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Abstract. Let n > k > 1 be integers, [n] = {1, . . . , n} the standard n-

element set and
(
[n]
k

)
the collection of all its k-subsets. The families F0, . . . ,Fs

⊂
(
[n]
k

)
are said to be cross-union if F0 ∪ · · · ∪ Fs �= [n] for all choices of Fi ∈ Fi.

It is known [13] that for n ≤ k(s+ 1) the geometric mean of |Fi| is at most(
n−1
k

)
. We conjecture that the same is true for the arithmetic mean for the range

ks < n < k(s+1), s > s0(k) (Conjecture 8.1) and prove this in several cases. The
proof for the case n = ks+2 relies on a novel approach, a combination of shifting
and Katona’s cyclic permutation method.

1. Introduction

Let n > k be positive integers and let [n] = {1, 2, . . . , n} be the standard
n-element set. Let

([n]
k

)
denote the collection of all k-subsets of [n]. A family

F ⊂
([n]
k

)
is called intersecting if F ∩ F ′ �= ∅ for all F,F ′ ∈ F .

Erdős–Ko–Rado Theorem [4]. Suppose that n ≥ 2k and F ⊂
([n]
k

)
is

intersecting. Then

(1.1) |F| ≤

(
n− 1
k − 1

)
.

This classical result has played a central role in the development of Ex-
tremal Set Theory. In particular, there are many different proofs (cf. e.g.
[2,11,16–18,21]) and many generalizations (cf. e.g. [1,3,6,9,14,15,20]).

Two families F ,G ⊂
([n]
k

)
are called cross-intersecting if F ∩G �= ∅ for

all F ∈ F , G ∈ G.
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Pyber Theorem [22]. Suppose that n ≥ 2k and F ,G ⊂
([n]
k

)
are cross-

intersecting. Then

(1.2) |F| |G| ≤

(
n− 1
k − 1

)2

.

Setting F = G, (1.2) implies (1.1). For many applications a bound of the
form

(1.3) |F|+ |G| ≤ 2 ·
(
n− 1
k − 1

)

would be much more convenient. Needless to say, (1.3) is stronger than (1.2).
Unfortunately, for n > 2k, (1.3) is not true. The trivial example is ∅ and([n]
k

)
.

Example 1.1. Set A = {[k]}, B =
{
B ∈

([n]
k

)
: B ∩ [k] �= ∅

}
. Then A

and B are cross-intersecting with

(1.4) |A|+ |B| = 1 +
(
n

k

)
−

(
n− k

k

)
.

Hilton and Milner [15] showed that this example is optimal for non-empty
cross-intersecting families.

Theorem 1.2 [15]. Suppose that A,B ⊂
([n]
k

)
are non-empty cross-

intersecting families. Then

(1.5) |A|+ |B| ≤ 1 +
(
n

k

)
−

(
n− k

k

)
.

We invite the reader to check that for n > 2k > 2 the RHS of (1.5) is
greater than the RHS of (1.3).

On the other hand in [7] the inequality

(1.6) |A|+ |B| ≤ 2
(
n− 1
k − 1

)

is established under the stronger assumption, |B| ≥ |A| ≥
(
n−2
k−2

)
. In [12] it is

used to give a very short proof of (1.2).

Definition 1.3. The families A1, . . . ,Ar ⊂
([n]
k

)
are called cross-inter-

secting if A1 ∩ · · · ∩Ar �= ∅ for all A1 ∈ A1, . . . , Ar ∈ Ar. In the case A =
A1 = · · · = Ar, A is called r-wise intersecting.
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Theorem 1.4 [5]. Suppose that A⊂
([n]
k

)
is r-wise intersecting, n≥ r

r−1k.
Then

(1.7) |A| ≤

(
n− 1
k − 1

)
.

Note that for n < r
r−1k the full

([n]
k

)
is r-wise intersecting. In [8] it is

shown that for r ≥ 3 equality holds in (1.7) only if A =
{
A ∈

([n]
k

)
: x ∈ A

}
for some fixed element x ∈ [n].

The dual notion to cross-intersecting is cross-union. The families
H1, . . . ,Hr ⊂

([n]
�

)
are called cross-union if H1 ∪ · · · ∪Hr �= [n] holds for

all choices of Hi ∈ Hi, i = 1, . . . , r. For a family A ⊂
([n]
k

)
let Ac =

{[n] \A : A ∈ A} be the family of complements, Ac ⊂
( [n]
n−k

)
. It is easy

to see that A1, . . . , Ar are cross-intersecting iff Ac
1, . . . , A

c
r are cross-union.

Theorem 1.5 [13]. Suppose that k < n ≤ rk. Let H1, . . . ,Hr ⊂
([n]
k

)
be

non-empty and cross-union. Then

(1.8)
∏

1≤i≤r

|Hi| ≤

(
n− 1
k

)r

.

The aim of the present paper is to prove the sum version of (1.8) in
certain situations.

Definition 1.6. Let 1 ≤ k < n ≤ k(s+ 1) where k, n, s are positive in-
tegers. We say that the triple (n, k, s) is nice if

(1.9)
∑

0≤i≤s

|Fi| ≤ (s+ 1)
(
n− 1
k

)

holds for all choices of non-empty cross-union families F0, . . . ,Fs ⊂
([n]
k

)
.

It is easy to show that (k(s+ 1), k, s) is always nice (cf. Corollary 2.5).

Theorem 1.7. (ks+ 1, k, s) is nice for s ≥ 2.

For the case k = 3 we have:

Theorem 1.8. (3s+ 2, 3, s) is nice for s ≥ 2.

Note that these results settle the cases k = 3, 3s < n ≤ 3(s+ 1). For
n = sk + 2 and k ≥ 4 we prove

Theorem 1.9. Let n = sk+2, k ≥ 5. If s ≥ 4 or s = 3 and k ≤ 47 then
(n, k, s) is nice.

By a “multiplying trick” we prove also:

P. FRANKL314
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Theorem 1.10. Let d ≥ 2 be an integer. Suppose that (n, k, s) is nice.
Then the triple (dn, dk, s) is nice as well .

2. Preliminaries

The single most useful operation on families of sets, called shifting, was
invented by Erdős, Ko and Rado [4]. In [8] it is shown that simultaneous
shifting maintains the cross-union property. To explain its consequences let
us introduce the notation (a1, a2, . . . , ak) to denote the k-set {a1, . . . , ak}
with the additional assumption a1 < · · · < ak. One defines the shifting par-
tial order A ≺ B on k-subsets where (a1, . . . , ak) ≺ (b1, . . . , bk) iff ai ≤ bi for
all 1 ≤ i ≤ k.

Definition 2.1. The family F ⊂
([n]
k

)
is called shifted if F ∈ F and

G ≺ F always imply G ∈ F .

Repeated applications of shifting produce shifted families (cf. [8] for de-
tails). Therefore it is sufficient to prove Theorems 1.7 and 1.8 for shifted
families.

Since (1, 2, . . . , k) is the unique smallest element in the shifting partial
order, (1, 2, . . . , k) ∈ F for every non-empty shifted family F ⊂

([n]
k

)
.

Definition 2.2. If F0 ⊂ F1 ⊂ · · · ⊂ Fs then the families are called
nested.

Claim 2.3. It is sufficient to prove Theorems 1.7, 1.8 and 1.9 for fami-

lies that are shifted and nested.

Proof. The fact that we may suppose that Fi is shifted for 0 ≤ i ≤ s
should be clear from the above discussion. Then (1, 2, . . . , k) ∈ F for 0 ≤ i
≤ s. For a fixed pair 0 ≤ p < q ≤ s, replacing Fp and Fq by Fp ∩ Fq and
Fp ∪ Fq will not alter |Fp|+ |Fq| and the cross-union property and shifted-
ness will be maintained. Iterating for all pairs 0 ≤ p < q ≤ k will eventually
produce nested families. �

The following statement follows easily by the methods of Kleitman [19].

Lemma 2.4. Let k0, . . . , ks be positive integers, k0 + · · · + ks ≥ n. Sup-

pose that the families Gi ⊂
([n]
ki

)
, 0 ≤ i ≤ s, are cross-union. Then

(2.1)
∑

0≤i≤s

|Gi|
/(

n

ki

)
≤ s.

Proof. Fix arbitrarily A0, . . . , As satisfying |A0| = k0, . . . , |As| = ks
and A0 ∪ · · · ∪As = [n]. Choose a permutation π of [n] uniformly at random.
Set π(A) = {π(a) : a ∈ A}.
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The cross-union property implies that out of the s+ 1 sets π(A0), . . . ,
π(As) at most s satisfy π(Ai) ∈ Gi.

The probability of π(Ai) ∈ Gi is |Gi|
/(

n
ki

)
. Thus the LHS of (2.1) is the

expected number of how many times π(Ai) ∈ Gi holds. Since this number is
never more than s, (2.1) follows. �

Corollary 2.5. Suppose that n = rk, F1, . . . ,Fr ⊂
([n]
k

)
are cross-

union. Then

(2.2)
∑

1≤i≤r

|Fi| ≤ (r − 1)
(
n

k

)
= r

(
n− 1
k

)
.

Proof. The identity (r − 1)
(
rk
k

)
= r

(
rk−1
k

)
is easily checked. The in-

equality part of (2.2) follows from (2.1) by setting s = r − 1 and k0 = · · · =
ks = k. �

3. A general bound

Throughout this section let ∅ �= F0 ⊂ F1 ⊂ · · · ⊂ Fs ⊂
([n]
k

)
be non-

empty, shifted cross-union families. Suppose that n = ks+ � with 1 ≤ � < k.
By Lemma 2.4 we have

(3.1) |F0|+ · · ·+ |Fs| ≤ s

(
n

k

)
.

Let us assume that

(3.2) |F0|+ · · · + |Fs| ≥ (s+ 1)
(
n− 1
k

)

and derive a lower bound on |F0|. To this end define Gi = Fi ∩
([�+1,ks+�]

k

)
,

1 ≤ i ≤ s.

Claim 3.1. G1, . . . , Gs are cross-union.

Proof. Indeed, if Gi ∈ Gi, 1 ≤ i ≤ s, satisfyG1∪· · ·∪Gs = [�+1, ks+ �]
then adding [k] ∈ F0 we get a contradiction with the cross-union property.
�

Corollary 3.2. We have

(3.3)
∑

1≤i≤s

|Fi| ≤ s

(
n

k

)
−

(
ks

k

)
.
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Proof. Define F i =
([n]
k

)
\ Fi, 1 ≤ i ≤ s, the families of missing k-sets.

Then Gi := F i ∩
([�+1,sk+�]

k

)
are the missing k-sets inside [�+ 1, ks+ �]. Ap-

plying Lemma 2.4 with k0 = 0, G0 = {∅} along with G1, . . . , Gs yields

∑
1≤i≤s

∣∣Gi

∣∣ ≥ s

(
ks

k

)
− (s− 1)

(
ks

k

)
=

(
ks

k

)
.

Since Gi ⊂ F i for 1 ≤ i ≤ s, (3.3) follows. �

Using (3.3) along with (3.1) and (3.2) we infer

(3.4) |F0| ≥ (s+ 1)
(
n− 1
k

)
− s

(
n

k

)
+
(
ks

s

)
.

Let us evaluate (3.4) in the case k = 3, n = 3s+ 2. We have

s

(
3s+ 2

3

)
− (s+ 1)

(
3s+ 1

3

)

=
(3s+ 1)s

2
(
s(3s+ 2)− (s+ 1)(3s− 1)

)
=

(3s+ 1)s
2

.

Thus we proved:

Lemma 3.3. In proving Theorem 1.8 one may assume

(3.5) |F0| ≥

(
3s
3

)
−

(3s+ 1)s
2

>

(
3s− 1

3

)
.

Proof. The first part of (3.5) follows from (3.4) and the above compu-
tation. The second part is equivalent to(

3s− 1
2

)
>

(3s+ 1)s
2

.

Expanding and rearranging we obtain 3s2− 5s+1 > 0 which holds for s ≥ 2.
�

Actually we only need the following consequence of (3.5).

Claim 3.4. If F0 ⊂
([3s+2]

3

)
is shifted and |F0| >

(3s−1
3

)
then (1, 2, 3s)

∈ F0.

Proof. In view of |F0| >
(3s−1

3

)
there is some (a, b, c) ∈ F0 with c ≥ 3s.

As a ≥ 1 and b ≥ 2 are obvious, (1, 2, 3s) ≺ (a, b, c). Now (1, 2, 3s) ∈ F0 fol-
lows by shiftedness. �

For general k let us show
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Proposition 3.5. We have

(3.6)
∑

0≤i≤s

|Fi| ≤ s

(
n

k

)
+
(
n− 1
k

)
−

(
ks

k

)
.

Proof. In view of (3.3) we only need to show

(3.7) |F0| ≤

(
n− 1
k

)
.

Since F0 ⊂ Fi for 1 ≤ i ≤ s, F0 is (s+ 1)-wise union. Thus (3.7) follows
by applying Theorem 1.4 to the family of complements, F c

0 =
{
[n] \ F :

F ∈ F0
}
. �

4. The proof of Theorem 1.7

Let us set X0 =
⋃

F∈F0

F and let us apply Lemma 2.4 with k0 = 1, k1 =

· · · = ks = k; G0 =
(
X0

1

)
, Gi = Fi for 1 ≤ i ≤ s. After rearranging we obtain

(4.1)
∑

1≤i≤s

|Fi| ≤

(
s−

|X0|

n

)(
n

k

)
.

We distinguish two cases:
(i) X0 = [n]. Now the RHS of (4.1) is (s− 1)

(
n
k

)
. Noting that |F0| ≤ · · ·

≤ |Fs| implies |F0| ≤
1
s

∑
1≤i≤s

|Fi|, from (4.1) we infer

∑
0≤i≤s

|Fi| ≤
(
1 +

1
s

)
(s− 1)

(
sk + 1

k

)
= (s+ 1)

(s− 1)
s

(
sk + 1

k

)
.

To prove (1.9) we show s−1
s

(
sk+1
k

)
<

(
sk
k

)
. Indeed, dividing both sides by(

sk
k

)
yields

(s− 1)(sk + 1)
s((s− 1)k + 1)

< 1,

which is true by

(s− 1)(sk + 1) = (s2 − s)k + s− 1 < (s2 − s)k + s = s
(
(s− 1)k + 1

)
.
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(ii) k ≤ |X0| ≤ sk = n−1. For notational convenience set x = |X0|. Now
(4.1) and |F0| ≤

(
x
k

)
yield

(4.2)
∑

0≤i≤s

|Fi| ≤ s

(
n

k

)
+

(
x

k

)
− x

(
n

k

)/
n.

To conclude the proof, we show that the RHS of (4.2) is at most
(s+ 1)

(
sk
s

)
. Noting that both

(
x
k

)
and −x are convex functions, it is suf-

ficient to check it for x = k and x = sk.
For x = sk we have

s

(
sk + 1

k

)
+

(
sk

k

)
−

sk

sk + 1

(
sk + 1

k

)
= (s+ 1)

(
sk

k

)
.

Indeed, subtracting
(
sk
k

)
from both sides and dividing by s yields

(
sk + 1

k

)(
1−

k

sk + 1

)
=

(
sk

k

)

which is true by

1−
k

sk + 1
=

(s− 1)k + 1
sk + 1

.

In the case x = k the necessary inequality reads

(4.3)
(
s−

k

sk + 1

)(
sk + 1

k

)
+ 1 ≤ (s+ 1)

(
sk

k

)
.

Multiplying both sides by (sk + 1) and noting (sk + 1)
(
sk
k

)
=(

(s− 1)k + 1
)(

sk+1
k

)
(4.3) gets transformed to

(s2k + s− k)
(
sk + 1

k

)
+ sk + 1 ≤

(
(s2 − 1)k + s+ 1

)(sk + 1
k

)
.

Since sk + 1 ≤
(
sk+1
k

)
we can replace sk + 1 by

(
sk+1
k

)
on the LHS and note

that the two sides coincide. This finishes the proof of (4.3) and thereby the
proof of Theorem 1.7. �

Remark. It should be clear from the proof that equality can hold only if
x = sk and then |F0| =

(
sk
k

)
. This and nestedness imply F0 = F1 = · · · = Fs.

Eventually, this entails that Fi =
([sk]

k

)
, i = 0, . . . , s, is the unique optimal

system.

ON THE ARITHMETIC MEAN OF THE SIZE OF CROSS-UNION FAMILIES 319



Acta Mathematica Hungarica 164, 2021

ON THE ARITHMETIC MEAN OF THE SIZE OF CROSS-UNION FAMILIES 9

5. The proof of Theorem 1.8

We are going to apply Katona’s cyclic permutation method (cf. [18]).
Let us fix a cyclic permutation x0x1x2 . . . xn−1x0 of [n] and let us define
(s+ 1)n 3-element sets indexed by 0 ≤ t ≤ s. The sets are C

(0)
0 , C(1)

1 , . . . ,
C

(s)
s , C

(0)
s+1, . . . where C

(t)
m =

(
x3m, x3m+1, x3m+2

)
and the index t is the

residue of m modulo s+ 1. Since (3s+ 2, 3s+ 3) = 1, each of the n circular
arcs xa xa+1 xa+2 occurs exactly once with each index t, 0 ≤ t ≤ s.

It should be clear from the definition that for each m, 0 ≤ m < (s+1)n,
C

(t)
m , C

(t+1)
m+1 , . . . , C

(t+s)
m+s cover [n]. Consequently at least one of C

(t+i)
m+i ∈

F (t+i) fails (t+ i is computed modulo s+ 1).
Let qj denote the number of m, 0 ≤ m < (s+ 1)n such that m ≡ j

(mod s+ 1), C(j)
m ∈ F (j).

In view of the above considerations q0 + q1 + · · · + qs ≤ sn.
More importantly, equality holds only if the consecutive missing arcs are

always at distance s+ 1 from each other. That is, one of the qj is zero and
all the others are equal to n. Taking into consideration that F0 ⊂ F1 ⊂ · · ·
⊂ Fs, q0 = 0 follows.

Lemma 5.1. We have

(5.1) q0 + q1 + · · · + qs ≤ sn− 1.

Proof. In view of the above we must show only that q0 = 0, q1 = · · · =
qs = n is impossible. Actually, this is the really novel part of the proof where
we combine Katona’s cycle method with shifting.

Suppose indirectly that q1 = · · · = qs = n. This means that all n cycli-
cal 3-arcs are in each of F1, . . . , Fs. Therefore for each consecutive pair xm,
xm+1 its complement is the union of s sets, one from each of Fi, 1 ≤ i ≤ s.
Should {xm, xm+1} be contained in some F0 ∈ F0, we get the desired con-
tradiction.

Choose m to satisfy xm = 1. By Claim 3.4, (1, 2, 3s) ∈ F0. To avoid a
contradiction, {xm−1, xm+1} = (3s+ 1, 3s+ 2). However, not both can be
neighbours of 2. Thus we can choose m′ so that {xm′ , xm′+1} = {2, p} for
some 3 ≤ p ≤ 3s. By shiftedness (1, 2, p) ∈ F0 and we get the desired con-
tradiction with the cross-union property. �

The rest of the proof is simple averaging. Choose the cyclic permutation
uniformly at random. Then the expected value of qi is

E(qi) = n · |Fi|
/(

n

3

)
, 0 ≤ i ≤ s.
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Summing this for 0 ≤ i ≤ s and using (5.1) along with the fact that expec-
tation never exceeds the maximum we obtain

3s+ 2(3s+2
3

) ∑
0≤i≤s

|Fi| ≤ s(3s+ 2)− 1 = (s+ 1)(3s− 1).

Equivalently,

∑
0≤i≤s

|Fi| ≤ (s+ 1)
3s− 1
3s+ 2

(
3s+ 2

3

)
= (s+ 1)

(
3s+ 1

3

)
. �

With a little more effort we can prove that equality is possible only if
F0 = · · · = Fs =

([n−1]
3

)
.

6. The proof of Theorem 1.9

Since the underlying idea of combining shifting with Katona’s cyclic
permutation method is the same as in the proof of Theorem 1.8, we will be
somewhat sketchy. Let F0,F1, . . . ,Fs ⊂

([n]
k

)
be nonempty, nested, shifted

and cross-union. There are two new ingredients that we present first. Let
π = (x1, x2, . . . , xn, x1) be a fixed cyclic permutation. A k-arc is a k-set
formed by consecutive elements:

{
xi, xi+1, . . . , xi+k−1

}
. Let A(π) denote

the collection of the k-arcs and note |A(π)| = n = sk+2. SetAi = Fi∩A(π).
Our aim is to prove

(6.1) |A0|+ · · · + |As| ≤ (s+ 1)(n− k) = (s+ 1)((s− 1)k + 2).

Note that F0 ⊂ · · · ⊂ Fs implies A0 ⊂ · · · ⊂ As.
One of the ingredients is a recent statement from [10]. It states that

(6.1) holds if A0 is non-empty. Thus in proving (6.1) we may assume that
A0 = ∅.

The second new ingredient is:

Lemma 6.1. Suppose that {xi, xi+1} is contained in a member of F0 for

some i, 1 ≤ i ≤ n. Then

(6.2) |A1|+ · · · + |As| ≤ sn− s.

Proof. Let us consider the k-arcs B1, . . . , Bs ∈ A(π) that partition
[n] \ {xi, xi+1}. Let us construct a bipartite graph, G with partite sets
B := {B1, . . . , Bs} and [s], where we draw an edge between Bu and v ∈ [s]
iff Bu ∈ Av .

We claim that there is no perfect matching in this bipartite graph. In-
deed the opposite means that there is a permutation u(1), u(2), . . . , u(s)
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of [s] such that Bu(j) ∈ Aj ⊂ Fj for 1 ≤ j ≤ s. Fixing an F0 ∈ F0 containing
{xi, xi+1}, we get the contradiction

F0 ∪Bu(1) ∪ · · · ∪ Bu(s) = [n].

Now it is a well-known and easy consequence of the König–Hall Theorem
that |G| ≤ s(s− 1) = s2 − s. That is, there are at least s edges missing. This
implies (6.2). �

Let us show that (6.2) implies (6.1). Since A0 = ∅, all we need to prove is

s(ks+ 2)− s ≤ (s+ 1)((s− 1)k + 2).

Expanding and rearranging yields k ≤ s+ 2, which is true by our assump-
tions.

To conclude the proof of the theorem we are going to show that indepen-
dently of the permutation π, we can always find {xi, xi+1} which is covered
by some member of F0.

To achieve this we need:

Lemma 6.2. We have

(6.3) |F0| ≥ (s+ 1)
(
n− 1
k

)
− s

(
n

k

)
+
(
sk

k

)
>

(
sk − 3

k

)
.

Proof. The first inequality is (3.4). Thus we only have to show that

(6.4)
(
sk

k

)
−

(
sk − 3

k

)
> s

(
n

k

)
− (s+ 1)

(
n− 1
k

)
.

Plugging in n = sk + 2 and using
(
n
k

)
= n

n−k

(
n−1
k

)
the RHS can be written

as

s(sk + 2)− (s+ 1)((s− 1)k + 2)
(s− 1)k + 2

(
n− 1
k

)
=

k − 2
(s− 1)k + 2

(
sk + 1

k

)

=
(k − 2)(sk + 1)

((s− 1)k + 2)((s− 1)k + 1)

(
sk

k

)
<

s

s− 1
(k − 2)

(s− 1)k + 2

(
sk

k

)
.

Note that(
sk − 3

k

)/(
sk

k

)
=

(s− 1)k
sk

·
(s− 1)k − 1

sk − 1
·
(s− 1)k − 2

sk − 2
<

(s− 1
s

)3
.

Now (6.4) is reduced to

1−
(s− 1

s

)3
>

s

s− 1
·

k − 2
(s− 1)k + 2
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or equivalently

(6.5)
(s− 1)(3s(s− 1) + 1)

s4 >
k − 2

(s− 1)k + 2
.

Since the RHS is smaller than 1/(s− 1), it is sufficient to prove

(s− 1)2(3s(s− 1) + 1)
s4 > 1.

For s = 4, 9× 37 > 256 shows that it is true. As the LHS is easily seen to
be an increasing function of s, it is true for all s ≥ 4.

For s = 3, (6.5) is equivalent to

76
81

>
k − 2
k + 1

.

That is, 5
81 < 3

k+1 or k < 47.6, concluding the proof. �

In view of Lemma 6.2, F0 �⊂
([sk−3]

k

)
. By shiftedness,

(6.6) (1, 2, . . . , k − 1, sk − 2) ∈ F0.

To conclude the proof is easy. We proceed similarly as in the k = 3 case.
Consider the location of 1, 2, 3, 4 in the cyclic permutation. If two of

them are neighbours then choosing them as xi, xi+1 we are done. Other-
wise the four of them have altogether at least five neighbours. Not all of
them are from [sk − 1, sk + 2]. Consequently, we find again {xi, xi+1} with
xi ≤ 4, xi+1 ≤ sk− 2 or xi+1 ≤ 4, xi ≤ sk − 2, guaranteeing that the pair is
contained in some F ∈ F0. �

We should mention that for k ≥ 48 it is sufficient to prove (6.3) with(
sk−46

k

)
. This permits to prove the statement for s = 3, k ≥ 48 as well.

7. A simple trick

Let us note first that for any positive integer d,

(7.1)
(
dn− 1
dk

)/(
dn

dk

)
=

d(n− k)
dn

=
n− k

n
=

(
n− 1
k

)/(
n

k

)
.

It is easy to use (7.1) to prove Theorem 1.10. Let F0, . . . ,Fs ⊂
(
dn
dk

)
be cross-

union. Choose uniformly at random a partition [dn] = X1 ∪ · · · ∪Xn where
|Xi| = d for 1 ≤ i ≤ n.
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With a k-set H ∈
([n]
k

)
associate the dk-set G(H) =

⋃
i∈H Xi. Define

Gi =
{
H ∈

(
[n]
k

)
: G(H) ∈ Fi

}
, i = 0, 1, . . . , s.

It is immediate to check that G0, . . . , Gs are cross-union. By the assump-
tions,

(7.2)
∑

0≤i≤s

|Gi| ≤ (s+ 1)
(
n− 1
k

)
.

Since for H ∈
([n]
k

)
the set G(H) is a uniformly random dk-subset on

[dn], the expected size E(|Gi|) satisfies

E(|Gi|) =
|Fi|(
dn
dk

)
(
n

k

)
.

Using (7.2) we infer

∑
0≤i≤s

|Fi|(
dn
dk

)
(
n

k

)
≤ (s+ 1)

(
n− 1
k

)
,

or equivalently, invoking (7.1),

∑
0≤i≤s

|Fi| ≤ (s+ 1)

(
n−1
k

)
(
n
k

)
(
dn

dk

)
= (s+ 1)

(
dn− 1
dk

)
. �

8. Concluding remarks

The results of the present paper motivate the following conjecture.

Conjecture 8.1. Let n = sk+ � with 1 ≤ � ≤ k, s ≥ 2, k ≥ 2. Suppose
that F0,F1, . . . ,Fs ⊂

([n]
k

)
are non-empty and cross-union. Then

(8.1)
|F0|+ · · · + |Fs|

s+ 1
≤

(
n− 1
k

)
holds for s ≥ s0(�).

By Corollary 2.5 and Theorem 1.7, (8.1) holds with s0(�) = 2 for both
� = k and � = 1. As to the case � = 2, for k = 3 and 4 it holds for s ≥ 3 by
Theorems 1.8 and 1.10. Theorem 1.9 establishes it for s ≥ 4 as well as for
s = 3, 5 ≤ k ≤ 47. The statement of Conjecture 8.1 follows from Theorem
1.10 if � = 3 and k is a multiple of 3.

Consequently the first open cases are � = 3, k = 5, 7 or 8.
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[11] P. Frankl and Z. Füredi, A new short proof of the EKR theorem, J. Combin. Theory,

Ser. A, 119 (2012), 1388–1390.
[12] P. Frankl and A. B. Kupavskii, A short proof for an extension of the Erdős–Ko–Rado
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