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10000 Zagreb, Croatia

e-mail: pejkovic@math.hr

(Received July 19, 2022; revised December 20, 2022; accepted December 22, 2022)

Abstract. We study Schneider’s version of p-adic continued fractions. We
are interested in the finiteness of rational number expansion, the quality of ap-
proximation by convergents, the irrationality exponent of a number with a given
continued fraction expansion, and the convergence of Schneider’s continued frac-
tions in the field of real numbers. The main requirement for all of these problems
is a good estimate of growth for the sequences of numerators and denominators
of convergents.

For a prime p, several types of p-adic continued fractions have been in-
troduced, but none of them have all the useful properties that the usual
simple continued fractions of real numbers possess. In this paper, we study
Schneider’s p-adic continued fractions [20,22]. This type of p-adic contin-
ued fractions has been analysed with respect to finiteness and periodicity of
expansion [1,10–12,16,19,21,22] as well as the distribution of “digits” [14–
17]. However, it has also proved useful in constructing p-adic numbers with
required Diophantine approximation properties [4,6,7,9]. It is exactly this
aspect of Schneider’s p-adic continued fractions that we focus on.

The paper is organized as follows. The first section is of introductory
character, gathering the definitions and properties that will be needed. In
Section 2 we refine some results on deciding when the p-adic continued frac-
tion expansion of a rational number is finite. The next section connects this
question with the quality of approximation by convergents. In Section 4 we
give several examples of Schneider’s continued fractions and analyse the rate
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of growth for numerators and denominators of convergents in these contin-
ued fractions. The bounds that we prove are then used to obtain results on
whether the convergents are the best rational approximations (Section 4),
the irrationality exponent of numbers constructed in this way (Section 5)
and the question of convergence of these continued fractions in the field of
real numbers (Section 6).

1. Introduction

Throughout this text, p denotes a prime number and Qp is the field of
p-adic numbers equipped with the p-adic absolute value | · |p normalized in
such a way that |p|p = p−1.

Let a = (an)n≥1 be a sequence of positive integers and b = (bn)n≥0 a
sequence of integers such that 1 ≤ bn ≤ p− 1 for n ≥ 0. Set

(1.1)
(
P−1 P−2
Q−1 Q−2

)
=

(
1 0
0 1

)
and

Pn = bnPn−1 + panPn−2,

Qn = bnQn−1 + panQn−2,
for n ≥ 0,

where we put a0 = 0 for completeness. This implies(
Pn Pn−1
Qn Qn−1

)
=

(
Pn−1 Pn−2
Qn−1 Qn−2

)(
bn 1
pan 0

)
for n ≥ 0,

and by induction

(1.2)
(
Pn Pn−1
Qn Qn−1

)
=

n∏
i=0

(
bi 1
pai 0

)
(n ≥ 0).

Writing the last equality as(
Pn Pn−1
Qn Qn−1

)
=

(
b0 1
p0 0

)(
1 0
0 pa1

)(
b1 1
p0 0

) n∏
i=2

(
bi 1
pai 0

)
(n ≥ 1),

we see that (
Pn Pn−1
Qn Qn−1

)
=

(
b0 pa1

1 0

)(
P ′
n−1 P ′

n−2
Q′

n−1 Q′
n−2

)
,

where the sequences (P ′
n)n≥−2 and (Q′

n)n≥−2 are defined using the same
initial conditions and recurrence equations as for (Pn) and (Qn), but substi-
tuting for a and b the shifted sequences a′ = (an+1)n≥1 and b′ = (bn+1)n≥0.

Now we have

Pn

Qn
=

b0P
′
n−1 + pa1Q′

n−1

P ′
n−1

= b0 +
pa1

P ′

n−1

Q′

n−1
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and continuing, we obtain by induction a finite Schneider’s p-adic continued
fraction

(1.3)
Pn

Qn
= b0 +

pa1

b1 +
pa2

b2 +
pa3

. . . +
pan

bn

(n ≥ 0)

which we write as [b0, pa1 : b1, pa2 : b2, . . . , pan : bn].
Taking the determinant of (1.2), we get

(1.4) PnQn−1 − Pn−1Qn = (−1)n+1p
∑

n
i=1 ai (n ≥ 1),

so that

(1.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pn

Qn
− Pn−1

Qn−1
=

(−1)n+1

Qn−1Qn
p
∑

n
i=1 ai ,

Pn

Qn
− Pm

Qm
=

n∑
k=m+1

(
(−1)k+1

Qk−1Qk
p
∑k

i=1 ai

)
(n > m ≥ 0).

It follows easily from (1.1) that p divides neither Pn nor Qn for any n ≥
0. Thus (1.4) implies that gcd(Pn, Pn−1) = gcd(Qn, Qn−1) = gcd(Pn, Qn) =
1 and the fractions Pn/Qn are already reduced. Taking into account that
p-adic absolute value is non-Archimedean [18], (1.5) gives

(1.6)
∣∣∣∣Pn

Qn
− Pm

Qm

∣∣∣∣
p

= p−
∑

m+1
i=1 ai (n > m ≥ 0).

This shows that (Pn/Qn)n≥0 is a Cauchy sequence and therefore converges
to some ξa,b ∈ Qp. Actually, ξa,b is a p-adic unit, i.e. |ξa,b|p = 1. Now (1.6)
implies that

(1.7)
∣∣∣∣ξa,b − Pm

Qm

∣∣∣∣
p

= p−
∑m+1

i=1 ai (m ≥ 0),

so that we can write

(1.8) ξa,b = b0 +
pa1

b1 +
pa2

b2 +
pa3

. . .

= [b0, pa1 : b1, pa2 : b2, pa3 . . .].
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From the other direction, we take any ξ0 ∈ Qp and, dividing it by
|ξ0|p, we can assume that |ξ0|p = 1. Then |ξ0 − b0|p < 1 for exactly one
b0 ∈ {1, . . . , p− 1}, so that defining pa1 = |ξ0 − b0|−1

p and ξ1 = pa1/(ξ0 − b0),
we see that |ξ1|p = 1 and ξ0 = b0 + pa1/ξ1. This process can be continued

(1.9) ξ0 = [b0, pa1 : b1, . . . , pan : ξn]

and we obtain (finite or infinite) sequences a = (an)n≥1 and b = (bn)n≥0. It
is then easily shown that ξ0 = ξa,b for these sequences a and b.

As is conventional, we will call Pn/Qn from (1.3) a convergent of ξa,b,
and ξn in (1.9) a complete quotient. Note that analogously to the relation
between (1.1) and (1.3), we can see that

(1.10) ξ0 =
ξnPn−1 + panPn−2

ξnQn−1 + panQn−2
(n ≥ 0).

We can immediately read off how close two p-adic numbers are looking
at the initial parts of their continued fraction expansions that coincide. Let

α = [b0, pa1 : b1, pa2 : b2, . . .] and β = [b′0, p
a′

1 : b′1, p
a′

2 : b′2, . . .]

be two p-adic numbers with their (finite or infinite) expansions. As usual,
we suppose |α|p = |β|p = 1. Let (αn)n≥0 and (βn)n≥0 be the complete quo-
tients of α and β, respectively, and (Pn/Qn)n≥0 the sequence of convergents
to α. Depending on the position of the first difference between the continued
fraction expansions of α and β, we have two cases.

When ai = a′i for 1 ≤ i ≤ k− 1 and bi = b′i for 0 ≤ i ≤ k− 1, but ak �= a′k,
then (1.10) implies

α− β =
αkPk−1 + pakPk−2

αkQk−1 + pakQk−2
− βkPk−1 + pa

′

kPk−2

βkQk−1 + pa
′

kQk−2

=
(αkp

a′

k − βkp
ak)(Pk−1Qk−2 − Pk−2Qk−1)

(αkQk−1 + pakQk−2)(βkQk−1 + pa
′

kQk−2)

from which, using (1.4) and the fact that |αk|p = |βk|p = |Qk−1|p = |Qk−2|p =
1, we obtain

(1.11) |α − β|p = p−
∑k−1

i=1 ai−min{ak,a′

k}.

Similarly, if ai = a′i for 1 ≤ i ≤ k and bi = b′i for 0 ≤ i ≤ k−1, but bk �= b′k,
we get

(1.12) |α− β|p = p−
∑

k
i=1 ai .
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2. Expansion of rational numbers

Although a finite Schneider’s p-adic continued fraction always represents
a rational number, the converse is not true. For example, −1 = [p− 1, p :
p− 1, p : p− 1, . . .] has an infinite periodic expansion. For brevity, we will
put (B)n and (B)∞ if a block B in a continued fraction repeats n times
or indefinitely, respectively. Thus, we can write −1 = [p− 1, (p : p− 1)∞].
Bundschuh [10] showed that if a rational number has an infinite p-adic con-
tinued fraction expansion, then this expansion has the same periodic tail,
i.e. it has the form [. . . , p− 1, (p : p− 1)∞].

There is no complete characterization of rational numbers with infinite
Schneider’s p-adic continued fraction expansion, although Hirsh and Wash-
ington [16] tackled some special cases.

We modify Bundschuh’s result in order to obtain an upper bound on the
required number of steps in the expansion before it terminates or reaches
−1 as a complete quotient.

We use Vinogradov notation �, �, and � as well as Landau big-O
notation. The implied constants, which can be computed explicitly, always
depend on the prime p and possibly also on a parameter used and mentioned
in the specific example. Denote by H(u/v) = max{|u|, |v|} the (naive) height
of the reduced rational number u/v.

Expanding a rational number ξ = x0/x1 into a continued fraction (1.8)
(either terminating or non-terminating), denote one complete quotient
xi/xi+1 = [bi, pai+1 : bi+1, . . .], where xi, xi+1 ∈ Z and gcd(xi, xi+1) = 1. Then
the next complete quotient is

pai+1

xi

xi+1
− bi

=
xi+1

xi−bixi+1

pai+1

=
xi+1

xi+2
,

where xi+2 = (xi − bixi+1)/pai+1 is an integer and gcd(xi+1, xi+2) = 1. In
this way we obtain a sequence (xi)i≥0 of integers which terminates if xi/xi+1
∈ {1, 2, . . . , p− 1} for some i. Otherwise, we reach some pair (xi, xi+1) ∈
{(−1, 1), (1,−1)} which means the complete quotient is xi/xi+1 = −1 and
the sequence is periodic from that place onward.

Theorem 1. The expansion of a rational number ξ into a p-adic contin-
ued fraction either terminates or the complete quotient −1 is reached. The
number of steps required, i.e. the number of complete quotients that need to
be computed before either of the cases occur is O(

(logH(ξ))2
)
, where the

implied constant depends only on p.

Proof. We have

(2.1) xi+2 =
xi − bixi+1

pai+1
, xi+3 =

xi+1 − bi+1xi+2

pai+2
.
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Note that |xi| �= |xi+1| since otherwise xi/xi+1 = 1 or xi/xi+1 = −1 which
means we are already finished.

Compare H(xi/xi+1) with H(xi+2/xi+3). From (2.1),

|xi+2| ≤ |xi|+ (p− 1)|xi+1|
p

<
1 + p− 1

p
H(xi/xi+1) = H(xi/xi+1),

|xi+3| < H(xi+1/xi+2) ≤ H(xi/xi+1),

unless xi+1/xi+2 ∈ {−1, 1}. Therefore, taking into account that xi+2 and
xi+3 are coprime integers,

(2.2) H(xi+2/xi+3) ≤ H(xi/xi+1)− 1.

If (ai+1, bi) �= (1, p− 1), a better bound can be obtained

|xi+2| ≤ max
{ |xi|+(p−2)|xi+1|

p
,
|xi|+ (p−1)|xi+1|

p2

}
≤ p−1

p
H(xi/xi+1),

|xi+3| ≤ |xi+1|+ (p− 1)|xi+2|
p

≤ 1
p
|xi+1|+

(p− 1
p

)2
H(xi/xi+1)

≤ p2 − p+ 1
p2 H(xi/xi+1).

Thus

(2.3) H(xi+2/xi+3) ≤ p2 − p+ 1
p2 H(xi/xi+1).

If (ai+1, bi) = (1, p− 1), we have

|xi+1 + xi+2| =
∣∣∣∣xi+1 +

xi − (p− 1)xi+1

p

∣∣∣∣ = 1
p
|xi + xi+1|.

However, if |xi + xi+1| < 1, then xi + xi+1 = 0, i.e. xi/xi+1 = −1. Hence, if
(ai+1, bi) = (ai+2, bi+1) = · · · = (ai+k, bi+k−1) = (1, p− 1), from

1 ≤ |xi+k + xi+k+1| = 1
pk

|xi + xi+1| ≤ 2
pk

H(xi/xi+1),

we get

(2.4) k ≤ logH(xi/xi+1)
log p

+ 1.
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Taking into account (2.2), (2.3), and (2.4), we see that

H(xi+κ/xi+κ+1) ≤ p2 − p+ 1
p2 H(xi/xi+1) for κ =

⌊
logH(xi/xi+1)

log p

⌋
+ 3.

This implies that in κ steps logH(xi/xi+1) will decrease by at least

− log
p2 − p+ 1

p2 > 0.

If H(xi/xi+1) ≤ 1, i.e. logH(xi, xi+1) ≤ 0, we are finished. This shows that
the number of steps required to obtain from ξ a complete quotient from the
set {−1, 1, 2, . . . , p− 1} is O(

(logH(ξ))2
)
with the implied constant depend-

ing only on p. �

When computing the expansion of a particular rational number with an
infinite p-adic continued fraction, it is natural to ask when the first appear-
ance of a negative complete quotient might occur. At that moment, we know
that −1 will be encountered as a complete quotient and the expansion will
not terminate. The next theorem describes the worst case.

Theorem 2. Let λ = (1 +
√
1 + 4p)/2. If the p-adic continued fraction

expansion of a rational number ξ is infinite, then within the first⌊
logH(ξ)
log λ

⌋
+ 3

complete quotients, at least one has to be negative.
This bound is in general asymptotically best possible. More precisely,

there exists an infinite sequence of rational numbers (νn)n≥1 such that
limn→∞H(νn) = +∞ and the first negative complete quotient of νn is en-
countered after n steps in its p-adic continued fraction expansion while

lim
n→∞

n

(⌊
logH(νn)
log λ

⌋
+ 3

)−1

= 1.

Proof. The case ξ < 0 being trivial, we assume ξ = x0/x1 > 0 so that
x0 and x1 are positive relatively prime integers. As before, let (xi/xi+1)i≥0
be the sequence of complete quotients of ξ = [b0, pa1 : b1, pa2 : b2, . . .], where
the continued fraction expansion does not terminate.

Let k be the smallest integer such that xk+1 < 0. This implies that
xk/xk+1 is the first negative complete quotient in the expansion of ξ. We
set

yi =
λ

p
xi + xi+1 for i ≥ 0.
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If xi+1 > xi > 0, then xi+2 < 0, so i = k − 1. If xi ≥ xi+1 > 0, then

yi+1 =
λ

p
xi+1 + xi+2 =

λ

p
xi+1 +

xi − bixi+1

pai+1
≤ λ

p
xi+1 +

xi − xi+1

p

=
1
p
xi +

−1 +
√
1 + 4p

2p
xi+1 =

1
λ

(λ
p
xi + xi+1

)
=

1
λ
yi.

For 0 ≤ i < k − 1, we have xi ≥ xi+1 > 0, so that

yk−1 ≤ 1
λ
yk−2 ≤ 1

λ2 yk−3 ≤ . . . ≤ 1
λk−1 y0, yk−1 ≥ λ

p
+ 1 > 1,

which combines into

λk−1 < y0 ≤
(λ
p
+ 1

)
H(x0/x1) ≤ 2H(ξ),

where the last inequality becomes an equality for p = 2. Hence,

k <
log(2H(ξ))

log λ
+ 1 ≤ logH(ξ)

log λ
+ 2.

This proves the first part of the theorem.
Define Pn/Qn = [1, (p : 1)n] for n ≥ 0. These are obviously convergents

of the infinite continued fraction [1, (p : 1)∞], so by (1.1), we have

Pn = Pn−1 + pPn−2, Qn = Qn−1 + pQn−2 for n ≥ 2

with P0 = Q0 = Q1 = 1, P1 = p+ 1. These linear recurrence relations with
constant coefficients give

(2.5) Qn = Pn−1 =
1√

1 + 4p
(
λn+1 − (−p/λ)n+1) , n ≥ 1.

Set now

νn = [1, (p : 1)n, p2 : −1] =
−Pn + p2Pn−1

−Qn + p2Qn−1
.

The complete quotients of νn, starting from the last one and moving back-
wards, are

−1 < 0, [1, p2 : −1] = 1− p2 < 0, [1, p : 1, p2 : −1] =
1 + p− p2

1− p2 > 0.

This implies that in the continued fraction expansion of νn, the first negative
complete quotient is obtained in the n-th step. Since λ >

√
p > 1, which

T. PEJKOVIĆ198
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implies | − p/λ| < λ, (2.5) shows that Pn−1 = Qn ∼ λn+1/
√
1 + 4p when n

→ ∞, so that

H(νn) ∼ − λn+2
√
1 + 4p

+
p2λn+1
√
1 + 4p

=
p2 − λ√
1 + 4p

λn+1.

Thus, ⌊
logH(νn)
log λ

⌋
+ 3 ∼ n,

and we conclude that the bound we obtained is indeed asymptotically best
possible. �

In view of Theorem 2, the bound in Theorem 1 might not be best pos-
sible. A sharper bound could be obtained if a better estimate is found for
the length of the preperiodic part of p-adic continued fraction expansion of
negative rational numbers.

3. Approximation by rational numbers

As is well known (see e.g. [13, Theorem 8.29]), for the standard continued
fractions of real numbers, convergents are the best rational approximations.
This means that for the sequence (Pn/Qn)n≥0 of convergents to ζ ∈ R, we
have |Q0ζ − P0| > |Q1ζ − P1| > |Q2ζ − P2| > · · · and if n ≥ 1, 1 ≤ B ≤ Qn

and (A,B) �= (Pn−1, Qn−1), (Pn, Qn), then |Bζ −A| > |Qn−1ζ − Pn−1|.
For approximation in Qp, we have to bound both the numerator and the

denominator of the rational approximation. For example, let ξ be a p-adic
integer. Then |Bξ −A|p can be as small as we like if we only bound the size
of B, e.g. set B = 1 and A ≡ ξ (mod pk) for k as large as wanted. However,
even with this restriction, the convergents in Schneider’s continued fraction
expansion of ξ ∈ Qp are not necessarily the best rational approximations of ξ
as shown by the next example.

Immediately from the pigeonhole principle, we obtain the following re-
sult. For any ξ ∈ Zp and any nonnegative integer k, there are uk, vk ∈ Z not
both zero such that

(3.1) max{|uk|, |vk |} ≤ pk and |vkξ − uk|p ≤ p−2k,

which implies

(3.2) max{|uk+1|, |vk+1|} � |vkξ − uk|−1/2
p .

If ξ is not a rational number, then |vkξ−uk|p > 0 for every k, so the sequence
(max{|uk|, |vk|})k≥0 is unbounded and can be assumed to be non-decreasing.

SCHNEIDER’S p-ADIC CONTINUED FRACTIONS 199
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Set ξ = [1, (p : 1)∞] ∈ Qp \Q for p > 2 and let (uk)k and (vk)k be the as-
sociated sequences satisfying (3.1). Using the results from the proof of The-
orem 2, we have by (2.5) that the convergents Pn/Qn of ξ satisfy Qn = Pn−1
∼ λn+1/

√
1 + 4p when n → ∞, where λ = (1 +

√
1 + 4p)/2. From (1.7), we

see that

|Qnξ − Pn|p =
∣∣∣∣ξ − Pn

Qn

∣∣∣∣
p

= p−n−1 for n ≥ 0.

For some n large enough, let k be an integer such that

max{|uk|, |vk|} ≤ max{Pn, Qn} < max{|uk+1|, |vk+1|}.
Then

|Qnξ − Pn|p = p−n−1 � max{Pn, Qn}− log p/ log λ

� max{|uk+1|, |vk+1|}− log p/ log λ � |vkξ − uk|log p/(2 log λ)
p ,

where the last inequality follows from (3.2). Since log p/(2 logλ) < 1, uk/vk
is certainly a much better rational approximation of ξ than Pn/Qn. We can
easily modify the preceding argument and apply it to ξ = [1, (pa : 1)∞] for
a ≥ 2 which is then an example suitable also for p = 2.

Let ξ ∈ Z×
p be a p-adic unit and A/B a rational number written as a re-

duced fraction. Slightly changing the previous terminology, we say that the
rational number with the reduced fraction u/v is a better rational approxi-
mation of ξ than A/B if

(3.3) |vξ − u|p ≤ |Bξ − A|p while |u| ≤ |A|, |v| ≤ |B|,
with at least one of the bounds on |u|, |v| being strict.

There is a simple connection between the finiteness of the continued frac-
tion expansion of u/v and how well u/v approximates some p-adic number.

Theorem 3. A rational number with the reduced fraction u/v ∈ Zp has
an infinite p-adic Schneider’s continued fraction expansion if and only if it is
a better rational approximation of some ξ ∈ Zp than some convergent of ξ.

Proof. If u/v ∈ Q has a non-terminating continued fraction expansion,
then it is certainly a better rational approximation of itself than its con-
vergent with numerator or denominator larger than H(u/v). Recall that
the sequences of numerators and denominators of the convergents of an infi-
nite continued fraction are strictly increasing sequences of positive integers
which, therefore, tend to +∞.

On the other hand, suppose that (3.3) holds for a convergent A/B of ξ
while u/v has a finite continued fraction expansion. From (3.3) we see that∣∣∣ξ − u

v

∣∣∣
p
= |vξ − u|p ≤ |Bξ − A|p =

∣∣∣ξ − A

B

∣∣∣
p
.
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According to (1.11) and (1.12) compared with (1.7), this implies that the
continued fraction expansions of ξ and u/v coincide in an initial segment not
shorter than the one in which the expansions of ξ and A/B coincide. Since
A/B is a convergent of ξ, this means that A/B is also a convergent of u/v.
However, since u/v has a terminating expansion, it is its own last convergent,
different from A/B. Therefore, u > A and v > B which contradicts (3.3).
�

Suppose now that u/v is a better rational approximation of ξ = [b0, pa1 :
b1, . . .] than one of its convergents (Pn/Qn)n≥0, say Pk−1/Qk−1. Again, as
in the previous proof, looking at (1.7), (1.11) and (1.12), we see that

u

v
=

c
dPk−1 + paPk−2
c
dQk−1 + paQk−2

,

where a ≥ ak and c/d is a reduced rational number with |c/d|p = 1. Noting
that gcd(Pk−1, p

aPk−2) = gcd(Qk−1, p
aQk−2) = gcd(Pk−1,Qk−1) = 1, we get

u = cPk−1 + dpaPk−2, v = cQk−1 + dpaQk−2.

The inequalities |u| ≤ Pk−1, |v| ≤ Qk−1 are equivalent to

−Pk−1 ≤ cPk−1+dpaPk−2 ≤ Pk−1, −Qk−1 ≤ cQk−1+dpaQk−2 ≤ Qk−1,

or
(3.4)

c ∈
[
−dpaPk−2

Pk−1
−1,−dpaPk−2

Pk−1
+1

]
∩
[
−dpaQk−2

Qk−1
−1,−dpaQk−2

Qk−1
+1

]
.

The two intervals in (3.4) are both of length 2, so they have a nonempty
intersection if and only if the distance of their midpoints is at most 2. If
this distance is at most 1, the intersection is of length at least 1, so it has to
contain an integer. Unfortunately, this integer can be divisible by p which
can not be the case for c. This obstruction can sometimes be circumvented
as we will soon show.

We see from (1.4) that∣∣∣∣−dpaPk−2

Pk−1
− −dpaQk−2

Qk−1

∣∣∣∣ ≤ 2

is equivalent to

|d|pa+
∑k−1

i=1 ai = |d|pa · |Pk−1Qk−2 − Pk−2Qk−1| ≤ 2Pk−1Qk−1.

Thus a necessary condition for a better rational approximation than Pk−1/Qk−1
to exist is

p
∑

k
i=1 ai ≤ 2Pk−1Qk−1.
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In other words, a better rational approximation (in our terminology) than
Pk−1/Qk−1 does not exist if

(3.5) p
∑

k
i=1 ai > 2Pk−1Qk−1,

so the sequence (an)n≥1 has to grow pretty rapidly.
One sufficient condition for the existence of such an approximation is e.g.

(3.6) p
∑

k
i=1 ai ≤ Pk−1Qk−1 and pakPk−2/Pk−1 ∈ (1, p− 1).

Note that the first condition ensures the existence of some integer c for d = 1
and the second condition guarantees that p does not divide c.

As an example, we take again ξ = [1, (p : 1)∞] for p > 2 and (2.5) then
gives

Qn = Pn−1 ∼ (1 +
√
1 + 4p)n+1

2n+1
√
1 + 4p

,

so that

p
∑k

i=1 ai = pk, Pk−1Qk−1 ∼ (1 +
√
1 + 4p)2k+1

22k+1(1 + 4p)

and (3.6) holds for all k large enough since (1+
√
1 + 4p)2/4 > p and 2p/(1+√

1 + 4p) ∈ (1, p− 1). Thus [1, (p : 1)∞] has better rational approximations
than convergents with index large enough.

We could have obtained a slightly more general result for ξ having again
(an)n≥1 a constant sequence an = 1, but letting (bn)n≥0 be an arbitrary se-
quence with elements in {1, 2, . . . , p− 1}, by using the inequality

(3.7) PnQn >
n∏

i=1

(1 + pai)

which holds for any continued fraction and every n ≥ 2 (for n = 1 the in-
equality also holds, but is not necessarily strict). To prove (3.7), we first
show by induction using (1.1) that

(3.8)

{
Pn > (1 + pan)(1 + pan−2)(1 + pan−4) · · · for all n ≥ 2 and

Qn ≥ (1 + pan)(1 + pan−2)(1 + pan−4) · · · for all even n ≥ 2,

where both products stop with the term 1 + pa1 or 1 + pa2 depending on n
being odd or even. From (3.8) and PnQn ≥ Pn−1Qn for n even and PnQn

≥ PnQn−1 for n odd, we obtain (3.7).
Now, in our example where p > 2 and an = 1 for all n, (3.7) immediately

implies the first part of (3.6), while the second part holds for all k such
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that bk−1 ≤ p/3 since from (1.1) we have Pn/Pn−1 = bn + pan(Pn−1/Pn−2)−1

which implies

pPk−2/Pk−1 ≥ p · [p/3, p : 1, p : p− 1, p : 1]−1 = (9p− 3)/(9p− 4) > 1,

pPk−2/Pk−1 ≤ p · [1, p : p− 1, p : 1]−1 = p(2p− 1)/(3p− 1) < p− 1.

The previous discussion shows that it is of interest to find good estimates
of size for numerators and denominators of convergents given sequences (an)n
with different rates of growth.

4. Bounds on height of convergents for some examples

The main purpose of this section is to obtain good estimates of size for
the height of convergents in several examples of p-adic continued fractions.
These examples have different rates of growth of the sequence (an)n≥1 of
exponents in the partial numerators of continued fractions. The obtained
estimates will give us in Theorem 4 some partial results on the quality of
approximation by convergents. The same bounds will be used in Section 5 to
determine the irrationality exponent of the constructed continued fractions
and in Section 6 to study the convergence of the sequence of convergents
(Pn/Qn)n≥0 in the field of real numbers.

We are interested in the lower and upper bounds of the sequence

(4.1) X0 = X1 = 1, Xn = cXn−1 + panXn−2 for n ≥ 2,

where c ∈ {1, . . . , p− 1} is fixed. Comparing the initial values, we get
Pn � Xn and Qn � Xn if c = 1 is chosen, while Pn � pa1Xn, Qn � Xn

if c = p− 1 is taken. In these bounds, the implied constants depend only
on p. For all the examples in the rest of this paper, the choice of sequence
(bn)n≥0 in {1, . . . , p− 1} will be irrelevant in the estimates of size and we
can disregard the value of c.

Define

(4.2) Tn =
n∏

k=1

pak = p
∑

n
k=1 ak and Yn =

Xn√
Tn+1

(n ≥ 0),

so that, after substitution, (4.1) becomes

(4.3) Yn = cp−an+1/2Yn−1 + p(an−an+1)/2Yn−2.

Let g(n) = p(an−an+1)/2 + cp−an+1/2 for n ≥ 1. Then

Yn ≥ g(n)min{Yn−1, Yn−2} (n ≥ 2),

Yn−1 ≥ g(n− 1)min{Yn−2, Yn−3} (n ≥ 3),
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so that

(4.4) min{Yn, Yn−1} ≥ min
{
g(n), g(n− 1), g(n)g(n− 1)

}
min{Yn−2, Yn−3}.

Using Yn ≥ min{Yn, Yn−1} and iterating (4.4), we obtain

(4.5) Yn ≥ min{Y0, Y1, Y2}
∏

3≤k≤n
2|(n−k)

min
{
g(k), g(k − 1), g(k)g(k− 1)

}
.

Completely analogously, we show

(4.6) Yn ≤ max{Y0, Y1, Y2}
∏

3≤k≤n
2|(n−k)

max
{
g(k), g(k − 1), g(k)g(k− 1)

}
.

Now we continue the analysis for particular classes of sequences (an)n≥1.

4.1. an = �α logp n�. We use log for logarithm with base e and logp
for logarithm with base p. Let α be a positive real number and define an =
�α logp n� for n ≥ 1. Then pan � nα and we want to bound Tn and Yn in
this case.

Note that

Tn ≥
n∏

k=1

pα logp(n)−1 = p−n(n!)α and Tn ≤ (n!)α,

hence, by Stirling’s formula,

(4.7) Tn = eα(n logn+O(n)).

We look only at n > (p1/α − 1)−1 or (n+ 1)/n < p1/α so that

n ≤ p
k

α < p
k+1

α ≤ n+ 1

cannot happen for an integer k.
If n = �pk/α� − 1 for some positive integer k, then an+1 = k = an +1, so

(4.8)

g(n) = p−1/2 + cp−�α logp(n+1)	/2,

p−1/2 + cp(−α logp(n+1))/2 ≤ g(n) ≤ p−1/2 + cp(−α logp(n+1)+1)/2,

p−1/2 + c(n+ 1)−α/2 ≤ g(n) ≤ p−1/2 + cp1/2(n+ 1)−α/2.

Otherwise, an+1 = an and

(4.9)
g(n) = 1 + cp−�α logp(n+1)	/2,

1 + c(n+ 1)−α/2 ≤ g(n) ≤ 1 + cp1/2(n+ 1)−α/2.
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Now, using (4.8), (4.9) and the estimates

ex/2 ≤ 1 + x ≤ ex for 0 ≤ x ≤ 1,(4.10)
n∑

k=1

k−α/2 =
∫ n

1
x−α/2 dx+O(1) =

2
2− α

(n1−α/2 +O(1)) (α �= 2),

∑
1≤k≤n
2|(k−ε)

k−α/2 =
1

2− α
(n1−α/2 +O(1)), ε ∈ {0, 1},

∑
1≤k≤n

k=
p�/α�, �∈Z

k−α/2 <
∞∑
�=0

p−�/2 = 1 +
1√
p− 1

< 4,

p−
1

2
card{k∈Z:1≤k≤n, k=
p�/α�, �∈Z} = e−

1

2
α(logn+O(1))

with (4.5) and (4.6), we obtain

(4.11) Yn �α e
1

2(2−α)
n1−α

2 − 1

2
α logn

, Yn �α ep
3
2 2

2−α
n1−α

2
.

It follows that

(4.12) lim
n→∞

Yn = +∞ for α < 2, Yn = Oα(1) for α > 2.

Unfortunately, for α > 2 we cannot in general conclude that lim
n→∞

Yn = 0.

The difference between the upper and lower bound in (4.11) comes from the
fact that the decrease in the sequence (Yn)n happens at n = �pk/α� − 1 for
positive integers k. Let D be the infinite set of all these indices n where the
descent occurs. The sequence of Yn with odd (even) indices will tend to 0 if
and only if there are infinitely many odd (even) numbers in D.

The claim in one direction is obvious. If, for example, there are only
finitely many odd numbers in D, then (4.3) shows that for odd n which are
large enough, we have Yn > Yn−2 so that Yn � 1 for odd n. This happens
for example if p1/α is an odd integer.

Suppose now that there are infinitely many odd numbers in D. Let
(ni)i≥0 be the strictly increasing infinite sequence of all odd integers in D
starting from some n0 large enough. From (4.11) we know that there is some
upper bound M for (cp1/2Yn)n≥0, so that by (4.3), for n ≥ n0 it holds

(4.13)

⎧⎪⎪⎨
⎪⎪⎩
Yn−2 < Yn ≤ M

(n+ 1)α/2
+ Yn−2 if n �∈ D,

Yn ≤ M

(n+ 1)α/2
+ p−1/2Yn−2 if n ∈ D.
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For a large enough odd integer n, let i be such that ni ≤ n < ni+1. Then we
see by (4.13) that

Yn ≤ Yni+1−2(4.14)

≤ M
(
(ni+1 − 1)−α/2 + (ni+1 − 3)−α/2 + · · ·+ (ni + 1)−α/2) + p−1/2Yni−2.

From the monotonicity of the function n �→ n−α/2, we have

(ni+1 − 1)−α/2 + (ni+1 − 3)−α/2 + · · · + (ni + 1)−α/2

<
1

α− 2
(
(ni − 1)1−α/2 − (ni+1 − 1)1−α/2) ,

so that iterating (4.14), we get

Yni+1−2 <
M

α−2

i∑
j=0

(
(nj−1)1−α/2 − (nj+1−1)1−α/2)p−(i−j)/2

+ p−(i+1)/2Yn0−2 <
M

α− 2

( i∑
j=1

((nj − 1)1−α/2p−(i−j)/2(1− p−1/2))

+ (n0 − 1)1−α/2p−i/2
)
+Mp−i/2.

Using nj − 1 > 1
2p

j/α and 1− α/2 < 0, this gives

Yni+1−2 �
i∑

j=1

(
pj·

2−α

2α
+ j−i

2

)
+ p−

i

2 � p−i/2
(
1 +

i∑
j=1

pj/α
)

� p−i/2 · pi/α.

Finally,

(4.15) Yn ≤ Yni+1−2 �α p( 1

α
− 1

2
)i,

so that

lim
n→∞
n odd

Yn = 0.

Note that by choosing p1/α to be an even (odd) integer, we get that
�pk/α� − 1 is odd (even) for every positive integer k, so that D contains only
odd (even) numbers.

On the other hand, since �pk/α� is odd if and only if the fractional part
{1

2p
k/α} is in (0, 1

2 ], we see that this question is closely related to the prob-
lem of distribution modulo 1 of powers of a real number. From a result by
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Acta Mathematica Hungarica 169, 2023

SCHNEIDER’S p-ADIC CONTINUED FRACTIONS 17

Koksma (see e.g. [5, Theorem 1.10]), we know that for almost all real num-
bers r > 1 (in the sense of Lebesgue measure), the sequence ({1

2r
k})k≥0 is

uniformly distributed in the interval [0, 1). This shows that for almost all
α > 2 the sequence ({1

2p
k/α})k≥0 is uniformly distributed in [0, 1) and thus

the set D contains infinitely many odd and infinitely many even numbers,
so that limn→∞ Yn = 0 really holds.

4.2. an = �n1/r�. Let r > 1 be an integer and set an = �n1/r� for
n ≥ 1. Note that (n+ 1)1/r − n1/r < n−1+1/r/r < 1, so 0 ≤ an+1 − an ≤ 1
holds for all n. Here we have

n∑
k=1

ak =
n∑

k=1

�k1/r� ∈
(
−n+

n∑
k=1

k1/r,
n∑

k=1

k1/r
]
,

n∑
k=1

k1/r =
∫ n

0
x1/r dx+O(n1/r) =

r

r + 1
n1+1/r +O(n1/r)

and thus

(4.16) Tn = p
r

r+1
n1+1/r+O(n).

If n = kr − 1 for some positive integer k, then an+1 = k = an + 1, so

g(n) = p−1/2 + cp−k/2 = p−1/2 + cp−(n+1)1/r/2.

Otherwise, an+1 = an and

g(n) = 1 + cp−�(n+1)1/r	/2,

1 + cp−(n+1)1/r/2 ≤ g(n) ≤ 1 + cp1/2p−(n+1)1/r/2.

As before, using (4.10) and

n∑
k=1

p−(k+1)1/r/2 <

∫ +∞

0
e−1/2·log p·x1/r

dx = (2/ log p)r r! ,

we obtain from (4.5) and (4.6) that

(4.17) Yn � p−n1/r/2, Yn � 1,

where the implied constants depend on p and r.
In order to improve the upper bound on Yn, we follow the same strategy

as before. Let M be some upper bound for (cp1/2Yn)n≥0 which is finite by
(4.17). For n large enough, let k be a positive integer such that

(k − 2)r − 1 ≤ n < kr − 1 and n ≡ (k − 2)r − 1 ≡ k − 1 (mod 2).
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Then by (4.3), we have

Yn ≤ Ykr−3 ≤ M(p−(kr−2)1/r/2 + p−(kr−4)1/r/2 + · · ·+ p−((k−1)r+1)1/r/2

+ · · · + p−((k−2)r+2)1/r/2 + p−(k−2)/2)+ p−1/2Y(k−2)r−3

≤ M
kr − (k − 2)r

2
p−(k−2)/2 + p−1/2Y(k−2)r−3

≤ Mrkr−1p−(k−2)/2 + p−1/2Y(k−2)r−3

≤ Mrp(kr−1p−k/2 + (k − 2)r−1p−(k−2)/2−1/2 + (k − 4)r−1p−(k−4)/2−2/2

+ · · · + 
r−1p−�/2−(k−�)/4)+ p−(k−�+2)/4Y(�−2)r−3,

where 
 ≡ k (mod 2) is large enough but fixed and depends only on p, r and
the parity of k.

Noting that xr−1p−x/2 � p−x/4p−x/5 and Y(�−2)r−3 ≤ M , we obtain

(4.18) Yn � p−k/4(1 + p−1/5 + p−2/5 + · · · ) � p−k/4 � p−n1/r/4,

which gives with (4.17)

(4.19) p−n1/r/2 � Yn � p−n1/r/4.

4.3. an = nr. Let r be a positive integer and set an = nr for n ≥ 1.
For this sequence, we have

(4.20)
n∑

k=1

ak =
n∑

k=1

kr =
1

r + 1
nr+1 +O(nr), Tn = p

1

r+1
nr+1+O(nr).

Since

g(n) = p(nr−(n+1)r)/2 + cp−(n+1)r/2,

the bounds

p(nr−(n+1)r)/2 < g(n) < p(nr−(n+1)r)/2+1/8

hold for n large enough. Thus (4.5) implies

(4.21) Yn > p−(n+1)r/2+O(1) = p−nr/2+O(nr−1).

From the other side, since n �→ (n+ 1)r − nr is non-decreasing and

n∑
k=1

(−1)n−kkr > r
(
(n− 1)r−1 + (n− 3)r−1 + · · · ) = nr/2 +O(nr−1),
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Acta Mathematica Hungarica 169, 2023

SCHNEIDER’S p-ADIC CONTINUED FRACTIONS 19

(4.6) implies

(4.22) Yn < p−nr/4+n/8+O(nr−1).

4.4. Case 4: an = �βn�. As a final example, we take an = �βn� for
n ≥ 1, where β > 1 is a real number. Then

(4.23)
n∑

k=1

ak =
n∑

k=1

βk +O(n) =
βn+1

β − 1
+O(n), Tn = pβ

n+1/(β−1)+O(n).

Now the standard procedure we employed in the previous examples using
(4.5) and (4.6) would give

(4.24) p−βn+1/2+O(n) < Yn < p−βn+1/(2β+2)+O(n).

However, comparing (4.24) and (4.23), we see that the bounds are not
tight enough. Therefore, instead of going through the substitution (4.2), we
start directly with (4.1) and set

Zn = Xnp
−βn+2/(β2−1) (n ≥ 0).

Then (4.1) becomes

Zn = cp−βn+1/(β+1)Zn−1 + p−βn+�βn	Zn−2.

Since

lim
n→∞

p−βn+1/(β+1) = 0 and − βn + �βn� ∈ (−1, 0],

we can easily show by induction that

p−n � Zn � p2n,

which implies

(4.25) Xn = pβ
n+2/(β2−1)+O(n), Yn = p−βn+2/(2β+2)+O(n).

We can now describe the quality of approximation by convergents for all
our examples.

Theorem 4. For a positive real number α, let an = �α logp n�, n ≥ 1.
If α > 2, better rational approximations do not exist for all convergents with
large enough odd indices or for all convergents with large enough even in-
dices. For almost all α > 2, better rational approximations exist for at most
finitely many convergents.

If an = �n1/r� (n ≥ 1) or an = nr (n ≥ 1) or an = �βn� (n ≥ 1), where
r is any positive integer and β > 1 any real number, then for all but finitely
many convergents there are no better rational approximations.
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Proof. Taking into account (4.1), (4.2) and the discussion there, we see
that

PnQn/p
∑

n+1
i=1 ai

satisfies the same lower and upper bounds as those obtained for Y 2
n . Now

the conclusion follows from (3.5) and the bounds on (Yn)n from this section.
�

In the previous theorem, we claim no complementary result stating that
better rational approximations than some convergents do exist for certain
α > 2. For this to be proven, not only the first inequality in (3.6) has to hold,
but also the second condition in (3.6), or a similar one, must be satisfied.
Unlike the simple examples given at the end of Section 3, the way to verify
such conditions for continued fractions given in Theorem 4 is not clear since
our bounds on Pn are not tight enough.

5. Irrationality exponent

The irrationality exponent μ(ξ) of an irrational p-adic number ξ is the
supremum of the real numbers μ such that

(5.1)
∣∣∣ξ − a

b

∣∣∣
p
< H(a/b)−μ

has infinitely many solutions in rational numbers a/b.
It is easily seen that (5.1) can be replaced by

(5.2) |bξ − a|p < H(a/b)−μ.

The lower bound μ(ξ) ≥ 2 always holds, see for example [3, Section 9.3].
In order to determine the irrationality exponent of numbers introduced in
the previous section, we use the following immediate consequence of [8,
Lemma 2].

Lemma 5. For ξ ∈ Qp, let (ϑk)k≥0 be a sequence of real numbers such
that lim infk→∞ ϑk > 1 and let (Pk/Qk)k≥0 be a sequence of distinct rational
numbers such that ∣∣∣∣ξ − Pk

Qk

∣∣∣∣
p

= H(Pk/Qk)−ϑk

holds for k ≥ 0. If

(5.3) lim sup
k→∞

ϑk ≥ 1 + lim sup
k→∞

logH(Pk+1/Qk+1)
(ϑk − 1) logH(Pk/Qk)

,

then μ(ξ) = lim supk→∞ ϑk.
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Note that μ(ξ) ≥ lim supk→∞ ϑk follows trivially from the existence of
the sequence (Pk/Qk)k≥0 of good rational approximations to ξ. The condi-
tion (5.3) is needed to prove the inequality in the other direction.

Using the convergents of the p-adic continued fraction as a sequence of
rational approximations (Pk/Qk)k≥0 from the previous Lemma, we obtain
the following result.

Theorem 6. Let α > 0 and β > 1 be real numbers and r a positive in-
teger.

If an = �α logp n� (n ≥ 1) or an = �n1/r� (n ≥ 1) or an = nr (n ≥ 1),
the irrationality exponent of ξ defined in (1.8) is 2.

If an = �βn� (n ≥ 1), we have μ(ξ) = β + 1.

Proof. Keeping notation as in Lemma 5 and taking (Pk/Qk)k≥0 to be
the sequence of convergents to ξ in (1.8), we get

logH(Pk/Qk) ∼ logXk ∼ 1
2
log Tk+1 + log Yk,

ϑk =
− log |ξ − Pk/Qk|p

logH(Pk/Qk)
∼ log Tk+1

1
2 log Tk+1 + log Yk

,

where we used (1.7) and (4.2).
If an = �α logp n�, then from (4.7) and (4.11), we have

log Tk+1 = αk log k +O(k),

log Yk ≥ 1
2(2− α)

k1−α

2 − 1
2
α log k +O(1),

log Yk ≤ p
3

2
2

2− α
k1−α

2 +O(1),

so that

(5.4) lim
k→∞

ϑk = 2, lim
k→∞

logH(Pk+1/Qk+1)
(ϑk − 1) logH(Pk/Qk)

= 1

and Lemma 5 implies μ(ξ) = 2.
For sequences an = �n1/r� (n ≥ 1) and an = nr (n ≥ 1), we show that

(5.4) holds using (4.16), (4.17), (4.18), and (4.20), (4.21), (4.22). Thus, we
have μ(ξ) = 2 in both cases.

If an = �βn� (n ≥ 1), estimates in (4.23) and (4.25) give

log Tk+1 = (log p)βk+2/(β − 1) +O(k),

log Yk = −(log p)βk+2/(2β + 2) +O(k),
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so that

lim
k→∞

ϑk = lim
k→∞

βk+2/(β − 1)
βk+2/(2β − 2)− βk+2/(2β + 2)

= β + 1,

lim
k→∞

log H(Pk+1/Qk+1)
(ϑk−1) logH(Pk/Qk)

= lim
k→∞

βk+3/(2β−2)− βk+3/(2β+2)
β(βk+2/(2β−2)− βk+2/(2β+2))

= 1.

Since β + 1 > 1 + 1, we conclude from Lemma 5 that μ(ξ) = β + 1. �

6. Convergence in the reals

Finally, we briefly examine the question of convergence of Schneider’s
p-adic continued fractions in the field of real numbers. It follows from (1.5)
that the sequence of convergents (Pn/Qn)n of a p-adic number ξ has a limit
in R if and only if the series

(6.1)
∞∑
k=1

(−1)k+1

Qk−1Qk
p
∑k

i=1 ai =
∞∑
k=1

(−1)k+1(Qk−1Qk)−1Tk

converges in R.
Multiplying the second recurrence equation in (1.1) with Qn−1/Tn, where

Tn is as in (4.2), we obtain

(6.2) Qn−1QnT
−1
n = bnQ

2
n−1T

−1
n +Qn−2Qn−1T

−1
n−1.

From (6.2), we see that

|Qn−1QnT
−1
n | > |Qn−2Qn−1T

−1
n−1|,

i.e.

(6.3) |(−1)n+1(Qn−1Qn)−1Tn| < |(−1)n(Qn−2Qn−1)−1Tn−1|.
If (6.1) converges in R, then limk→∞(Qk−1Qk)−1Tk = 0. In the other di-
rection, if limk→∞(Qk−1Qk)−1Tk = 0, then (6.3) and the alternating se-
ries test imply that (6.1) converges in R. This condition is equivalent to
limk→∞Qk−1QkT

−1
k = +∞. However, iterating (6.2), we obtain

Qn−1QnT
−1
n =

n∑
k=2

bkQ
2
k−1T

−1
k +Q0Q1T

−1
1

which shows that the condition for convergence of (6.1) can be given as∑∞
k=1 bkQ

2
k−1T

−1
k = +∞.
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As explained at the beginning of Section 4, QnT
−1/2
n+1 � Yn (for c = 1)

and QnT
−1/2
n+1 � Yn (for c = p− 1). Therefore, if in an example

∑∞
k=1 Y

2
k

converges or diverges regardless of c ∈ {1, . . . , p− 1}, then (6.1) converges in
the reals if and only if

(6.4)
∞∑
k=1

Y 2
k = +∞.

For an = �α logp n� with α < 2, the lower bound in (4.11) implies that
the respective continued fraction converges in the reals.

For sequences an = �n1/r� and an = nr, where r is a positive integer,
the upper bounds in (4.19) and (4.22) show that (6.4) does not hold and
the continued fractions they determine do not converge in R. The same
conclusion is obtained if an = �βn� for a real number β > 1, as follows from
(4.25). These results partially answer a question posed in [2, Conjecture
2.1].

If an = �α logp n� and α > 2, the situation is more complicated. As dis-
cussed before, the rate of decrease of the associated sequence (Yn)n depends
on the distribution of ({pk/α/2})k in [0, 1). As shown in Section 4.1, for
some α > 2, the subsequences of (Yn)n obtained by choosing only even n or
only odd n are non-decreasing and thus (6.4) certainly holds in those cases.

However, for almost all α > 2, the sequence ({pk/α/2})k≥0 is uniformly
distributed in [0, 1). Thus, for any ε ∈ (0, 1/2), for all K large enough, there
are between (1

2 − ε)K and (1
2 + ε)K integers k in (0,K) satisfying {pk/α/2}

∈ (0, 1
2 ], or equivalently, �pk/α� − 1 is even. This shows that, starting with

a large enough number, the sequence (ni)i of even integers in D (see the
discussion between (4.12) and (4.13)) satisfies

(6.5) p
2i

(1+2ε)α < ni < p
2i

(1−2ε)α

or, equivalently, (1
2
− ε

)
α logp ni < i <

(1
2
+ ε

)
α logp ni

for i large enough.
For any large enough even integer n, we have ni ≤ n < ni+1 for some i

and now (4.15) and (6.5) give

Yn � p( 1

α
− 1

2
)i � p( 1

α
− 1

2
)(i+1) � p( 1

α
− 1

2
)( 1

2
−ε)α logp ni+1(6.6)

� n
(1−α

2
)( 1

2
−ε)

i+1 � n(1−α

2
)( 1

2
−ε).
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For α > 4, choose ε > 0 such that ε < α−4
2α . Then (6.6) implies

Yn � n(1−α

2
)( 1

2
−ε) � n− 1

2
−ε.

Analogously, we prove that the same bound holds for all odd numbers n
which are large enough. This shows that (6.4) does not hold for such α.

We summarize all these results in one theorem.

Theorem 7. First, let an = �α logp n� for some positive real number α
and all positive integers n. If α < 2, the continued fraction (1.8) converges
in the field of real numbers. For p > 2, there exist α > 2 such that (1.8)
converges in R. For almost all real numbers α > 4, (1.8) does not converge
in R.

If an = �n1/r� (n ≥ 1) or an = nr (n ≥ 1) or an = �βn� (n ≥ 1), where
r is any positive integer and β > 1 real number, then (1.8) does not converge
in R.
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T. PEJKOVIĆ214
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