > a(}) for all 0<¢<k. Then by (1.14) and

n—k‘—(2 ﬁ+n)nwehave

(4.3) 7l 2 Za@:a?’“ 2. ‘“@

0<e<k 0<l<n—k—1

v

a(1—e B rmygn > " er 2 (; - ﬁ)r(l — ey,

Comparing with (4.2) we get

r+6

(44) 2(r+2)

>(1-28)"(1—e =) > (1—2rB)(1—e=").

Note that n > 2log(r + 10)/e? and r > 11 imply

e s (r+5)(r+6)
(r+2)(r+10)
By g < T+5) we infer

r+10 (r+5)(r+6)  r+6

A=200 =) > 50 5) (r 4 2)r10) " 2(r +2)

contradicting (4.4). O
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5. Concluding remarks

We should mention that the bounds of Theorem 1.9 on ng(n — k) were
greatly improved by Cao, Lv, Wang [3]. Our result shows that the same
bounds hold for & close to n/2.

Theorem 1.7 suggests that one should put the bar even higher and try
to determine the maximum size of k-uniform non-trivial r-wise intersecting
families for the range k < " 'n.

Let us mention two related results.

THEOREM 5.1 [11,12]. Let F C 2l be r-wise t-union, n >t. If r>3
and t < 2" —r — 1, then

(5.1) |F| <2n 7t
THEOREM 5.2 [13]. Let m, p, v be positive integers, v > 3. Suppose that
Fi,. 0 Fr C ([Tg]) are non-empty and cross-union. For ™ <p < T;lm,
m—1
(5.2) Z |Fil <r :
1<i<r p

Let us note for non-trivial r-wise union families F C ([Z}) that under the
assumption that F has a hole of size r one can use Theorem 5.2 to prove
that |F| < |B®) (n,r)|. However the general case appears to be very difficult
to handle.

References

[1] R. Ahlswede and L.H. Khachatrian, The complete non-trivial intersection theorem
for systems of finite sets, J. Comb. Theory, Ser. A, 76 (1996), 121-138.

[2] A. Brace and D.E. Daykin, A finite set covering theorem, Bull. Aust. Math. Soc., 5
(1971), 197-202.

[3] M. Cao, B. Lv, and K. Wang, The structure of large non-trivial ¢-intersecting families
of finite sets, European J. Combin., 97 (2021), Paper No. 103373, 13 pp..

[4] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Ann. Math. Statist., 23 (1952), 493-507.

[5] P. Erdé8s, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart.
J. Math. Ozford Ser., 12 (1961), 313-320.

[6] P. Frankl, On Sperner families satisfying an additional condition, J. Comb. Theory,
Ser. A, 20 (1976), 1-11.

[7] P. Frankl, The Erdés—Ko—Rado theorem is true for n = ckt, in: Combinatorics (Proc.
Fifth Hungarian Colloq., Keszthely, 1976), vol. I, Coll. Math. Soc. J. Bolyai,
vol. 18 North-Holland (Amsterdam—New York, 1978), pp. 365-375.

[8] P. Frankl, On intersecting families of finite sets, J. Comb. Theory, Ser. A, 24 (1978),
146-161.

[9] P. Frankl, A new short proof for the Kruskal-Katona theorem, Discrete Math., 48
(1984), 327-329.

Acta Mathematica Hungarica 169, 2023



NON-TRIVIAL r~-WISE INTERSECTING FAMILIES 523

[10] P. Frankl, The shifting technique in extremal set theory, in: Surveys in Combinatorics,
(New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123, Cambridge
Univ. Press (Cambridge, 1987), pp. 81-110.

[11] P. Frankl, Multiply intersecting families, J. Combin. Theory Ser. B, 53 (1991), 195
234.

[12] P. Frankl, Some exact results for multiply intersecting families, J. Combin. Theory
Ser. B, 136 (2019), 222-248.

[13] P. Frankl, Old and new applications of Katona’s circle, European J. Combin., 95
(2021), Paper No. 103339, 21 pp.

[14] A.J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets,
Quart. J. Math. Ozford Ser. (2), 18 (1967), 369-384.

[15] S. Janson, T. Luczak and A. Ruciniski, Random Graphs, John Wiley & Sons, (New
York, 2011).

[16] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, (Proc. Colloq., Ti-
hany, 1966), Akadémaiai Kiad6é (Budapest, 1968), 187-207.

[17] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization
Techniques, Univ. California Press (Berkeley, Calif, 1963), 251-278.

[18] J. O’Neill and J. Verstraéte, Non-trivial d-wise intersecting families, J. Combin. The-
ory Ser. A, 178 (2021), Paper No. 105369, 12 pp.

[19] E. Sperner, Ein Satz tiber Untermengen einer endlichen Menge, Math. Z., 27 (1928),
544-548.

[20] R.M. Wilson, The exact bound in the Erdés—Ko—-Rado theorem, Combinatorica, 4
(1984), 247-257.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the terms of such publishing agreement
and applicable law.

Acta Mathematica Hungarica 169, 2023



	NON-TRIVIAL r-WISE INTERSECTING FAMILIES
	Abstract.
	1. Introduction
	2. Non-trivial 3-wise union families
	3. Non-trivial 4-wise union families
	4. The general case
	5. Concluding remarks
	References




