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Abstract. Let Λπ(n) denote the nth coefficient in the Dirichlet series ex-
pansion of the logarithmic derivative of L(s, π) associated with an automorphic
irreducible cuspidal representation of GLm over Q. In this paper, for all α of irra-
tional type 1 lying in the interval [0, 1], we investigate the best possible estimate
for the sum

∑
n≤x

Λπ(n)e(nα) under a certain assumption. And we consider the
metric result on the exponential sum involving automorphic L-functions without
any assumptions. Let Λ(n) be the von Mangoldt function. Then as an applica-
tion, for ε > 0 and all 0 < α < 1 in a set of full Lebesgue measure (depending on

π), we obtain
∑

n≤x
Λ(n)λπ(n)e(nα) = O(x

5

6
+ε).

1. Introduction

Let m � 2 be an integer, and let A(m) be the set of all cuspidal auto-
morphic representations of GLm over Q with unitary central character. Fix
π ∈ A(m). The standard L-function L(s, π) associated to π is of the form

(1.1) L(s, π) =
∞∑
n=1

λπ(n)
ns

, �s > 1.

The inverse function L−1(s, π) can be written as

(1.2) L−1(s, π) =
∞∑
n=1

μπ(n)
ns

.
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Taking the logarithmic derivative for L(s, π), we define, for �s > 1,

−
L′

L
(s, π) =

∞∑
n=1

Λπ(n)
ns

.

Suppose

(1.3)
∑
n≤x

μπ(n) = O(xθ+ε)

for 0 < θ < 1 and ε > 0. Then by partial summation, we have

L−1(s, π) = s

∫ ∞

1

∑
n≤x μπ(n)
xs+1 dx.

By a well-known theorem of Landau (see [14, Theorem 10.1.4]), we obtain
that L−1(s,π) converges for �s > θ. Therefore, L(s,π) �= 0 for �s > θ, which
we understand as an analytic meaning of the Grand Riemann Hypothesis
(GRH). Actually, the GRH is equivalent to the assertion that (1.3) holds for
θ = 1/2.

Let χ be a primitive Dirichlet character of modulus q. The arithmetic
conductors of π and χ are coprime. According to [5, Proposition 5.14], we
can consider ∑

n≤x

Λπ(n)χ(n)

to grasp the analytic meaning of the GRH. By Gauss sums, we write∑
n≤x

Λπ(n)χ(n) =
1

τ(χ)

∑
a mod q

χ(a)
∑
n≤x

Λπ(n)e(na/q),

where e(z) = e2πiz for z ∈ R. If we estimate
∑

n≤x Λπ(n)e(na/q) = O(xθ),
we deduce that L′

L (s, π ⊗ χ) has no zeros for �s > θ. Naturally, we are mo-
tivated to consider the exponential sum

(1.4)
∑
n≤x

Λπ(n)e(nα)

for any real α.
In this paper, we follow the method in [15] to study the sum (1.4) for all

α of irrational type 1. According to Kuipers and Niederreiter [11], we have
the definition of an irrational number of type τ .
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Definition 1.1. Let τ be a positive real number or infinity. The irra-
tional number α is said to be of type τ if τ is the supremum of all t for
which

τ = sup{t ∈ R : lim inf
n→∞

nt‖αn‖ = 0},

where q runs through the positive integers. Here ‖ · ‖ denotes the distance
to a nearest integer.

Our goal here is to establish the following result.

Theorem 1.2. For every fixed 1
2 < θ < 1 and for all α of irrational

type 1, suppose that

(1.5)
∑
n≤x

λπ(n)e(nα) � xθ.

Then ∑
n≤x

Λπ(n)e(nα) �π,ε x
4−3θ

5−4θ
+ε

for every ε > 0.

We expect to obtain a similar conclusion of the exponential twists of the
coefficients in the Dirichlet series expansion for L(π, s)−1.

Corollary 1.3. Under the condition (1.5) we have∑
n≤x

μπ(n)e(nα) �π,ε x
4−3θ

5−4θ
+ε

for every ε > 0.

Morever, applying to Theorem 1.2 , we can estimate sums of the form

(1.6) S(x) =
∑
n≤x

Λ(n)λπ(n)e(nα),

where Λ(n) is the von Mangoldt function defined by

Λ(n) :=

{
log p, if n = pk,

0, otherwise.

Λ(n) is somehow the characteristic function of primes. Sums concerning
prime numbers are important problems in analytic number theory. One can
predict the asymptotic behavior of (1.6), and hence some properties of the
distribution of primes. The study of the sum (1.6) is well understood when
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the λπ(n) are the normalized Fourier coefficients of a modular or Maass form
on the upper half plane. Perelli [16] studied the exponential sums connected
with Ramanujan’s τ -function, and showed that the bound∑

n≤N

Λ(n)τ(n)e(nα) � N11/2(Nq−1/2 +N1/2q1/2 +N5/6) logcN,

holds for some suitable constant c > 0. Here, α ∈ R is such that∣∣∣α−
l

q

∣∣∣ ≤ 1
q2 , (l, q) = 1, q ≥ 1

for some integers l, q, and the implied constant depends only on the τ -
function. It can be seen that his result also holds for the normalized Fourier
coefficients of a primitive holomorphic cusp form. Fouvry and Ganguly [2]
obtained a strong bound which states that there exists an effective constant
c > 0 such that, for any α ∈ R,∑

n≤N

Λ(n)λπ(n)e(nα) �π N exp (− c
√
logN),

where λπ(n) are the normalized Fourier coefficients of a primitive holomor-
phic or Maass cusp form.

Let L(s, π) be the L-function associated to a Hecke–Maass form π for
SL(m,Z). Let λπ(n) denote the nth coefficient of the Dirichlet series for
L(s, π). Taking the logarithmic derivative for L(s, π), we have

−
L′

L
(s, π) =

∞∑
n=1

Λπ(n)
ns

=
∞∑
n=1

Λ(n)aπ(n)
ns

.

Jiang and Lü [7] made the the following assumptions to investigate the best
possible estimates for the sum

∑
n≤x Λ(n)λπ(n)e(nkθ):

(A) Weaker GRH: For any primitive Dirichlet character χ, there are no
zeros of L(π ⊗ χ, s) in the half plane σ = Rs > a. Here 1/2 ≤ a < 1.

(B) Hypothesis H: For any fixed ν ≥ 2,

∑
p

|aπ(pν)|2(log p)2

pν
< ∞.

(C) One has ∑
n≤x

λπ(n)e(nkθ) �π xb

THE LOGARITHMIC DERIVATIVE OF AUTOMORPHIC L-FUNCTIONS 523
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uniformly in θ, where the implied constant depends only on the form π and
1/2 < b < 1.

Then under assumptions (A), (B) and (C), they have, for any θ ∈ R and
ε > 0, ∑

n≤x

Λ(n)λπ(n)e(nkθ) � xρk+ε,

where

ρ1 =

{
a+ 1/4, for 1/2 ≤ a ≤ 7/12,
max (a+1

2 , 5
6 ,

1
2

(
1 + 1

3−2b

)
), for 7/12 ≤ a < 1,

ρk = max
(
1−

2(1− a)
4k−1 + 2

, 1 −
1
3
·

1
4k−1 , 1−

1
4k−1(1− b) + 1

)
, for k ≥ 2.

We establish the following stronger result for α of irrational type 1 by The-
orem 1.2.

Corollary 1.4. Under the condition (1.5) we have∑
n≤x

Λ(n)λπ(n)e(nα) �π,ε x
4−3θ

5−4θ
+ε

for every ε > 0.

We expect to remove the assumption in Theorem 1.2. In other words,
we expect to obtain an upper bound for the sum∑

n≤x

λπ(n)e(nα).

It is generally known that when λπ(n) are either the normalized Fourier
coefficients of a modular form, or a Maass form on the upper half plane,
i.e. an automorphic form on GL2, one has the classical estimate on linear
polynomials in [4, Theorem 8.1],∑

n≤x

λπ(n)e(nα) �π,ε x
1

2
+ε

for any α ∈ R. For m = 3, λπ(n) being coefficients of the L-function of au-
tomorphic cusp form π on GLm over Q, Miller [13] showed that∑

n≤x

λπ(n)e(nα) �π,ε x
3

4
+ε
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for any α ∈ R. The key tools used in this proof are the Voronöı summation
for GL3 developed by Miller and Schmid [13] and Weil’s estimate for Kloost-
erman sums. Concwerning the problem for m ≥ 3, Jiang, Lü and Wang [9]
showed that for any automorphic cuspidal representation π over GLm,

Sλπ
(x) =

∑
n≤x

λπ(n)e (nα) �π
x

log x

for any α ∈ R. The result provides a non-trivial, uniform estimate for Sλπ
(x)

without any assumptions.
In this paper, we obtain metric estimates for

(1.7) Sπ(x, α) =
∑
n�x

λπ(n)e(nα).

Our proof of Theorem 1.5 below partially follows the approach in [19]. We
used Chebyshev’s inequality, the well-known Carleson–Hunt inequality [3]
and the Borel–Cantelli lemma to give that:

Theorem 1.5. For every fixed ε > 0 and for all 0 < α < 1 in a set of

full Lebesgue measure (depending on π), we have,∑
n≤x

λπ(n)e(nα) �π,α,ε (log x)
1

2 (log log x)
1

2
+εx

1

2

uniformly for x ≥ 4.

Applying Theorem 1.5, we have the following corollary.

Corollary 1.6. For every fixed ε > 0 and for all 0 < α < 1 in a set of

full Lebesgue measure (depending on π and ε ), we have∑
n≤x

Λ(n)λπ(n)e(nα) �π,α,ε x
5

6
+ε

uniformly for x ≥ 4.

2. Preliminaries

2.1. Automorphic L-functions. Given π ∈ A(m), the standard L-
function is defined to be

L(s, π) =
∏
p<∞

L(s, πp) =
∏
p<∞

∞∑
k=0

λπ(pk)
pks

=
∞∑
n=0

λπ(n)e(nα)
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for �s > 1. For each (finite) prime p, the inverse of the local factor L(s, πp)
is also a polynomial in ps of degree ≤ m,

L(s, πp)−1 =
m∏
j=1

(
1− απ,j(p)p−s

)
,

where {απ,j(p)}mj=1 are the Satake parameters associated with πp. We write
λπ(n) in terms of the Satake parameters

(2.1) λπ(pk) =
∑

n1+···+nm=k

m∏
j=1

α
nj

j,π(p).

At the Archimedean place of Q, there exist m complex Langlands parame-
ters μπ(j) from which we define

L(s, π∞) = π−ms

2

m∏
j=1

Γ
(s+ μπ(j)

2

)
.

Define the completed L-function

Λ(s, π) = Ns/2
π L(s, π)L(s, π∞).

Thus, Λ(s, π) extends to an entire function and is bounded in the vertical
strip. The generalized Ramanujan conjectures assert that

|απ,j(p)| = 1 and |�μπ(j)| = 0 (1 ≤ j ≤ m).

Due to Kim and Sarnak [10] (2 ≤ m ≤ 4) and Luo, Rudnick and Sarnak [12]
(m ≥ 5), the best known record is

(2.2) |απ,j(p)| ≤ pθm , and −�μπ(j) ≤ θm

for all primes p and 1 ≤ j ≤ m, where

(2.3) θ2 =
7
64

, θ3 =
5
14

, θ4 =
9
22

, θm =
1
2
−

1
m2 + 1

(m ≥ 5).

With all the local factors defined as above, we can turn to the functional
equation. Let π̃ denote the contragredient of π ∈ A(m), which is also an irre-
ducible cuspidal automorphic representation with unitary central character
in A(m). We have the equalities{

αj,π̃(p) : 1 � j � m
}
= {αj,π(p) : 1 � j � m}
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and {
μπ̃(j) : 1 � j � m

}
= {μπ(j) : 1 � j � m}.

Moreover, W (π) is a complex number of modulus 1 and Λ(s, π) satisfies a
functional equation of the form

Λ(s, π) = W (π)Λ(1− s, π̃).

Finally, the analytic conductor of π is defined by

C(π, t) = Nπ

m∏
j=1

(
1 + |it+ μπ(j)|

)
, C(π) = C(π, 0).

The inverse of L(s, π) is (1.2) where

μπ(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, pm+1 |n for some prime p,∏
p�‖n

(−1)	

×
∑

1≤j1<···<j�≤m
απ(p, j1) · · ·απ(p, j	), for all � ≤ m.

Clearly, μπ(n) are multiplicative.
We can write the logarithmic derivative of L(s, π), for �s > 1,

(2.4) −
L′

L
(s, π) =

∑
p

∞∑
k=1

(log p)aπ(pk)
pks

=
∞∑
n=1

Λ(n)aπ(n)
ns

=
∞∑
n=1

Λπ(n)
ns

,

where

(2.5) aπ(n) =

{∑m
j=1 απ,j(p)k, if n = pk,

0, otherwise

for all primes p and integers k ≥ 1.
By (2.1) and (2.5), we note that aπ(p) = λπ(p) for suitable complex num-

bers αj,π(p).

2.2. Rankin–Selberg L-functions and related conclusions. To
prove Theorem 1.3, we need some results based on the Rankin–Selberg the-
ory. The Rankin–Selberg L-function L(s, π × π̃) associated to π and its
contragredient π̃ is defined as a product of local factors

L(s, π × π̃) =
∏
p<∞

L(s, πp × π̃p).

THE LOGARITHMIC DERIVATIVE OF AUTOMORPHIC L-FUNCTIONS 527
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The inverse of the local factor is given by

L(s, πp × π̃p)−1 =
m∏
j=1

m∏
k=1

(1− απ,j(p)απ,k(p)p−s).

By Jacquet and Shalika [6], the product
∏

p L(s, πp × π̃p) converges abso-
lutely in �s > 1. We write this product as a Dirichlet series

L(s, π × π̃) =
∏
p

∞∑
k=0

λπ×π̃(pk)
pks

=
∞∑
n=1

λπ×π̃(n)
ns

.

Let π′ =
⊗

p π
′
p ∈ A(m′) and π′′ =

⊗
p π

′′
p ∈ A(m′′). We define the

Rankin–Selberg L-function L (s, π′ × π′′) associated to π′ and π′′ to be

L(s, π′ × π′′) =
∏
p

L(s, π′
p × π′′

p) =
∞∑
n=1

λπ′×π′′(n)
ns

for �(s) > 1. For each (finite) prime p, the inverse of the local factor
L
(
s, π′

p × π′′
p

)
is defined to be a polynomial in p−s of degree � m′m′′,

L(s, π′
p × π′′

p)
−1 =

m′∏
j′=1

m′′∏
j′′=1

(
1−

αj′,j′′,π′×π′′(p)
ps

)
for suitable complex numbers αj′,j′′,π′×π′′(p). With θm as in (2.3), we have
the pointwise bound∣∣αj′,j′′,π′×π′′(p)

∣∣ � pθm′+θm′′

� p1− 1

m′m′′ .

If p � Nπ′Nπ′′ , we have the equality of sets{
αj′,j′′,π′×π′′(p) : j′ � m′, j′′ � m′′

}
= {αj′,π′(p)αj′′,π′′(p) : j′ � m′, j′′ � m′′}.

It is known that λπ×π̃(n) ≥ 0. Since L(s, π × π̃) extends to the complex
plane with a simple pole at s = 1, we have,

(2.6)
∑

Nn<x

λπ×π̃(n) ∼ xRess=1 L(s, π × π̃) � x,

which follows from a standard Tauberian argument.
In order to prove our results, we need to prove some inequalities which

are based on Rankin–Selberg theory.
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Lemma 2.1. With the above notation, we have,∑
n≤x

|Λπ(n)| � x,(i)

∑
n≤x

( ∑
tr=n

|λπ(t)μπ(r)|
)2

� x(log x)4m+3,(ii)

∑
n≤x

|μπ(n)| � x,(iii)

where the implied constants depend on π only.

Proof. (i) We write aπ×π(n) to be the coefficients of Dirichlet series
−L′

L (s, π × π̃), namely

−
L′

L
(s, π × π̃) =

∞∑
n=1

Λ(n)aπ×π̃(n)
ns

.

By the appendix in [18], we have

|aπ(n)|2 � aπ×π̃(n).

Following from Shahidi’s non-vanishing result of L(s, π × π̃) at �s = 1 (see
[17]), we obtain

(2.7)
∑
n�x

Λ(n) |aπ(n)|
2 �

∑
n�x

Λ(n)aπ×π̃(n) ∼ x.

From the definition of Λπ(n) , we know that∑
n≤x

Λπ(n) =
∑
n≤x

Λ(n)aπ(n).

It is well known that ∑
n≤x

|Λ(n)| � x.

Then by the Cauchy–Schwarz inequality and the inequality (2.7), we have,

∑
n≤x

Λ(n)aπ(n) �
(∑

n�x

|Λ(n)|
) 1

2

(∑
n�x

Λ(n) |aπ(n)|
2
) 1

2

�π x.

THE LOGARITHMIC DERIVATIVE OF AUTOMORPHIC L-FUNCTIONS 529
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As for (ii), we obtain the desired result from [8, Lemma 5.4]. For (iii), it
follows from the Cauchy–Schwarz inequality and [8, Lemma 5.4] that

∑
n≤x

|μπ(n)| � x
1

2

(∑
n≤x

|μπ(n)|2
) 1

2

�π x. �

2.3. Vaughan’s method. We will prove Theorem 1.2 by applying
Vaughan’s method for Λπ(n). Now let

L′(s, π) =
∞∑
n=1

λπ(n) logn
ns

, L(s, π) =
∞∑
n=1

λπ(n)
ns

,

−
L′

L
(s, π) =

∞∑
n=1

Λπ(n)
ns

,
1

L(s, π)
=

∞∑
n=1

μπ(n)
ns

,

F (s) =
∑
n≤U

Λπ(n)
ns

, G(s) =
∑
n≤V

μπ(n)
ns

be defined for σ = �s ≥ 1. Here U and V are arbitrary parameters to be
chosen later satisfying U, V ≥ 1.

Lemma 2.2. Let U, V ≥ 1 be arbitrary. Then we have

Λπ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) =

{
Λπ(n) if n ≤ U

0 otherwise,

a2(n) = −
∑
djr=n

j≤V,r≤U

λπ(d)μπ(j)Λπ(r), a3(n) =
∑
dj=n
j≤V

λπ(d)(log d)μπ(j)

and

a4(n) =
( ∑

dj=n
d>U,j>V

Λπ(d)
(∑

tr=j
r≤V

λπ(t)μπ(r)
))

.

Proof. By Vaughan’s method, we have

L′

L
(s, π) = F (s)− L(s, π)G(s)F (s) +

L′

L
(s, π)G(s)L(s, π)

+
( L′

L
(s, π)− F (s)

)
(1− L′(s, π)G(s)), �s > 1.
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Once we pick out the coefficients of n−s on each side, we obtain the desired
result. �

3. Proof of Theorem 1.2

From Lemma 2.2, we obtain that∑
n≤x

Λπ(n)e(nα) = S1(x) + S2(x) + S3(x) + S4(x),

where Si(x) =
∑

n≤x ai(n)e(nα) for i = 1, 2, 3 and 4. Now we begin our
estimations of the sums Si(x).

Estimating S1(x). It directly follows from Lemma 2.2, the absolute in-
equality and Lemma 2.1 that

(3.1) S1(x) ≤
∑
n≤U

|Λπ(n)| �π U.

Estimating S2(x). Due to Lemma 2.2, we have

S2(x) = −
∑
n≤x

( ∑
djr=n

j≤V,r≤U

λπ(d)μπ(j)Λπ(r)
)
e(nα)

= −
∑
r≤U

Λπ(r)
(∑

j≤V

μπ(j)
) ∑

d≤x/jr

λπ(d)e(djrα).

By (1.5), partial summation and Lemma 2.1, we deduce that

(3.2) S2(x) �π (UV )1−θxθ.

Estimating S3(x). Using Lemma 2.2, we have

S3(x) =
∑
n≤x

( ∑
dj=n
j≤V

λπ(d)(log d)μπ(j)
)
e(nα).

We can rewrite S3(x) as∑
j≤V

μπ(j)
∑
d≤ x

j

λπ(d)(log d)e(djα).

Then it follows from (1.5), partial summation and Lemma 2.1 that

(3.3) S3(x) �π V 1−θxθ log x.

THE LOGARITHMIC DERIVATIVE OF AUTOMORPHIC L-FUNCTIONS 531
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Estimating S4(x). We know from Lemma 2.2 that

S4(x) =
∑
n≤x

( ∑
dj=n

d>U,j>V

Λπ(d)
(∑

tr=j
r≤V

λπ(t)μπ(r)
))

e(nα).

We break the above sum into dyadic intervals:

J =
∑

W<d<2W
d>U,j>V,dj≤x

Λπ(d)
∑
tr=j
r≤V

λπ(t)μπ(r)e(djα).

Thus, applying the Cauchy–Schwarz inequality and Lemma 2.1 to J , we
obtain

|J | ≤ W
1

2

( ∑
W<d<2W
d>U,d≤x/V

∣∣∣∣ ∑
j>V

j<x/d,j<x/W

f(j, V )e(djα)
∣∣∣∣2) 1

2

,

where

(3.4) f(j, V ) =
∑
tr=j
r≤V

λπ(t)μπ(r).

Here the second sum over d is∑
V <j≤x/W

f(j, V )
∑

V <k≤x/W

f(k, V )
∑

W<d≤2W
d>U,d≤x/j,d≤x/k

e(djα)e(dkα).

By the inequality of arithmetic and geometric means, we obtain that

|f(j, V )f(k, V )| ≤
1
2
|f(j, V )|2 +

1
2
|f(k, V )|2.

The penultimate formula above is

�
∑

V <j≤x/W

|f(j, V )|2
∑

|h|≤x/W

∣∣∣∣ ∑
W<d≤2W
d>U,d≤x/V

e(dhα)
∣∣∣∣.

Define

Δ =
∑

|h|≤x/W

∣∣∣∣ ∑
W<d≤2W
d>U,d≤x/V

e(dhα)
∣∣∣∣.
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Then we have

(3.5) J � Δ
1

2

(
W

∑
V <j≤x/W

|f(j, V )|2
) 1

2

.

Using (3.4) and Lemma 2.1, we derive

(3.6)
∑

V <j≤x/W

|f(j, V )|2 �π

( x

W

)(
log

x

W

)4m+3
.

Here ‖αh‖ denotes the distance of αh to the nearest integer, [5, (8.6)] about
exponential sums implies that

Δ �
∑

|h|≤x/W

min
(
2W,

x

V
,

1
||αh||

)
.

Then by [15, Lemma 3], for α of irrational type 1, we have

Δ �
( x

W

)1+ε
.

Thus, following from the above inequality, (3.5) and (3.6), we obtain

(3.7) S4(x) �π,ε x
1+εU− 1

2 (logx)2m+3.

Choosing parameters. By (3.1), (3.2), (3.3) and (3.7), we choose U = V =
x

2−2θ

5−4θ and obtain that, for all ε > 0 and α of irrational type 1 lying in the
interval [0, 1], ∑

n≤x

Λ(n)λπ(n)e(nα) �π x
4−3θ

5−4θ
+ε.

4. Proof of Corollary 1.3

By Vaughan’s method, we have

μπ(n) = b1(n) + b2(n) + b3(n) + b4(n),

where

b1(n) =

{
μπ(n) if n ≤ U

0 otherwise,
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b2(n) = −
∑
djr=n

j≤V,r≤U

λπ(d)μπ(j)μπ(r), b3(n) =
∑
dj=n
j≤V

μπ(j),

and

b4(n) = −

( ∑
dj=n

d>U,j>V

μπ(d)
(∑

tr=j
r≤V

λπ(t)μπ(r)
))

with U, V ≥ 1. We define∑
n≤x

μπ(n)e(nα) =
∑
n≤x

(b1(n) + b2(n) + b3(n) + b4(n))e(nα)

= S1(x) + S2(x) + S3(x) + S4(x).

By the same method as in the proof of Theorem 1.2, we have

(4.1) S1(x) �π U, S2(x) �π (UV )1−θxθ, S4 �π,ε x
1+εU− 1

2 (log x)2m+3

for every ε > 0.
As for S3(x), by the Cauchy–Schwarz inequality, we have

S3(x) ≤
(∑

j≤V

|μπ(j)|2
) 1

2

(∑
j≤V

∣∣∣∣∑
d≤ x

j

e(djα)
∣∣∣∣2) 1

2

=
(∑

j≤V

|μπ(j)|2
) 1

2

( ∑
x

V
≤d1,d2≤x

∑
j≤ x

d1
, x

d2
,V

e((d1 − d2)jα)
) 1

2

.

Following from Lemma 2.1, [5, (8.6)] and [15, Lemma 3], we obtain

(4.2) S3(x) �π x
1

2V
1

2 ,

where α is of irrational type 1.
Thus, by (4.1) and (4.2), we choose U = V = x

2−2θ

5−4θ to get∑
n≤x

μπ(n)e(nα) �π,ε x
4−3θ

5−4θ
+ε.

5. Proof of Corollary 1.4

Following from (2.4), we obtain that∑
n≤x

Λ(n)λπ(n)e(nα)
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=
∑
n≤x

Λπ(n)e(nα) +O

( ∑
k≥2,pk≤x

(log p)(λπ(pk) + aπ(pk))e(pkα)
)
.

By the Cauchy–Schwarz inequality, (2.6) and (2.7), we derive that∑
k≥2,pk≤x

(log p)(λπ(pk) + aπ(pk))e(pkα) � x
3

4 (logx)2.

Thus, we obtain∑
n≤x

Λ(n)λπ(n)e(nα) =
∑
n≤x

Λπ(n)e(nα) +O(x
3

4 (log x)2).

By the above equality and Theorem 1.2, we finish the proof of Corollary 1.4.

6. Proof of Theorem 1.5

Consider the sets

Lr =
{
0 ≤ α < 1 :

max
1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(αn)
∣∣∣∣ > r

1

2 (log r)
1

2
+ε

( ∑
n≤2r

|λπ(n)|2
) 1

2

}
for r ≥ 2 and ε > 0. Chebyshev’s inequality shows that

meas(Lr) ≤
1

r(log r)1+ε
∑

n≤2r |λπ(n)|2
(6.1)

×

∫ 1

0

(
max

1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(αn)
∣∣∣∣)2

dα,

where meas(·) denotes the Lebesgue measure. In order to deal with∫ 1

0

(
max

1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(αn)
∣∣∣∣)2

dα,

we recall the Carleson–Hunt theorem:

Theorem 6.1 [3]. For any sequence (ck)k∈Z of complex numbers, and
any positive integer Y ,∫ 1

0

(
max

1≤y≤Y

∣∣∣∣ ∑
1≤|k|≤y

ck exp(2πikλ)
∣∣∣∣)2

dλ �
∑

1≤|k|≤Y

|ck|
2.
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Then we immediately have

(6.2)
∫ 1

0

(
max

1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(αn)
∣∣∣∣)2

dα �
∑
n≤2r

|λπ(n)|2.

Hence, it follows from (6.1) and (6.2) that meas(Lr) � 1/r(log r)1+2ε, so
that

∞∑
r=2

meas(Lr) < ∞.

We recall the Borel–Cantelli lemma.

Lemma 6.2. Let (X,Σ, μ) be a measure space with μ(X) < ∞ and sup-

pose {En}
∞
n=1 ⊂ Σ is a collection of measurable sets such that

∑∞
n=1 μ(En) <

∞. Then

μ

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.

This yields

(6.3) meas
( ∞⋂

R=2

∞⋃
r=R

Lr

)
= 0.

Hence, for every ε > 0, we have

max
1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(nα)
∣∣∣∣ �f,α,ε r

1

2 (log r)
1

2
+ε

( ∑
n≤2r

|λπ(n)|2
) 1

2

.

Since ∑
n≤x

|λπ(n)|2 ≤
∑
n≤x

λπ×π̂(n) ∼ cπx,

we deduce that

max
1≤x≤2r

∣∣∣∣∑
n≤x

λπ(n)e(nα)
∣∣∣∣ �π,α,ε (logx)

1

2 (log log x)
1

2
+εx

1

2 ,

where 2r denotes the smallest power of 2 exceeding x.
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7. Proof of Corollary 1.6

For fixed ε > 0. By Theorem 1.5, we have∑
n≤x

λπ(n)e(nα) �π,α,ε x
1

2
+ε,

for all 0 < α < 1 in a set of full Lebesgue measure. Then following the same
method as in the proof of Theorem 1.2, we have

S1(x) =
∑
n≤U

Λπ(n)e(nα) �π U,

S2(x) = −
∑
n≤x

( ∑
djr=n

j≤V,r≤U

λπ(d)μπ(j)Λπ(r)
)
e(nα) �π,α,ε (UV )

1

2x
1

2
+ε,

S3(x) =
∑
n≤x

( ∑
dj=n
j≤V

λπ(d)(log d)μπ(j)
)
e(nα) �π,α,ε V

1

2x
1

2
+ε log x

for 0 < α < 1 in a set of full Lebesgue measure and

S4(x) =
∑
n≤x

( ∑
dj=n

d>U,j>V

Λπ(d)
(∑

tr=j
r≤V

λπ(t)μπ(r)
))

e(nα)

�π,ε x
1+εU− 1

2 (log x)2m+3

for all α of irrational type 1 lying in the interval [0, 1]. We denote by B
the set of 0 < α < 1 satisfying Theorem 1.5 which is non-effective. Let A
denote the set of those numbers α of irrational type 1 lying in the interval
[0, 1]. Following Davenport and Roth [1], A has Lebesgue measure 1. By the
property of Lebesgue measure, the intersection of A and B also has Lebesgue
measure 1. Hence, we choose U = V = x

1

3 to obtain that, for all 0 < α < 1
in a set of full Lebesgue measure (depending on π and ε ),∑

n≤x

Λπ(n)e(nα) �π,α,ε x
5

6
+ε.

It follows by the same method as in the proof of Corollary 1.4 that∑
n≤x

Λ(n)λπ(n)e(nα) �π,α,ε x
5

6
+ε.
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