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Abstract. The enhanced power graph of a finite group G, denoted by
PE(G), is a simple undirected graph whose vertex set is G and two distinct ver-
tices x, y are adjacent if x, y ∈ 〈z〉 for some z ∈ G. In this article, we determine all
finite groups such that the minimum degree and the vertex connectivity of PE(G)
are equal. Also, we classify all groups whose (proper) enhanced power graphs are
strongly regular. Further, the vertex connectivity of the enhanced power graphs
associated to some nilpotent groups is obtained. Finally, we obtain the upper and
lower bounds of the Wiener index of PE(G), where G is a nilpotent group. The
finite nilpotent groups attaining these bounds are also characterized.

1. Introduction

The study of graphs related to various algebraic structures becomes im-
portant, because graphs of this type have valuable applications and are re-
lated to automata theory (see [16,17] and the books [14,15]). Certain graphs,
viz. power graphs, commuting graphs, Cayley graphs etc., associated to
groups have been studied by various researchers, see [5,13,26]. Segev [25,26],
Segev and Seitz [27] used combinatorial parameters of certain commuting
graphs to establish long standing conjectures in the theory of division alge-
bras. A variant of commuting graphs on groups has played an important role
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in classification of finite simple groups, see [2]. Hayat et al. [12] used com-
muting graphs associated with groups to establish some NSSD (non-singular
with a singular deck) molecular graph.

In order to measure how much the power graph is close to the commut-
ing graph of a group G, Aalipour et al. [1] introduced a new graph called
enhanced power graph. The enhanced power graph of a group G is a sim-
ple undirected graph whose vertex set is G and two distinct vertices x, y
are adjacent if x, y ∈ 〈z〉 for some z ∈ G. Indeed, the enhanced power graph
contains the power graph and is a spanning subgraph of the commuting
graph. Aalipour et al. [1] characterized the finite group G, for which equal-
ity holds for either two of the three graphs viz. power graph, enhanced
power graph and commuting graph of G. Further, the enhanced power
graphs have received the considerable attention by various researchers. Bera
et al. [3] characterized the abelian groups and the non abelian p-groups hav-
ing dominatable enhanced power graphs. Dupont et al. [10] determined the
rainbow connection number of enhanced power graph of a finite group G.
Later, Dupont et al. [9] studied the graph theoretic properties of enhanced
quotient graph of a finite group G. A complete description of finite groups
with enhanced power graphs admitting a perfect code have been studied
in [19]. Ma et al. [21] investigated the metric dimension of the enhanced
power graph of a finite group. Hamzeh et al. [11] derived the automor-
phism groups of enhanced power graphs of finite groups. Zahirović et al.
[29] proved that two finite abelian groups are isomorphic if their enhanced
power graphs are isomorphic. Also, they supplied a characterization of fi-
nite nilpotent groups whose enhanced power graphs are perfect. Recently,
Panda et al. [24] studied the graph-theoretic properties, viz. minimum de-
gree, independence number, matching number, strong metric dimension and
perfectness, of enhanced power graphs over finite abelian groups. More-
over, the enhanced power graphs associated to non-abelian groups such as
semidihedral, dihedral, dicyclic, U6n, V8n etc., have been studies in [7,24].
Bera et al. [4] gave an upper bound for the vertex connectivity of enhanced
power graph of any finite abelian group. Moreover, they classified the finite
abelian groups whose proper enhanced power graphs are connected. The
complement of the enhanced power graph has been studied in [18,23]. For a
comprehensive list of results and open questions on enhanced power graphs
of groups, we refer the reader to [20].

In this paper, we aim to enhance the investigation of the interplay be-
tween algebraic properties of the group G and its enhanced power graph
PE(G). This paper is arranged as follows. In Section 2, we provide the
necessary background material and fix our notations used throughout the
paper. In Section 3, we classify all finite groups such that the minimum de-
gree is equal to the vertex connectivity of PE(G). Section 4 comprises the
classification of groups whose enhanced power graphs are (strongly) regular.
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In Section 5, we obtain the vertex connectivity of PE(G), where G belongs
to a class of nilpotent groups. Finally, in Section 6, we study the Wiener
index of PE(G), where G is a nilpotent group.

2. Preliminaries

In this section, first we recall the graph theoretic notions from [28]. A
graph Γ is a pair Γ = (V,E), where V (Γ) and E(Γ) are the set of vertices and
edges of Γ, respectively. Two distinct vertices u1, u2 are adjacent , denoted
by u1 ∼ u2 if there is an edge between u1 and u2. Otherwise, we write it as
u1 � u2. Let Γ be a graph. A subgraph Γ′ of Γ is the graph such that V (Γ′) ⊆
V (Γ) and E(Γ′) ⊆ E(Γ). For X ⊆ V (Γ) the subgraph of Γ induced by X is
the graph Γ(X) with vertex set X and two vertices of Γ(X) are adjacent if
and only if they are adjacent in Γ. A graph Γ is said to be complete if every
two distinct vertices are adjacent. All the vertices which are adjacent to a
vertex v ∈ V (Γ) is called the neighbours of v. The degree deg(v) of a vertex v
in a graph Γ, is the number of edges incident to v. The minimum degree,
denoted by δ(Γ), is defined by δ(Γ) = min{deg(v) : v ∈ V (Γ)}. A graph Γ
is k-regular if the degree of every vertex in V (Γ) is k. A graph Γ is said to
be strongly regular graph with parameters (n, k, λ, μ) if it is k-regular graph
on n vertices such that each pair of adjacent vertices has exactly λ common
neighbours, and each pair of non-adjacent vertices has exactly μ common
neighbours. A path in a graph is the sequence of distinct vertices with the
property that each vertex in the sequence is adjacent to the next vertex of it.
A graph Γ is connected if each pair of vertices has a path in Γ. Otherwise,
Γ is disconnected. The distance between u, v ∈ V (Γ), denoted by d(u, v), is
the number of edges in a shortest path connecting them. For a connected
graph Γ, the Wiener index W (Γ) is defined by

W (Γ) =
∑

x∈V (Γ)

∑

y∈V (Γ)

d(x, y)
2

.

The diameter of Γ is the maximum distance between the pair of vertices
in Γ. A vertex (or edge) cut-set in a connected graph Γ is a set X of vertices
(or edges) such that the remaining subgraph Γ \X , by removing the set X ,
is either disconnected or has only one vertex. The cardinality of a smallest
vertex (or edge) cut-set of Γ is called the vertex (or edge) connectivity of Γ
and it is denoted by κ(Γ) (or κ′(Γ)). For a connected graph Γ, it is well
known that κ(Γ) ≤ κ′(Γ) ≤ δ(Γ). The strong product Γ1 � Γ2 � · · · � Γr of
graphs Γ1,Γ2, . . . ,Γr is a graph such that

• the vertex set of Γ1 � Γ2 � · · · � Γr is the Cartesian product V (Γ1)
× V (Γ2)× · · · × V (Γr); and
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• distinct vertices (u1, u2, . . . , ur) and (v1, v2, . . . , vr) are adjacent in Γ1
�Γ2 � · · ·�Γr if and only if either ui = vi or ui ∼ vi in Γi for each i ∈ [r] =
{1, 2, . . . , r}.

We refer the readers to [8] for basic definitions and results of group the-
ory. A cyclic subgroup of a group G is called a maximal cyclic subgroup if it
is not properly contained in any cyclic subgroup of G. If G is a cyclic group,
then G is the only maximal cyclic subgroup of G. The set of all maximal
cyclic subgroups of G is denoted by M(G). Let G be a group. The order of
an element x in G is the cardinality of the subgroup generated by x and it
is denoted by o(x). The exponent of a group G is the least common multiple
of the orders of all elements of G and it is denoted by exp(G). A group G is
called a torsion group if every element of G is of finite order. The following
result is useful for latter use.

Theorem 2.1 [8]. Let G be a finite group. Then the following statements
are equivalent :

(i) G is a nilpotent group.
(ii) Every Sylow subgroup of G is normal.
(iii) G is the direct product of its Sylow subgroups.
(iv) For x, y ∈ G, x and y commute whenever o(x) and o(y) are relatively

primes.

All the groups considered in this paper are finite. We write p, p1, p2, . . . , pr
to be prime numbers such that p1 < p2 < · · · < pr and Pi the unique Sylow
pi-subgroup of G for i ∈ [r]. In view of Theorem 2.1, for a nilpotent group G

and x ∈ G, there exists a unique element xi ∈ Pi such that x = x1x2 · · · xr,
for i ∈ [r]. The enhanced power graph PE(G) of a finite group G is a simple
undirected graph with vertex set G and two vertices are adjacent if they be-
long to the same cyclic subgroup of G. For X ⊆ G, we denote by PE(X) the
subgraph induced by X . The following results will be useful in the sequel.

Theorem 2.2 [3, Theorem 2.4]. The enhanced power graph PE(G) of
the group G is complete if and only if G is cyclic.

Theorem 2.3 [24, Theorem 3.2]. For a finite group G, the minimum
degree δ(PE(G)) = m− 1, where m is the order of a maximal cyclic subgroup
of minimum possible order.

Lemma 2.4 [6, Lemma 2.11]. Any maximal cyclic subgroup of a finite
nilpotent group G = P1P2 · · ·Pr is of the form M1M2 · · ·Mr, where Mi is a
maximal cyclic subgroup of Pi, (1 ≤ i ≤ r).

Corollary 2.5. Let G = P1P2 · · ·Pr be a nilpotent group and Pi is
cyclic for some i. Then Pi is contained in every maximal cyclic subgroup
of G.

THE ENHANCED POWER GRAPH ASSOCIATED WITH A FINITE GROUP 241
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Theorem 2.6 [22, Theorem 4.2]. Let G be a non-trivial finite group.
Then the proper power graph of G is strongly regular graph if and only if G
is a p-group of order pm for which exp(G) = p or pm.

3. Equality of the minimum degree and the vertex connectivity
of PE(G)

It is well known that the diameter of PE(G) is at most two. Conse-
quently, κ′(PE(G)) = δ(PE(G)) and so κ(PE(G)) ≤ δ(PE(G)). In this sec-
tion, we classify the group G such that δ(PE(G)) = κ(PE(G)). We begin
with the following lemma.

Lemma 3.1. Let G be a non-cyclic group and M ∈ M(G). Then M is
a cut-set of PE(G), where M is the union of all sets of the form M ∩ 〈x〉,
for x ∈ G \M .

Proof. Let M = 〈a〉 and M ′ = 〈b〉 be two maximal cyclic subgroups
of G. Then we claim that there is no path between a and b in PE(G \M).
If possible, suppose that there is a path a ∼ x1 ∼ x2 ∼ · · · ∼ xk ∼ b from a
to b in PE(G \M). Then x1 ∈ M . Otherwise, 〈a, x1〉 is a cyclic subgroup
which is not contained in M , which is impossible. We may now suppose that
x1, x2, . . . , xr−1 ∈ M and xr 	∈ M for some r ∈ [k] \ {1}. Note that such r
exists because xk ∼ b and if xr ∈ M for each r ∈ [k], then xk ∈ M which is
impossible. Now if xr−1 ∈ M then by using a similar argument, we obtain
xr−1 ∈ M. It follows that no such path exists and so M is a cut-set. �

Theorem 3.2. For the group G, δ(PE(G)) = κ(PE(G)) if and only if
one of the following holds:

(i) G is a cyclic group.
(ii) G is non-cyclic and contains a maximal cyclic subgroup of order 2.

Proof. First suppose that δ(PE(G)) = κ(PE(G)). If G is cyclic then
we have nothing to prove. If possible, let G be non-cyclic group and it
does not have a maximal cyclic subgroup of order 2. By Theorem 2.3,
δ(PE(G)) = |M | − 1, where M ∈ M(G) such that |M | is minimum. By
Lemma 3.1, M is a cut-set. Note that every generator of M does not belong
to M . Consequently, we get

κ(PE(G)) ≤ |M | < |M | − 1 = δ(PE(G)),

which is impossible. Thus, G must have a maximal cyclic subgroup of or-
der 2.

To prove the converse part, suppose that G is cyclic. Then δ(PE(G)) =
κ(PE(G)) = n− 1 (by Theorem 2.2). If G is non-cyclic and has a maximal
cyclic subgroup M of order 2, then by Lemma 3.1, M = {e} is a cut-set. It

J. KUMAR, X. MA, PARVEEN and S. SINGH242
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(1, 2) (1, 0)

(0, 0)

(1,1)

(0, 2)

(0, 1)
(0, 3) (1, 3)

Fig. 1: PE(Z2 × Z4)

follows that κ(PE(G)) = 1. By Theorem 2.3, δ(PE(G)) = |M | − 1 = 1 and
so δ(PE(G)) = κ(PE(G)). �

Example 3.3. Let G = Z2 × Z4. Then G has two maximal cyclic sub-
groups 〈(1, 2)〉 and 〈(1, 0)〉 of order 2. By Fig. 1, observe that the min-
imum degree is 1 and {(0, 0)} is the smallest cut-set of PE(G). Thus,
κ(PE(G)) = δ(PE(G)) = 1.

4. Regularity of PE(G)

The identity element of the group G is adjacent to all the other elements
of G in PE(G). Thus, PE(G) is regular if and only if G is a finite cyclic group
(cf. Theorem 2.2). The proper enhanced power graph P∗

E(G) is the subgraph
of PE(G) induced by G \ {e}. In this section, we classify the group G such
that P∗

E(G) is (strongly) regular.

Theorem 4.1. Let G be a finite group. Then P∗
E(G) is regular if and

only if one of the following holds:
(i) G is a cyclic group.
(ii) |Mi| = |Mj | and Mi ∩Mj = {e}, where Mi,Mj ∈ M(G).

Proof. Suppose that P∗
E(G) is regular. If G is cyclic then there is noth-

ing to prove. We may now suppose that G is a non-cyclic group. Assume
that Mi = 〈x〉 and Mj = 〈y〉 are two maximal cyclic subgroups of G. Since
|Mi| − 2 = deg(x) = deg(y) = |Mj | − 2, we deduce that |Mi| = |Mj|. More-
over, if Mi ∩Mj 	= {e} for some i, j (i 	= j) then for a 	= e ∈ Mi ∩Mj , we
obtain deg(a) ≥ |Mi ∪Mj| − 2 	= |Mi| − 2 = deg(x). Consequently, P∗

E(G) is
not regular; a contradiction.

Conversely, suppose thatG is a cyclic group then by Theorem 2.2, P∗
E(G)

is complete and so is regular. We may now suppose that G is non-cyclic.

THE ENHANCED POWER GRAPH ASSOCIATED WITH A FINITE GROUP 243
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If G satisfies condition (ii) then note that every element of G \ {e} lies in ex-
actly one maximal cyclic subgroup of G, consequently for each x ∈ G \ {e},
we have deg(x) = |Mi| − 2, where Mi is the maximal cyclic subgroup of G
containing x. Hence, P∗

E(G) is regular. �

Remark 4.2. Notice that there are several groups which satisfy the con-
dition (ii) of the Theorem 4.1. For instance, an elementary abelian p-group,
a non-abelian group G = 〈x, y, z; xp = yp = zp = e, yz = zyx, xy = yx,
xz = zx〉, etc. where p is an odd prime.

Clearly, a strongly regular graph is always regular. However, the con-
verse need not be true. We show that the converse is also true for PE(G) in
the following theorem.

Theorem 4.3. Let G be a finite group. Then P∗
E(G) is regular if and

only if P∗
E(G) is strongly regular.

Proof. To prove the result, it is sufficient to show that if P∗
E(G) is reg-

ular then P∗
E(G) is strongly regular. Suppose that P∗

E(G) is regular then G
must satisfy one of the conditions given in Theorem 4.1. If G is cyclic then
being a complete graph, P∗

E(G) is strongly regular. If G satisfies condition
(ii), then by the proof of Theorem 4.1, for each x ∈ V (P∗

E(G)) we obtain
deg(x) = m− 2, where m is the order of a maximal cyclic subgroup con-
taining x. For m = 2, P∗

E(G) is a null graph and so is strongly regular. If
m ≥ 3, then observe that in P∗

E(G), each pair of adjacent vertices has ex-
actly m− 3 common neighbours and each pair of non-adjacent vertices has
no common neighbour. Hence, P∗

E(G) is strongly regular with parameters
(n,m− 2,m− 3, 0). �

In view of [1, Theorem 28] and Theorem 2.6, we have the following corol-
lary.

Corollary 4.4. If G is a non-cyclic p-group then P∗
E(G) is regular if

and only if the exponent of G is p.

Theorem 4.5. Let G be a non-cyclic nilpotent group. Then P∗
E(G) is

regular if and only if G is a p-group with exponent p.

Proof. Let G be a non-cyclic nilpotent group of order n = pλ1

1 pλ2

2 · · ·pλr

r .
To prove our result it is sufficient to prove that if P∗

E(G) is regular then G is
a p-group. If possible, let r ≥ 2. Since G is a non-cyclic group there exists
a non-cyclic Sylow subgroup Pi. Consequently, Pi has at least two maximal
cyclic subgroups, namely: Mi and M ′

i . Consider the maximal cyclic sub-
groups M = M1M2 · · ·Mi · · ·Mr and M ′ = M1M2 · · ·M

′
i · · ·Mr of G, here

Mj is a maximal cyclic subgroup of Pj for j ∈ [r] \ {i}. By Lemma 2.4, we
obtain that M and M ′ are maximal cyclic subgroups of G such that M ∩M ′

	= {e}; a contradiction of Theorem 4.1. Thus, r = 1 and so G is p-group.
�
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Corollary 4.6. Let G be a finite non-cyclic abelian group. Then P∗
E(G)

is regular if and only if G is an elementary abelian p-group.

Based on the results obtained in this section, we posed the following
conjecture which we are not able to prove.

Conjecture. Let G be a finite non-cyclic group. If P∗
E(G) is regular

then G is a p-group with exponent p.

5. The vertex connectivity of PE(G)

In this section, we investigate the vertex connectivity of the enhanced
power graph of some nilpotent groups. Recall that if G andH are two torsion
groups then PE(G×H) ∼= PE(G)�PE(H) if and only if gcd(o(g), o(h)) = 1
for all g ∈ G and h ∈ H (see [29, Lemma 2.1]). Let G = P1P2 · · ·Pr be a
nilpotent group. For our purpose, first we show that the enhanced power
graph of a finite nilpotent group is isomorphic to the strong product of the
enhanced power graph of its Sylow subgroups (see Theorem 5.4). Using this
and ascertaining a minimum cut-set, we obtain the vertex connectivity of
PE(G), where G is a nilpotent group such that each of its Sylow subgroups
is cyclic except Pk for some k ∈ [r].

Let G = P1P2 · · ·Pr be a nilpotent group. For x = x1x2 · · ·xr ∈ G, where
xi ∈ Pi, define τx = {j ∈ [r] : xj 	= e}. Note that if 〈x〉 ∈ M(G) then τx = [r].

Lemma 5.1. Let H = 〈x〉 and x =
∏

i∈τx
xi. Then 〈xi〉 ⊆ 〈x〉 for all

i ∈ τx.

Proof. Consider i0 ∈ τx and l =
∏

i∈[r]\{i0} o(xi). Then xl = xli0 (cf.
Theorem 2.1). Since gcd(l, o(xi0)) = 1, we have 〈xl〉 = 〈xli0〉 = 〈xi0〉 and so
xi0 ∈ 〈xl〉. Hence, 〈xi0〉 ⊆ 〈x〉. �

Lemma 5.2. Let G be a nilpotent group. Then 〈x〉 =
〈 ∏

i∈τx
xi
〉
=∏

i∈τx
〈xi〉, where 〈xi〉〈xj〉 =

{
ab : a ∈ 〈xi〉 and b ∈ 〈xj〉}.

Proof. Clearly,
〈 ∏

i∈τx
xi
〉
⊆

∏
i∈τx

〈xi〉. If a ∈
∏

i∈τx
〈xi〉. Then a =∏

i∈τx
ai such that ai ∈ 〈xi〉. Thus, ai = xki

i for some ki ∈ N. By Lemma
5.1, ai = xλiki for some λi ∈ N and so a = x

∑
i∈τx

λiki . Consequently, we get
a ∈ 〈x〉. Thus, the result holds. �

Lemma 5.3. Let G be a nilpotent group such that x =
∏r

i=1 xi and y =∏r
i=1 yi. Then x ∼ y in PE(G) if and only if xi ∼ yi in PE(Pi) whenever

xi 	= yi.

Proof. First suppose that x ∼ y in PE(G). Then there exists z ∈ G
such that x, y ∈ 〈z〉. We may now suppose that xi 	= yi for some i. By

THE ENHANCED POWER GRAPH ASSOCIATED WITH A FINITE GROUP 245



Acta Mathematica Hungarica 169, 2023

THE ENHANCED POWER GRAPH ASSOCIATED WITH A FINITE GROUP 9

Lemma 5.1, xi ∈ 〈x〉 ⊆ 〈z〉. Similarly, yi ∈ 〈z〉. Thus, 〈xi, yi〉 ⊆ 〈z〉 fol-
lows that 〈xi, yi〉 is a cyclic subgroup of Pi. Thus, xi ∼ yi in PE(Pi).
Conversely, suppose that xi ∼ yi in PE(Pi) for xi 	= yi. Consider K ={
j ∈ [r] : xj ∼ yj in PE(Pj)

}
. Consequently, for i ∈ K, we have 〈xi, yi〉 ⊆

〈zi〉 for some zi ∈ Pi. Choose z =
∏

i∈K zi ·
∏

i∈[r]\K xi. Thus by Lemma
5.2, 〈z〉 =

∏
i∈K〈zi〉 ·

∏
i∈[r]\K〈xi〉. Consequently, x =

∏
i∈[r] xi ∈ 〈z〉 and

y =
∏

i∈[r] yi ∈ 〈z〉. Hence, x ∼ y in PE(G). �

Theorem 5.4. Let G be a nilpotent group. Then

PE(G) ∼= PE(P1)� PE(P2)� · · · � PE(Pr)

where Pi is the Sylow pi-subgroup of G.

Proof. Let x = x1x2 · · ·xr ∈ G. Then define ψ : V (PE(G)) → V (PE(P1)
�PE(P2)� · · ·�PE(Pr)) such that x 
−→ (x1, x2, . . . , xr), where xi ∈ Pi. In
view of Lemma 5.3, note that ψ is a graph isomorphism. �

Lemma 5.5. Let G be a non-cyclic group and T =
⋂

M∈M(G) M . Then
T is contained in every cut-set of PE(G).

Proof. Let x ∈ T and y( 	= x) ∈ G. Since y ∈ M for some M ∈ M(G)
and x ∈ T , we have x ∈ M . Consequently, x ∼ y. It follows that x is ad-
jacent to every vertex of PE(G). Thus, x must belongs to every cut-set of
PE(G) and so is T . �

Theorem 5.6. Let G = P1P2 · · ·Pr be a non-cyclic nilpotent group of
order n = pλ1

1 pλ2

2 ...pλr

r with r ≥ 2. Suppose that each Sylow subgroup Pi of G
is cyclic except Pk for some k ∈ [r].

(i) If Pk is not a generalized quaternion group, then the set Q =
P1P2 · · ·Pk−1Pk+1 · · ·Pr is the only minimum cut-set of PE(G) and hence
κ(PE(G)) = n

p
λ
k

k

.

(ii) If Pk is a generalized quaternion group, then the set

Q′ = Z(Q2α)P2 · · ·Pr

is the only minimum cut-set of PE(G) and hence κ(PE(G)) = n
2λ1−1 .

Proof. (i) First suppose that Pk is not a generalized quaternion group.
By Corollary 2.5, Q is contained in every maximal cyclic subgroup of G. By
Lemma 5.5, Q is contained in every cut-set of PE(G). Now, to prove our
result we first prove the following claim.

Claim. Let Ti be a cut-set of PE(Pi). Then T = P1 · · ·Pi−1TiPi+1 · · ·Pr

is a cut-set of PE(G).

Proof of the claim. Let Ti be a cut-set of PE(Pi) and let a, b ∈ Pi

such that there exist no path between a and b in PE(Pi \Ti). It follows that,
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for the isomorphism ψ defined in the proof of Theorem 5.4, there is no path
between ψ(a) and ψ(b) in the subgraph induced by V (�r

i=1PE(Pi)) \ ψ(T ).
Consequently, there is no path between a and b in PE(G \ T ). Hence, T is
a cut-set of PE(G). �

Now by [4, Theorem 1], κ(PE(Pk)) = 1 and {e} is the only cut-set of
PE(Pk). Thus, above claim follows that the set Q is the only minimum
cut-set of PE(G). Hence, κ(PE(G)) = n

p
λ
k

k

.

(ii) Now suppose that Pk = Q2α is a generalized quaternion group. Note
that the center Z(Q2α) of Q2α is contained in every maximal cyclic subgroup
of Q2α . Consequently, Q′ is contained in every maximal cyclic subgroup of
G [cf. Lemma 2.4]. Thus, by Lemma 5.5, Q′ is contained in every cut-set of
PE(G). By claim, Q′ is a cut-set of PE(G). Hence, Q′ is the only minimum
cut-set of PE(G) and so κ(PE(G)) = n

2λ1−1 . �

6. The Wiener index of PE(G)

In this section, we study the Wiener index of PE(G), where G is a fi-
nite nilpotent group. We obtain a lower bound and an upper bound of
W (PE(G)). We also characterize the finite nilpotent groups attaining these
bounds. Define

• S0,i = {(x, x) : x ∈ Pi}.
• S1,i = {(x, y) : x ∼ y in PE(Pi)}.
• S2,i = {(x, y) : x � y in PE(Pi)} such that |S2,i| = mi.

and
• S0 = {(x, x) : x ∈ G}.
• S1 = {(x, y) : x ∼ y in PE(G)}.
• S2 = {(x, y) : x � y in PE(G)}.
Then by the definition of Wiener index, we have

W (PE(G)) =
|S1|+ 2|S2|

2
.

Now we obtain the Wiener index of PE(G), where G is a nilpotent group.

Theorem 6.1. Let G be a nilpotent group of order n = pλ1

1 pλ2

2 · · · pλr

r .
Then

W (PE(G)) =
2n2 − n−

∏r
i=1(p

2λi

i −mi)
2

.

Proof. Let G = P1P2 · · ·Pr be a nilpotent group such that |Pi| = pλi

i

and let x = x1x2 · · · xr, y = y1y2 · · · yr ∈ G. By Theorem 5.4, note that

S1 = {(x, y) : either xi = yi or xi ∼ yi in PE(Pi)} \ S0 .
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Let mi = |S2,i|. Then

|S1| =
r∏

i=1

(|S1,i|+ |S0,i|) − n

=
r∏

i=1

(p2λi

i −mi − pλi

i + pλi

i )− n =
r∏

i=1

(p2λi

i −mi)− n

and

|S2| = n2 − |S0| − |S1| = n2 −
r∏

i=1

(p2λi

i −mi).

Hence,

W (PE(G)) =
2n2 − n−

∏r
i=1(p

2λi

i −mi)
2

. �

Corollary 6.2. Let G, G′ be nilpotent groups such that |G| = |G′| =
pλ1

1 pλ2

2 · · · pλr

r . If mi ≤ m′
i for all i ∈ [r], then W (PE(G)) ≤ W (PE(G′).

Lemma 6.3. Let G be a p-group. Then |S2| ≤ (o(G)− p)(o(G)− 1).

Proof. Let x 	= e ∈ G. Since G is a p-group, we have o(x) ≥ p. Thus,
x is adjacent to at least p− 1 vertices in PE(G). It follows that x is not
adjacent to at most o(G)− p+1 elements in PE(G). Since x is at distance 0
from itself, it implies that the number of elements at distance two from x
is at most o(G)− p. Note that the identity element is adjacent to all other
vertices in PE(G). Thus, for S2 = {(x, y) : x � y in PE(G)}, we have |S2|
≤ (o(G)− p)(o(G)− 1). �

In view of Theorem 6.1 and Lemma 6.3, we have the following corollary.

Corollary 6.4. Let G be a p-group. Then

W (PE(G)) ≤
(o(G)− 1)(2o(G)− p)

2
.

For the nilpotent group G, now we give a sharp lower bound and an
upper bound of W (PE(G)) (independent from mi) in the following theorem.

Theorem 6.5. Let G be a nilpotent group of order n = pλ1

1 pλ2

2 · · · pλr

r .
Then

(i)

n(n− 1)
2

≤ W (PE(G)) ≤
2n2 − n−

∏r
i=1(p

λi+1
i + pλi

i − pi)
2

.

J. KUMAR, X. MA, PARVEEN and S. SINGH248



Acta Mathematica Hungarica 169, 2023

12 J. KUMAR, X. MA, PARVEEN and S. SINGH

(ii) W (PE(G)) attains its lower bound if and only if G is cyclic.
(iii) W (PE(G)) attains its upper bound if and only if |M | = p1p2 · · · pr for

every M ∈ M(G).

Proof. (i)-(ii). From Lemma 6.3, it follows that mi ≤ (pλi

i −pi)(pλi

i −1)
for all i ∈ [r]. Consequently, by Theorem 6.1 and Corollary 6.2, we get

W (PE(G)) ≤ 2n2−n−
∏

r

i=1
(pλi+1

i
+p

λi

i
−pi)

2 . Notice that W (PE(G)) is smallest if
and only if PE(G) is complete if and only if G is cyclic (cf. Theorem 2.2).
Since the Wiener index of the complete graph on n vertices is n(n−1)

2 , we
obtain n(n−1)

2 ≤ W (PE(G)).
(iii) By Theorem 6.1, observe that W (PE(G)) is maximum if and only

if mi is maximum for all i ∈ [r]. First, we prove that mi is maximum if and
only if |M ′| = pi for every M ′ ∈ M(Pi).

For simplicity, we write pi = p and λi = λ so that mi ≤ (pλ−p)(pλ−1).
Now let |M ′| = p for every M ′ ∈ M(Pi). Then for any non-identity element
x ∈ Pi, o(x) = p. Since x is a generator of a maximal cyclic subgroupH of Pi

note that x ∈ H only. It follows that x is adjacent to p−1 vertices of PE(Pi).
Consequently, x is at distance 2 from pλ− p vertices of PE(Pi). Since x is an
arbitrary non-identity element of Pi, we have mi = (pλ − 1)(pλ − p). Thus
mi is maximum. Conversely, suppose that the mi is maximum. On contrary,
suppose |M ′| = pα for some α ≥ 2 and M ′ ∈ M(Pi). Further, assume that
x ∈ Pi. Clearly, o(x) ≥ p. If x ∈ M ′ then x is adjacent to at least pα − 1
vertices of PE(Pi) and so at most pλ − pα vertices are at distance 2 from x
in PE(Pi). Similarly, if x ∈ Pi \M

′ then there are at most pλ − p elements
at distance 2 from x in PE(Pi). Consequently, we get

mi ≤ (pα − 1)(pλ − pα) + (pλ − p)(pλ − pα) < (pλ − 1)(pλ − p);

a contradiction. Hence, mi is maximum if and only if |M ′| = pi for all M ′ ∈
M(Pi).

Thus by Lemma 2.4, we get W (PE(G)) is maximum if and only if |M | =
p1p2 · · · pr for every M ∈ M(G). �

Note that the given upper bound is tight and it is attained by the group
G = Z

λ1

p1
× Z

λ2

p2
× · · · × Z

λr

pr
. Moreover, in this case, the graph PE(G) has

minimum number of edges.
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