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Abstract. This is a short survey about the theory of stable polynomials
and its applications. It gives self-contained proofs of two theorems of Schrijver.
One of them asserts that for a d-regular bipartite graph G on 2n vertices, the
number of perfect matchings, denoted by pm(G), satisfies

pm(G) ≥
( (d− 1)d−1

dd−2

)n

.

The other theorem claims that for even d the number of Eulerian orientations of
a d-regular graph G on n vertices, denoted by ε(G), satisfies

ε(G) ≥

((
d

d/2

)
2d/2

)n

.

To prove these theorems we use the theory of stable polynomials, and give a com-
mon generalization of the two theorems.

1. Introduction

In this paper we will give new proofs for the following theorems of
Schrijver. The first theorem is about perfect matchings of regular bipar-
tite graphs.
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Theorem 1.1 (Schrijver [24]). Let G = (A,B,E) be a d-regular bipartite
graph on 2n vertices. Let pm(G) denote the number of perfect matchings

of G. Then

pm(G) ≥
((d− 1)d−1

dd−2

)n
.

The next theorem is about Eulerian orientations of regular graphs. Re-
call that an orientation of a graph G is Eulerian if the in-degree and out-
degree are equal at each vertex. (In particular, the degree of a vertex must
be even.)

Theorem 1.2 (Schrijver [23]). Let G be a graph, where the degree of

the vertex v is dv . Suppose that dv is even for each v. Let ε(G) denote the

number of Eulerian orientations of the graph G. Then

ε(G) ≥
∏

v∈V (G)

( dv

dv/2

)
2dv/2

.

The main goal of this paper is to show that these two theorems have a
common generalization. To spell out this generalization we will count the
number of orientations in a graph with prescribed in-degree sequence.

Definition 1.3. Let r = (rv)v∈V (G) ∈ ZV (G). Let εr(G) denote the
number of those orientations of the graph G where the in-degree of the
vertex v is rv .

Observe that if we have a d-regular bipartite graph G = (A,B,E), then
the perfect matchings are in bijection with those orientations of the graph
where the in-degree of the vertices in A is 1, and is d− 1 in case of the ver-
tices of B. Indeed, simply orient each edge of a perfect matching towards A,
and every other edge towards B. Clearly, if we have such an orientation,
then the edges oriented towards A form a perfect matching.

The following theorem might look technical, but it easily implies both
Theorems 1.1 and 1.2.

Theorem 1.4. Let G = (V,E) be a graph with degree dv at vertex v,
and let εr(G) denote the number of orientations of the graph G where the

in-degree of the vertex v is rv . Then

εr(G) ≥
∏

v∈V (G)

(
dv
rv

)( rv
dv

)rv(dv − rv
dv

)dv−rv · inf
xu>0

∏
(u,v)∈E(G)(xu + xv)∏

u∈V (G) x
ru
u

.
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We remark that the role of the multivariate polynomial PG(x) :=∏
(u,v)∈E(G)(xu + xv) in the theorem comes from the fact that

∏
(u,v)∈E(G)

(xu + xv) =
∑
r

εr(G)
∏

u∈V (G)

xruu .

In other words, this theorem is about how to give a lower bound on a co-
efficient of a multivariate polynomial in terms of the polynomial. It turns
out that this lower bound is possible, because the polynomial PG(x) is a real
stable polynomial. The definition of real stability is the following.

Definition 1.5. A multivariate polynomial P (x1, . . . , xn) with complex
coefficients is stable if P (z1, . . . , zn) �= 0 whenever Im(zi) > 0 for i = 1, . . . , n.
A polynomial is called real stable if it is stable and its coefficients are real.

Note that a univariate polynomial with real coefficients is stable if and
only if it is real-rooted. So real stability is a generalization of real-rootedness
for multivariate polynomials.

We remark that Gurvits [10] already gave a proof of Theorem 1.1 using
real stable polynomials. He used the polynomial

Q(x) =
∏
v∈B

(∑
u∈A

xu

)

in his proof. In this case the coefficient of
∏

u∈A xu is exactly pm(G). In
fact, we will follow exactly the strategy of Gurvits. This strategy is based
on two concepts, the real stability and the capacity of a polynomial. The
latter was invented by Gurvits himself. We will review these concepts in the
next section.

What is new in this paper? The proof of Theorem 2.5 is new, the theorem
itself appeared in [12] in a slightly different form. The use of the polynomial
PG(x) in these proofs also seems to be new, although variants of this poly-
nomial appeared in [12], but never exactly this one. Proving Theorem 1.2
via stable polynomials is also new. On the other hand, the general strategy
is not new at all. In fact, one of our main goals is to advertise this theory,
so this paper can be considered as a mini survey.

This paper is organized as follows. In the next section we collect the ba-
sic facts about real stable polynomials and capacity. In Section 3 we prove
Theorem 1.4 and derive Theorem 1.1 and 1.2 from it. In Section 4 we col-
lected pointers to the literature.

STABLE POLYNOMIALS, ORIENTATIONS AND MATCHINGS 3
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2. Real stability and capacity

In this section we review the basic properties of real stability and capac-
ity. To keep this paper self-contained we will prove every result that we use
apart from a theorem of Hurwitz.

2.1. Stability. Recall that a multivariate polynomial P (x1, . . . , xn)
is real stable if it has real coefficients, and P (z1, . . . , zn) �= 0 whenever
Im(zi) > 0 for i = 1, . . . , n.

In this section we collect some operations that preserve stability. A gen-
eral theory of stability preserver operations is developed by Borcea and
Brändén [3]. We also recommend the paper of Choe, Oxley, Sokal and
Wagner [4] for a comprehensive list of operations that preserves stability.

Theorem 2.1. Let P (x1, . . . , xn) be a real stable polynomial. Suppose
that the degree of x1 in P is d. Then the following hold true.

(a) The polynomial xd1P (−1/x1, x2, . . . xn) is real stable.
(b) If a ∈ C has non-negative imaginary part, then P (a, x2, . . . , xn) is real

stable or the constant 0 polynomial.
(c) The polynomial ∂

∂x1

P is real stable or the constant 0 polynomial.

To prove Theorem 2.1 we will need the following

Theorem 2.2 (Hurwitz, [21, Theorem 1.3.8]). Let Ω be an open con-
nected subset of Cn. Suppose that the sequence of analytic functions (fk)k
converge to some function f such a way that the convergence is uniform on
all compact subsets of Ω. Suppose that fk has no zero in Ω for all k. Then
f has no zero in Ω either, or f is the constant 0 function.

Proof of Theorem 2.1. As before let H = {z | Im(z) > 0}. Then the
first claim is trivial since z �→ −1

z maps H to H.
Next we prove part (b). If a ∈ C has positive imaginary part, then any

(c2, . . . , cn) ∈ Hn−1 satisfying P (a, c2, . . . , cn) = 0 would immediately imply
that P is not stable. Thus P (a, x2, . . . , xn) is indeed stable. If a ∈ R, then
let us consider the sequence of polynomials

Pk

(
x2, . . . , xn

)
= P

(
a+ i/k, x2, . . . , xn

)
.

By the previous argument the polynomials Pk(x2, . . . , xn) are stable. Clearly,
Pk converges uniformly to P (a, x2, . . . , xn) on all compact subsets of Hn.
Hence P (a, x2, . . . , xn) is stable too or the constant 0 function. Since it has
real coefficients, it is real stable or the constant 0 function.

Next we prove part (c). Let

P (x1, . . . , xn) =
d∑

k=0

Pk(x2, . . . , xn)xk1 .

P. CSIKVÁRI and Á. SCHWEITZER4
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First we show that Pd(x2, . . . , xn) is a real stable polynomial. By part (a)

R(x1, . . . , xn) := xd1P (−1/x1, x2, . . . , xn) =
d∑

k=0

Pk(x2, . . . , xn)(−1)kxd−k
1

is real stable. Then R(0, x2, . . . , xn) = (−1)dPd(x2, . . . , xn) is real stable or
the constant 0 polynomial. Since d was the degree of P in x1, it cannot be
the constant 0 function. Thus Pd(x2, . . . , xn) is real stable.

Now let Q = ∂
∂x1

P , and let a = (a1, a2, . . . , an) ∈ H
n. We show that if

Q �≡ 0, then Im
( Q(a)
P (a)

)
< 0. Note that here we use that P is stable, so P (a)

�= 0, and we can divide with it. If d = 0 then Q ≡ 0. We can assume that
d ≥ 1. Let

g(x) := P (x, a2, . . . , an) =
d∑

k=0

Pk(a2, . . . , an)xk.

Note that Pd(a2, . . . , an) �= 0 since Pd is real-stable. So g(x) has degree d ≥ 1.
Then g(x) = c

∏d
i=1(x− ρi), and we have

g′(x)
g(x)

=
d∑

i=1

1
x− ρi

.

Note that Im(ρi) ≤ 0, otherwise P (ρi, a2, . . . , an) = 0 would yield a zero
in H

n. Hence

Im
(Q(a)
P (a)

)
= Im

(g′(a1)
g(a1)

)
= Im

( d∑
i=1

1
a1 − ρi

)
< 0.

In particular, this shows that Q(a) �= 0. Hence Q is stable. (Remark: we
essentially repeated the proof of the Gauss–Lucas theorem that asserts that
the zeros of the derivative of a polynomial lie in the convex hull of the zeros
of the polynomial.) �

2.2. Capacity of a polynomial. In this section we introduce the
concept of capacity.

Definition 2.3 (Gurvits [10]). Let P (x1, . . . , xn) be a multivariate
polynomial with non-negative coefficients. Let α = (α1, . . . , αn) be a non-
negative vector. Then the α-capacity of the polynomial P (x1, . . . , xn) is

capα(P ) = inf
x1,...,xn>0

P (x1, . . . , xn)∏n
i=1 x

αi

i

.

STABLE POLYNOMIALS, ORIENTATIONS AND MATCHINGS 5
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Note that if the numbers αi are integers, then the capacity is an upper
bound for the coefficient of the term

∏n
i=1 x

αi

i .
So in Theorem 1.4 we had capr(PG) in the statement. In the definition

of capacity we never used that P is real stable, but it turns out that this con-
cept is especially useful when we study stable polynomials. The main reason
for this phenomenon is that one can often govern the capacity for stability
preserver operators. A general theory of capacity preserver linear opera-
tors was developed in the paper of Leake and Gurvits [13]. The following
theorem is a special case of their theory.

Theorem 2.4. Let P (x1, . . . , xn) be a real stable polynomial with non-
negative coefficients. Suppose that the degree of x1 in P is d. Let

Q =
1
r!

( ∂r

∂xr1
P
)∣∣∣

x1=0
.

In other words, if we expand P as a polynomial of x1, then Q is the coefficient
of xr1.

Let α = (α1, . . . , αn), where α1 = r, and α′ = (α2, . . . , αn). Then

capα′(Q) ≥
(
d

r

)(r
d

)r(d− r

d

)d−r
capα(P ).

An immediate corollary of Theorem 2.4 is the following theorem.

Theorem 2.5 (coefficient lemma for stable polynomials with non-
negative coefficients). Let P (x1, . . . , xn) be a real stable polynomial with non-
negative coefficients. Suppose that the degree of xi in P is at most di for
i = 1, . . . , n. Let r = (r1, . . . , rn) and ar be the coefficient of

∏n
i=1 x

ri
i in P .

Then

ar ≥
n∏

i=1

(
di
ri

)( ri
di

)ri(di − ri
di

)di−ri
capr(P ).

If we apply Theorem 2.5 to the real stable polynomial

PG(x) =
∏

(u,v)∈E(G)

(xu + xv)

we get Theorem 1.2.
The key lemma to prove the above theorems is the following.

Lemma 2.6. Let p(z) =
∑d

k=0 akz
k be a real-rooted polynomial with non-

negative coefficients. Then

ar ≥
(
d

r

)(r
d

)r(d− r

d

)d−r
inf
t>0

p(t)
tr

.

P. CSIKVÁRI and Á. SCHWEITZER6
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We remark that this lemma for r = 1 was the main ingredient of the
proof of Gurvits for Theorem 1.1.

We will derive Lemma 2.6 from the following statement.

Lemma 2.7. Let p(z) =
∑d

k=0 akz
k be a real-rooted polynomial with non-

negative coefficients. Suppose that p(1) = 1 and p′(1) = r is an integer. Then

ar ≥
(
d

r

)(r
d

)r(d− r

d

)d−r
.

We remark that Lemma 2.7 is a special case of the following theorem of
Hoeffding [14]. Nevertheless to keep our paper self-contained we will give
a proof of Lemma 2.7. The intuitive meaning of Hoeffding’s theorem is
that among probability distributions coming from real-rooted polynomials
and fixed expected value the binomial distribution is the least concentrated
around its expected value.

Theorem 2.8 (Hoeffding [14]). Let p(z) =
∑d

k=0 pkz
k be a real-rooted

polynomial with pk ≥ 0, and p(1) = 1, that is,
∑d

k=0 pk = 1. Let s be defined

by the equation
∑d

k=0 kpk = ds. Suppose that for non-negative integers b and
c we have b ≤ ds ≤ c. Then

c∑
k=b

pk ≥
c∑

k=b

(
d

k

)
sk(1− s)d−k.

It is easy to see that Lemma 2.7 is a special case of Lemma 2.6, but as
the following proof shows they are actually equivalent statements.

Proof of Lemma 2.6 from Lemma 2.7. Suppose that

p(z) =
M∑

k=m

akz
k,

where am, aM > 0. If r < m or r > M , then inft>0
p(t)
tr = 0 so the claim is

true in this case. If r = m, then inft>0
p(t)
tr = am so the claim is again true. If

r = M , then inft>0
p(t)
tr = aM so we are again done. Thus we can assume that

m < r < M . Observe that tp′(t)
p(t) is monotone increasing, tp′(t)

p(t)

∣∣
t=0 = m and

limt→∞
tp′(t)
p(t) = M . So we can choose tr > 0 in such a way that trp′(tr)

p(tr)
= r.

Let us consider the probability distribution qj =
ajtjr
p(tr) . Then

∑
k kqk = r, and∑d

j=0 qjz
j is still a real-rooted polynomial. Next let us apply Lemma 2.7.

STABLE POLYNOMIALS, ORIENTATIONS AND MATCHINGS 7
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Then
art

r
r

p(tr)
= qr ≥

(
d

r

)(r
d

)r(d− r

d

)d−r
.

In other words,

ar ≥
(
d

r

)( r
d

)r (d− r

d

)d−r p(tr)
trr

≥
(
d

r

)(r
d

)r (d− r

d

)d−r
inf
t>0

p(t)
tr

. �

Before we prove Lemma 2.7 we show that Lemma 2.6 indeed implies
Thorem 2.4.

Proof of Theorem 2.4. For fixed a2, . . . , an consider the polynomial

g(x) = P (x, a2, . . . , an).

Clearly, 1
r!

dr

dxr g(x)
∣∣
x=0 = Q(a2, . . . , an). Since P is stable, and we substi-

tuted ai ∈ R into it, g(x) is stable. In other words, it is real-rooted. Thus
we can use Theorem 2.6:

ar ≥
(
d

r

)(r
d

)r(d− r

d

)d−r

inf
x>0

g(x)
xr

.

Hence we have

Q(a2, . . . , an)∏n
i=2 a

αi

i

=
1
r!

dr

dxr g(x)
∣∣
x=0∏n

i=2 a
αi

i

≥
(
d

r

)( r
d

)r(d− r

d

)d−r 1∏n
i=2 a

αi

i

inf
x>0

g(x)
xr

=
(
d

r

)( r
d

)r(d− r

d

)d−r
inf
x>0

P (x, a2, . . . , an)
xr ·∏n

i=2 a
αi

i

≥
(
d

r

)(r
d

)r(d− r

d

)d−r
capα(P ).

Taking infimum on the left side we get that

capα′(Q) ≥
(
d

r

)( r
d

)r(d− r

d

)d−r
capα(P ). �

2.3. Proof of Lemma 2.7. In this section we prove Lemma 2.7. The
condition on the non-negativity of the coefficients and p(1) = 1 implies that
p(z) can be written as follows:

p(z) =
d∏

i=1

(1− αi + αiz),

P. CSIKVÁRI and Á. SCHWEITZER8
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where 0 ≤ αi ≤ 1. Indeed, as all coefficients are non-negative, there can be
no positive roots, thus using p(1) = 1 the polynomial can be rewritten in the
following way:

p(z) = an

d∏
i=1

(z + ρi) =
d∏

i=1

(z + ρi
1 + ρi

)
=

d∏
i=1

(1− αi + αiz),

where αi = 1
1+ρi

. Note that

r = p′(1) =
d∑

i=1

αi

∏
j �=i

(αj + 1− αj) =
d∑

i=1

αi.

Consider the domain

Dd,r =
{
(α1, . . . , αd) ∈ R

d
∣∣∣ 0 ≤ αi ≤ 1 (i = 1, . . . , d),

d∑
i=1

αi = r

}
.

Clearly, the coefficient ar of zr in p(z) can be expressed as

ar =
∑

K⊂[n]
|K|=r

∏
j∈K

αj

∏
j �∈K

(1− αj).

So let us introduce the function

fd,r(x1, . . . , xd) =
∑

K⊂[n]
|K|=r

∏
j∈K

xj
∏
j �∈K

(1− xj).

Clearly, the statement of Lemma 2.7 is equivalent with

min
x∈Dd,r

fd,r(x) = fd,r

(r
d
, . . . ,

r

d

)
=

(
d

r

)(r
d

)r(d− r

d

)d−r
.

We will prove this statement by induction on d. The case d = 1 and r = 0 or
r = 1 is trivial. In general, the case r = 0 or r = d is trivial sinceDd,r consists
of only one point in this case. So we can always assume that 0 < r < d. First
we prove that the statement is true for the boundary ∂Dd,r. Then we will
prove that if x �= (

r
d , . . . ,

r
d

)
, then we either have a point y ∈ ∂Dd,r for which

fd,r(x) ≥ fd,r(y), or there exists an x′ ∈Dd,r such that fd,r(x) > fd,r(x′). The
compactness of Dd,r then implies that minx∈Dd,r

fd,r(x) = fd,r
(
r
d , . . . ,

r
d

)
.

So let us first prove that for x ∈ ∂Dd,r we have fd,r(x) ≥ fd,r
(
r
d , . . . ,

r
d

)
.

Clearly, if x ∈ ∂Dd,r then one of its coordinates is 0 or 1. If we delete this

STABLE POLYNOMIALS, ORIENTATIONS AND MATCHINGS 9
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coordinate, then the obtained vector x′ is in Dd−1,r in the first case, and in
Dd−1,r−1 in the second case. Furthermore, fd,r(x) = fd−1,r(x′) in the first
case, and fd,r(x) = fd−1,r−1(x′) in the second case. By induction we know
that we have

fd−1,r(x′) ≥
(
d− 1
r

)( r

d− 1

)r(d− 1− r

d− 1

)d−1−r

for x′ ∈ Dd−1,r, and

fd−1,r−1(x′) ≥
(
d− 1
r − 1

)( r − 1
d− 1

)r−1(d− r

d− 1

)d−r

for x′ ∈ Dd−1,r−1. Let us introduce the function �n,k = xk(1− x)n−k. It is
easy to see that it takes its maximum at the value x = k/n in the interval
[0, 1] as its derivative is (k − nx)xk−1(1− x)n−k−1. Hence(

d

r

)( r
d

)r(d− r

d

)d−r
=

(
d− 1
r

)(r
d

)r(d− r

d

)d−r−1
=

(
d− 1
r

)
�d−1,r

(r
d

)

<

(
d− 1
r

)
�d−1,r

( r

d− 1

)
=

(
d− 1
r

)( r

d− 1

)r(d− 1− r

d− 1

)d−1−r

and(
d

r

)( r
d

)r(d− r

d

)d−r
=
(
d− 1
r − 1

)(r
d

)r−1(d− r

d

)d−r
=
(
d− 1
r − 1

)
�d−1,r−1

(r
d

)

<

(
d− 1
r − 1

)
�d−1,r−1

(r − 1
d− 1

)
=

(
d− 1
r − 1

)(r − 1
d− 1

)r−1(d− r

d− 1

)d−r
.

Hence for x ∈ ∂Dd,r we have fd,r(x) ≥ fd,r
(
r
d , . . . ,

r
d

)
.

Next we show that if x �= (
r
d , . . . ,

r
d

)
, then either we have a point

y ∈ ∂Dd,r for which fd,r(x) ≥ fd,r(y) or there exists an x′ ∈ Dd,r such that
fd,r(x) > fd,r(x′). Since x �= (

r
d , . . . ,

r
d

)
there exists i and j such that xi �= xj .

Let xi + xj = u and

∏
k �=i,j

(1− xk + xkz) =
d−2∑
m=0

bmzm.

Then fd,r(x) is the coefficient of zr in the polynomial

( d−2∑
m=0

bmzm
)
(1− xi + zxi)(1− (u− xi) + z(u− xi)).

P. CSIKVÁRI and Á. SCHWEITZER10
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A little computation shows that

fd,r(x) = xi(u− xi)(br−2 − 2br−1 + br) + (rbr−1 + (1− r)br).

If br−2 − 2br−1 + br < 0, then we get a strictly smaller value for fd,r(x) if we
replace (xi, xj) with (u/2, u/2). If br−2 − 2br−1 + br ≥ 0, then we can replace
(xi, xj) with (0, u) or (1, u− 1) depending on u ∈ [0, 1] or [1, 2] yielding a
boundary point y for which fd,r(x) ≥ fd,r(y). �

3. Capacity of the polynomial PG

In this section we prove Theorems 1.1 and 1.2 by computing the capacity
of PG(x) =

∏
(u,v)∈E(xu + xv) with respect to various vectors α.

Lemma 3.1. Let G = (A,B,E) be a d-regular bipartite graph on 2n ver-

tices. Let α be the vector that takes value 1 at a vertex u ∈ A, and value

d− 1 at a vertex v ∈ B. Then

capα(PG) =
dnd

(d− 1)n(d−1) .

Proof. For sake of convenience let us denote the variables by xu if
u ∈ A, and yv if v ∈ B. Then

capα(PG) = inf
xu,yv>0
u∈A,v∈B

∏
(u,v)∈E(G)(xu + yv)∏
u∈A xu ·∏v∈B yd−1

v

= inf
xu,yv>0
u∈A,v∈B

∏
(u,v)∈E(G)

xu + yv

x
1/d
u y

(d−1)/d
v

.

Note that

xu + yv =
1
d
(dxu) +

d− 1
d

( dyv
d− 1

)
≥ (dxu)1/d

( dyv
d− 1

)(d−1)/d

by weighted arithmetic-geometric mean inequality. In other words,

xu + yv

x
1/d
u y

(d−1)/d
v

≥ d

(d− 1)(d−1)/d .

Hence

capα(PG) ≥
( d

(d− 1)(d−1)/d

)nd
=

dnd

(d− 1)n(d−1) .

Observe that if xu = 1 and yv = d− 1 for all u ∈ A and v ∈ B then this
bound is sharp. �
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Proof of Theorem 1.1. As before let α be the vector that takes
value 1 at a vertex u ∈ A, and values d− 1 at a vertex v ∈ B. By Theo-
rem 1.4 we have

pm(G) ≥
∏
v∈A

(
d

1

)(1
d

)1(d−1
d

)d−1
·
∏
v∈B

(
d

d−1

)(d−1
d

)d−1(1
d

)1
· capα(PG).

Then by Lemma 3.1 we have

pm(G) ≥
(
d
(d− 1

d

)d−1
)2n dnd

(d− 1)n(d−1) =
((d− 1)d−1

dd−2

)n
. �

Lemma 3.2. Let α = (d1/2, . . . , dn/2), where dj is the degree of the ver-

tex j. Then capα(PG) = 2e(G), where e(G) is the number of edges.

Proof. First we will prove that capα(PG) ≤ 2e(G). Indeed, if we substi-
tute 1 as x, then we get

PG(1, 1, . . . 1)∏
v∈V (G) 1dv/2

=
∏

(i,j)∈E(G)

(1 + 1) = 2e(G).

Next we will prove the other direction: capα(PG) ≥ 2e(G). Using that xi+xj
≥ 2√xixj we get that

∏
(u,v)∈E(xu + xv)∏

v∈V (G) x
dv/2
v

≥
∏

(i,j)∈E(G) 2
√
xixj∏

v∈V (G) x
dv/2
v

= 2e(G).

Thus capα(PG) = 2e(G). �

Proof of Theorem 1.2. As before let α = (d1/2, . . . , dn/2), where dj
is the degree of the vertex j. By Theorem 1.4 we have

ε(G) ≥
∏
v∈V

(
dv

dv/2

)(dv/2
dv

)dv/2(dv/2
dv

)dv/2 · capα(PG).

Then by Lemma 3.2 we have

ε(G) ≥
∏
v∈V

(
dv

dv/2

)
2dv

· 2e(G) =
∏
v∈V

(
dv

dv/2

)
2dv/2

. �
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Remark 3.3. For d-regular graphs Las Vergnas [15] improved Theo-
rem 1.2 as follows:

ε(G) ≥ 2d( d
d/2

)(
(

d
d/2

)
2d/2

)n

.

(At [15, Proposition 5.3] there is a typo as it is pointed out in another paper
of Las Vergnas in the footnote of the first page of [16].) This strengthen-
ing can be obtained by our method too: all we have to note that we only
need to apply Theorem 2.4 to n− 1 variables corresponding to vertices of
PG(x): at the very end we should get a polynomial of the form cx

dn/2
n since

throughout the process we get homogeneous polynomials. For this univari-
ate polynomial there is no need to apply Theorem 2.4 once more, so we get
a 2d/

( d
d/2

)
improvement. This argument applies to non-regular graphs too

thereby saving a factor 2Δ/
( Δ
Δ/2

)
, where Δ is the largest degree.

4. Beyond this paper

In this section we collected some pointers to the literature.
Stable polynomials have a huge literature. If someone is interested in a

comprehensive introduction to the this theory, then the paper of Choe, Ox-
ley, Sokal and Wagner [4] or Wagner’s survey [28] might be a good choice.
Another excellent survey of the area is the paper of Vishnoi [26]. For ca-
pacity preserver operations the paper of Gurvits and Leake [13] gives a
treatment that is both very general and very readable. Statements on ca-
pacity often boil down to some statement about coefficients of univariate
real-rooted polynomials often with a probabilistic flavour like Hoeffding’s
theorem [14]. A good source of such inequalities and results is Pitman’s
survey [20]. The coefficient lemma, Theorem 2.5, already appeared in the
paper [12]. Interestingly this paper also considers various versions of the
polynomial PG(x) =

∏
(u,v)∈E(G)(xu + xv), but never exactly this form. The

coefficient lemma could have been easily derived from the work of Gurvits
and Leake [13] too.

There are many different proofs and generalizations of Theorem 1.1. The
original proof of Schrijver [24] is elementary, but involved. The first proof
based on stable polynomials and capacity is due to Gurvits [10], his proof is
simplified in the paper of Laurent and Schrijver [17]. Another proof based
on the theory of graph covers is given by Csikvári [5]. (The relationship be-
tween the theory of graph covers and the theory of stable polynomials is
not yet well-understood.) Theorem 1.1 has a very natural generalization for
permanents of non-negative matrices. This generalization was derived by
Gurvits [11] from the original paper of Schrijver [24]. Subsequently, Anari

STABLE POLYNOMIALS, ORIENTATIONS AND MATCHINGS 13
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and Oveis-Gharan [1] and Straszak and Vishnoi [25] gave a proof that only
relies on the theory of stable polynomials. Another possible generalization
considers counting matchings of fixed size in bipartite graphs instead of per-
fect matchings. This question was treated in the papers Csikvári [5], Lelarge
[18] and Gurvits and Leake [13] (this last one uses only stable polynomials).

Concerning Eulerian orientations, Theorem 1.2 has many different proofs
either. The original proof of Schrijver is very elegant and simple. Las
Vergnas [15] gave another proof building on the theory of Martin’s poly-
nomial that gives a slightly stronger result. Borbényi and Csikvári [2] gave a
proof using gauge transformation. The proof presented here is the first one
using stable polynomials, but we remark that this result could have been
easliy deduced from the paper of Straszak and Vishnoi [25] too that uses
stable polynomials.

Both Theorems 1.1 and 1.2 can be interpreted as a correlation inequality.
If we divide by 2e(G) =

∏
v∈V (G) 2

dv/2 in Theorem 1.2, then the the right
hand side of the inequality

ε(G)
2e(G) ≥

∏
v∈V (G)

( dv

dv/2

)
2dv

is the probability that a random orientation is Eulerian, while on the left

hand side the term
( dv
dv/2)
2dv

is the probability that a random orientation is
balanced at vertex v. So this inequality can be interpreted as a positive cor-
relation inequality. Similarly, if G = (A,B,E) is a d-regular bipartite graph,
then we can consider the probability space where for each vertex u in A we
pick exactly one of the edges incident to u uniformly at random. This way
we picked n edges. For a vertex v ∈ B let Ev be the event that we picked
exactly one of the edges incident to v. Then P

(⋂
v∈B Ev

)
= pm(G)

dn while
P(Ev) = d · 1

d

(
1− 1

d

)d−1 =
(
d−1
d

) d−1. Hence Theorem 1.1 is equivalent with
P
(⋂

v∈B Ev

) ≥ ∏
v∈B P(Ev). It seems that many results on capacity are in-

deed fuelled by positive correlation inequalities, often in a very disguised
way. This connection is the most explicit in the paper [25] where the au-
thors introduce the iterated positive correlation property and connect it with
stable polynomials. Surprisingly it is also possible to build out a theory of
negative correlation based on stable polynomials, for details see the paper
[19].

One might wonder whether there is a deeper connection between The-
orems 1.1 and 1.2. It turns out that both theorems fall into a pattern
that is about the so-called Bethe approximation. Hans Bethe was a Nobel-
prize laurate physicist. Among many other achievements he introduced the
concept that is now known as Bethe approximation. Originally this was

P. CSIKVÁRI and Á. SCHWEITZER14
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a highly heuristic concept that approximates well quantities coming from
counting objects with local constraints like perfect matchings and Eulerian
orientations. For a long time it was overlooked by the mathematics commu-
nity, then Bethe approximation showed up in two different lines of research.
In the work of Dembo, Montanari and their coauthors [6–9] about graph
limit theory of sparse graphs, an appropriate version of Bethe approxima-
tion played the role of the limit value of certain graph parameters. Another
line of research emerged from the work of Gurvits establishing inequalities
between a graph parameter and its Bethe approximation. In many cases
Bethe approxiation turns out to be a lower bound for the corresponding
graph parameter. Theorems 1.1 and 1.2 belong to this line of research. This
area almost exclusively relies on stable polynomials [1,25] and graph covers
[5,18,22,27].

Acknowledgements. The first author thanks Jonathan Leake for the
discussions on the topic of this paper. The authors are very grateful to the
anonymous referee for his/her suggestions that greatly improved the paper.
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