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Abstract. The sine addition formula on a semigroup S is the functional
equation f(xy) = f(x)g(y)+ g(x)f(y) for all x, y ∈ S. For some time the solutions
have been known on groups, regular semigroups, and semigroups which are gener-
ated by their squares. The obstacle to finding the solution on all semigroups arose
in the special case that g is a multiplicative function. We overcome this obstacle
and find the general solution on all semigroups using a transfinite induction ar-
gument. A new type of solution appears which is not seen on regular semigroups
or semigroups generated by their squares.

We also give the general solution of the sine subtraction formula f(xσ(y)) =
f(x)g(y)− g(x)f(y) on monoids, where σ is an automorphic involution. The so-
lutions of both equations can be described in terms of additive and multiplicative
functions, with a slight new twist. The general continuous solutions on topolog-
ical semigroups are also found. A variety of examples are given to illustrate the
results.

1. Introduction

The sine addition formula on a semigroup S into a (commutative) fieldK
is the functional equation

(1) f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ S,

for two unknown functions f, g : S → K. We use multiplicative notation for
the semigroup operation, since S is not assumed to be commutative. This
functional equation generalizes the trigonometric identity

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), x, y ∈ R.
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The sine addition formula has attracted much interest, due both to its
fundamental nature and to its connections with other trigonometric func-
tional equations. It also has applications to other branches of mathematics
such as the theory of function algebras (see [5, section 4.3]). It has been
studied extensively (both individually and as part of a system of equations)
for the past century, beginning with the case S = (R,+) and K = R. For
references to early works on this equation see [1, Section 3.2.3]. Over the
years regularity assumptions on the functions have been weakened, and do-
mains have been generalized to groups and eventually to semigroups. It was
solved on Abelian groups by Vincze [6], and on general groups by Chung,
Kannappan, and Ng [3]. The most current result on semigroups was given
by Stetkær and the author [4] (see Lemma 2.1 below). Our main goal is to
give the general solution of (1) on all semigroups.

A secondary goal is the solution of the sine subtraction formula

(2) f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ S,

which generalizes the identity

sin(x− y) = sin(x) cos(y)− cos(x) sin(y), x, y ∈ R.

We solve (2) for unknown functions f, g : S → C, where S is a monoid and
σ : S → S is an automorphic involution. That σ is an involution means
σ ◦ σ(x) = x for all x ∈ S.

For additional discussions of these functional equations and their history,
see [2, Ch. 13], [5, Ch. 4], and their references.

The outline of the paper is as follows. In the next section we present some
background information, including the current state of knowledge about (1).
Lemma 2.1 shows that the missing piece of the solution of (1) occurs in the
case that g is multiplicative. The complete solution of (1) for that case is
given in Theorem 3.5, which shows that all solutions can be described in
terms of additive and multiplicative functions. Corollary 3.10 sums up the
general solution of (1) on semigroups. In section 4 we give the general solu-
tion of (2) on monoids. The paper concludes with a variety of applications
and examples of these results on various kinds of semigroups.

2. Background and setup

The basic building blocks for solutions of the sine addition and subtrac-
tion formulas are the homomorphisms of S (or one of its sub-semigroups)
into the additive and multiplicative semigroups of K. A function A : S → K
is additive if

A(xy) = A(x) + A(y), for all x, y ∈ S,
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and a function m : S → K is multiplicative if

m(xy) = m(x)m(y), for all x, y ∈ S.

If m is multiplicative and m �= 0 then we call m an exponential. A significant
role is played by the nullspace

Im := {x ∈ S | m(x) = 0}

of a multiplicative function m. If the nullspace is nonempty then it is an
ideal (two-sided) which we may call the null ideal of m.

For any field K let K∗ = K \ {0}.
For a topological semigroup S and a topological field K, let C(S,K) de-

note the algebra of continuous functions mapping S into K. We abbreviate
C(S,C) as C(S).

The current knowledge about (1) is summed up in the following, which
is [4, Lemma 3.4 and Remark 3.5]. Recall that a monoid is a semigroup with
an identity element. A semigroup S is regular if for every a ∈ S there exists
an x ∈ S such that axa = a.

Lemma 2.1. Let S be a semigroup, and suppose f, g : S → C satisfy the
sine addition law (1) with f �= 0. Then there exist multiplicative functions
m1,m2 : S → C such that

g =
m1 +m2

2
.

Additionally we have the following.
(i) If m1 �= m2, then f = c(m1 −m2) for some constant c ∈ C∗.
(ii) If m1 = m2, then letting m := m1 we have g = m. If S is a semi-

group such that S = {xy | x, y ∈ S} (for instance a monoid), then m �= 0 (i.e.
m is an exponential).

If S is a group, then there is a nonzero additive function A : S → C such
that f = Am.

If S is a semigroup which is regular or generated by its squares, then
there exists an additive function A : S \ Im → C for which

f(x) =

{
A(x)m(x) for x ∈ S \ Im
0 for x ∈ Im.

Furthermore, if S is a topological group or semigroup (regular or gener-
ated by its squares), and f, g ∈ C(S), then m1,m2,m ∈ C(S). In the group
case A ∈ C(S) and in the second case A ∈ C(S \ Im).

Note that C can be replaced here by any quadratically closed commuta-
tive field of characteristic different from 2 (see e.g. [2, p. 212]).
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So we see that (1) is completely solved (for complex valued functions)
on semigroups in the case m1 �= m2, that is, when g is the arithmetic mean
of two distinct multiplicative functions. The remaining case, in which g is a
multiplicative function m, reduces the sine addition formula to the special
case

(3) f(xy) = f(x)m(y) +m(x)f(y), x, y ∈ S.

This equation also has been solved on groups and certain types of semi-
groups. Our primary goal is to find its solution on all semigroups.

Prime ideals of S play a key role in the study of (1) and (3), so we define
them now. An ideal I of a semigroup S is called a prime ideal if I �= S and
whenever xy ∈ I it follows that either x ∈ I or y ∈ I . This means that an
ideal I is prime if and only if S \ I is a (proper nonempty) sub-semigroup
of S.

There is a very close relationship between prime ideals and exponentials
on semigroups. If m : S → K is exponential, then the nullspace Im is an
ideal if it is nonempty. Furthermore if Im �= ∅ then it is easy to see that the
null ideal Im is a prime ideal. Conversely, if I is a prime ideal of S, then
there exists an exponential m : S → K such that I = Im (just take m(x) = 1
for x ∈ S \ I and m(x) = 0 for x ∈ I).

A function f on a semigroup S is said to be Abelian if f(xπ(1) · · ·xπ(n)) =
f(x1 · · ·xn) for all n ∈ N, (x1, . . . , xn) ∈ Sn, and permutations π on {1, . . . , n}.
The next result shows that for any semigroup S and any solutions f,m:
S → K of (3) with m multiplicative, the function f is Abelian. (Note that
additive functions and multiplicative functions into a commutative ring are
always Abelian.)

Lemma 2.2. Let S be a semigroup, let R be a commutative ring, and
let f,m : S → R be a solution of (3) with m multiplicative. Then for every
n ≥ 2,

(4) f(x1 · · · xn) =
n∑

j=1

f(xj)
∏

k∈{1,...,n}\{j}

m(xk), for all (x1, . . . , xn) ∈ Sn.

Consequently f is Abelian.

Proof. We proceed by induction. For n = 2, equation (4) states that
f(x1x2) = f(x1)m(x2) + f(x2)m(x1), which is (3). Now suppose (4) is valid
for some n ≥ 2. Then by the inductive hypothesis and (3) we have

f(x1 · · · xn+1) = f((x1 · · · xn)xn+1)

= f(x1 · · · xn)m(xn+1) + f(xn+1)m(x1 · · · xn)
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=
n∑

j=1

f(xj)
∏

k∈{1,...,n}\{j}

m(xk)m(xn+1) + f(xn+1)
n∏

k=1

m(xk)

=
n+1∑
j=1

f(xj)
∏

k∈{1,...,n+1}\{j}

m(xk)

for all (x1, . . . , xn+1) ∈ Sn+1. Therefore we have (4) for all n ≥ 2. Clearly
this implies that f is Abelian, since the right hand side of (4) is symmetric
in all its variables. �

Lemma 2.2 allows us to operate as if S were commutative, since our
variables appear only as arguments of Abelian functions. To describe this
license to permute variables in the argument of an Abelian function we in-
troduce the following notion. Define the relation ∼ on semigroup S by x ∼ y
if and only if there exist s1, . . . , sn ∈ S and a permutation π on {1, . . . , n}
such that x = s1 · · · sn and y = sπ(1) · · · sπ(n). It is clear that if x ∼ y then
ϕ(x) = ϕ(y) for any Abelian function ϕ : S → K. We read the statement
x ∼ y as “x rearranges to y.”

The following simple observations will be useful in the next section.

Lemma 2.3. Suppose f,m : S → K satisfy (3) with m multiplicative.
If x ∼ pw with p ∈ Im and w ∈ S \ Im, then f(x) = f(p)m(w). More-
over, if x ∼ p1w1 and x ∼ p2w2 with p1, p2 ∈ Im and w1, w2 ∈ S \ Im, then
f(p1)m(w1) = f(p2)m(w2).

Proof. If x ∼ pw with p ∈ Im and w ∈ S \ Im, then by (3) we get

f(x) = f(pw) = f(p)m(w) + f(w)m(p) = f(p)m(w),

sincem(p) = 0. The second statement follows immediately since f(pi)m(wi) =
f(x) for i = 1, 2. �

3. General solutions of (3) and (1)

For any q ∈ S, the monogenic semigroup generated by q is

〈q〉 :=
{
qn | n ∈ N

}
.

Note that for additive A : S → K and multiplicative m : S → K we have
A(qn) = nA(q) and m(qn) = m(q)n, so the values of A and m on 〈q〉 are
completely determined by their respective values at q.

If 〈q〉 is infinite then it is isomorphic to (N,+). This is sometimes called
the free monogenic semigroup because it is a free semigroup with one gen-
erator.
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If 〈q〉 is finite then we say that q is periodic. Then there exist positive
integers k �= n such that qk = qn. If k is the smallest positive integer such
that qk = qn for some n > k, and if r is the smallest positive integer such
that qk = qk+r, then we refer to k as the index and r as the period of the
finite monogenic semigroup

〈q〉 =
{
q, q2, . . . , qk+r−1} .

In this case {qk, . . . , qk+r−1} is a cyclic subgroup of S.

Lemma 3.1. Let q ∈ S, and suppose f,m : S → K satisfy (3) with m
multiplicative. Then we have the following.

(i) If q ∈ S \ Im, then there exists an additive function Aq : 〈q〉 → K such
that f = Aqm on 〈q〉.

(ii) If q ∈ Im, then f(qn) = 0 for all n ≥ 2.
Note that the value f(q) may be unspecified for some q ∈ Im.

Proof. For part (i) suppose q ∈ S \ Im. Then m(q) �= 0 and thus m(x)
�= 0 for all x ∈ 〈q〉. Dividing (3) by m(xy) = m(x)m(y) �= 0 for x, y ∈ 〈q〉,
we see that

Aq(x) :=
f(x)
m(x)

for all x ∈ 〈q〉

defines an additive function Aq : 〈q〉 → K.
For part (ii) suppose q ∈ Im, so m(q) = 0. For any n ≥ 2, putting x1 =

· · · = xn = q in (4) we get

f(qn) = nf(q)m(q)n−1 = 0.

�

Now define

I2
m :=

{
yz | y, z ∈ Im

}
and Pm := Im \ I2

m.

We can think of Pm as the set of “prime-like” elements of Im, in the sense
that they cannot be realized as the product of two elements of Im.

We introduce the notion of a sub-solution pair for (3).

Definition 3.2. Let f,m : S → K be a solution of (3) with m multi-
plicative, and let E be the empty function from the empty set to K. Suppose

(i) T is a sub-semigroup of S; and
(ii) if T \ Im �= ∅ then AT : T \ Im → K is additive, otherwise AT = E .
We call (T,AT ) a sub-solution pair for (3) if

(5) f(x) =

⎧⎪⎨
⎪⎩
AT (x)m(x) for x ∈ T \ Im
f(p)m(w) for x ∼ pw ∈ Pm with p ∈ T ∩ Pm, w ∈ T \ Im
0 for x ∈ T ∩ I2

m.
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The middle line of (5) is justified and consistent by an application of
Lemma 2.3 on T .

By Lemma 3.1 we see that if q ∈ S with m(q) �= 0 then (〈q〉, f/m) is
a sub-solution pair for (3). In this case the last two lines of (5) are vacu-
ous. On the other hand if m(q) = 0 then (〈q〉, E) is a sub-solution pair for
(3), where the first two lines of (5) are vacuous and the value of f(q) is
unspecified (unless 〈q〉 is a cyclic group, in which case f(q) = 0).

For a sub-semigroup T ⊆ S and an element y ∈ S \ T , let 〈T, y〉 denote
the semigroup generated by T ∪ {y}. We show that a sub-solution pair for
(3) on T can be extended to a sub-solution pair on 〈T, y〉.

Proposition 3.3. Let f,m : S → K be a solution of (3) with m multi-
plicative, and let (T,AT ) be a sub-solution pair. Let q ∈ S \T and T ′ = 〈T, q〉.
Then there exists an additive function AT ′ : T ′ \ Im → K such that (T ′,AT ′)
is a sub-solution pair.

Proof. We divide the proof into two cases, depending on the location
of q.

Case 1: q ∈ S \ Im. By Lemma 3.1 there is an additive function Aq : 〈q〉
→ K such that f = Aqm on 〈q〉. Since T ′ contains both T and 〈q〉, our
first step is to extend AT to ĀT : (T \ Im)∪ 〈q〉 → K by the definition ĀT :=
AT ∪Aq . This is not a problem if (T \ Im)∩〈q〉 = ∅. If there exist t ∈ T \ Im
and qj ∈ 〈q〉 such that t = qj , then we have to check our definition of ĀT for
consistency. In this case we have

AT (t)m(t) = f(t) = f(qj) = Aq(qj)m(qj) = Aq(qj)m(t).

Since m(t) �= 0 this implies AT (t) = Aq(qj), so the additive functions AT

and Aq agree at points where the underlying sub-semigroups intersect, thus
ĀT is well-defined.

Next we will extend ĀT to an additive function AT ′ : T ′ \ Im → K. For
this we need to consider arbitrary products of elements from T \ Im and
〈q〉. Since these elements only appear as inputs to Abelian functions, any
such product x can be rearranged to an element of the form tqj for some
t ∈ T \ Im and j ∈ N, thus x ∼ tqj . For any x ∼ tqj ∈ T ′ \ (T ∪ 〈q〉 ∪ Im),
by (3) we have

f(tqj) = f(t)m(qj) + f(qj)m(t)

= ĀT (t)m(t)m(qj) + ĀT (qj)m(qj)m(t) =
[
ĀT (t) + ĀT (qj)

]
m(tqj).

Defining AT ′ : T ′ \ Im → K by AT ′ := ĀT on (T \ Im) ∪ 〈q〉, and by

AT ′(tqj) := ĀT (t) + ĀT (qj)
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on T ′ \ (T ∪ 〈q〉 ∪ Im), we see that AT ′ is additive and f = AT ′m on T ′ \ Im.
This proves the top line of (5) on T ′.

Verifying the third line of (5) on T ′ is quite simple. If x ∈ T ′ ∩ I2
m, then

x = y′z′ for some y′, z′ ∈ Im. Then (3) yields

f(x) = f(y′z′) = f(y′)m(z′) + f(z′)m(y′) = 0,

since m(y′) = m(z′) = 0.
Verification of the second line of (5) on T ′ is even easier. Suppose

x ∼ p′w′ ∈ T ′ ∩ Pm with p′ ∈ T ′ ∩ Pm and w′ ∈ T ′ \ Im. Then applying
Lemma 2.3 on T ′ we get f(x) = f(p′)m(w′).

This completes Case 1.
Case 2: q ∈ Im. Since Im is an ideal we have in this case T ′ \Im = T \ Im,

so defining AT ′ := AT we immediately get f = AT ′m on T ′ \ Im. This gives
the first line of (5) on T ′.

The second and third lines of (5) hold on T ′ by the same calculations as
in Case 1.

Therefore (T ′, AT ′) is a sub-solution pair. �

Define a partial order ≤ on the set of sub-solution pairs by (T1, A1) ≤
(T2, A2) if T1 ⊆ T2 and A2 agrees with A1 on T1. The next step is to show
that every chain of sub-solution pairs has an upper bound.

Lemma 3.4. Let Λ be a linearly ordered set and suppose {(Tλ, Aλ) |
λ ∈ Λ} is a chain of sub-solution pairs for (3). Put T =

⋃
Tλ and A =

⋃
Aλ.

Then (T,A) is a sub-solution pair for (3), and (Tλ, Aλ) ≤ (T,A) for all
λ ∈ Λ.

Proof. The relation (Tλ, Aλ) ≤ (T,A) for all λ ∈ Λ is obvious, so we
just have to show that (T,A) is a sub-solution pair for (3).

To verify the first line of (5) on T , suppose x ∈ T \ Im. Then there exists
λ ∈ Λ such that x ∈ Tλ \ Im, so

f(x) = Aλ(x)m(x) = A(x)m(x).

For the second line of (5) on T , suppose x ∼ pw ∈ T ∩ Pm with p ∈
T ∩ Pm and w ∈ T \ Im. Then there exist λ1, λ2 ∈ Λ such that p ∈ Tλ1

∩ Pm

and w ∈ Tλ2
\ Im. Taking λ = max{λ1, λ2} we have p ∈ Tλ∩Pm, w ∈ Tλ \ Im,

so pw ∈ Tλ ∩ Pm and therefore f(x) = f(p)m(w).
For the third line of (5) on T , suppose x ∈ T ∩ I2

m. Then there exists
λ ∈ Λ such that x ∈ Tλ ∩ I2

m, thus f(x) = 0.
Therefore (T,A) is a sub-solution pair for (3). �

Now we come to our first main result.
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Theorem 3.5. Let m : S → K be multiplicative. Then f : S → K satis-
fies (3) if and only if f is an Abelian function of the form

(6) f(x) =

⎧⎪⎨
⎪⎩
A(x)m(x) for x ∈ S \ Im
f(p)m(w) for x ∼ pw ∈ Pm with p ∈ Pm, w ∈ S \ Im
0 for x ∈ I2

m

for some additive function A : S \ Im → K.
Furthermore, if S is a topological semigroup, K is a topological field, and

f,m ∈ C(S,K), then A ∈ C(S \ Im,K).

Proof. Suppose f,m : S → K is a solution of (3) with m multiplicative.
Lemma 2.2 shows that f is Abelian. If m = 0 then that same lemma shows
that f(x1 · · · xn) = 0 for all n ≥ 2 and all x1, . . . , xn ∈ S = Im. In this case
the first two lines of (6) are vacuous and the third line holds.

Now we assume m �= 0, so m is an exponential. By Lemma 3.1 we
have for any q such that m(q) �= 0 a sub-solution pair (〈q〉, f/m) for (3).
Lemma 3.4 shows that every chain of sub-solution pairs for (3) has a least
upper bound, so by Zorn’s Lemma the collection of all sub-solution pairs has
a maximal element, say (T,A). We claim that T = S. If this is not the case
then there exists an element y ∈ S \ T , and by Proposition 3.3 there exists a
sub-solution pair (T ′, A′) such that (T,A) ≤ (T ′, A′) with T a proper subset
of T ′, contradicting the maximality of (T,A). Thus we have a sub-solution
pair (S,A) of the form (6) for additive A : S \ Im → K.

Conversely, suppose m is multiplicative and f is Abelian of the form
(6) for additive A : S \ Im → K. The verifications that the pair (f,m) is a
solution of (3) are not very difficult. We omit the case x, y ∈ S \ Im, which
is straightforward. Suppose x ∈ S \ Im and y ∼ qw with q ∈ Pm and w ∈
S \ Im. Then wx ∈ S \ Im and we have

f(xy) = f(xqw) = f(q(wx)) = f(q)m(wx)

= f(q)m(w)m(x) = f(y)m(x) = f(x)m(y) + f(y)m(x)

since m(y) = 0.
Next, suppose x ∈ S \ Im and y ∈ I2

m. Then y = qr with q, r ∈ Im, so

f(xy) = f(xqr) = f((xq)r) = 0 = f(x)m(y) + f(y)m(x),

since (xq)r ∈ I2
m and m(y) = f(y) = 0.

Thirdly, suppose x ∼ pv and y ∼ qw for p, q ∈ Pm and v,w ∈ S \ Im.
Then xy ∈ I2

m so we have

f(xy) = 0 = f(x)m(y) + f(y)m(x),

since m(x) = m(y) = 0.
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We leave the remaining verifications to the reader.
The topological statement is vacuous if m = 0. For m �= 0 it follows im-

mediately from the equation f(x) = A(x)m(x) for x ∈ S \ Im, sincem(x) �= 0
shows that A = f/m is continuous on S \ Im. �

Remark 3.6. For the topological part of Theorem 3.5, if f �= 0 then we
need only assume that f is continuous. Indeed, if f(y0) �= 0 for some y0 ∈ S
then

m(x) =
1

f(y0)
[
f(xy0)− f(x)m(y0)

]
for all x ∈ S,

so m is continuous.

We have a small improvement to the part of Lemma 2.1(ii) dealing with
semigroups generated by their squares.

Corollary 3.7. Let f,m : S → K satisfy (3) with m multiplicative.
If S is generated by its n-th powers for any n ≥ 2, then there exists an
additive function A : S \ Im → K for which

f(x) =

{
A(x)m(x) for x ∈ S \ Im
0 for x ∈ Im.

Furthermore, if S is a topological semigroup, K is a topological field, and
f,m ∈ C(S,K), then A ∈ C(S \ Im,K).

Proof. By Theorem 3.5 it suffices to show that Pm is empty (or equiv-
alently I2

m = Im). For any x ∈ Im there exist y1, . . . , yk ∈ S for some k ∈ N

such that x =
∏k

j=1 y
n
j . Since m(x) = 0 we have 0 = m(y1)n · · ·m(yk)n, so

m(yj) = 0 for some j. Writing z1 = yn1 · · · ynj−1y
n−1
j and z2 = yjy

n
j+1 · · · y

n
k ,

we have x = z1z2 ∈ I2
m. Therefore Pm = ∅ and the result follows. �

Example 3.8. Let S = (−1, 0) ∪ (0, 1) under multiplication, and sup-
pose f,m : S → K satisfy (3) with m multiplicative. It is easy to see that
S has no prime ideals. By Corollary 3.7 we have f = Am for some additive
function A : S → K, since S is generated by its cubes. (Note that S is not
regular and is not generated by its squares.)

If in addition K is a topological field and f,m ∈ C(S,K), then A ∈
C(S,K).

The next result (which also has a simple direct proof) follows immedi-
ately from Theorem 3.5 and gives the general solution of (3) for the case
m = 0.
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Corollary 3.9. If m = 0 then f : S → K satisfies (3) if and only if f
has the form

f(x) =

{
f(p) for x = p ∈ Pm

0 for x ∈ S \ Pm.

In this case Pm = S \ {xy | x, y ∈ S}.

In view of this result we will generally assume that m is an exponential
in applications of Theorem 3.5.

Now we arrive at our primary objective. Combining Lemma 2.1 with
Theorem 3.5 we get the general solution of the sine addition formula (1). We
choose K = C as co-domain here for convenience. Part (i) of the next result
requires that the co-domain be a quadratically closed field of characteristic
different from 2, while part (ii) is valid for any field as co-domain. If f = 0
in (1) then g is arbitrary, so as in Lemma 2.1 we exclude that trivial case.

Corollary 3.10. Let S be a semigroup, and suppose f, g : S → C sat-
isfy the sine addition law (1) with f �= 0. Then f is Abelian and there exist
multiplicative functions m1,m2 : S → C such that g = (m1 +m2)/2. In ad-
dition we have the following.

(i) If m1 �= m2, then f = c(m1 −m2) for some constant c ∈ C∗.
(ii) If m1 = m2 =: m, then g = m and f is given by (6) for some additive

function A : S \ Im → C.
The converse statements are also true if in part (ii) we choose A and/or

f(p) for some p ∈ Pm so that f �= 0.
Furthermore, if S is a topological semigroup and f ∈ C(S), then g,m1,

m2,m ∈ C(S) and A ∈ C(S \ Im).

Proof. Most of this follows immediately from Lemma 2.1 and Theo-
rem 3.5. The continuity of g follows from that of f and the hypothesis f �= 0
as in Remark 3.6. Then the continuity of m1,m2 in part (i) follows from
the linear independence of distinct non-zero multiplicative functions (see [5,
Theorem 3.18(d)]). The only other thing needing justification is the claim
that f is Abelian in part (i), but the form of f makes this obvious. �

4. General solution of the sine subtraction formula

Now we come to our secondary objective.
Recall that the sine subtraction formula is the functional equation

(7) f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ S,

for unknown functions f, g : S →K, where σ : S → S is an automorphic invo-
lution. For any function ϕ : S → K let ϕe = 1

2(ϕ+ϕ ◦ σ), ϕo = 1
2(ϕ−ϕ ◦ σ)
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be the even and odd parts of ϕ, respectively (with respect to σ). Then
ϕ = ϕe + ϕo.

We start with a small lemma bringing out a few facts about σ when m
is even.

Lemma 4.1. Let S be a semigroup with automorphic involution σ, and
let m : S → K be a multiplicative function such that m ◦ σ = m. Then we
have the following.

(a) If x ∈ S \ Im, then σ(x) ∈ S \ Im.
(b) If x ∈ Im, then σ(x) ∈ Im.
(c) If x ∈ Pm, then σ(x) ∈ Pm.
(d) If x ∈ I2

m, then σ(x) ∈ I2
m.

Proof. Parts (a) and (b) are obvious. For part (c), if x ∈ Pm then
σ(x) ∈ Im by (b). Suppose (for a contradiction) that there exists x ∈ Pm

with σ(x) ∈ Im \ Pm, so σ(x) = st ∈ I2
m. Then

x = σ ◦ σ(x) = σ(st) = σ(s)σ(t) ∈ I2
m,

contradicting x ∈ Pm. For (d), if x = st ∈ I2
m then σ(x) = σ(s)σ(t) ∈ I2

m

by (b). �

The most current result for (7) on monoids is a combination of [5, The-
orem 4.12] and [4, Proposition 3.6], which give the solutions in the case
m = m ◦ σ only if S is a group or a monoid generated by its squares. Here
we present the general solution for all monoids by incorporating the findings
of Corollary 3.10.

Theorem 4.2. Let M be a monoid, and let σ : M → M be an automor-
phic involution. The solutions f, g : M → C of the sine subtraction formula
(7) with f �= 0 are the following pairs of functions, where m : M → C is mul-
tiplicative, b ∈ C, and c ∈ C∗.

(i) For m �= m ◦ σ (so m �= 0) we have

f = c(m−m ◦ σ), g =
m+m ◦ σ

2
+ b(m−m ◦ σ).

(ii) For m = m◦σ we have g = m+bf where f has the form (6) with addi-
tive A: M \ Im → C. Furthermore A◦σ = −A, f(σ(p)) = −f(p) for p ∈ Pm,
and either A �= 0 or f(p) �= 0 for some p ∈ Pm.

Note that f and g are Abelian in each case.
Moreover, if M is a topological monoid and f ∈ C(M), then g,m,m ◦σ ∈

C(M) and A ∈ C(M \ Im).

Proof. We follow the general outline of the proof of [4, Proposition
3.6] (which in turn is based on [5, Theorem 4.12]). That proof starts by
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writing g as ge + go and showing that f is odd. Next it shows that go = bf
for some constant b ∈ C, and that

f(xy) = f(x)ge(y) + ge(x)f(y), x, y ∈ M.

We now take the solution forms of f and ge from Corollary 3.10, so f is
Abelian and there exist multiplicative functions m1,m2 : M → C such that
ge = (m1 +m2)/2. If m2 �= m1 then we have f = c(m1 −m2) for some con-
stant c ∈ C

∗, since f �= 0. Since f is odd (and nonzero) while ge is even, we
infer thatm2 = m1 ◦σ. Recalling go = bf , renaming bc as a new b, and defin-
ing m := m1 we obtain the formulas in (i), which show that g is Abelian.
Moreover since m �= m ◦ σ we have m �= 0, so m is exponential and we have
part (i). Conversely, it is easy to check that these formulas define a solution
of (7) with f �= 0.

Now consider the case m1 = m2 =: m. Then ge = m where m : M → C

is multiplicative, and the form of f is given by (6) for some additive function
A : M \ Im → C. Moreover, since ge is even we find that m = m ◦σ. Further-
more, since f is odd we get from (6) that A ◦ σ = −A, and f(σ(p)) = −f(p)
for p ∈ Pm by Lemma 4.1. Since go = bf we have g = m+ bf , so g is Abelian.
This gives part (ii).

We have to check that the formulas for f and g in (ii) define solutions
of (7). Here we have g = m+ bf , so equation (7) is equivalent to

(8) f(xσ(y)) = f(x)m(y)−m(x)f(y), x, y ∈ M,

and this is the equation we check. By Lemma 4.1 and the fact that σ is
an automorphism, σ preserves the location of variables in each case to be
checked.

For the case x, y ∈ M \ Im it is easy to verify that the given form of f
satisfies (8), so we omit that. Now consider the case x ∈ M \ Im and y ∼ qw
for q ∈ Pm and w ∈ M \ Im. Then using Lemma 4.1 (and that f is Abelian
and m ◦ σ = m) we see that

f(xσ(y)) = f(xσ(q)σ(w)) = f(σ(q)xσ(w))

= f(σ(q))m(xσ(w)) = −f(q)m(x)m(σ(w)) = −f(q)m(w)m(x)

= −f(qw)m(x) = f(x)m(y)− f(y)m(x),

since xσ(w) ∈ M \ Im and m(y) = 0. The verification for the case x ∼
pv ∈ Pm and y ∈ M \ Im is similar, so we omit it.

Next consider the case x ∼ pv, y ∼ qw for p, q ∈ Pm and v,w ∈ M \ Im.
Then xσ(y) ∈ I2

m, so we have f(xσ(y)) = 0 = f(x)m(y)−m(x)f(y) in accord
with (8), since m(x) = m(y) = 0.

If x ∈ M \ Im and y ∈ I2
m, let y = st with s, t ∈ Im. In this case we

have xσ(y) = xσ(s)σ(t) = (xσ(s))σ(t) ∈ I2
m, so f(xσ(y)) = 0 = f(x)m(y)−

m(x)f(y) because f(y) = m(y) = 0.
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The verifications of the remaining cases are similar. �

Remark 4.3. It is easy to check that the variant f(σ(y)x) = f(x)g(y)−
g(x)f(y) has the same solutions as (7).

In the remaining sections we present some examples illustrating the ap-
plication of our results to a variety of semigroups.

5. Semigroups with relatively few prime ideals

For the rest of the paper our main focus is on applications of Theorem 3.5
to various kinds of semigroups, with secondary attention given to illustra-
tions of Theorem 4.2. We will not mention applications of Corollary 3.10 at
all, since they follow readily. When discussing applications of Theorem 3.5
we generally assume that the multiplicative function m is an exponential,
since the (almost trivial) case m = 0 is handled by Corollary 3.9.

Several examples illustrating solutions of the sine addition and subtrac-
tion formulas on groups and semigroups which are regular or generated by
their squares were presented in [4], so we do not do that here. Instead we
present examples on semigroups which are not regular (hence not groups)
and not generated by their squares, so they are not covered by Lemma 2.1
or [4, Proposition 3.6].

When our examples involve a direct product of semigroups we use com-
ponentwise operations, and for topological semigroups we use the product
topology.

The fewest number of prime ideals a semigroup can have is none, so we
begin there. For semigroups with no prime ideals, the solutions of (3) have
the simplest possible form: If m is an exponential then f = Am for some
additive function A. All groups and infinite monogenic semigroups are of
this type, but there are others such as the following.

Let N0 = N ∪ {0}, and let char(K) denote the characteristic of K.

Example 5.1. (a) For any k ∈ N let S = Nk under (componentwise)
addition, and suppose f,m : S → K satisfy (3) with m exponential. It
is easy to see that S has no prime ideal. Therefore by Theorem 3.5
there exists an additive function A : S → K such that f = Am. The ad-
ditive functions on S are of the form A(x1, . . . , xk) =

∑k
j=1 Aj(xj) for ad-

ditive functions Aj : N → K, and the exponential functions have the form
m(x1, . . . , xk) =

∏k
j=1 mj(xj) for exponentials mj : N → K. If char(K) = 0

then Aj(x) = ajx and mj(x) = (bj)x for constants aj ∈ K, bj ∈ K∗.
(b) Let M = N0 ×N0 under addition, and let σ : M → M be the switch-

ing involution defined by σ(x, y) = (y, x) for all (x, y) ∈ M . The solutions
f, g : M → C of the sine subtraction formula (7) with m exponential and
f �= 0 are given by Theorem 4.2, where in part (ii) we have f = Am since
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M has no prime ideal. The additive functions such that A ◦ σ = −A �= 0 are
of the form A(x, y) = c(x− y) for some c ∈ C∗, and the exponentials m such
that m = m ◦ σ have the form m(x, y) = bx+y for some b ∈ C∗.

In fact, if S1, . . . , Sk are semigroups with no prime ideals then their di-
rect product S1 × · · · × Sk also has no prime ideal. So the previous example
generalizes to other direct products.

Other semigroups that may not have many prime ideals are semigroups
with a zero. We say a semigroup S contains a zero element, usually de-
noted 0, if 0 · x = x · 0 = 0 for all x∈S. If S has a 0 then the only addi-
tive function on S is the zero function. (That follows from A(0) = A(x · 0)
= A(x) +A(0) for all x ∈ S.) Moreover for any exponential m on S it fol-
lows from m(0) = m(x · 0) = m(x)m(0) for all x ∈ S that either m(0) = 0 or
m = 1. Note also that if m is an exponential with null ideal Im = {0}, then
Pm is empty since 0 = 02 ∈ I2

m.
In the next result and the following two examples, the singleton set con-

taining the zero element is the only prime ideal of S.

Corollary 5.2. Let S be a semigroup with zero element 0 and unique
prime ideal {0}, and let f,m : S → K satisfy (3) where m is exponential.
Then there exists an additive function A : S \ Im → K for which

f(x) =

{
A(x)m(x) forx ∈ S \ Im
0 forx ∈ Im.

If S is a topological semigroup, K is a topological field, and f,m ∈
C(S,K), then A ∈ C(S \ Im,K).

Proof. The result follows from Theorem 3.5 after showing that Pm is
empty for every m. If Im = ∅ this is obvious. If Im �= ∅ then the only re-
maining choice is Im = {0}, so Pm = ∅ and the result follows. (Note that if
Im = ∅ then m = 1 and f = 0.) �

Our next example is the additive semigroup of extended natural numbers
N̄ = N∪ {∞}, where n+∞ = ∞+ n = ∞+∞ = ∞ for all n ∈ N. Thus ∞
is the zero element for N̄.

Example 5.3. Let S = (N̄,+), let char(K) = 0, and let f,m : S → K be
a solution of (3) with m exponential. Either m = 1, or m(∞) = 0 and there
exists b ∈ K∗ such that m(s) = bs for all s ∈ N. The unique prime ideal of S
is {∞}. The additive functions on S \ {∞} = N are of the form A(x) = cx
for some c ∈ K. Applying Corollary 5.2, if Im = {∞} we have

f(x) =

{
cxbx for x ∈ N

0 for x = ∞,
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for some constants b, c ∈ K with b �= 0. In the case Im = ∅ we have m = 1
and f = 0.

Now we consider an innocuous-looking semigroup, but it carries some
rather wild additive and multiplicative functions.

Example 5.4. Let 0 < r < 1, let S = ([0, r], ·) with the usual topology,
and suppose f,m ∈ C(S,R) is a solution of (3) with m exponential. Here
{0} is the unique prime ideal of S. Applying Corollary 5.2 we get f = 0 and
m = 1 if Im = ∅. In the case Im = {0} we have

f(x) =

{
A(x)m(x) for x ∈ (0, r]
0 for x = 0,

where A ∈ C((0, r],R). In this case there are exorbitant numbers of unusual
continuous additive functions on (0, r] and exponentials on [0, r]. They can
be chosen rather arbitrarily on the interval (r2, r], subject only to being
continuous on (r2, r] and satisfying constraints at the endpoints (r and r2)
guaranteeing that they have continuous extensions to the respective full in-
tervals (0, r] and [0, r]. (For example the constraints on m are 0 < m(r) < 1
and limx→(r2)+ m(x) = m(r)2.)

The wildness of the additive and exponential functions in the previous
example is not merely due to the fact that S does not contain 1. For ex-
ample, the continuous exponentials from ([0, 1), ·) into R are rather tame:
m = 1 or m(x) = xc for some real constant c > 0.

Corollary 5.2 extends to direct products if we add one more assumption.

Corollary 5.5. For some integer n ≥ 2, let S1, . . . , Sn be semigroups
such that each Sj has unique prime ideal {0j} consisting of a zero element.
Let S = S1 × · · · × Sn, and suppose f,m : S → K satisfy (3) where m is an
exponential. If Sj = {xy | x, y ∈ Sj} (for instance if Sj is a monoid) for
each j, then there exists an additive function A : S \ Im → K such that

(9) f(x) =

{
A(x)m(x) for x ∈ S \ Im
0 for x ∈ Im.

Moreover if each Sj is a topological semigroup, K is a topological group,
and f,m ∈ C(S,K), then A ∈ C(S \ Im,K).

Proof. Again the result follows from Theorem 3.5 if we show that Pm

is empty for every m. If Im = ∅ this is obvious, so assume now that Im �= ∅.
The list of prime ideals in S consists of

Ij := S1 × · · ·Sj−1 × {0j} × Sj+1 · · · × Sn
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for each j ∈ {1, . . . , n} and all nonempty unions of the Ij . By our hypothesis
on the Sj we have I2

j = Ij for 1 ≤ j ≤ n. Suppose Im =
⋃

j∈J Ij for some
subset J ⊂ {1, . . . , n}. Then

I2
m =

[ ⋃
j∈J

I2
j

]
∪

[ ⋃
j �=k∈J

IjIk

]
=

⋃
j∈J

I2
j =

⋃
j∈J

Ij = Im,

since IjIk ⊂ Ij = I2
j . Therefore Pm = ∅ and we have (9) for additive

A : S \ Im → K defined by A := f/m. �

To set up the next example, we first identify the exponentials and addi-
tive functions we will need. On the monoid M = ([−1, 1], ·) the continuous
exponentials m : M → C have one of the three forms

m = 1, m(x) =

{
|x|α for x �= 0
0 for x = 0,

or m(x) =

{
|x|α sgn(x) for x �= 0
0 for x = 0,

(10)

where α ∈ C has positive real part (written R(α) > 0). Since M has a 0,
the only additive function on M is A = 0. On the sub-monoid M \ {0} the
continuous additive functions are of the form A(x) = c log |x| for some c ∈ C.

Example 5.6. Let S = [−1, 1]× [−1, 1] under (componentwise) multi-
plication. The continuous exponentials have the form m(x, y) = m1(x)m2(y)
where eachmj : [−1,1] → C has one of the three forms in (10) withR(α) > 0.
The prime ideals of S are I1 = {0} × [−1, 1], I2 = [−1, 1]× {0}, and I1 ∪ I2.
For a given exponential m ∈ C(S), the corresponding continuous additive
functions A : S \ Im → C are as follows, where c1, c2 ∈ C.

(a) If Im = ∅ then A = 0.
(b) If Im = I1 then A(x, y) = c1 log |x|.
(c) If Im = I2 then A(x, y) = c2 log |y|.
(d) If Im = I1 ∪ I2 then A(x, y) = c1 log |x|+ c2 log |y|.
(i) By Corollary 5.5 we get the continuous solutions of (3) on S for m

exponential and f,m ∈ C(S) by plugging the above forms into (9).
(ii) Let σ : S → S be defined by σ(x, y) = (y, x). By Theorem 4.2 and

Corollary 5.5 we get the continuous solutions of (7) for f ∈ C(S) and f �= 0
by plugging the above forms into the formulas of Theorem 4.2 using (9) in
place of (6). In Theorem 4.2 (ii) the exponential m satisfies m = m ◦ σ, so
it must have the form m = 1 or

m(x, y) =

{
|xy|α for xy �= 0
0 for xy = 0,

or m(x, y) =

{
|xy|α sgn(xy) for xy �= 0
0 for xy = 0,
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where R(α) > 0. Since m �= m ◦ σ in Theorem 4.2(i), in that part m must
have a form different from these. Also in part (ii), the condition A ◦ σ = −A
is satisfied only if A(x, y) = β(log |x| − log |y|) for some β ∈ C.

Some semigroups with a zero do not satisfy the condition S = {xy |
x, y ∈ S} imposed in Corollary 5.5. The following is an example to which
Corollary 5.5 does not apply.

Example 5.7. Let T =S×S where S=(N̄,+), and suppose char(K)=0.
S has unique prime ideal {∞}, and the exponentials on S and additive func-
tions on S \ {∞} = N were given in Example 5.3.

The prime ideals of T are I1 = {∞} × N̄, I2 = N̄× {∞}, and I1 ∪ I2.
Nullspaces and exponentials on T , with corresponding additive functions

on T \ Im are the following, where b1, b2 ∈ K∗ and c1, c2 ∈ K.
(a) Im = ∅, m = 1, A = 0.
(b) Im = I1, with m(x, y) = (b1)x and A(x, y) = c1x for all (x, y) ∈ T \ Im.
(c) Im = I2, with m(x, y) = (b2)y and A(x, y) = c2y for all (x, y) ∈ T \ Im.
(d) Im = I1 ∪ I2, with m(x, y) = (b1)x(b2)y and A(x, y) = c1x+ c2y for all

(x, y) ∈ T \ Im.
By Theorem 3.5 we get the solutions f,m : T → K of (3) for m expo-

nential by plugging the above forms into (6).
Note that in cases (b),(c),(d) we have nonempty Pm given respectively

by Pm = {(∞, 1)}, Pm = {(1,∞)}, and Pm = {(∞, 1), (1,∞)}, so (6) does
not reduce to (9). Thus for example in (b) the value of f(∞, 1) ∈ K is
unconstrained.

Next we consider the upper-triangular matrix semigroup

T+(2,R) :=
{(

a b
0 d

) ∣∣∣ a, b, d ∈ R with a, d ≥ 0
}
.

A few calculations reveal that S = T+(2,R) has exactly three prime ideals
I1, I2, I1 ∪ I2, where

I1 =
{(

0 b
0 d

) ∣∣∣ b ∈ R, d ≥ 0
}

and I2 =
{(

a b
0 0

) ∣∣∣ a ≥ 0, b ∈ R

}
.

The prime ideal I1 ∪ I2 consists of the singular matrices in S.
To prepare for the next example we identify the requisite exponentials

and additive functions.

Lemma 5.8. Let S = T+(2,R) with the usual topology. The exponen-
tials m ∈ C(S,R), corresponding nullspaces Im, and additive functions A ∈
C(S \ Im,R) are the following, where p, q, δ, γ ∈ R with p, q > 0.

(a) If Im = ∅, then m = 1 and A = 0.
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(b) If Im = I1, then for all a, d ≥ 0, b ∈ R, and c > 0,

m

(
a b
0 d

)
= ap and A

(
c b
0 d

)
= γ log c.

(c) If Im = I2, then for all a, d ≥ 0, b ∈ R, and c > 0,

m

(
a b
0 d

)
= dq and A

(
a b
0 c

)
= δ log c.

(d) If Im = I1 ∪ I2, then for all a, d ≥ 0, b ∈ R, and c1, c2 > 0,

m

(
a b
0 d

)
= apdq, and A

(
c1 b
0 c2

)
= γ log c1 + δ log c2.

Proof. Let m ∈ C(S,R) be an exponential, and let O, I be the zero and
identity matrices in S, respectively. Then m(I) = 1, and either m(O) = 0
or m = 1.

If Im = ∅, then m(O) �= 0 so m = 1. The only additive function on S is
the zero function, since S contains a zero. Thus we have part (a). Henceforth
we assume that Im �= ∅, so m(O) = 0.

For the remaining calculations, to save space we use the abbreviation

(a, b, d) :=
(
a b
0 d

)

for elements of S.
If Im = I1 then for all a ≥ 0 and b ∈ R we have

m(1, 0, 0)m(a, b, 0) = m((1, 0, 0)(a, b, 0)) = m(a, b, 0),

so taking a �= 0 we get m(1, 0, 0) = 1. Now for all b ∈ R and a, d ≥ 0 we see
that

m(a, b, d) = m(a, b, d)m(1, 0, 0) = m((a, b, d)(1, 0, 0)) = m(a, 0, 0) =: χ(a)

defines a continuous function χ : [0,∞) → R with χ(1) = 1. Since χ is clearly
exponential and χ(0) = m(O) = 0 we have the form of m given in (b) with
p > 0.

Now suppose A ∈ C(S \ I1,R) is additive. For d ≥ 0, b ∈ R, and a > 0
we have

A(a, b, d) + A(1, 0, 0) = A((a, b, d)(1, 0, 0)) = A(a, 0, 0) =: α(a),

for some continuous function α : (0,∞) → R. With (a, b, d) = (1, 0, 0) the
preceding equation gives 2α(1) = α(1), so α(1) = 0. Since α is clearly addi-
tive we have the form of A given in part (b).
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Part (c) is parallel to part (b).
Finally, suppose Im = I1 ∪ I2. Then for any aj, dj ≥ 0 and bj ∈ R (j =

1, 2) we have

m(a1, b1, d1)m(a2, b2, d2) = m(a1a2, a1b2 + b1d2, d1d2).

Interchanging (a1, b1, d1) and (a2, b2, d2) yields

m(a1a2, a1b2 + b1d2, d1d2) = m(a2a1, a2b1 + b2d1, d2d1).

For a1, d1, a, d > 0, let a2 = a/a1, d2 = d/d1, and suppose a �= d. Given any
y ∈ R, choosing b2 = dy/[d1(d− a)] and b1 = −a1y/(d− a) in the last equa-
tion we get

(11) ψ(a, d) := m(a, 0, d) = m(a, y, d), a �= d > 0, y ∈ R,

for some function ψ : (0,∞)× (0,∞) \ {(x, x) | x > 0} → R∗. Since m is mul-
tiplicative we see that ψ is componentwise multiplicative, so as long as a �= d
we have ψ(a, d) = χ1(a)χ2(d) for multiplicative functions χ1, χ2 : (0,∞)
→ R∗. Furthermore, for any a, d > 0 with a �= d and any y ∈ R we have

χ1(a)χ2(d) = m(a, yd/a, d) = m(a, y, a)m(1, 0, d/a)

= m(a, y, a)χ1(1)χ2(d/a).

Thus m(a, y, a) = χ1(a)χ2(a), showing that (11) holds also for a = d. Def-
inition (11) also yields that χ1, χ2 are continuous (and nonzero) on (0,∞),
so they have the form χ1(x) = xp, χ2(x) = xq for some constants p, q ∈ R.
Thus at this point we have m(a, y, d) = apdq for all a, d > 0 and y ∈ R. Since
m is continuous and m(0, y, c) = m(c, y, 0) = 0 for all y ∈ R, c ≥ 0, this rep-
resentation extends to a = 0 and d = 0 with p, q > 0. Thus we have the form
of m given in part (d).

If A ∈ C(S \ (I1 ∪ I2),R) is additive, then by the same reasoning we get
the form for A shown in (d). �

Thus we have the following.

Example 5.9. Let S = T+(2,R), and let f,m ∈ C(S,R) be a solution
of (3) with m exponential. We show that Pm is empty. For any element
X ∈ I1 we have

X =
(
0 b
0 d

)
= X

(
0 0
0 1

)
,

so X ∈ I2
1 . Similarly, if Y ∈ I2 then

Y =
(
a b
0 0

)
=

(
1 0
0 0

)
Y,

therefore Pm is empty in all cases.
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By Theorem 3.5 we have

f(X) =

{
A(X)m(X) for X ∈ S \ Im
0 for X ∈ Im ,

where A ∈ C(S \ Im,R) is additive. The forms of A and m are given in
Lemma 5.8.

6. Semigroups with many prime ideals

Let B+ be the set of nonempty finite sequences of elements from a
nonempty set B. The elements of B+ are called strings or words, and the el-
ements of B are called letters. We identify the letter � ∈ B with the string of
length one in B+ consisting of that letter alone, so B ⊂ B+. Under the op-
eration of concatenation of strings, B+ becomes a semigroup called the free
semigroup on B. For each letter � ∈ B, the set of all strings containing � is
a prime ideal of B+ if B contains more than one letter. Furthermore, every
proper nonempty subset of B generates a prime ideal of B+, so the number
of prime ideals is 2|B| − 2, where |B| denotes the cardinality of B.

Example 6.1. Let B+ denote the free semigroup on alphabet B. If
f,m : B+ → K satisfy (3) with m exponential, then Theorem 3.5 provides
the solution form (6) for f in terms of an additive function A : B+ \ Im → K.
The forms of multiplicative and additive functions on B+ are straightforward
to compute in terms of their values on the generating set B. For any string
w ∈ B+ and any letter � ∈ B, define N�(w) to be the number of times �
appears in w. Then m(w) =

∏
�∈w m(�)N�(w) for every w ∈ B+, so m is gen-

erated by its values m(�) for � ∈ B. Similarly, if A : B+ → K is additive
then A(w) =

∑
�∈w A(�)N�(w) for all w ∈ B+.

For a given exponential m, suppose w ∈ Pm. Then w cannot be decom-
posed into a product uv such that m(u) = m(v) = 0. Thus w must contain
exactly one letter belonging to Im, and that letter must occur exactly once
in w.

If char(K) = 0 then a simple example of an additive function on B+

(and by restriction to its sub-semigroups) is A(w) = L(w)1K , where 1K is
the multiplicative identity in K and L : B+ → N is the length function, de-
fined by L(w) equals the number of letters in the string w ∈ B+, counting
multiplicities. This is the additive function generated by taking A(�) = 1K
for each letter �.

For our next application we return to the notion of periodicity, which was
introduced in Section 3. A semigroup S is said to be a periodic semigroup
if every element of S is periodic. Although each element has finite order,
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the semigroup S itself may be infinite, in which case it has infinitely many
prime ideals.

Corollary 6.2. Let S be a periodic semigroup, and let char(K) = 0.
Then f,m : S → K satisfy (3) with m exponential if and only if f is Abelian
and

(12) f(x) =

{
f(p)m(w) for x ∼ pw ∈ Pm with p ∈ Pm, w ∈ S \ Im
0 otherwise.

Proof. By Theorem 3.5, f has the form (6). Let x ∈ S \ Im. Since x is
periodic, the monogenic semigroup 〈x〉 generated by x is finite. If A : S \ Im
→ K is additive, then A(xn) = nA(x) for every n ∈ N, but the set A(〈x〉) is
finite, so A(x) = 0. Thus we have (12). �

For our final example we consider a familiar semigroup with infinitely
many prime ideals, namely the multiplicative semigroup S = (N, ·) of posi-
tive integers. Since S is commutative the statement x ∼ y becomes x = y.

Let P denote the set of prime numbers. Then pN is a prime ideal of S
for each p ∈ P . If m : S → K is multiplicative then the nullspace Im is the
union of all pN for primes p such that m(p) = 0.

Corollary 6.3. Let S = (N, ·). The functions f,m : S → K satisfy
(3) with m exponential if and only if and there exists an additive function
A : S \ Im → K such that

f(x) =

⎧⎪⎨
⎪⎩
A(x)m(x) for x ∈ S \ Im
f(p)m(w) for x = pw with p ∈ P ∩ Im, w ∈ S \ Im
0 for x ∈ I2

m.

Proof. By Theorem 3.5, if Im = ∅ then we have f = Am and we are
finished. Assuming Im is nonempty, we need to establish the middle line of
the form of f . If x = p′w′ with p′ ∈ Pm and w′ ∈ S \ Im, then consider the
prime factorization of p′. Since m(p′) = 0 there exists a prime factor p of p′
such that m(p) = 0. Thus we have p′ = py for some y ∈ S. Since p′ ∈ Pm

it follows that y ∈ S \ Im. Now we have x = pw with w := yw′ ∈ S \ Im as
claimed. �

Note that Pm is generally not equal to P ∩ Im. For example if m(3) = 0
and m(2) �= 0 then 6 ∈ Pm, but obviously 6 �∈ P ∩ Im. In this case we have
f(6) = f(3)m(2), where f(3) can be any element of K.
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