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Abstract. The cosine addition formula on a semigroup S is the functional
equation g(xy) = g(x)g(y)− f(x)f(y) for all x, y ∈ S. We find its general solution
for g, f : S → C, using the recently found general solution of the sine addition
formula f(xy) = f(x)g(y)+ g(x)f(y) on semigroups. A simpler proof of this latter
result is also included, with some details added to the solution.

We also solve the cosine subtraction formula g(xσ(y)) = g(x)g(y)+ f(x)f(y)
on monoids, where σ is an automorphic involution. The solutions of these func-
tional equations are described mostly in terms of additive and multiplicative func-
tions, but for some semigroups there exist points where f and/or g can take ar-
bitrary values.

The continuous solutions on topological semigroups are also found.

1. Introduction

Let S be a (not necessarily commutative) semigroup, let K be a (com-
mutative) field, and let σ : S → S be an automorphic involution. That σ is
an involution means σ ◦σ(x) = x for all x ∈ S. The cosine addition formula,
sine addition formula, cosine subtraction formula, and sine subtraction for-
mula for unknown functions g, f : S → K are, respectively, the functional
equations

g(xy) = g(x)g(y)− f(x)f(y),(1)

f(xy) = f(x)g(y) + g(x)f(y),(2)

g(xσ(y)) = g(x)g(y) + f(x)f(y),(3)

f(xσ(y)) = f(x)g(y)− g(x)f(y),(4)

Key words and phrases: semigroup, prime ideal, topological semigroup, monoid, trigonomet-
ric functional equation.
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for all x, y ∈ S. These equations obviously generalize familiar trigonometric
identities if we think of S = (R,+) and σ(y) = −y.

These four functional equations have been investigated (separately or in
systems) by many authors over the past century, beginning with the case
S = (R,+), σ(x) = −x, and K = R. Here we consider them separately, with
primary focus on equations (1) and (3). We include equations (2) and (4) for
two reasons. The first is that the solution of (2) is used to solve (1) and (3).
The other reason is that we give a simpler proof (relative to the one in [5])
of the solution of (2) that also sharpens the descriptions of the solutions of
(2) and (4).

The history of (1) and (3) parallels that of (2) and (4) as described in
[5]. Equation (1) was solved on Abelian groups by Vincze [10], and on gen-
eral groups by Chung, Kannappan, and Ng [4]. More recent results include
[9, Theorem 6.1] by Stetkær, which describes the solution set of (1) on gen-
eral semigroups in terms of the solutions of (2). Also Ajebbar and Elqorachi
[3, Lemma 4.1 and Theorem 4.3] give the solutions of (1) and (3), respec-
tively, on semigroups generated by their squares. The solution of (1) in this
setting was also found independently by the author [6, Proposition 3.3]. For
additional discussions of these equations and their history, the reader may
consult [1, Section 3.2.3], [2, Ch. 13], [8, Ch. 4], and their references.

While (1) may be viewed as a special case of (3) by taking σ to be the
identity function and replacing f by if , we treat the two equations sepa-
rately. That is because we are able to solve (1) on all semigroups but we
solve (3) only on monoids. A monoid is a semigroup containing an identity
element that we denote e, so ex = xe = x for all x ∈ S.

Section 2 contains the solution of the sine addition formula (2), along
with other background, terminology, and notation. We present the general
solution of (1) in section 3. The solution of (3) on monoids follows in sec-
tion 4, as well as an updated solution of (4) with more detail about the
solution forms. Section 5 contains a variety of examples illustrating some
applications of the results.

Although K = C is chosen as the codomain, C can be replaced by any
quadratically closed field of characteristic different from 2.

2. Background and setup

Two essential ingredients in solutions of the cosine and sine addition and
subtraction formulas are the homomorphisms of S (or one of its subsemi-
groups) into the additive and multiplicative semigroups of C. A function
A : S → C is said to be additive if

A(xy) = A(x) + A(y), for all x, y ∈ S,
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and a function m : S → C is multiplicative if

m(xy) = m(x)m(y), for all x, y ∈ S.

If m �= 0 then we say that m is an exponential. For a multiplicative function
m : S → C, we define the nullspace Im by

Im := {x ∈ S | m(x) = 0}.

If Im �= ∅ then it is a (two-sided) ideal of S called the null ideal.
Prime ideals of S are important to this story because of their connec-

tion with multiplicative functions. By an ideal of a semigroup S we mean a
nonempty subset I such that SI ⊆ I and IS ⊆ I . An ideal I is a prime ideal
if I �= S and whenever xy ∈ I it follows that either x ∈ I or y ∈ I . That is,
an ideal I is prime if and only if S \ I is a proper nonempty subsemigroup
of S. Thus for an exponential m : S → C such that Im �= ∅, the null ideal
Im is a prime ideal. Conversely, if I is a prime ideal of S, then there exists
an exponential m : S → C such that I = Im, namely m(x) = 1 for x ∈ S \ I
and m(x) = 0 for x ∈ I .

For any subset T ⊆ S let T 2 = {t1t2 | t1, t2 ∈ T}. We will not use the
notation T 2 to denote the direct product T × T .

In order to adequately describe some solutions of our functional equa-
tions, we partition the nullspace into the disjoint union Im = I2

m ∪ P
(1)
m

∪ P
(1+)
m , where

P (1)
m :=

{
p ∈ Im \ I2

m | for all w ∈ S \ Im we have pw ∈ Im \ I2
m

}
,

P (1+)
m :=

{
p ∈ Im \ I2

m | there exists wp ∈ S \ Im such that pwp ∈ I2
m

}
.

(Note that pw ∈ S \ Im is impossible for p ∈ Im since Im is an ideal if
nonempty.)

A function ϕ : S → C is said to be Abelian if

ϕ(xπ(1) · · · xπ(n)) = ϕ(x1 · · · xn)

for all n ∈ N, x1, . . . , xn ∈ S, and permutations π on {1, . . . , n}. We will
see that the unknown functions f, g in our functional equations are Abelian.
Note that additive and multiplicative functions from S to C (or into any
commutative ring) are always Abelian.

Define the relation ∼ on a semigroup S by x ∼ y if and only if there exist
s1, . . . , sn ∈ S and a permutation π on {1, . . . , n} such that x = s1 · · · sn and
y = sπ(1) · · · sπ(n). It is clear that if x ∼ y then ϕ(x) = ϕ(y) for any Abelian
function ϕ : S → C. We read the statement x ∼ y as “x rearranges to y.”

For a topological semigroup S, let C(S) denote the algebra of continuous
functions mapping S into C. Let C∗ = C \ {0}.
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The following is almost the same as [5, Corollary 3.10], but here we give
a much simpler proof. We also add more detail to the solution form of f in
case (C), making it a bit stronger result than the one in [5].

Theorem 2.1. Let S be a semigroup, and suppose f, g : S → C satisfy

the sine addition law (2) with f �= 0. Then f and g are Abelian and there

exist multiplicative functions m1,m2 : S → C such that g = (m1 +m2)/2. In
addition we have the following.

(A) If m1 �= m2, then f = c(m1 −m2) for some constant c ∈ C∗.
(B) If m1 = m2 = 0, then g = 0, S �= S2, and f has the form

(5) f(x) =

{
f0(x) for x ∈ S \ S2

0 for x ∈ S2

where f0 : S \ S2 → C is an arbitrary nonzero function.
(C) If m1 = m2 =: m �= 0, then g = m and f has the form

(6) f(x) =

⎧⎪⎨
⎪⎩
A(x)m(x) for x ∈ S \ Im

0 for x ∈ I2
m ∪ P

(1+)
m

fP (x) for x ∈ P
(1)
m

where A : S \ Im → C is an additive function and fP is the restriction of f

to P
(1)
m . In addition f satisfies the following conditions.

(I) If x ∼ pw with p ∈ P
(1+)
m and w ∈ S \ Im, then f(x) = 0.

(II) If x = pw with p ∈ P
(1)
m and w ∈ S \ Im, then x ∈ P

(1)
m and fP (x) =

fP (p)m(w).
Note that some values of fP may be chosen arbitrarily.
Conversely, if the formulas for (f, g) in (A), (B), or (C) with (I) and (II)

hold, and if f is Abelian in case (C), then (f, g) satisfies (2).
Furthermore, if S is a topological semigroup and f ∈ C(S), then

g,m1,m2,m ∈ C(S), A ∈ C(S \ Im), f0 ∈ C(S \ S2) and fP ∈ C(P (1)
m ).

Proof. The fact that f and g are Abelian, the representation g =
(m1 +m2)/2 (and the continuity of m1,m2 in the topological case), and
case (A) are all established in [8, Theorem 4.1].

In case (B) we immediately get g = 0, and (2) reduces to f(xy) = 0 for
all x, y ∈ S. Since f �= 0 we must have S2 �= S, and this yields (5) for an
arbitrary (nonzero) function f0 : S \ S2 → C.

In case (C) we see that m is an exponential and (2) becomes

(7) f(xy) = f(x)m(y) +m(x)f(y), x, y ∈ S.
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If x, y ∈ S \ Im then m(xy) = m(x)m(y) �= 0, so xy ∈ S \ Im. In this case
dividing (7) by m(x)m(y) we find that

f(xy)
m(xy)

=
f(x)
m(x)

+
f(y)
m(y)

for all x, y ∈ S \ Im.

Defining A : S \ Im → C by A := f/m, we have the top line of (6) where A
is additive. If Im = ∅ then we are finished, so suppose Im �= ∅ (thus Im is a
prime ideal).

Taking x, y ∈ Im in (7) we find that f(xy) = f(x)m(y) +m(x)f(y) = 0,
since m(x) = m(y) = 0. This proves the case x ∈ I2

m of the middle line
of (6). For the case x ∈ P

(1+)
m , by definition there exists wx ∈ S \ Im such

that xwx ∈ I2
m. Thus

0 = f(xwx) = f(x)m(wx) + f(wx)m(x) = f(x)m(wx),

since m(x) = 0. Now m(wx) �= 0 implies f(x) = 0, and we have completed
the middle line of formula (6). For the bottom line of (6) there is nothing
to prove.

Next suppose x ∼ pw with p ∈ P
(1+)
m and w ∈ S \ Im. Then by (7) (and

using that f is Abelian) we get

f(x) = f(pw) = f(p)m(w) + f(w)m(p) = 0,

since f(p) = m(p) = 0. This proves condition (I).
Lastly let x = pw with p ∈ P

(1)
m and w ∈ S \ Im. Now (7) yields

f(x) = f(pw) = f(p)m(w) +m(p)f(w) = fP (p)m(w),

since m(p) = 0. We claim that x ∈ P
(1)
m . Certainly x ∈ Im \ I2

m by the def-
inition of P (1)

m , since p ∈ P
(1)
m . If we suppose x ∈ P

(1+)
m , then by definition

there exists a wx ∈ S \ Im such that xwx ∈ I2
m. But then we would have

p(wwx) = xwx ∈ I2
m, contradicting p ∈ P

(1)
m . Therefore x ∈ P

(1)
m and we have

condition (II).
Noting the possibility that some values of fP may be arbitrary, this com-

pletes the solution of (2) in case (C).
The converse in case (A) is easily verified by substitution, and in case (B)

it is trivial. In case (C), suppose g = m is an exponential, and f is an Abelian
function of the form (6) with additive A: S \Im →K and restriction fP : P (1)

m

→ K such that conditions (I) and (II) hold. We begin the process of verifying
that f satisfies (7) with cases in which x ∈ S \ Im. For y ∈ S \ Im the verifi-
cation is straightforward, so we omit it. Next, for y ∈ I2

m we have xy ∈ I2
m,

thus f(xy) = f(y) = 0 by the middle line of (6), so (7) holds since m(y) = 0.
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Third, if y ∈ P
(1+)
m then f(y) = 0 by (6) and f(yx) = 0 by condition (I).

Hence

f(xy) = f(yx) = 0 = f(x)m(y) + f(y)m(x)

because m(y) = 0. Fourth, if y ∈ P
(1)
m then by the definition of P (1)

m we have
yx ∈ P

(1)
m , and by condition (II) we get

f(xy) = fP (yx) = fP (y)m(x) = f(y)m(x) + f(x)m(y)

since m(y) = 0, so again (7) holds. The mirror cases in which y ∈ S \ Im
work the same way.

In all remaining cases x, y ∈ I2
m ∪ P

(1+)
m ∪ P

(1)
m , so we have xy ∈ I2

m and
f(xy) = m(x) = m(y) = 0, therefore (7) holds.

In the topological case, the functions f0 and fP inherit continuity from f
by restriction. For m �= 0 the continuity of A follows from the definition
A := f/m on S \ Im. �

Remark 2.2. Examples 5.1–5.3 below show why one cannot make a gen-
eral declaration as to whether or not fP takes arbitrary values in case (C).
Those examples illustrate that all three possibilities arise: fP can have ar-
bitrary values at all points of P (1)

m , at no points of P (1)
m , or at some but not

all points of P (1)
m . One needs additional information about S and/or m in

order to be more precise.

So we find that the solutions of (2) are described mostly in terms of
additive and multiplicative functions. The new twist is the possibility of f
having arbitrary values at some points.

3. General solution of the cosine addition formula

Recall the cosine addition formula (1):

g(xy) = g(x)g(y)− f(x)f(y), x, y ∈ S.

Vincze [10] (for commutative semigroups) and Chung–Kannappan–Ng [4]
(for semigroups in general) showed that the sine addition formula (2) “al-
most” implies (1) in the following sense. If f, g : S → K satisfy (2), then
there exists a constant α ∈ K such that

g(xy) = g(x)g(y)− αf(x)f(y), x, y ∈ S.

This shows that there is a close connection between the two addition formu-
las. There is a weaker implication in the opposite direction. One can extract
the following lemma from the proof of [4, Lemma 4] or [8, Theorem 4.15].
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In both places it is stated for the case that S is a group, but a close read-
ing of the proof(s) shows that it is actually true for semigroups. (Note that
if K = C, then (1) is equivalent to the equation

g(xy) = g(x)g(y) + f ′(x)f ′(y), x, y ∈ S,

by taking f ′ = if .)

Lemma 3.1. If f, g : S → C satisfy (1), then there exists a constant
α ∈ C such that

(8) f(xy) = f(x)g(y) + g(x)f(y) + αf(x)f(y), x, y ∈ S.

Now we present the general solution of (1) on semigroups. Note that
if S is a monoid or a semigroup generated by its squares then S2 = S, but
this is not true in general for semigroups. A counterexample is S = (N,+),
for which S2 = S \ {1}. (The following can also be derived by combining [9,
Theorem 6.1] with our Theorem 2.1, but we give a more direct proof.)

Theorem 3.2. The solutions g, f : S → C of the cosine addition law (1)
are the following families, where m,m1,m2 : S → C are multiplicative func-
tions with m �= 0 and m1 �= m2.

(i) g = f = 0.
(ii) g = c−1m1+cm2

c−1+c
and f = m1−m2

i(c−1+c) , where c ∈ C∗ \ {±i}.
(iii) If S2 �= S, then g = ±f where f has the form given in Theorem 2.1(B).
(iv) g = m± f where f has the form given in Theorem 2.1(C).

Note that g and f are Abelian in each case.
Furthermore, if S is a topological semigroup and f, g ∈ C(S), then

m,m1,m2 ∈ C(S), A ∈ C(S \ Im), f0 ∈ C(S \ S2), and fP ∈ C(P (1)
m ).

Proof. It is easy to check that each of the families (i)–(iv) is a solution
of (1).

For the converse, if g = 0 then f = 0 and we have solution family (i).
Henceforth we assume g �= 0.

If {g, f} is linearly dependent then f = bg for some constant b ∈ C.
Putting this into (1) we get g(xy) = (1− b2)g(x)g(y). In the case b2 = 1
we have g(xy) = 0 for all x, y ∈ S. Since g �= 0 this cannot happen unless
S2 �= S, and then we are in solution family (iii). In the case b2 �= 1 the for-
mula m := (1− b2)g defines an exponential m : S → C. If b = 0 here, then
we have g = m and f = 0, which is the special case of solution family (iv)
with A = 0 = fP . If b �= 0 then we get the special case of solution family (ii)
with c = ib, m1 = m, and m2 = 0.

From here on we assume that {g, f} is linearly independent. Considering
the system (1), (8), we find after a simple calculation that for any λ ∈ C,

(9) (g−λf)(xy)=(g−λf)(x)(g−λf)(y)−(λ2+αλ+1)f(x)f(y), x, y ∈ S.
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If λ1 and λ2 are the two roots of the equation z2 +αz+1 = 0, then λ1λ2 = 1
so λ1 �= 0 and λ2 �= 0. Now (9) shows that m1 := g− λ1f and m2 := g− λ2f
are multiplicative functions. In fact they are exponentials since {g, f} is
linearly independent.

If λ1 �= λ2, then m1 �= m2 and we get

g =
λ2m1 − λ1m2

λ2 − λ1
and f =

m1 −m2

λ2 − λ1
.

Since λ1λ2 = 1, putting c := iλ1 gives the forms in family (ii).
If λ1 = λ2 =: λ, then by λ1λ2 = 1 we have either λ = 1 or λ = −1. We

also have g − λf = m, where again m is an exponential.
In the case λ = 1, since λ2 + αλ+ 1 = 0 we see that α = −2. Also g =

m+ f , thus we find from (8) that

f(xy) = f(x)(m+ f)(y) + (m+ f)(x)f(y)− 2f(x)f(y)

= f(x)m(y) +m(x)f(y).

Therefore the pair f,m satisfies (7). Since m �= 0 we get the form of f from
Theorem 2.1(C), and we have solution family (iv).

The case λ = −1 (where α = 2 and g = m− f ) runs parallel to λ = 1
and leads to solution family (iv) for g = m− f .

Finally, suppose S is a topological semigroup and f, g ∈ C(S). It is clear
that m ∈ C(S) in family (iv); we also get A ∈ C(S \ Im) in case (iv) since
A = f/m on S \ Im. In case (ii) we get the continuity of m1 and m2 from
[8, Theorem 3.18(d)]. The functions f0 and fP inherit continuity from f by
restriction. �

Remark 3.3. In the topological case of Theorem 3.2, we note that if
f �= 0 then it is only necessary to assume f ∈ C(S) to get the continuity
of the other functions. For family (ii) it follows as at the end of the proof
above. For family (iv) we see from the proof above that f,m satisfy (7).
Putting y = y0 there such that f(y0) �= 0 we get

m(x) =
1

f(y0)
[
f(xy0)− f(x)m(y0)

]
, x ∈ S,

so m is continuous. Therefore g = m± f is continuous.

4. General solution of the cosine subtraction formula

Recall that the cosine subtraction formula (3) is

g(xσ(y)) = g(x)g(y) + f(x)f(y), x, y ∈ S.
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The general solution of (3) on groups can be found (with a change of no-
tation and terminology) in [8, Theorem 4.16]. Here we find the solution on
monoids.

Theorem 4.1. Let M be a monoid, and let σ : M → M be an automor-

phic involution. The solutions g, f : M → C of the cosine subtraction law (3)
are the following pairs of functions, where m,m1,m2 : M → C are multiplica-

tive functions such that m �= 0, m1 �= m2 and mj ◦ σ = mj for j ∈ {1, 2}.
(a) g = f = 0.
(b) g = c−1m1+cm2

c−1+c
and f = m2−m1

c−1+c
, where c ∈ C∗ \ {±i}.

(c) g = m+m◦σ
2 and f = m−m◦σ

2i , where m ◦ σ �= m.
(d) g = m± if , where f is as described in Theorem 2.1(C), with m ◦ σ =

m, f ◦ σ = f , and A ◦ σ = A.
Note that f and g are Abelian in each case.

Moreover, if M is a topological monoid and f, g ∈ C(M), then m,m ◦

σ,m1,m2 ∈ C(M), A ∈ C(M \ Im), and fP ∈ C(P (1)
m ).

Proof. Although [8, Theorem 4.16] is stated for groups, much of the
proof works for monoids as well. It shows that g = g ◦σ and f ◦σ ∈ {f,−f}.
In the case f ◦ σ = f we get from (3) that the pair (g, if) satisfies the cosine
addition formula (1). Alternatively, if f ◦ σ = −f then a similar calculation
shows that the pair (g, f) satisfies (1).

When we apply Theorem 3.2, we may omit family (iii) since M2 = M
for a monoid M .

Case 1: Suppose f ◦ σ = f , so the pair (g, if) satisfies (1). Taking the
solutions of (1) for the pair (g, if) from Theorem 3.2, we have to check the
solution families (i), (ii), (iv) in equation (3). Family (i) is our (a). For the
other families we may assume that g �= 0.

For family (ii) recall that m1 �= m2. Now f ◦ σ = f implies that

m1 ◦ σ −m2 ◦ σ = m1 −m2.

Writing this as m1 ◦σ+m2 = m1 +m2 ◦σ, we get m1 ◦σ = m1 and m2 ◦σ =
m2 by an application of [8, Corollary 3.19], since m1 �= m2. Therefore

g =
c−1m1 + cm2

c−1 + c
, if =

m1 −m2

(c−1 + c)i
,

where c ∈ C∗ \ {±i}. This gives the forms in (b), and it is easy to check that
they satisfy (3).

For family (iv) we have g = m± if for some exponential m : M → C,
where if has the form described in Theorem 2.1(C). Thus f has the same
form after renaming A. Since g and f are both even we have m ◦ σ = m,
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and from (6) we get that A ◦ σ = A. Thus we have the forms given in (d).
These forms satisfy (3) if and only if

0 = g(xσ(y))− g(x)g(y)− f(x)f(y)

= m(xσ(y))± if(xσ(y))− [m(x)± if(x)][m(y)± if(y)]− f(x)f(y)

= m(x)m(y)± if(xσ(y))−m(x)m(y)∓ i[f(x)m(y) +m(x)f(y)],

so we have a solution if and only if

f(xσ(y)) = f(x)m(y) +m(x)f(y), x, y ∈ M.

Since f has the form (6), it is a solution of (7) (the sine addition formula
with g = m) and therefore

f(xσ(y)) = f(x)m(σ(y)) +m(x)f(σ(y)) = f(x)m(y) +m(x)f(y)

since both f and m are even. Thus the forms in (d) indeed satisfy (3).
Case 2: Suppose f ◦ σ = −f , so the pair (g, f) satisfies (1). Again we

take the solution categories of (1) from Theorem 3.2, excluding case (iii),
and check them in (3). Category (i) of Theorem 3.2 is again solution (a),
and again we suppose g �= 0 for the rest of the categories.

For category (ii), f ◦ σ = −f yields m1 ◦ σ −m2 ◦ σ = −m1 +m2. We
claim that m1,m2 are exponentials. Indeed, if m2 = 0 then m1 ◦ σ +m1 =
0+ 0, and applying [8, Corollary 3.19] again we get m1 = 0, contradicting
m1 �= m2. Reasoning as before, we find that m2 ◦ σ = m1, m1 ◦ σ = m2.
Defining m := m1 we have m2 = m ◦ σ, and

f =
m−m ◦ σ

i(c−1 + c)

for some c �= 0,±i. From g ◦ σ = g we have also

c−1m ◦ σ + cm = c−1m+ cm ◦ σ,

hence (c−1 − c)(m ◦ σ −m) = 0. Since m ◦ σ �= m (which follows from
m1 �= m2) this means c = ±1. For c = 1 we get g = (m+m ◦ σ)/2 and
f = (m−m ◦ σ)/2i, and for c = −1 we get the same form with m replaced
by m′ = m ◦ σ. Thus we have the forms shown in solution (c). It is easily
checked that these forms satisfy (3).

In category (iv) we have g = m± f with g ◦σ = g and f ◦σ = −f . Thus

m± f = g = g ◦ σ = m ◦ σ ± f ◦ σ = m ◦ σ ∓ f,

and it follows that 2f = ±(m ◦ σ −m). Hence, relabeling m ◦ σ as m if
necessary, we have

f =
1
2
(m ◦ σ −m), g =

1
2
(m ◦ σ +m).
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Substituting these forms into (3), we find after simplification that

0 = [m(x)−m ◦ σ(x)][m(y)−m ◦ σ(y)],

so m−m ◦ σ = 0 = f . This is a special case of solution (d) with f = 0.
Finally, suppose M is a topological monoid and g, f ∈ C(M). The con-

tinuity of m in (d) is immediately evident, and the continuity of A and fP
in that case follows as before. To get the continuity of m, m ◦ σ, m1, m2
in (b) and (c) we apply [8, Theorem 3.18(d)] as before. �

Remark 4.2. It is not difficult to show that the variant

g(σ(y)x) = g(x)g(y) + f(x)f(y), x, y ∈ M,

is equivalent to (3) on a monoid M . By symmetry of the right hand side
we have g(σ(y)x) = g(σ(x)y), and with x = e we get that g is even, that is
g ◦ σ = g. Now

g(xσ(y)) = g ◦ σ(xσ(y)) = g(σ(x)y) = g(y)g(x) + f(y)f(x)

= g(x)g(y) + f(x)f(y).

The following strengthens [5, Theorem 4.2] by combining it with the
extra details provided in Theorem 2.1(C).

Corollary 4.3. Let M be a monoid, and let σ : M → M be an auto-

morphic involution. The solutions f, g : M → C of the sine subtraction for-

mula (4) with f �= 0 are the following pairs of functions, where m : M → C

is multiplicative, b ∈ C, and c ∈ C∗.
(i) For m �= m ◦ σ (so m �= 0) we have

f = c(m−m ◦ σ), g =
m+m ◦ σ

2
+ b(m−m ◦ σ).

(ii) For m = m ◦ σ we have g = m+ bf , where f is an odd function of

the form given in Theorem 2.1(C) with (odd) additive A : M \ Im → C. Here
A,m, fP must be chosen so that f �= 0.
Note that f and g are Abelian in each case.

Moreover, if M is a topological monoid and f ∈ C(M), then g,m,m ◦ σ
∈ C(M) and A ∈ C(M \ Im).

5. Examples

We begin with three examples illustrating Remark 2.2. Taking g = m
�= 0 in (2) yields (7) and puts us in case (C) of Theorem 2.1.
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To set up these examples we introduce the notion of monogenic semi-
group. If S is a semigroup and a ∈ S, then

〈a〉 := {an | n ∈ N}

is called the monogenic semigroup generated by a. If a monogenic semigroup
is infinite then it is isomorphic to (N,+). In the first two examples we use the
same semigroup (S, ∗), which is constructed using three disjoint monogenic
semigroups 〈a〉, 〈b〉, 〈c〉. Within each monogenic semigroup we omit the
multiplication sign. Here 〈a〉 is isomorphic to (N,+), 〈b〉 = {b, b2}, and 〈c〉 =
{c, c2}, where bk = b2 and ck = c2 for all k ≥ 2. Define a binary operation
∗ : S × S → S by

x ∗ y :=

⎧⎪⎨
⎪⎩
xy for (x, y) ∈

(
〈a〉 × 〈a〉

)
∪
(
〈b〉 × 〈b〉

)
∪
(
〈c〉 × 〈c〉

)
bj for {x, y} = {ak, bj}

c2 for {x, y} = {ak, cj} or {x, y} = {bk, cj}

for all k, j ∈ N. Then (S, ∗) is a commutative semigroup. The first two
examples use different exponential functions m : S → C, but in both cases
we have S \ Im = 〈a〉. The additive functions A : S \ Im → C have the form
A(ak) = λk for some constant λ ∈ C.

Example 5.1. Definem : S → C bym(x)=1 for all x ∈ 〈a〉 andm(x)=0
for all x ∈ 〈b〉 ∪ 〈c〉. Then Im = 〈b〉 ∪ 〈c〉, I2

m = {b2, c2}, and Im \ I2
m = {b, c}.

Since c ∗ a = c2 ∈ I2
m we have c ∈ P

(1+)
m , and b ∈ P

(1)
m since b ∗ ak = b for all

k ∈ N. Thus by Theorem 2.1(C) the solutions of (7) have the form

f(x) =

⎧⎪⎨
⎪⎩
λk for x = ak ∈ 〈a〉

0 for x ∈ {b2, c2, c}

β for x = b

where β = fP (b) and λ are arbitrary complex constants.

In the second example we keep the same semigroup but change the ex-
ponential m.

Example 5.2. This time define m on 〈a〉 by m(ak) = 2k, and m(x) = 0
for x ∈ 〈b〉 ∪ 〈c〉. Again we have I2

m = {b2, c2}, P (1+)
m = {c}, and P

(1)
m = {b}.

Taking the solutions of (7) from Theorem 2.1(C), condition (II) yields f(b) =
f(b ∗ ak) = fP (b)2k for all k ∈ N. This is possible only if fP (b) = f(b) = 0.
So this time the solution reduces to

f(x) =

{
λk for x = ak ∈ 〈a〉

0 for x ∈ 〈b〉 ∪ 〈c〉
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where λ ∈ C is arbitrary.

In the third example we use a familiar semigroup.

Example 5.3. Let S = (N, ·), and let m : N → C be the exponential
function defined by m(x) = 1 if x is odd and m(x) = 0 if x is even. Then
Im = 2N, I2

m = 4N, P (1)
m = 2N \ 4N, and P

(1+)
m = ∅. By Theorem 2.1(C) the

form of f : N → C is

f(x) =

⎧⎪⎨
⎪⎩
A(x) for x ∈ N \ 2N
0 for x ∈ 4N
fP (x) for x ∈ 2N \ 4N

for additive A : N \ 2N → C and some fP : 2N \ 4N → C. Here condition (II)
provides the additional information that

f(2(2j + 1)) = fP (2) for all j ∈ N ∪ {0}.

Defining τ := fP (2) we get fP (x) = τ for all x ∈ 2N \ 4N, therefore

f(x) =

⎧⎪⎨
⎪⎩
A(x) for x ∈ N \ 2N
0 for x ∈ 4N
τ for x ∈ 2N \ 4N

where τ ∈ C is arbitrary.
An example of an additive function on N \ 2N (in fact on the whole semi-

group) is C3(x) := the number of times 3 occurs in the prime factorization
of x.

We see from these three examples that fP in formula (6) may take arbi-
trary values at all points of P (1)

m (Example 5.1), at no points of P (1)
m (Example

5.2), or at some but not all points of P (1)
m (Example 5.3). In general we can-

not know which is the case without having additional information about S
and/or m.

Now we turn to examples applying the results of Theorems 3.2 and 4.1
to solve (1) and (3). Examples on groups can be found in [8, Chapter 4], so
we give examples on semigroups which are not groups. In the next example
the semigroups have no prime ideals.

Example 5.4. For any k ∈ N let S be the k-fold direct product N× · · ·
× N under (componentwise) addition. It is easy to see that S has no prime
ideal. Any additive A : S → C has the form A(x1, . . . , xk) =

∑k
j=1 ajxj , and

any exponential m : S → C has the form m(x1, . . . , xk) =
∏k

j=1(bj)
xj , where

aj ∈ C and bj ∈ C
∗. The solutions of (1) for g, f : S → C are obtained by
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using these formulas in the solution forms of Theorem 3.2, where f = Am
in family (iv).

In preparation for our next example we quote the following from [7,
Lemma 5.4]. We write R(α) for the real part of a complex number α.

Lemma 5.5. Let M = M(2,C) be the monoid of 2× 2 complex matri-
ces under multiplication, and let GL(2,C) be the subgroup of non-singular
matrices in M .

(i) If m : M → C is a continuous exponential, then either m = 1 or

(10) m(X) =

{
|det(X)|λ−n (det(X))n for det(X) �= 0
0 for det(X) = 0,

for some n ∈ Z and λ ∈ C with R(λ) > 0.
(ii) The continuous additive functions A : GL(2,C) → C have the form

A(X) = δ log |det(X)| , X ∈ GL(2,C),

for some δ ∈ C.

Now we are ready for an example where our semigroup has a prime ideal.

Example 5.6. Consider the monoid M = M(2,C). For any expo-
nential m ∈ C(M), it is clear by Lemma 5.5 that either Im = ∅ or Im =
M \GL(2,C). In either case we have Im \ I2

m = ∅. This is obvious if Im = ∅;
in the other case it follows from the fact that M is generated by its squares
(see [7, p. 192]).

(a) We get the continuous solutions of (1) on M by substituting the
appropriate forms from Lemma 5.5 into the formulas for f and g given in
Theorem 3.2, where Im \ I2

m = ∅ in family (iv) so (6) reduces to

(11) f(X) =

{
A(X)m(X) for X ∈ M \ Im
0 for X ∈ Im.

Family (iii) does not arise since M is a monoid.
(b) Let σ : M → M be the complex conjugation operator

σ

(
a b
c d

)
=

(
ā b̄
c̄ d̄

)
for all a, b, c, d ∈ C.

We get the continuous solutions of (3) on M by substituting the appropriate
forms from Lemma 5.5 into the formulas for f and g given in Theorem 4.1,
with Im \ I2

m = ∅ in family (d) so (6) reduces to (11). Here m is even only if
either m = 1 or n = 0 in (10). Every A is even.
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(c) Let σ : M → M be the adjugate-transpose operator defined by

σ

(
a b
c d

)
=

(
d −c
−b a

)
for all a, b, c, d ∈ C.

We get the continuous solutions of (3) on M by substituting the appropriate
forms from Lemma 5.5 into the formulas for f and g given in Theorem 4.1,
using (11) in place of (6) again in family (d). Here every m and A are even.

In the preceding example our monoid had a zero, namely the zero matrix.
We say that 0 is a zero of S if 0 · x = x · 0 = 0 for all x ∈ S. There can be at
most one zero in S. Note that if S has a 0, then the only additive function
on S is the zero function. (That follows from A(0) = A(x · 0) = A(x) +A(0)
for all x ∈ S.)

Now consider the extended natural numbers N̄ = N ∪ {∞} under addi-
tion, where x+∞ = ∞+ x = ∞+∞ = ∞ for all x ∈ N. Thus ∞ is a zero
for (N̄,+).

Example 5.7. Let S = N̄× N̄ under addition. The prime ideals of S
are I1 = {∞} × N̄, I2 = N̄× {∞}, and I1 ∪ I2. Nullspaces with their corre-
sponding exponentials m : S → C and additive functions A : S \ Im → C are
the following, for some b1, b2 ∈ C∗ and c1, c2 ∈ C.

(i) Im = ∅, with m = 1 and A = 0.
(ii) Im = I1, with m(x, y) = (b1)x and A(x, y) = c1x for all (x, y) ∈ S \ Im.
(iii) Im = I2, with m(x, y) = (b2)y and A(x, y) = c2y for all (x, y) ∈ S \ Im.
(iv) Im = I1 ∪ I2, with m(x, y) = (b1)x(b2)y and A(x, y) = c1x+ c2y for all

(x, y) ∈ S \ Im.
We get the solutions f, g : S → C of (1) by plugging the appropriate

forms above into the formulas of Theorem 3.2.
Note that since the semigroup operation is addition we have I2

m =
{x+ y | x, y ∈ Im}, so I1 \ I

2
1 = {(∞, 1)} in case (ii). In this case we see

that (∞, 1) + (1, 1) = (∞, 2) ∈ I2
1 , where (1, 1) ∈ S \ I1, so (∞, 1) ∈ P

(1+)
m .

Similar calculations show that Im \ I2
m = P

(1+)
m also in cases (iii) and (iv).

Thus in Theorem 3.2(iv) we find that the form of f simplifies to

(12) f(x) =

{
A(x)m(x) for x ∈ S \ Im
0 for x ∈ Im.

Note this corrects a mistake in [5, Example 5.7], where it was claimed that
the form of f does not reduce to (12).
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For the next example we note first that the continuous exponentials on
the monoid M = [−1, 1] under multiplication have one of the three forms
(13)

m0 := 1, mα(x) :=

{
|x|α for x �=0
0 for x=0,

or m±
α (x) :=

{
|x|α sgn(x) for x �=0
0 for x=0,

where R(α) > 0. Since M has a zero, the only additive function on M is
A = 0. On the sub-monoid M \ {0} the continuous additive functions have
the form A(x) = c log |x| for all x �= 0, where c can be any complex constant.

Example 5.8. Let S = [−1, 1]× [−1, 1] under multiplication and the
product topology. The continuous exponentials on S have the formm(x, y) =
m1(x)m2(y), denoted m = m1 ⊗m2, where each mj : [−1, 1] → C has one
of the three forms in (13) with R(α) > 0. The null ideals corresponding
to continuous exponentials on S are I1 = {0} × [−1, 1], I2 = [−1, 1]× {0},
and I1 ∪ I2. Exponentials m ∈ C(S) and additive functions A ∈ C(S \ Im)
corresponding to these ideals are as follows, where c1, c2, α, β ∈ C with
R(α),R(β) > 0.

(a) For Im = ∅, m = m0 ⊗m0 = 1 and A = 0.
(b) For Im = I1, m ∈ {mα ⊗m0,m

±
α ⊗m0} and A(x, y) = c1 log |x|.

(c) For Im = I2, m ∈ {m0 ⊗mα,m0 ⊗m±
α } and A(x, y) = c2 log |y|.

(d) For Im = I1 ∪ I2, m = m1⊗m2 with m1,m2 ∈ {mα,mβ ,m
±
α ,m

±
β } and

A(x, y) = c1 log |x|+ c2 log |y|.
We get the continuous solutions of (1) on S by substituting the appro-

priate forms above into the formulas for f and g given in Theorem 3.2. Here
Im \ I2

m = ∅ in family (iv) so the form of f again reduces to (12). Family
(iii) does not arise since S is a monoid.

Let σ : S → S be defined by σ(x, y) = (y, x). We get the solutions f, g
∈ C(S) of (3) by plugging the appropriate forms above into the formulas
of Theorem 4.1, using (12) in place of (6) in family (d). An exponen-
tial m is even (that is m = m ◦ σ) if and only if it has one of the forms
m = 1, m = mα ⊗mα, or m = m±

α ⊗m±
α . For the cases m = mα ⊗mα and

m = m±
α ⊗m±

α the corresponding additive function A is even if and only if
c2 = c1.

We close with an example on a semigroup that is fundamental for com-
puter scientists. Let T be a set containing n elements for some positive
integer n ≥ 2, and let T ∗ be the set of (possibly empty) finite sequences of
elements from T . The elements of T ∗ are called strings (or words), and the
elements of T are called letters. Under the operation of concatenation of
strings, T ∗ becomes a monoid, called the free monoid on alphabet T , with
the empty string serving as the identity element. We identify each 
 ∈ T with
the string in T ∗ consisting of exactly one copy of the letter 
, so T ⊂ T ∗.
For each letter 
 ∈ T , the set of all strings containing at least one copy of 
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is a prime ideal which we denote T ∗
� . Furthermore every proper nonempty

subset L ⊂ T generates a prime ideal denoted

T ∗
L :=

⋃
�∈L

T ∗
� .

Thus T ∗ has 2n − 2 prime ideals.

Example 5.9. Let T ∗ denote the free monoid on an alphabet T that
contains n ≥ 2 letters. The forms of multiplicative and additive functions on
T ∗ are straightforward to compute in terms of their values on T . For each

 ∈ T and x ∈ T ∗, let C�(x) denote the number of times letter 
 appears
in string x. This defines an additive function on T ∗. For each x ∈ T ∗ let
Tx = {
 ∈ T | C�(x) ≥ 1}. Then for any multiplicative m : T ∗ → C we have

m(x) =
∏
�∈Tx

m(
)C�(x), x ∈ T ∗.

Such m is an exponential if and only if there exists an 
 ∈ T such that m(
)
�= 0.

Given an exponential m, suppose w ∈ Im \ I2
m. Then there do not exist

u, v ∈ Im such that w = uv. Therefore w must contain exactly one letter 
 ∈
Im, and that letter must occur exactly once in w, so C�(w) = 1. It is not hard
to see that Im \ I2

m = P
(1)
m and P

(1+)
m = ∅. Condition (II) of Theorem 2.1(C)

governs the form of fP . For each letter 
 ∈ T ∩ P
(1)
m the value of fP (
) can

be chosen arbitrarily, then condition (II) determines the values of fP (x) for
all x ∼ 
w with w ∈ S \ Im.

If m : T ∗ → C is an exponential with null ideal T ∗
L for some ∅ �= L ⊂ T ,

then the additive functions A : T ∗ \ T ∗
L have the form

A(x) =
∑

k∈T\L

A(k)Ck(x), x ∈ T ∗ \ T ∗
L.

(a) We get the solutions of (1) on T ∗ by substituting the appropriate
forms described above into the formulas for f and g given in Theorem 3.2.
Family (iii) does not occur since T ∗ is a monoid.

(b) Let 
1 �= 
2 ∈ T , and define σ : T ∗ → T ∗ by σ(x) := x̂ where x̂ is the
word obtained from x by replacing each occurrence of 
1 in x by 
2 and vice
versa. An exponential m is even if and only if m(
1) = m(
2). Note that
additive functions A enter the solutions in Theorem 4.1 only if m is even.
Suppose m is even and has null ideal T ∗

L for some nonempty L ⊂ T . Then
from m(
1) = m(
2) we get that either both or neither of 
1, 
2 belong to L.
If both belong to L then an additive A : T ∗ \T ∗

L is even by default. If neither
of 
1, 
2 belongs to L then A is even if and only if A(
1) = A(
2). Similar
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considerations apply to fP (so that f is even) in Theorem 4.1(d). We get the
solutions of (3) on T ∗ by plugging the appropriate forms into the formulas
for f and g given in Theorem 4.1.
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