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Abstract. In ZF (i.e. the Zermelo–Fraenkel set theory without the Axiom
of Choice (AC)), we investigate the set-theoretic strength of a generalized ver-
sion of Hindman’s theorem and of certain weaker forms of this theorem, which
were introduced by Fernández-Bretón [8], with respect to their interrelation with
several weak choice principles. In this direction, we determine the status of (this
general version of) Hindman’s theorem (and of weaker forms) in certain permu-
tation models of ZFA+ ¬AC and transfer the results to ZF, strengthen some
results of [8] and settle a related open problem from Howard and Rubin [10]; thus
filling the gap in information in both [8] and [10].

1. Introduction

A cornerstone of the Ramsey theory of numbers is undoubtedly the cel-
ebrated Hindman’s theorem which states the following: “For every finite
colouring of the natural numbers there exists an infinite set X such that
all finite sums of distinct elements of X have the same colour”. In fact,
the latter statement was originally a conjecture of R. Graham and B. Roth-
schild that was proved to be true, in 1974, by Hindman [9] who used a
long and involved combinatorial argument. Although Hindman does not
state exactly his assumptions, it is implicit that he is assuming the ZFC

axioms. In terms of analyzing the minimal set of assumptions that he em-
ploys, Hindman’s original proof uses relatively little, certainly much less than
even ZF; as shown by Blass, Hirst and Simpson [2], Hindman’s proof goes
through in the subsystem ACA+

0 of second order arithmetic. A different
proof that requires stronger assumptions, but still well within the scope of
ZF, is Baumgartner’s [1]. However, the standard by now ZFC-proof (which
is considerably easier than Hindman’s original proof) utilizes ultrafilters and
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is due to Galvin, whose argument was based on a result of Glazer, namely
“There exists a free idempotent ultrafilter on ω”, which is not provable in
ZF; see [10, Feferman’s model M2, Blass’ model M15]—in M2, every ul-
trafilter on ω is principal and in M15 every ultrafilter on any infinite set
is principal.1 But even Galvin’s proof of Hindman’s theorem can be car-
ried out in ZF (in spite of the apparent need for the AC encapsulated in
the use of a free (idempotent) ultrafilter on ω) by using Shoenfield’s abso-
luteness theorem. In fact, it was Comfort [4] who used Shoenfield’s theorem
(actually, a theorem stronger than the latter result) to establish that Hind-
man’s theorem is provable in ZF, i.e. provable without appeal to any form
of choice; see [4, Subsection 4.2]. A different but more explicit (and proba-
bly more illuminating) argument was suggested to us by the referee and is
as follows: given c : ω → k, consider L[c] (i.e. the constructible universe rel-
ativized to c) and obtain within L[c] a free idempotent ultrafilter on ω, U
say. As U is an ultrafilter on ω and c is a finite colouring of ω, there ex-
ists i ∈ k such that U = c−1({i}) ∈ U . Following Galvin’s proof, construct
an infinite (in fact, denumerable) X ⊆ U in L[c] such that FS(X), the set of
all finite sums of distinct elements of X , is a subset of U in L[c], i.e. FS(X)
is c-monochromatic (in colour i) in L[c]. All of this happens in L[c] but
of course X still exists and satisfies that FS(X) is c-monochromatic in the
“real world”.

Now, Hindman’s theorem is equivalent to the statement: “For every fi-
nite colouring of [ω]<ω (the set of finite subsets of ω), there exists an infinite,
disjointed Y ⊆ [ω]<ω such that all unions of finitely many elements of Y have
the same colour”. Fernández-Bretón [8], continuing the research initiated by
Brot, Cao and Fernández-Bretón [3], considered a natural generalization
of the above statement by replacing ω with any infinite set X and stud-
ied the implication relations between the resulting statement and various
weak choice principles. In particular, the author [8] formulated the follow-
ing proposition, which he referred to as Hindman’s theorem and denoted by
HT: “For every infinite set X and for every colouring c : [X]<ω → 2, there
exists an infinite, pairwise disjoint family Y ⊆ [X]<ω such that the set

FU(Y ) =
{ ⋃

y∈F

y : F ∈ [Y ]<ω \ {∅}

}

is c-monochromatic”. (In [8, Proposition 2], it was shown—within ZF—that
HT is equivalent to HT(k) for any integer k ≥ 2, where HT(k) is the state-
ment resulting from HT by replacing “2” with “k”.) Based on a result of

1 For Glazer’s result and Galvin’s proof, see, for example, Jech [13, Theorem 29.1, Lemma
29.2]. For a thorough study on free idempotent ultrafilters on ω, as well as on the Ellis–Numakura
Lemma, in set theory without the full power of AC, the reader is referred to the fairly recent works
of Di Nasso and Tachtsis [7] and Tachtsis [21].
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[3] (specifically, [3, Theorem 3.2]), the author gave an exact characterization
of HT as a weak choice form, namely as “For every infinite set X , [X]<ω is
Dedekind-infinite”; see [8, Proposition 4].

Fernández-Bretón [8] also considered a class of weaker Boolean forms of
HT, denoted by HTn(k) (n, k ∈ ω \ {0}), and investigated the set-theoretic
strength of HT2(k) with regard to its placement among several weak choice
principles. (Complete definitions shall be given in the forthcoming Sec-
tion 2.)

The purpose of this paper is to continue the research initiated in [8] and
[3] on this intriguing topic by providing new information on the status of
HT, HT2(k) and HT3(k) in certain (relatively recent) permutation models
of ZFA+¬AC and by strengthening some results of [8] as well as resolving
a related open problem from Howard and Rubin [10]; in particular, we show
(in Theorem 7) that there is a model of ZF in which HT is true but the
axiom of multiple choice for denumerable families of denumerable sets and
the axiom of countable choice for non-empty finite sets are both false (the
corresponding problem from [10] concerned the statement “For every infinite
set X , ℘(X) is Dedekind-infinite” rather than HT, which, nonetheless, is
weaker than HT in ZF). The latter result thus fills the gap in information
in [8], [10] and, moreover, it properly strengthens a result of [8].

2. Terminology and known results

Notation 1. 1. ZF is the Zermelo–Fraenkel set theory minus the AC.
2. ZFA is ZF with the Axiom of Extensionality weakened to allow the

existence of atoms.
3. ZFC is ZF+AC.
4. ω denotes as usual the set of natural numbers.
5. Let X be any set. [X]<ω denotes the set of finite subsets of X and,

for every n ∈ ω \ {0}, [X]n denotes the set of all n-element subsets of X .

Definition 1. A set X is called:
1. finite if there exists a bijection f : X → n for some n ∈ ω. Otherwise,

X is called infinite.
2. denumerable if there is a bijection f : ω → X .
3. countable if it is finite or denumerable.
4. Dedekind-finite if there is no injection f : ω → X . Otherwise, X is

called Dedekind-infinite.
5. Ia-finite if X cannot be expressed as a disjoint union of two infinite

subsets (i.e. if every subset of X is either finite or co-finite in X).2
6. amorphous if X is infinite and Ia-finite.

2 This notion of finiteness was first formulated by A. Lévy [17].
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7. cuf if it can be expressed as a countable union of finite sets.

Definition 2. Let (P,≤) be a partially ordered set (poset).
(a) The binary relation < on P defined by x < y if x ≤ y and x �= y, is

called a strict partial order on P ; hence, a strict partial order < on P is
an irreflexive (∀x ∈ P , (x, x) �∈ <) and transitive binary relation on P . The
ordered pair (P,<) is called a strict poset.

(b) (P,≤) is called a lattice if, in addition, every pair of elements of P
has a supremum and an infimum. The corresponding strict poset (P,<) is
called a strict lattice.

(c) A set A ⊆ P is called a chain in P if, for every x, y ∈ A, x ≤ y or
y ≤ x (i.e. if any two elements of A are comparable with respect to ≤). A
set A ⊆ P is called an anti-chain in P if, for every two distinct x, y ∈ A,
x � y and y � x (i.e. if any two elements of A are incomparable with respect
to ≤).

Below, we list the weak choice principles we shall refer to in this paper.
To the best of our knowledge, the principle DCl,fp was introduced by Da
Silva [5] and, as already mentioned, HT and HTn(k) (n, k ∈ ω \ {0}) were
introduced by Fernández-Bretón [8].

Definition 3 (AC and weak choice principles).
1. Axiom of Choice (AC and Form 1 in [10]): Every family of non-

empty sets has a choice function.
2. Axiom of Countable Choice (ACω and Form 8 in [10]): Every denu-

merable family of non-empty sets has a choice function.
3. Axiom of Countable Multiple Choice (MCω and Form 126 in [10]):

Every denumerable family of non-empty sets has a multiple choice function
(i.e. a function which chooses a non-empty, finite subset from each element
of the given family).

4. MCω
ω (Form 350 in [10]): Every denumerable family of denumerable

sets has a multiple choice function.
5. ACω

fin
(Form 10 in [10]): Every denumerable family of non-empty

finite sets has a choice function.3
6. DF = F (Form 9 in [10]): Every Dedekind-finite set is finite.
7. Principle of Dependent Choices (DC and Form 43 in [10]): Let R be

a binary relation on a non-empty set A such that (∀x ∈ A)(∃y ∈ A)(x R y).
Then there is a sequence (xn)n∈ω of elements of A such that xn R xn+1 for
all n ∈ ω.

8. DCl,fp: DC restricted to strict lattices for which every element has
only finitely many predecessors.

3 In ZF, AC
ω
fin

is equivalent to the statement “The union of a countable family of finite sets
is countable”; see [10].
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9. Hindman’s theorem (HT): For every infinite set X and for every
colouring c : [X]<ω → 2, there exists an infinite, pairwise disjoint family Y ⊆
[X]<ω such that the set

FU(Y ) =
{ ⋃

y∈F

y : F ∈ [Y ]<ω \ {∅}

}

is c-monochromatic.
10. Given a set X , a family Y ⊆ [X]<ω , and an n ∈ ω \ {0}, we let

FS≤n(Y ) = {F1�· · ·�Ft : t ≤ n and F1, . . . , Ft ∈ Y },

where � denotes the operation of symmetric difference.
Let n, k ∈ ω \ {0}. HTn(k): For every infinite set X and every colour-

ing c : [X]<ω → k, there exists an infinite Y ⊆ [X]<ω such that FS≤n(Y ) is
c-monochromatic.

11. Ramsey’s theorem (RT and Form 17 in [10]): For every infinite set X
and for every colouring c : [X]2 → 2, there exists an infinite Y ⊆ X such that
[Y ]2 is c-monochromatic.

12. Chain/Anti-chain Principle (CAC and Form 217 in [10]): Every in-
finite poset has either an infinite chain or an infinite anti-chain.

13. LW (Form 91 in [10]): Every linearly ordered set can be well ordered.4
14. Form 82 of [10]: For every infinite set X , ℘(X) is Dedekind-infinite.5

Next, we list some of the most representative known results in this area.

Theorem 1. 1. (ZF) Any infinite, well-orderable set X satisfies the
conclusion of HT, and thus of HTn(k) for all n, k ∈ ω \ 1.

2. Let k ∈ ω \ 1 and n ∈ ω \ 4. Then HT is equivalent to HTn(k).
3. Let k ∈ ω \ 1. Then, HT ⇒ HT3(k) ⇒ HT2(k).
4. HT2(k) does not imply HT in ZF, for any integer k ≥ 2.
5. The following are equivalent :
(a) HT.
(b) For every infinite set X , [X]<ω is Dedekind-infinite.
(c) Every infinite set has an infinite cuf subset.

(d) DCl,fp.
Thus, HT (equivalently, DCl,fp) implies that there are no amorphous sets.
Moreover, the latter implication is not reversible in ZF.

6. DF = F is equivalent to HT ∧ACω
fin

.

4
LW is equivalent to AC in ZF, but it is not equivalent to AC in ZFA (see [12, Theorems

9.1, 9.2].
5Note that Form 82 is equivalent to the statement: “For every infinite set X , there is a

surjection f : X → ω”.
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7. Form 82 is weaker than HT in ZF. In particular, the Basic Cohen
Model (Model M1 in [10]) satisfies 82 ∧ ¬HT2(2) (and thus satisfies 82 ∧
¬HT).

8. For any integer k ≥ 2, RT implies HT2(k) and the implication is not
reversible in ZF.

9. In each of the Basic Fraenkel Model (Model N1 of [10]) and the
Mostowski Linearly Ordered Model (Model N3 of [10]), (∀k ≥ 2)(HT2(k))
is true but HT3(2) (and thus HT3(k) for any integer k ≥ 2) is false.

In Theorem 1, parts (1)–(4), the equivalence between (a) and (b) in
part (5), part (6), the fact of (7) that HT2(2) is false in the Basic Cohen
Model M1 and part (8), were established by Fernández-Bretón [8] (see [8,
Propositions 4, 6, Corollaries 25, 29, Theorems 28, 30]). In fact, in [8], it is
mentioned that (2) and “(a) ⇐⇒ (b)” of (5) follow from [3, Theorem 3.2].
The equivalence between (c) and (d) of Theorem 1(5) was shown by Tachtsis
[19, Theorem 4], and the equivalence between (b) and (c) is straightforward.
Furthermore, the assertion (in part (5) of Theorem 1) that “There are no
amorphous sets” (Form 64 in [10]) does not imply HT in ZF follows from
the fact that the former principle is true in the Basic Cohen Model M1 (see
[10]), while (as mentioned above) HT2(2), and thus HT, is false in M1.
Part (9) of Theorem 1 was established in [8, Theorem 28] and [3, Proposi-
tions 4.2, 4.17].

Let us also note here that the validity of Form 82 in M1 readily follows
from Jech [12, Lemma 5.25] (this was also observed by Truss [23, Theorem
5]), and that the failure of HT in M1 is derived from part (6) of Theo-
rem 1 and the fact that M1 satisfies the Countable Union Theorem (i.e.
“The union of a countable family of countable sets is countable”), and thus
satisfies ACω

fin
, and ¬(DF = F) (see [10]).

Last but not least, let us mention that Keremedis and Tachtsis [15] have
given some topological characterizations of the principle “For every infinite
set X , [X]<ω is Dedekind-infinite”, and thus of HT. To name one, the
statement “For every infinite set X, the Tychonoff product 2X (where 2 =
{0, 1} is equipped with the discrete topology) has a denumerable, disjointed
family of non-empty, open sets” is equivalent to the above principle, and
thus to HT; see [15, Lemma 1, Theorem 3]. Further topological equivalents
of HT can be found in Keremedis and Wajch [16].

3. Terminology for permutation models and a transfer theorem

of Pincus

For the reader’s convenience, we provide a brief account of the construc-
tion of permutation models of ZFA; a detailed account can be found in Jech
[12, Chapter 4].

HINDMAN’S THEOREM AND CHOICE 407
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One starts with a model M of ZFA +AC which has A as its set of
atoms. Let G be a group of permutations of A and also let F be a filter on
the lattice of subgroups of G which satisfies the following two properties:

(∀a ∈ A)(∃H ∈ F)(∀φ ∈ H)(φ(a) = a)

and F is closed under conjugation, i.e.

(∀φ ∈ G)(∀H ∈ F)(φHφ−1 ∈ F).

Such a filter F of subgroups of G is called a normal filter on G. Every per-
mutation of A extends uniquely to an ∈-automorphism of M by ∈-induction,
and for any φ ∈ G, we identify φ with its (unique) extension. If x ∈ M and
H is a subgroup of G, then fixH(x) denotes the (pointwise stabilizer) sub-
group {φ ∈ H : ∀y ∈ x(φ(y) = y)} ofH and SymH(x) denotes the (stabilizer)
subgroup {φ ∈ H : φ(x) = x} of H .

An element x of M is called F -symmetric (or symmetric when no con-
fusion arises) if SymG(x) ∈ F and it is called hereditarily F -symmetric (or
hereditarily symmetric) if x and all elements of TC(x) (the transitive closure
of x) are F -symmetric.

Let N be the class which consists of all hereditarily F -symmetric ele-
ments of M . Then N is a model of ZFA and A ∈ N (see Jech [12, Theorem
4.1, p. 46]); it is called the permutation model (or the Fraenkel–Mostowski
model) determined by M , G and F .

Definition 4. For any set X , let ℘α(X), where α ranges over ordinal
numbers, be defined as follows:

℘0(X) = X, ℘α+1(X) = ℘α(X) ∪ ℘(℘α(X)),

℘α(X) =
⋃
β<α

℘β(X) (α limit).

In the subsequent Definitions 5 and 6(2), the notation x stands for a
tuple (x1, x2, . . . , xn) of variables. In Definition 6(2), the variables of y =
(y1, y2, . . . , yn) are assumed disjoint from those of x. ∃x (∀x) stands for
∃x1∃x2 · · · ∃xn (∀x1∀x2 · · · ∀xn).

⋃
x stands for x1 ∪ x2 ∪ · · · ∪ xn.

Definition 5 [14]. Let C be a class and also let Φ(x) be a formula in
the language of set theory with atoms. ΦC(x) is Φ with quantifiers restricted
to C. Similarly, if σ(x) is a term, then σC(x) is defined by the same formula
that defines σ but with its quantifiers restricted to C.

Φ(x) is boundable if for some ordinal γ, ZFA � Φ(x)↔ Φ℘γ(
⋃

x)(x). Sim-
ilarly, the term σ(x) is boundable if for some ordinal γ, ZFA � σ(x) =
σ℘γ(

⋃
x)(x).

A statement is boundable if it is the existential closure of a boundable
formula.

E. TACHTSIS408
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Definition 6 [18]. 1. Let x be a set. We define

|x|− = sup
{
κ : κ is a well-ordered cardinal such that κ ≤ |x|

}
.

|x|− is called the injective cardinality of x.
2. A formula Φ(y) is injectively boundable if it is a conjunction of Φi(y):

Φi(y) = ∀x
((∣∣∣⋃x

∣∣∣
−
≤ σi(y) ∧

⋃
x ∩ TC

(⋃
y
)
= ∅

)
→ Ψi(x,y)

)
,

where σi(y) and Ψi(x,y) are boundable.
A statement is injectively boundable if it is the existential closure of an

injectively boundable formula.

The following fact was noted in [18, p. 722].

Fact 1. Boundable formulae and statements are (up to equivalence) in-
jectively boundable.

Theorem 2 [18, Theorem 3A3]. Let Φ be a conjunction of injectively
boundable statements which hold in a permutation model V0. There is a ZF-
model V ⊃ V0 with the same ordinals and cofinalities where Φ holds.

4. Main results

We start by proving that MCω implies HT and that the implication is
not reversible in ZF (cf. Proposition 1 and Theorem 3). This strengthens
[8, Theorem 18] that HT is weaker than ACω in ZF; recall that MCω is
weaker than ACω in ZFA (see, for example [10, Second Fraenkel Model
N2]).

Proposition 1. MCω implies HT (and thus, by Theorem 1[(2),(3)],
implies HTn(k) for all n, k ∈ ω \ {0}).

Proof. Assume MCω . Let X be an infinite set and also let

U =
{
[X]n : n ∈ ω \ {0}

}
.

Clearly, U is denumerable. By MCω, let F be a multiple choice function
for U . It is reasonably clear that

V =
{⋃

F ([X]n) : n ∈ ω \ {0}
}

is a denumerable subset of [X]<ω . Hence, [X]<ω is Dedekind-infinite, i.e.
HT is true. �

Note that since DF = F implies HT and DF = F does not imply MCω

in ZF (see [10, Model M6]), it follows that HT is weaker than MCω in ZF.

HINDMAN’S THEOREM AND CHOICE 409
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However, since (as already mentioned in Section 1) we consider it impor-
tant to provide new information about the status of HT in certain models
of ZFA+¬AC, we show next that HT is true in a permutation model con-
structed in [6], which does not satisfy any of DF = F and MCω , and for
which the status of HT was unknown until now. In Theorem 4, we will
observe that the above ZFA-independence result can be transferred to ZF.

The permutation model from [6]. We start with a modelM of ZFA+AC
with a set A of atoms such that A has a denumerable partition {Ai : i ∈ ω}
into denumerable sets, and for each i ∈ ω, Ai has a denumerable partition

Pi =
{
Ai,j : j ∈ ω \ {0}

}
into finite sets such that, for every j ∈ ω \ {0}, |Ai,j | = j. Let

G =
{
φ ∈ Sym(A) : (∀i ∈ ω)(φ(Ai) = Ai) and |{a ∈ A : φ(a) �= a}| < ℵ0

}
,

where Sym(A) is the group of all permutations of A. Let

Pi = {φ(Pi) : φ ∈ G}

and also let

P =
⋃

{Pi : i ∈ ω}.

Let F be the filter of subgroups of G generated by the subgroups fixG(E),
E ∈ [P]<ω; F is a normal filter on G.

Definition 7. Let M , G and F be given as above. We let N be the
permutation model determined by M , G and F .

If x ∈ N , then SymG(x) ∈ F , and thus (by definition of F) there exists
E ∈ [P]<ω such that fixG(E) ⊆ SymG(x). Under these circumstances, we
call E a support of x.

A few observations are in order:
1. For every i ∈ ω, every Q ∈ Pi is a partition of Ai into sets of differ-

ent cardinalities. Thus, for any φ ∈ G, φ fixes Q if and only if φ fixes Q
pointwise. Moreover, since every φ ∈ G moves only finitely many elements
of A,

(1) (∀Q ∈ Pi)(∃jQ ∈ ω)(Q ⊇ {Ai,j : j > jQ}).

2. The set A is (in N ) the denumerable union of the cuf sets Ai, i ∈ ω
(since, for every i ∈ ω, Pi = {Ai,j : j ∈ ω \ {0}} is a denumerable partition of
Ai in N—{Pi} is a support of every element of Pi—comprising finite sets),
which fails to be cuf in N .

3. For every i ∈ ω, Ai is not well orderable in N since no E ∈ [P]<ω is
a support of a well ordering on Ai (and thus ACω

fin is false in N ). If not,

E. TACHTSIS410
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then for some i ∈ ω, there exists E ∈ [P]<ω which is a support of every ele-
ment of Ai. Then, necessarily, E ∩Pi �= ∅. Otherwise, pick two distinct a, b
∈ Ai and consider the transposition φ = (a, b). Then φ ∈ fixG(E) \ fixG(Ai),
which is a contradiction. So, E ∩Pi �= ∅. Since E is finite, equation (1)
yields the existence of a j0 ∈ ω such that every member of E ∩Pi contains
{Ai,j : j > j0}. Let j > j0 and also let a, b be two distinct elements of Ai,j

(and note that |Ai,j | = j > j0 ≥ 1). Let η = (a, b). Clearly η ∈ fixG(E).
However, η does not fix Ai pointwise, which is a contradiction.

Moreover, in much the same way as the previous argument, one shows
that, for every i ∈ ω, Ai has no infinite well orderable subsets in N , and
thus is Dedekind-finite in N .

Theorem 3. Let N be the permutation model of Definition 7. Then,

N |= HT ∧ ¬MCω ∧ ¬(DF = F).

Proof. Via standard Fraenkel–Mostowski techniques, it can be shown
that the family A = {Ai : i ∈ ω}, which is denumerable in N since any per-
mutation of A in G fixes A pointwise, has no multiple choice function in N ;
hence MCω is false in N—we leave the details to the reader. Furthermore,
as shown in the paragraph preceding this theorem, for every i ∈ ω, Ai is
Dedekind-finite in N . Thus, DF = F is false in N .6

We will now prove that

N |= “Every infinite set has an infinite cuf subset”.

By Theorem 1(5), this will yield HT is true in N . First, we establish the
following lemma.

Lemma 1. For every i ∈ ω, Pi is cuf in N .7

Proof. Fix i ∈ ω. For every F ∈ [Pi]<ω \ {∅}, we let

ZF =
{
φ(Pi) : φ ∈ Sym(

⋃
F )

}
,

where we have identified the group Sym(
⋃
F ) of all permutations of

⋃
F

with the subgroup of G comprising all φ ∈ G such that φ � (A \
⋃
F ) = id

(i.e. the identity mapping). Clearly, ZF is finite for all F ∈ [Pi]<ω \ {∅}. Let

Zi =
{
ZF : F ∈ [Pi]<ω \ {∅}

}
.

6 We also note that, in [6, Theorem 3.3], it was shown that the statement “The union of a
denumerable family of denumerable sets is cuf” is true in N .

7 Recall that Pi = {φ(Pi) : φ ∈ G}, i.e. Pi is the G-orbit of the partition Pi = {Ai,j : j ∈
ω \ {0}} of Ai into the j-element sets Ai,j . Also, using the features of the construction of N , it is
not hard to verify that, for every i ∈ ω, Pi is not a denumerable union of denumerable sets in N .

HINDMAN’S THEOREM AND CHOICE 411
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The collection Zi is in N and is denumerable in N . Indeed, it is easy to
see that {Pi} is a support of every element of Zi (and recall that, for every
φ ∈ G, if φ fixes an element Q of Pi, then φ fixes Q pointwise). Thus, Zi

is well orderable in N and since it is denumerable in the ground model M
(because [Pi]<ω is denumerable in M ), it follows that Zi is denumerable in
N . We assert that

Pi =
⋃

Zi.

Let φ ∈ G. Since the set {a ∈ A : φ(a) �= a} is finite, so is its subset Ui = {a
∈ Ai : φ(a) �= a}. Let F be minimal among the non-empty finite subsets of
Pi such that Ui ⊆

⋃
F . By definition of Ui, we have that φ fixes Ai \

⋃
F

pointwise. Let η ∈ G be defined by

η �
⋃

F = φ �
⋃

F and η �

(
A \

⋃
F
)
= id.

Clearly, η(Pi) ∈ ZF and η(Pi) = φ(Pi). Hence, φ(Pi) ∈ ZF ⊆
⋃

Zi, and
therefore Pi =

⋃
Zi as asserted. Thus, Pi is cuf in the model N , finish-

ing the proof of the lemma. �

Now, we are ready to prove that, in N , every infinite set has an infinite
cuf subset. Fix an infinite set X which is in N . If X is well orderable in N ,
or has an infinite subset which is well orderable in N , then clearly X has an
infinite cuf subset in N . So we assume that no infinite subset of X (which is
in N ) is well orderable in N . Let E be a support of X . By our assumption
on X , all but finitely many elements of X are not supported by E (recall the
definition of support and see also Jech [12, Equation (4.2), p. 47]). Without
loss of generality, we assume that, for every x ∈ X , E is not a support of x.
Indeed, if the set Y = {x ∈ X : E is a support of x} is infinite, then Y ∈ N
and Y is well orderable in N (since E is a support of every element of Y ),
which is contrary to our assumption on X . It follows that Y is finite and,
without loss of generality, we assume Y = ∅.

Now, if, for every x ∈ X , there exists a support Ex of x such that

(2) (∀i ∈ ω)
[
(Ex ∩Pi �= ∅) ⇐⇒ (E ∩Pi �= ∅)

]
,

then, for every x ∈ X , OrbfixG(E)(x) is finite. Indeed, let x ∈ X and also let
Ex ∈ [P]<ω be a support of x satisfying (2). Let I = {i ∈ ω : E ∩Pi �= ∅}.
By (2), I = {i ∈ ω : Ex ∩Pi �= ∅}. Since E is finite, so is I . By equation (1)
(at the beginning of this subsection), we conclude that, for every i ∈ I , there
exists ji ∈ ω such that, for every Q ∈ (E ∪Ex) ∩Pi, Q ⊇ {Ai,j : j > ji}. It
follows that any φ ∈ fixG(E) fixes, for every i ∈ I , {Ai,j : j > ji} pointwise.
This, together with the facts that

⋃
{Ai,j : i ∈ I, j ≤ ji} is finite and Ex is a

support of x, easily yields OrbfixG(E)(x) is finite.
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Since E is a support of X , we have

X =
⋃

{OrbfixG(E)(x) : x ∈ X}.

As the collection {OrbfixG(E)(x) : x ∈ X} is well orderable in N (having E
as a support of each of its elements) and, for every x ∈ X , OrbfixG(E)(x) is
finite, we conclude that X has an infinite cuf subset in N .

Now, we assume that there exists x ∈ X such that, for every support Ex

of x, equation (2) fails for Ex. In view of the arguments of the previous
paragraphs, we may choose such an x in X for which OrbfixG(E)(x) is infinite.
Let Ex be a support of x. Since E is not a support of x, we may assume
that E � Ex. This, together with the fact that (2) fails for Ex, yields the
existence of an i ∈ ω such that Ex ∩Pi �= ∅ and E ∩Pi = ∅. For simplicity’s
sake, and noting (in view of the forthcoming arguments) that, in ZF, a finite
product of cuf sets is cuf, we assume that Ex ∩Pi = {Pi}. Define

f =
{
〈φ(Pi), φ(x)〉 : φ ∈ fixG(Ex \ {Pi})

}
.

Then, f ∈ N since Ex \ {Pi} is a support of f .8 Furthermore, f is a func-
tion. Indeed, let φ,ψ ∈ fixG(Ex \ {Pi}) such that φ(Pi) = ψ(Pi). Then,
φ−1ψ ∈ fixG(Ex), and thus φ−1ψ(x) = x since Ex is a support of x. There-
fore, φ(x) = ψ(x), and so f is a function as required.

We also have that dom(f) = Pi. To see this, let φ ∈ G. Let η be the el-
ement of G which is the identity on A \Ai and which agrees with φ on Ai.
Clearly, η ∈ fixG(Ex \ {Pi}) and η(Pi) = φ(Pi). As η(Pi) ∈ dom(f), we con-
clude that φ(Pi) ∈ dom(f). Therefore, dom(f) = Pi. By Lemma 1, it follows
that dom(f) is a (infinite) cuf set in N ; in particular, dom(f) =

⋃
{ZF : F ∈

[Pi]<ω \ {∅}} (see the proof of Lemma 1).
It is clear that ran(f) = OrbfixG(Ex\{Pi})(x). Moreover, as E ⊆ Ex \ {Pi},

x ∈ X and E is a support of X , we deduce that ran(f) ⊆ X . Since
OrbfixG(E)(x) is infinite, and using, if necessary, an argument similar to the
one following equation (2), it is not hard to verify that ran(f) is an infinite
subset of X .

By the proof of Lemma 1, we obtain the following:

ran(f) = f [Pi] = f
[⋃

{ZF : F ∈ [Pi]<ω \ {∅}}
]

=
⋃{

f [ZF ] : F ∈ [Pi]<ω \ {∅}
}
,

8 If Ex ∩Pi = {Q1, . . . , Qn}, then define f = {〈φ(〈Q1, . . . , Qn〉), φ(x)〉 : φ ∈ fixG(Ex \Pi)}.
The subsequent argument goes through under the obvious, minor changes, taking into account
Lemma 1 and the fact that, in ZF, a finite product of cuf sets is cuf.
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and since (by the proof of Lemma 1) {ZF : F ∈ [Pi]<ω \ {∅}} is, in N , a de-
numerable cover of Pi by the finite sets ZF , and ran(f) is an infinite subset
of X in N , we conclude that ran(f) is an infinite cuf subset of X in N . This
completes the proof of the theorem. �

Theorem 4. HT is weaker than each of MCω and DF = F in ZF.

Proof. Consider the statement

Φ = HT ∧ ¬MCω ∧ ¬(DF = F).

In [8], it was shown that HT is an injectively boundable statement (see
[8, Theorem 13 and Section 3.3]). Also, both ¬MCω and ¬(DF = F) are
injectively boundable since both are boundable (recall Fact 1 of Section 3).
Thus, Φ is a conjunction of injectively boundable statements and since it
has a permutation model (by Theorem 3), it follows from Theorem 2 (of
Section 3) that Φ has a ZF-model. �

It was an open problem, until now, whether or not HT implies MCω
ω

in ZF. Furthermore, in Howard and Rubin [10], it is mentioned as unknown
whether or not there is either a model of ZF, or of ZFA, in which (the
weaker than HT) Form 82 (i.e. “The power set of an infinite set is Dedekind-
infinite”) is true but MCω

ω and ACω
fin

are both false. We completely settle
these open problems by showing next (Cf. Theorems 5, 6 and 7) that:

(3) There is a model of ZFA in whichLW∧HT∧¬MCω
ω ∧¬ACω

fin
is true

and

(4) there is a model of ZF in which HT ∧ ¬MCω
ω ∧ ¬ACω

fin is true.

(Note that (4) strengthens the result of Theorem 4.) To establish (3), we
will use a permutation model recently constructed by Howard and Tachtsis
[11]. For (4), we will transfer the previous ZFA-result (that concerns only
the conjunction given by (4), since, in ZF, LW is equivalent to the full AC)
into ZF by using Pincus’ Theorem 2 of Section 3.

The permutation model from [11]. We start with a model M of ZFA +
AC with a denumerable set A of atoms which is written as a disjoint union⋃
{An : n ∈ ω}, where |An| = ℵ0 for all n ∈ ω.
For each n ∈ ω, let FSym(An) be the group of all permutations of An

which move only finitely many elements of An. Let G be the group of all
permutations φ of A such that:

1. φ � An ∈ FSym(An) for all n ∈ ω,
2. φ � An = idAn

(the identity function on An) for all but finitely many
n ∈ ω.
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It follows that, for every φ ∈ G, φ(An) = An for all n ∈ ω and φ moves
only finitely many elements of A. (Note that G is essentially the weak direct
product of the groups FSym(An), n ∈ ω.) Let F be the filter on the lattice of
subgroups of G generated by {fixG(F ) : (∃S ∈ [ω]<ω)(F ⊆

⋃
{Ai : i ∈ S})};

F is a normal filter on G.

Definition 8. Let N be the permutation model determined by M , G
and F .

By the definition of F , it follows that, if x ∈ N , then there is a fi-
nite S ⊂ ω such that fixG(

⋃
{Ai : i ∈ S}) ⊆ SymG(x). Under these circum-

stances, we call
⋃
{Ai : i ∈ S} a support of x.

The following result about N was established in [11, Theorem 3.4 and
Remark 3.5].

Theorem 5. Let N be the permutation model of Definition 8. Then

N |= LW ∧ ¬MCω
ω ∧ ¬ACω

fin.

We show next that HT is true in the model N . Indeed, we have the
following theorem.

Theorem 6. Let N be the permutation model of Definition 8. Then

N |= HT.

Proof. First, we prove the following lemma.

Lemma 2. For every x ∈ N , the G-orbit of x, OrbG(x) = {φ(x) : φ ∈ G},
is countable in N . In particular, every element of N has a well orderable
partition into countable sets in N .

Proof. Fix x ∈ N . Let E =
⋃
{An : n ∈ S}, for some finite S ⊂ ω, be a

support of x. First, we observe that OrbG(x) is well orderable in N . Indeed,
let φ ∈ G. Then φ(E) is a support of φ(x). Since E is a (finite) union of
An’s and every element of G fixes An for all n ∈ ω, it follows that φ(E) = E.
Therefore, E is a support of φ(x). Since φ was arbitrary, we conclude that
E is a support of every element of OrbG(x), i.e. OrbG(x) is well orderable
in N .

Now, we assert that

(5) OrbG(x) = OrbfixG(A\E)(x).

Let φ ∈ G. Let η be the permutation of A in G which agrees with φ on E and
is the identity on A\E. Since φ,η agree on E, it follows that η−1φ ∈ fixG(E)
and since E is a support of x, η−1φ(x) = x, or equivalently φ(x) = η(x).
As η(x) ∈ OrbfixG(A\E)(x), it follows that φ(x) ∈ OrbfixG(A\E)(x). Hence,
OrbG(x) ⊆ OrbfixG(A\E)(x), and therefore (5) is true.
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The group fixG(A \E) is clearly isomorphic to
∏

n∈S FSym(An). As, for
every n ∈ ω, An is denumerable and every element of FSym(An) moves only
finitely many elements of An, it follows that |FSym(An)| = ℵ0 for all n ∈ ω.
This, together with the fact that S is finite, yields

∣∣ ∏
n∈S FSym(An)

∣∣ = ℵ0,
and thus |fixG(A \ E)| = ℵ0. Therefore,

∣∣OrbfixG(A\E)(x)
∣∣ ≤ ℵ0 in M (the

ground model), and hence, by (5), |OrbG(x)| ≤ ℵ0 in M . Since OrbG(x) is
well orderable in N (as shown in the first paragraph of the proof), it follows
that |OrbG(x)| ≤ ℵ0 in N as required.

For the second assertion of the lemma, note that since E is a support
of x, this yields

x =
⋃

{OrbfixG(E)(y) : y ∈ x}.

The family Q = {OrbfixG(E)(y) : y ∈ x} is a partition of x and it is well order-
able in N since E is a support of every member of Q. Furthermore, by the
first assertion of the lemma, every member of Q is countable in N . There-
fore, x has, in N , a well orderable partition into countable sets, finishing the
proof of the lemma. �

To complete the proof of the theorem, fix an infinite set x ∈ N . By
Lemma 2, there exists, in N , a well-orderable partition of x, O say, such
that every member of O is countable in N . If all elements of O are finite,
then O is infinite (since x is infinite). It follows that [x]<ω is Dedekind-
infinite in N . If for some O ∈ O, O is infinite (and thus denumerable in N ),
then |[O]<ω| = ℵ0 in N , and thus [x]<ω is Dedekind-infinite in N .

By the above arguments and Theorem 1(5), we conclude that HT is true
in N , finishing the proof of the theorem. �

By Theorems 5 and 6, we immediately obtain the following corollary.

Corollary 1. In ZFA, LW ∧HT does not imply MCω
ω ∨ACω

fin
.

Theorem 7. In ZF, HT does not imply MCω
ω ∨ACω

fin
.

Proof. Let

Π = HT ∧ ¬MCω
ω ∧ ¬ACω

fin.

Since Π is a conjunction of injectively boundable statements and has (by
Theorems 5 and 6) a permutation model, it follows, by Theorem 2, that it
has a ZF-model. �

Fernández-Bretón [8] showed that, in ZF, HT2(k) does not imply RT,
for any integer k ≥ 2 (see [8, Corollary 29]). This was proved by firstly es-
tablishing independence in the Second Fraenkel Model N2 of [10] and then
using Pincus’ Theorem 2 to transfer the result into ZF. Moreover, CAC

is known to be false in N2 (see [10]), and thus so is RT since RT implies
CAC; see, for example, [20, Theorem 1.6]). Therefore, the natural question

E. TACHTSIS416



Acta Mathematica Hungarica 168, 2022

16 E. TACHTSIS

that emerges is whether or not CAC in conjunction with (∀k ≥ 2)(HT2(k))
implies RT in ZF. We settle this open problem and strengthen the above
result of [8] by showing next that

(6) CAC ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))] � (HT3(2) ∨RT) in ZF.

We will also provide further new information by showing that

(7) LW ∧CAC ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))]� (HT3(2) ∨RT) in ZFA

(recall that LW is equivalent to AC in ZF, but is not equivalent to AC

in ZFA). For (6), we will first prove independence in ZFA. Then, we will
transfer the result to ZF using Theorem 2 (of Section 3). For the establish-
ment of (6) and (7) in ZFA, we will employ a permutation model constructed
by Tachtsis [20] (for the independence of RT from CAC).

The permutation model from [20]. We start with a model M of ZFA +
AC with a set of atoms A =

⋃
{Ai : i ∈ ω} which is a denumerable disjoint

union of pairs Ai = {ai, bi}, i ∈ ω. Let G be the group of all permutations φ
of A such that φ moves only finitely many atoms and, for every i ∈ ω, there
exists k ∈ ω such that φ(Ai) = Ak. Let Γ be the (normal) filter of subgroups
of G generated by {fixG(E) : E ∈ [A]<ω}.

Definition 9. We define N to be the permutation model determined
by M , G and Γ.

By the definition of Γ, it follows that, if x ∈ N , then there exists a
finite S ⊂ ω such that fixG

( ⋃
{Ai : i ∈ S}

)
⊆ SymG(x). Under these cir-

cumstances, we call
⋃
{Ai : i ∈ S} a support of x.

Let us recall the following facts about N , which were established in [20,
Theorem 2.1].

Fact 2. 1. The family A = {Ai : i ∈ ω} is amorphous in N and has no
partial choice function in N . Thus, A is amorphous in N .9

2. RT is false in N .
3. Every element x of N is either well-orderable or has an infinite sub-

set y with a partition into sets each of cardinality at most 2, indexed by a
co-finite subset of A, and thus indexed by an amorphous set. In the second
case, it follows that y is an amorphous subset of x.

4. The union of a well-orderable family of well-orderable sets in N is
well orderable in N (and thus MCω

ω and ACω
fin

are both true in N ).
5. CAC is true in N .

9 In [22, Theorem 5.1], we further showed that every amorphous set in N is bounded; in
particular, if x ∈ N is amorphous and Π is a partition of x into infinitely many pieces in N , then
all but finitely many elements of Π have the same cardinality, which is less than or equal to 2.
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For the proof of the forthcoming Theorem 8, we will need parts of the
argument for Fact 2(3). Therefore, for the reader’s convenience, we provide
a sketch of the argument and label Fact 2(3) as Lemma 3 below.

Lemma 3. Let N be the permutation model of Definition 9. Then, every
element x of N is either well-orderable or has an infinite subset y with a
partition into sets each of cardinality at most 2, indexed by a co-finite subset
of A = {Ai : i ∈ ω}, and thus indexed by an amorphous set. In the second
case, it follows that y is an amorphous subset of x.

Proof. Let x ∈ N be non-well-orderable in N . Let E =
⋃
{Ai : i ∈ K}

for some finite K ⊂ ω, be a support of x. Since x is not well orderable in
N , there exists z ∈ x which is not supported by E. Let Ez =

⋃
{Ai : i ∈ K ′}

for some finite K ′ ⊂ ω, be a support of z. Since E is not a support of z,
it follows that Ez \ E �= ∅. Without loss of generality, assume that E � Ez

and also assume that {Ai : i ∈ K ′} has the fewest possible copies Aj outside
{Ai : i ∈ K}. Let i0 ∈ K ′ such that Ai0 ∩E = ∅, where Ai0 = {ai0 , bi0}.

We define the following set:

f =
{
〈φ(z), φ(Ai0)〉 : φ ∈ fixG(Ez \Ai0)

}
.

Then, f has the following properties:
1. f ∈ N (since Ez \Ai0 is a support of f ).
2. f is a function with dom(f) ⊆ x and ran(f) = A\{Ai : i ∈ K ′, i �= i0},

where A = {Ai : i ∈ ω}. That f is a function follows from the fact that, if
w ∈ N and E1, E2 are supports of w, then E1 ∩E2 is a support of w; see
[20, Lemma 1].

3. For every φ ∈ fixG(Ez \Ai0), we have:

f−1({φ(Ai0)}) = {φ(z), φρ(z)},

where ρ = (ai0 , bi0), i.e. ρ interchanges ai0 and bi0 and fixes all other atoms.
It follows that the family

Y =
{
f−1({w}) : w ∈ A \ {Ai : i ∈ K ′, i �= i0}

}
=

{
{φ(z), φρ(z)} : φ ∈ fixG(Ez \Ai0)

}
is a partition of the set y = dom(f) which is amorphous in N since, in N , Y
is equipotent to A \ {Ai : i ∈ K ′, i �= i0} and the latter set is (by Fact 2(1))
amorphous in N . Furthermore, y is amorphous in N . This yields that either
for all but finitely many u ∈ Y , |u| = 1 or for all but finitely many u ∈ Y ,
|u| = 2.

The proof of the lemma is complete. �

Theorem 8. Let N be the permutation model of Definition 9. Then,

N |= LW ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))] ∧ ¬HT3(2)
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and thus

N |= LW ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))]∧ ¬HT.

Proof. We start by proving LW is true in N . Indeed, we have the
following claim.

Claim. N |= LW.

Proof. Fix a linearly ordered set (L,≤) in N . Let E be a support of
(L,≤). We will show that fixG(E) ⊆ fixG(L), and thus fixG(L) ∈ Γ; this will
yield L is well orderable in N (see Jech [12, Equation (4.2), p. 47]). Let
x ∈ L and let φ ∈ fixG(E). By way of contradiction, assume φ(x) �= x. Then
either x < φ(x) or φ(x) < x. Since every element of G moves only finitely
many atoms, there exists k ∈ ω \ {0} such that φk is the identity mapping
on A. For such a k, and assuming x < φ(x), we obtain the following:

x < φ(x) < φ2(x) < · · · < φk−1(x) < φk(x) = x,

and thus x < x, which is a contradiction. If φ(x) < x, then similarly we
obtain the contradiction “x < x”. Therefore, φ(x) = x, and consequently
fixG(E) ⊆ fixG(L) as required. Hence, LW is true in N . �

Claim. N |= (∀k ∈ ω \ {0, 1})(HT2(k)).

Proof. Fix k ∈ ω \ {0, 1}. Let x ∈ N be infinite and also let c : [x]<ω

→ k such that c ∈ N . If x is well orderable in N , then the conclusion follows
immediately from Theorem 1(1). So assume x is not well orderable in N .

Let E =
⋃
{Ai : i ∈ K} for some finite K ⊂ ω, be a support of x and c.

Let z, Ez , f , Y (= {f−1({Ai}) : i ∈ ω \ (K ′ \ {i0})}) and y (= dom(f)) be
given as in the proof of Lemma 3. We consider the following two cases:

Case 1: for all but finitely many u ∈ Y , |u| = 2 (recall that, by the proof
of Lemma 3, y is amorphous in N ). Without loss of generality, we assume
that, for every u ∈ Y , |u| = 2; otherwise, we may follow the subsequent ar-
gument by merely replacing Y by Y \ {u ∈ Y : |u| = 1}.

Since Ez \Ai0 is a support of c (because E is a support of c and
E ⊂ Ez \Ai0), it follows that the collection

Z = {u ∪ v : u, v ∈ Y , u �= v},

which comprises 4-element subsets of x, is c-monochromatic. Indeed, fix any
i ∈ ω \K ′. First, note that

Z = OrbfixG(Ez\Ai0
)
(
f−1({Ai0}) ∪ f−1({Ai})

)
(and recall that, by the proof of Lemma 3, Ez \Ai0 is a support of f );
hence Z ∈ N since Ez \Ai0 is a support of Z . Therefore, if c(f−1({Ai0})
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∪ f−1({Ai})) = m for some m ∈ k, then since Ez \Ai0 is a support of c, we
obtain that

(8) ∀Z ∈ Z(c(Z) = m).

We let

Y =
{
f−1({Ai0}) ∪ f−1({Aj}) : j ∈ ω \K ′

}
.

Then Y ∈ N since Ez is a support of Y , and Y ⊆ Z ⊆ [x]<ω . Furthermore,
by the definition of Y and the fact that Y is a partition of y, it follows that

FS≤2(Y ) ⊆ Z.

Thus, by equation (8), we conclude that

∀t ∈ FS≤2(Y )(c(t) = m),

i.e. FS≤2(Y ) is c-monochromatic in N (and note that Ez is a support of
FS≤2(Y ), so FS≤2(Y ) ∈ N ).

Case 2: for all but finitely many u ∈ Y , |u| = 1. Without loss of gener-
ality, assume that every member of Y is a singleton. We may work similarly
to case 1 considering the corresponding families Z and Y , and thus conclud-
ing that FS≤2(Y ) is c-monochromatic in N . We take the liberty to leave the
details to the reader. �

Claim. N |= ¬HT3(2), and thus N |= ¬HT3(k) for any integer k ≥ 2.

Proof. We will show that for the infinite set A = {Ai : i ∈ ω}, which
is (an) amorphous (partition of the set A of atoms) in N (see Fact 2(1)),
there is a colouring c : [A]<ω → 2 which is in N and is such that, for every
infinite Y ⊆ [A]<ω , FS≤3(Y ) is not c-monochromatic in N . To this end,
we define a colouring c : [A]<ω → 2 as follows: For every X ∈ [A]<ω , let n, i
with 0 ≤ i < 4 be such that X ∈ [A]4n+i (this is simply Euclid’s division
algorithm), and then define

c(X) =

{
0, if i ∈ {1, 2};
1, if i ∈ {0, 3}.

(In fact, every colouring c defined in terms of cardinality satisfying that, if
|Y | = |X|+ 2 then c(X) �= c(Y ), works for this purpose.) Then, the colour-
ing c is in N since SymG(c) = G ∈ Γ (i.e. c is fixed by every element of G).
We now show that, for every infinite Y ⊆ [A]<ω which is in N , FS≤3(Y ) is
not c-monochromatic in N .

Let Y be an infinite subset of [A]<ω which is in N (note that
⋃
Y is co-

finite in A since A is amorphous in N ). Let E be a finite subset of A such
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that
⋃
E is a support of Y . As E is finite and Y is infinite, there exists

Z ∈ Y such that Z � E. Pick any z ∈ Z \ E and pick z′, z′′ ∈ A \ (E ∪ Z);
it follows that z, z′, z′′ are pairwise disjoint and also disjoint from

⋃
E.

Letting π′ be a permutation of A exchanging z and z′ and fixing all other
atoms (since z and z′ have two atoms each, there are several ways of doing
this, but any will do) and π′′ be another permutation of A exchanging z
and z′′, and fixing everything else, we define

Z ′ = π′(Z) = (Z ∪ {z′}) \ {z} and Z ′′ = π′′(Z) = (Z ∪ {z′′}) \ {z}.

Since Z ∈ Y , π′, π′′ ∈ fixG(
⋃
E) and

⋃
E is a support of Y , we deduce

that Z ′ = π′(Z) ∈ π′(Y ) = Y , Z ′′ = π′′(Z) ∈ π′′(Y ) = Y , and so Z�Z ′�Z ′′

∈ FS≤3(Y ). However, we have

Z�Z ′�Z ′′ = Z ∪ {z′, z′′},

and so

|Z�Z ′�Z ′′| = |Z|+ 2,

which yields c(Z�Z ′�Z ′′) �= c(Z) by definition of c. Therefore, FS≤3(Y ) is
not c-monochromatic in N , and so HT3(2) fails in N , finishing the proof of
the claim. �

The proof of the theorem is complete. �

By Fact 2 and Theorem 8, we immediately obtain the following result.

Theorem 9. In ZFA, LW ∧CAC ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))] does
not imply HT3(2) ∨RT.

Theorem 10. In ZF, CAC ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))] does not im-
ply HT3(2) ∨RT.

Proof. Consider the following statement:

Φ = CAC ∧ [(∀k ∈ ω \ {0, 1})(HT2(k))] ∧ ¬HT3(2) ∧ ¬RT.

By Fact 2 and Theorem 8, we know that Φ is true in the permutation model
N of Definition 9. In [20, proof of Theorem 2.3], it was shown that CAC

is injectively boundable. Furthermore, ¬HT3(2) and ¬RT are injectively
boundable since they are boundable.

Claim. The statement (∀k ≥ 2)(HT2(k)) is injectively boundable.

Proof. First, we consider the following formula:

Ψ(x) = (∀k ∈ ω \ {0, 1})(∀c : [x]<ω → k)(∃ infinite y ⊆ [x]<ω)

(c � FS≤2(y) is constant).
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It is not hard to verify that all bound variables of Ψ(x) can be relativized to
℘ω+ω(x) (noting also that [x]<ω ∈ ℘2(x) ⊆ ℘ω+ω(x) and that ω ∈ ℘ω+ω(x)).
Thus, Ψ(x) is equivalent to Ψ℘ω+ω(x)(x), i.e. Ψ(x) is a boundable formula.
Furthermore, note that “(∀k ∈ ω \ {0, 1})(HT2(k))” is equivalent to

(∀x)(|x|− ≤ ω → Ψ(x)),

and thus is injectively boundable. �

In view of the above, we conclude that Φ is a conjunction of injectively
boundable statements and since it has a permutation model (by Theorem 8),
it follows from Theorem 2 (of Section 3) that Φ has a ZF-model. �

5. Open questions and directions for further study

1. Does HT3(2) imply HT?
2. Does HT3(2) imply “There are no amorphous sets”?
3. Does HT2(2) imply HT2(3)?
4. Does CAC imply (∃k ≥ 2)(HT2(k)) or (∀k ≥ 2)(HT2(k))? [Recall

that, by Theorem 10, CAC does not imply HT3(2) in ZF, and thus neither
does it imply HT3(k) in ZF, for any integer k ≥ 2.]

5. Is CAC true in the Basic Cohen Model M1 of [10]? [We recall that,
in [8, Theorem 30], it was shown that HT2(2) (and thus HT2(k) for any in-
teger k ≥ 2) is false in M1. We conjecture that CAC is true in M1: It is
known that, for every X ∈ M1, there is, in M1, an ordinal γ and a one-
to-one function f : X → [A]<ω × γ, where A is the denumerable set of the
added Cohen reals which is Dedekind-finite in M1; see Jech [12, Lemmas
5.15, 5.25]. (Note that this readily yields (Form 82) ∧ ¬HT is true in M1,
and thus Form 82 does not imply HT in ZF.) So, in particular, every infinite
poset (P,≤) in M1 has a well-ordered partition {Pα : α < γ} (γ some ordi-
nal) into the Dedekind-finite sets Pα (each of which can be identified with
a subset of [A]<ω). Our conjecture is that the Pα’s are anti-chains in P .
Hence, if all chains and anti-chains in P are finite in M1, then since “The
union of a well-orderable family of well-orderable sets is well orderable” is
true in M1 (see [12, Problem 22, p. 82]), it follows that P is well orderable
in M1. But then, it can be shown, without using any form of choice, that
P has either an infinite chain or an infinite anti-chain (see, for example, [20,
proof of Claim 5]); this is a contradiction. However, a complete argument
justifying that (in M1) the Pα’s are anti-chains in P , still eludes us.]

6. Does BPI ∧ [(∀k ≥ 2)(HT2(k))] (where BPI denotes the Boolean
prime ideal theorem, i.e. the statement “Every Boolean algebra has a prime
ideal”) imply RT in ZF? [BPI does not imply HT2(2) in ZF; see [8, Theo-
rem 30]. We also note that it is an open problem whether or not BPI implies
CAC in ZF.]
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Question (1) of the above list was originally posed in [3, Question 5.1(1)]
and question (3) (as well as (1)) was posed in [8, Questions 27, 34].
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