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Abstract. Given a family ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d of d distinct noncon-
stant polynomials, a positive integer k ≤ d and a real positive parameter ρ, we
consider the mean value

Mk,ρ(ϕ, N) =

∫
x∈[0,1]k

sup
y∈[0,1]d−k

|Sϕ(x,y;N)|ρ dx

of exponential sums

Sϕ(x,y;N) =
N∑

n=1

exp

(
2πi

( k∑
j=1

xjϕj(n) +

d−k∑
j=1

yjϕk+j(n)

))
,

where x = (x1, . . . , xk) and y = (y1, . . . , yd−k). The case of polynomials ϕi(T ) =
T i, i = 1, . . . , d and k = d corresponds to the classical Vinaogradov mean value
theorem.

Here motivated by recent works of Wooley [14] and the authors [9] on bounds
on sup

y∈[0,1]d−k |Sϕ(x,y;N)| for almost all x ∈ [0,1]k , we obtain nontrivial bounds

on Mk,ρ(ϕ, N).

1. Introduction

For an integer ν � 2, let Tν = (R/Z)ν be the ν-dimensional unit torus.
We denote

e(x) = exp(2πix).
The exponential sums

Sd(u;N) =
N∑

n=1

e(u1n+ · · · + udn
d), u = (u1, . . . , ud) ∈ Td,

introduced and estimated by Weyl [12], are commonly called the Weyl sums.
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Weyl sums appear in a great variety of number theoretic problems start-
ing with the problem of uniformity of distribution of fractional parts of real
polynomials, see also [4]. They also play a crucial role in estimating the
zero-free region of the Riemann zeta-function and thus in turn in bounding
in the error term in the prime number theorem, see [11, Section 8.5], and the
Waring problem, see [11, Section 20.2], in estimating short character sums
modulo highly composite numbers [11, Section 12.6].

Thanks to recent striking results of Bourgain, Demeter and Guth [6] (for
d � 4) and Wooley [13] (for d = 3) (see also [15]), for the mean value of
Sd(u;N) we have

(1.1)

∫
Td

|Sd(u;N)|2s(d) du � Ns(d)+o(1), N → ∞,

where

(1.2) s(d) =
d(d+ 1)

2
,

which is the best possible form of the Vinogradov mean value theorem.
On the other hand, for individual sums it is known that their size de-

pends on Diophantine properties of the coefficients u1, . . . , ud, but generally
the situation is not well understood, see [7,8].

The following best known bound is a direct implication of (1.1) and is
given in [5, Theorem 5]. Let u = (u1, . . . , ud) ∈ Td be such that for some ν
with 2 ≤ ν ≤ d and some positive integers a and q with gcd(a, q) = 1 we have∣∣∣uν − a

q

∣∣∣ ≤ 1

q2 .

Then for any ε > 0 there exits a constant C(ε) such that

|Sd(u;N)| ≤ C(ε)N1+ε
(
q−1 +N−1 + qN−ν

) 1

d(d−1) .

Recently, Wooley [14] has considered a hybrid scenario which interpolates
between individual bounds and mean value estimates. In this setting one
seeks results which hold for all values of the components of u = (u1, . . . , ud)
∈ Td on some prescribed set of positions and almost all values of the com-
ponents on the remaining positions.

Given a family ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d of d distinct nonconstant poly-
nomials and a sequence of complex weights a = (an)

∞
n=1, for u = (u1, . . . , ud)

∈ Td we define the trigonometric polynomials

(1.3) Ta,ϕ(u;N) =

N∑
n=1

an e(u1ϕ1(n) + · · ·+ udϕd(n)).
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Furthermore, for k = 1, . . . , d, we decompose

Td = Tk × Td−k.

Given x ∈ Tk, y ∈ Td−k we refine the notation (1.3) and write

(1.4) Ta,ϕ(x,y;N) =
N∑

n=1

an e

( k∑
j=1

xjϕj(n) +
d−k∑
j=1

yjϕk+j(n)

)
.

If a = e = (1)∞n=1 (that is, an = 1 for each n ∈ N) we just write

Tϕ(x,y;N) = Te,ϕ(x,y;N).

In fact Wooley [14] has studied only the classical case an = 1 for all n ∈ N

and the polynomials

(1.5)
{
ϕ1(T ), . . . , ϕd(T )

}
=

{
T, . . . , T d

}
(we note that the order of ϕ1, . . . , ϕd is not specified in (1.5)). Embedding
in the argument of Wooley [14, Theorem 1.1] the modern form of the Vino-
gradov mean value theorem (1.1), one derives that for almost all x ∈ Tk with
respect to the k-dimensional Lebesgue measure on Tk, we have

(1.6) sup
y∈Td−k

|Tϕ(x,y;N)| ≤ N (1+ΔW (ϕ,k))/2+o(1), N → ∞,

where

ΔW (ϕ, k) =
2σk(ϕ) + d− k + 1

2s(d) + d− k + 1

with s(d) given by (1.2) and

(1.7) σk(ϕ) =
d∑

j=k+1

degϕj.

The authors [9] have extended and improved this and some other results
of Wooley [14]. In particular, by [9, Theorems 2.1, 2.3 and Corollary 2.4],
the bound (1.6) holds with

ΔCS(ϕ, k) = min
{2σk(ϕ) + d− k

2s(d) + d− k
,
σk(ϕ) + 1

s(d)

}
< ΔW (ϕ, k)

instead of ΔW (ϕ, k) and also applies to sums Ta,ϕ(x,y;N) with complex

weights an = no(1), n ∈ N, and a large family of polynomials.
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2. Hybrid mean value theorems

2.1. Notation and conventions. Throughout the paper, the nota-
tion U = O(V ), U � V and V � U are equivalent to |U | � cV for some
positive constant c, which throughout the paper may depend on the degree
d and occasionally on the small real positive parameter ε.

For any quantity V > 1 we write U = V o(1) (as V → ∞) to indicate a
function of V which satisfies |U | ≤ V ε for any ε > 0, provided V is large
enough. One additional advantage of using V o(1) is that it absorbs log V
and other similar quantities without changing the whole expression.

We use #S to denote the cardinality of a finite set S .
We say that some property holds for almost all x ∈ Tk if it holds for a

set X ⊆ Tk of k-dimensional Lebesgue measure λ(X ) = 1.

2.2. Main results. Here, instead of asking about bounds on

sup
y∈Td−k

∣∣Ta,ϕ(x,y;N)
∣∣ ,

for a real ρ > 0 we consider the mean value

Mk,ρ(a,ϕ,N) =

∫
x∈Tk

sup
y∈Td−k

|Ta,ϕ(x,y;N)|ρ dx.

In some special cases of polynomials ϕ and the exponent ρ this quantity has
been studied in [1, Lemma 5] and [2, Lemmas 3.2], see also [3, Lemma 12].
However our results and methods and those of [1,2] seem to apply to different
regimes of parameters and do not overlap. More precisely, the argument of
the proof of [1, Lemma 5] or [2, Lemmas 3.2] implies that for any integer
s ≥ 1 we have

(2.1) Mk,2s(a,ϕ,N) � Nσk(ϕ)Mk,2s(a,ϕk,N),

where s(d) and σk(ϕ) are given by (1.2) and (1.7), respectively, and ϕk =
(ϕ1, . . . , ϕk), thus, recalling (1.3), we write

Mk,2s(a,ϕk,N) =

∫
Tk

∣∣Ta,ϕk
(x;N)

∣∣ 2s
dx.

If s is large enough, depending on max{degϕ1, . . . ,degϕk}, one can use (1.1)
to estimate Mk,2s(a,ϕk,N) (which is how it has been done in [1,2]). For
smaller s one can apply the bound of Wooley [15, Theorem 1.1] (under some
natural conditions on ϕ1, . . . , ϕk). However the presence of the factor N

σk(ϕ)

in (2.1) impedes the efficiency of this approach.
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We now present a different approach, leading to different bounds which
do not depend on the degrees of ϕ1, . . . , ϕk and thus which is especially
efficient when at least the degree is large compared to d.

Let

W (T ;ϕ) = det
(
ϕ

(j−1)
i (T )

)d
i,j=1

denote the Wronskian of d polynomials ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d.
It is convenient to formulate our results in terms of some real parame-

ter ρ. However one can see that by convexity it is enough to establish them
only for the largest admissible value of ρ.

Theorem 2.1. Suppose that ϕ ∈ Z[T ]d is such that the Wronskian

W (T ;ϕ) does not vanish identically. Let a = (an)
∞
n=1 be a sequence of com-

plex weights with an = no(1). Then for any real positive ρ ≤ 2s(d)+ d− k we

have

Mk,ρ(a,ϕ,N) ≤ Nμ(ϕ,k)ρ+o(1), N → ∞,

where

μ(ϕ, k) =
s(d) + σk(ϕ) + d− k

2s(d) + d− k
.

Note that Theorem 2.1 gives a non-trivial bound, that is, μ(ϕ, k) < 1,
provided that σk(ϕ) < s(d). Moreover for k = d, we have σd(ϕ) = 0 and
thus we recover the bound (1.1) in the Vinogradov mean value theorem.

From Theorem 2.1 we derive the following bounds for the mean values
of short sums. For K ∈ Z, we consider Weyl sums over short intervals

Sd(u;K,N) =
K+N∑

n=K+1

e(u1n+ · · · + udn
d), u = (u1, . . . , ud) ∈ Td.

We now give an upper bound on the mean value of the largest value of all
such sums, that is, for supK∈Z |Sd(u;K,N)|. No result of this type seems to
be known prior to this work.

Corollary 2.2. For any real positive ρ ≤ d2 + 2d− 1 we have∫
Td

sup
K∈Z

|Sd(u;K,N)|ρ du ≤ Nμdρ+o(1), N → ∞,

where

μd = 1−
d

d2 + 2d− 1
.
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We note that while the bound

sup
K∈Z

∫
Td

∣∣Sd(u;K,N)
∣∣ 2s(d)

du ≤ Ns(d)+o(1), N → ∞,

is trivial from (1.1) and the so called translation invariance, there is no ob-
vious nontrivial bound on the integral of Corollary 2.2.

Recalling the definition (1.3) and (1.4), for x ∈ Tk we can write

sup
y∈Td−k

|Ta,ϕ(x,y;N)| = sup
u∈Td∩π

−1
d,k(x)

|Ta,ϕ(u;N)|,

where πd,k is the orthogonal projection of Td onto Tk, that is,

πd,k : (u1, . . . , ud) → (u1, . . . , uk).

This suggests that one can try to extend Theorem 2.1 to more general set-
tings by taking some other mappings instead of the orthogonal projection
πd,k.

Now, more generally, given a mapping f : Rd → R
k, for x ∈ R

k we denote

f−1(x) =
{
u ∈ R

d : f(u) = x
}
.

Then for ρ > 0 we define

Mk,f,ρ(a,ϕ,N) =

∫
Rk

sup
u∈Td ∩ f−1(x)

|Ta,ϕ(u;N)|ρ dx,

where Ta,ϕ(u;N) is given by (1.3).
In the following we first take f to be an orthogonal projection onto some

k-dimensional subspace, and second we take f to be some Hölder mapping.
Let G(d, k) denote the collection of all k-dimensional linear subspaces

of Rd. For V ∈ G(d, k), let πV : R
d → V denote the orthogonal projection

onto V .
For the degree sequence degϕ1, . . . , degϕd we denote them as

r1 ≤ . . . ≤ rd,

and define

(2.2) σ̃k(ϕ) =
d∑

i=k+1

ri.

Theorem 2.3. Suppose that ϕ ∈ Z[T ]d is such that the Wronskian

W (T ;ϕ) does not vanish identically. Let a = (an)
∞
n=1 be a sequence of

 C. CHEN and I. E. SHPARLINSKI6
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complex weights with an=no(1). If V∈G(d, k), then for any real positive

ρ ≤ 2s(d)+d−k we have

Mk,πV,ρ(a,ϕ,N) ≤ NμV(ϕ,k)ρ+o(1), N → ∞,

where

μV(ϕ, k) =
s(d) + σ̃k(ϕ) + d− k

2s(d) + d− k
.

Now we turn to ϑ-Hölder functions, for some 0 < ϑ ≤ 1, that is, functions
f : Rd → R

k which satisfy

‖f(x)− f(y)‖ � ‖x− y‖ϑ,

where ‖z‖ is the Euclidean norm of z (note that the left-hand side of this
inequality is the Euclidean norm in R

k, while the right-hand side is the Eu-
clidean norm in R

d). In particular, in the case ϑ = 1 the function f is often
called a Lipschitz function.

Theorem 2.4. Let f : Rd → R
k be a ϑ-Hölder map for some 0 < ϑ ≤ 1.

Let a = (an)
∞
n=1 be a sequence of complex weights with an = no(1). Suppose

that ϕ ∈ Z[T ]d is such that the Wronskian W (T ;ϕ) does not vanish identi-

cally. Denote

δ(ϕ) = min
i=1,...,d

degϕi.

Then for any real positive ρ ≤ 2s(d) + d− kϑ we have

Mk,f,ρ(a,ϕ,N) ≤ Nμϑ(ϕ,k)ρ+o(1), N → ∞,

where

μϑ(ϕ, k) =
s(d) + σ0(ϕ) + d− (δ(ϕ) + 1)ϑk

2s(d) + d− kϑ
.

Note that for the classical choice of polynomials (1.5), we have δ(ϕ) = 1,
σ0(ϕ) = s(d) and thus

μϑ(ϕ, k) =
2s(d) + d− 2kϑ

2s(d) + d− kϑ
< 1

for any k > 0. Therefore Theorem 2.4 gives a non-trivial bound for
Mk,f,ρ(a,ϕ,N) for any k > 0 and any ϑ-Hölder function f with 0 < ϑ
≤ 1. Moreover if ϑ → 0 then μϑ(ϕ, k) → 1. Indeed, it is expected that
if the function f becomes “bad” (ϑ becomes “small”) then the bounds for
Mk,f,ρ(a,ϕ,N) also become “bad”. However, we do not know whether there
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exits a continuous function f : Rd → R
k such that we do not have non-trivial

bounds for Mk,f,ρ(a,ϕ,N), that is, for any ρ > 0 and any ε > 0, one has

Mk,f,ρ(a,ϕ,N) � N1−ε

for infinitely many N ∈ N.

2.3. Hybrid mean value theorems for discrepancy. Similar to
works of Wooley [14] and the authors [9], we obtain similar results for the
discrepancy.

Let ξn, n ∈ N, be a sequence in [0, 1). The discrepancy of this sequence
at length N is defined as

(2.3) DN = sup
0≤a<b≤1

∣∣#{
1 ≤ n ≤ N : ξn ∈ (a, b)

}
− (b− a)N

∣∣ .
We note that sometimes in the literature the scaled quantity N−1DN is
called the discrepancy, but since our argument looks cleaner with the defi-
nition (2.3), we adopt it here.

For x ∈ Tk, y ∈ Td−k we consider the sequence

k∑
j=1

xjϕj(n) +
d−k∑
j=1

yjϕk+j(n), n ∈ N,

and for each N we denote by Dϕ(x,y;N) the corresponding discrepancy of
its fractional parts.

For ρ > 0 let

Mk,ρ(ϕ,N) =

∫
Tk

sup
y∈Td−k

Dϕ(x,y;N)ρ dx.

Theorem 2.5. Suppose that ϕ ∈ Z[T ]d is such that the Wronskian

W (T ;ϕ) does not vanish identically. Then for any 1 ≤ ρ ≤ 2s(d) + d− k
we have

Mk,ρ(ϕ,N) ≤ Nμ(ϕ,k)ρ+o(1), N → ∞,

where μ(ϕ, k) is as in Theorem 2.1.

From Theorem 2.5 we derive a bound on the mean value of discrepancy
over short intervals. More precisely, for each K ∈ Z denote by Dd(u;K,N)
the discrepancy of the sequence of fractional parts

{u1n+ · · · + udn
d}, n = K + 1, . . . ,K +N.

 C. CHEN and I. E. SHPARLINSKI8
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Corollary 2.6. For any real positive 1 ≤ ρ ≤ d2 + 2d− 1 we have∫
Td

sup
K∈Z

Dd(u;K,N)ρ du ≤ Nμdρ+o(1), N → ∞,

where μd is given by Corollary 2.2.

3. Preliminaries

3.1. Packing large trigonometric polynomials in boxes. First we
need a box-counting estimate which is essentially [9, Lemma 3.7]. Indeed,
we certainly have |Ta,ϕ(u;N)| ≤ Wa,ϕ(u;N), where the sums Wa,ϕ(u;N)
are as in [9, Section 3.3].

Lemma 3.1. Let 0 < α < 1 and let ε be sufficiently small. For each j =
1, . . . , d let

(3.1) ζj = 1/
⌈
Nej+1+ε−α

⌉
,

where ej = degϕj , j = 1, . . . , d. We divide Td into

U =

( d∏
j=1

ζj

)−1

boxes of the form

[n1ζ1, (n1 + 1)ζ1)× · · · × [ndζd, (nd + 1)ζd),

where nj = 1, . . . , 1/ζj for each j = 1, . . . , d. Let R be the collection of these

boxes, and

R̃ =
{
R ∈ R : ∃u ∈ R with |Ta,ϕ(u;N)| ≥ Nα

}
.

Then, uniformly over α, we have

#R̃ ≤ UNs(d)(1−2α)+o(1) .

3.2. The measure of the set of large Weyl sums. First, as before,
we note that |Ta,ϕ(x,y;N)| ≤ Wa,ϕ(x,y;N), where Wa,ϕ(x,y;N) is as in
[9, Section 3.3], thus the argument of [9] applies to the sums Ta,ϕ(x,y;N)
as well. In particular, we have versions of [9, Corollaries 3.8 and 3.11] with
Ta,ϕ(x,y;N) which we present below.

In fact we need a slightly more general version of [9, Corollary 3.8]. We
recall that the result of [9, Corollary 3.8] is formulated with an T = Nα for

   THE VINOGRADOV MEAN VALUE THEOREM 9
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a fixed real α, however examining the argument one can easily see that as in
Lemma 3.1, it is uniform with respect to α and thus works for an arbitrary
parameter T ≥ 1. More precisely, we have:

Lemma 3.2. Let 1 ≤ T ≤ N . Then

λ
({

x ∈ Tk : ∃y ∈ Td−k with |Ta,ϕ(x,y;N)| ≥ T
})

≤ Ns(d)+σk(ϕ)+d−k+o(1)T−2s(d)−d+k.

The following result is similar to Lemma 3.2, with σ̃k(ϕ) instead of
σk(ϕ). Let V be a k-dimensional subspace of Rd. Also recall that σ̃k(ϕ)
is given by (2.2). For the orthogonal projection map πV , from [9, Corol-
lary 3.11] we have the following.

Lemma 3.3. Let 1 ≤ T ≤ N . Then

λ
({

x ∈ V : sup
u∈Td∩π

−1
V

(x)
|Ta,ϕ(u;N)| ≥ T

})

≤ Ns(d)+σ̃k(ϕ)+d−k+o(1)T−2s(d)−d+k.

We now turn to ϑ-Hölder functions f : Rd → R
k. Indeed, applying simi-

lar methods to the proofs of [9, Corollaries 3.8 and 3.11] we obtain Lemma 3.4
below. Since ϑ-Hölder functions do not appear in [9], for the sake of com-
pleteness, we outline the proof.

Lemma 3.4. Let f : Rd → R
k be a ϑ-Hölder function. Then for 1 ≤ T

≤ N we have

λ
({

x ∈ R
k : sup

u∈Td∩f−1(x)
|Ta,ϕ(u;N)| ≥ T

})

≤ Ns(d)+σ0(ϕ)+d−(δ(ϕ)+1)ϑk+o(1)T−2s(d)−d+ϑk.

Proof. First of all suppose that T = Nα for some 0 < α < 1. We fix
some sufficiently small ε > 0 and define the set

U =
⋃
R∈R̃

R.

For A ⊆ R
d denote f(A) = {f(x) : x ∈ A}. Observe that

(3.2)
{
x ∈ R

k : sup
u∈Td∩f−1(x)

|Ta,ϕ(u;N)| ≥ T
}
⊆ f(U) ⊆

⋃
R∈R̃

f(R),

where R̃ is as in Lemma 3.1.

 C. CHEN and I. E. SHPARLINSKI10
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Since f is ϑ-Hölder, for any A ⊆ R
d we obtain

λ(f(A)) � (diamA)ϑk,

where diamA = sup{‖a− b‖ : a,b ∈ A}. For each R ∈ R̃, by (3.1) we have
diamR � Nα−1−δ(ϕ). Combining with Lemma 3.1 and the estimate (3.2),
we derive

λ
({

x ∈ R
k : sup

u∈Td∩f−1(x)
|Ta,ϕ(u;N)| ≥ T

})

≤ #R̃(diamR)ϑk � UNs(d)(1−2α)N (α−δ(ϕ)−1−ε)ϑk.

Since ε is arbitrary, recalling the value of U , we now obtain

λ
({

x ∈ R
k : sup

u∈Td∩f−1(x)
|Ta,ϕ(u;N)| ≥ T

})

≤ Ns(d)+σ0(ϕ)+d−(δ(ϕ)+1)ϑk+o(1)N−2s(d)α−dα+ϑkα.

Recalling that T = Nα, we now obtain the desired result by taking T = Nα.
�

3.3. Discrepancy and exponential sums. We recall the classical
Erdős–Turán inequality (see, for instance, [10, Theorem 1.21]).

Lemma 3.5. Let ξn, n ∈ N, be a sequence in [0, 1). Then for the dis-
crepancy DN given by (2.3) and any G ∈ N, we have

DN ≤ 3

(
N

G+ 1
+

G∑
g=1

1

g

∣∣∣∣
N∑

n=1

e(gξn)

∣∣∣∣
)
.

4. Proofs of mean value theorems for exponential sums

4.1. Proof of Theorems 2.1, 2.3, 2.4. Theorems 2.1, 2.3 and 2.4
follow by combining Lemmas 3.2, 3.3 and 3.4, respectively, with Lemma 4.1
below.

Lemma 4.1. Let N be a large positive number and f : Tk → [0,N ] be a
function. Suppose that there exist positive constants a < b such that for any
1 ≤ T ≤ N ,

(4.1) λ
({

x ∈ Tk : F (x) ≥ T
})

≤ NaT−b.

Then for any positive ρ ≤ b,∫
Tk

F (x)ρ dx � Nρa/b logN.

   THE VINOGRADOV MEAN VALUE THEOREM 11
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Proof. Let R = Na/b. Note that for T > R we have a nontrivial esti-
mate in (4.1). We partition Tk into sets X
, � ∈ N, where

X0 =
{
x ∈ Tk : F (x) ≤ R

}
,

and for � ≥ 1,

X
 =
{
x ∈ Tk : 2
−1R < F (x) ≤ 2
R

}
.

By our assumption (4.1) we have λ(X
) � Na(2
R)−b. Clearly for some L =
O(logN) we have X
 = ∅. Therefore,

∫
Tk

F (x)ρ dx =

L∑

=0

∫
X�

F (x)ρ dx

� Rρ +
L∑


=1

(2
R)ρNa(2
R)−b � Rρ +NaRρ−b
L∑


=1

2
(ρ−b).

By the choice of R = Na/b and the condition that ρ ≤ b we obtain the desired
bound. �

4.2. Proof of Corollary 2.2. For K ∈ Z, recall that Weyl sums over
short intervals are defined as follows

Sd(u;K,N) =
K+N∑

n=K+1

e(u1n+ · · ·+ udn
d).

We write

Sd(u;K,N) =
N∑

n=1

e(u1(n+K) + · · · + ud(n+K)d).

We observe that in the polynomial identity

u1(T +K) + · · ·+ ud(T +K)d = v0+v1T + · · · + vd−1T
d−1+udT

d ∈ R[T ],

where for j = 0, 1, . . . , d− 1, each vj , depends only on u1, . . . , ud and K. It
follows that

(4.2) sup
K∈Z

|Sd(u;K,N)| ≤ sup
(v1,...,vd−1)∈Td−1

∣∣Sd((v1, . . . , vd−1, ud);N)
∣∣ .
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Note that for any fixed ud for any (u1, . . . , ud−1) ∈ Td−1 the estimate 4.2
holds for u = (u1, . . . , ud). Thus we obtain∫

Td

sup
K∈Z

|Sd(u;K,N)|ρ du

=

∫ 1

0

(∫
Td−1

sup
K∈Z

|Sd(u;K,N)|ρdu1 . . . dud−1

)
dud

≤

∫ 1

0
sup

(v1,...,vd−1)∈Td−1

|Sd((v1, . . . , vd−1, ud);N)|ρdud.

Hence Theorem 2.1, applied k = 1, ϕ1(T ) = T d, ϕi(T ) = T i−1 for i =
2, . . . , d, and thus with σ1(ϕ) = d(d− 1)/2, yields the desired bound.

5. Proofs of mean value theorems for the discrepancy

5.1. Proof of Theorem 2.5. For any x ∈ Tk,y ∈ Td−k, by Lemma 3.5
for any G ∈ N we obtain

Dϕ(x,y;N) �
N

G
+

G∑
g=1

1

g

∣∣Tϕ(gx, gy;N)
∣∣ ,

and therefore

(5.1) sup
y∈Td−k

Dϕ(x,y;N) �
N

G
+

G∑
g=1

1

g
sup

y∈Td−k

∣∣Tϕ(gx,y;N)
∣∣ .

We now use the following invariant property of Lebesgue measure on a
torus.

Lemma 5.1. Let F : Tk → [0,N ] be a continuous function. Then for any
integer g = 0 we have

(5.2)

∫
Tk

F (gx) dx =

∫
Tk

F (x) dx.

Proof. For any Borel set A ⊆ Tk and any integer g = 0, we have (for
a proof see [14, Section 3])

λ
({

x ∈ Tk : gx ∈ A
})

= λ(A),

which is the same as the identity∫
Tk

1A(gx) dx =

∫
Tk

1A(x) dx,

   THE VINOGRADOV MEAN VALUE THEOREM 13



Acta Mathematica Hungarica 163, 2021

14 C. CHEN and I. E. SHPARLINSKI

where 1A is the characteristic function of A. Thus (5.2) holds when F = 1A.
It follows that the identity (5.2) still holds when F is a finite linear combi-
nation of characteristic functions, that is

F (x) =
J∑

j=1

aj1Aj
(x),

for sets Aj ⊆ Tk, j = 1, . . . , J . Since any continuous function can be arbi-
trarily approximated by a finite linear combination of such functions, the
desired identity follows. �

Here ‖f(x)‖ρ denotes the Lρ(Tk)-norm of a function f on Tk. Then
by (5.1) and the Minkowski inequality,

(5.3)
∥∥∥ sup
y∈Td−k

Dϕ(x,y;N)
∥∥∥
ρ
�

N

G
+

G∑
g=1

1

g

∥∥∥ sup
y∈Td−k

∣∣Tϕ(gx,y;N)
∣∣ ∥∥∥

ρ
.

For any positive integer g = 0, Lemma 5.1 implies∥∥∥ sup
y∈Td−k

∣∣Tϕ(gx,y;N)
∣∣ ∥∥∥

ρ
=

∥∥∥ sup
y∈Td−k

∣∣Tϕ(x,y;N)
∣∣ ∥∥∥

ρ
,

which together with (5.3) and Theorem 2.1 yields∥∥∥ sup
y∈Td−k

Dϕ(x,y;N)
∥∥∥
ρ
�

N

G
+
∥∥∥ sup
y∈Td−k

∣∣Tϕ(x,y;N)
∣∣∥∥∥

ρ
logG

�
N

G
+Nμ(ϕ,k)+o(1) logG.

Choosing G = N1−μ(ϕ,k), we derive the desired result.

5.2. Proof of Corollary 2.6. Recall that Dd(u;K,N) is the discrep-
ancy of the sequence of fractional parts

{u1n+ · · · + udn
d}, n = K + 1, . . . ,K +N.

Clearly this sequence is the same as

{u1(n+K) + · · · + ud(n+K)d}, n = 1, . . . ,N,

and thus as before, see (4.2), we see that this sequence is the same as

{v0 + v1n+ · · · + vd−1n
d−1 + udn

d}, n = 1, . . . ,N,
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where for j = 0,1, . . . , d−1, each vj , depends only on u1, . . . , ud andK. Fur-
thermore let u∗ = (v1, . . . , vd−1, ud). It is not hard to see that the influence
of the discarded constant term v0 can be absorbed in a constant factor and
does not change the order of magnitude of the discrepancy. More, precisely,
we have

Dd(u
∗;N) � Dd(u;K,N) � Dd(u

∗;N),

where the implied constant is absolute. It follows that

sup
K∈Z

Dd(u;K,N) � sup
(v1,...,vd−1)∈Td−1

Dd((v1, . . . , vd−1, ud),N).

Using similar arguments as in the proof of Corollary 2.2 and applying
Theorem 2.5, with k = 1, ϕ1(T ) = T d, ϕi(T ) = T i−1 for i = 2, . . . , d, and
thus with σ1(ϕ) = d(d− 1)/2, we obtain the desired bound.

6. Comments and open questions

6.1. Special cases of d = 2 and d = 3. We show that for special
cases of d = 2 and d = 3 for the moments

(6.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M2,2(N) =

∫ 1

0
sup

y∈[0,1]

∣∣∣∣
N∑

n=1

e(xn2 + yn)

∣∣∣∣2dx,
M3,4(N) =

∫ 1

0
sup

y,z∈[0,1]

∣∣∣∣
N∑

n=1

e(xn3 + yn2 + zn)

∣∣∣∣4dx,
we have better bounds (nearly optimal) than the bounds in Theorem 2.1.

Applying Theorem 2.1 with d = 2, k = 1, σk(ϕ) = 1, ρ = 2 and with
d = 3, k = 1, σk(ϕ) = 3, ρ = 4 we derive that

M2,2(N) ≤ N10/7+o(1) and M3,4(N) ≤ N22/7+o(1),

respectively. On the other hand, we have the lower bounds

M2,2(N) ≥

∫ 1

0

∫ 1

0

∣∣∣∣
N∑

n=1

e(xn2 + yn)

∣∣∣∣2 dy dx = N,

and

M3,4(N) ≥

∫ 1

0

∫ 1

0

∫ 1

0

∣∣∣∣
N∑

n=1

e(xn3+yn2+zn)

∣∣∣∣4 dz dy dx ≥ 2N2 + O(N),

see, for example, [13, Section 1].
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Now we use a different way to bound the square mean values (6.1) and
reduce the gap between the above lower and upper bounds.

For d = 2 we need the following well known inequality, for a proof see
[11, Inequality (8.8)]:

sup
y∈[0,1]

∣∣∣∣
N∑

n=1

e(xn2 + yn)

∣∣∣∣2 � N +
N∑

h=1

min
{ 1

‖2hx‖
,N

}
,

where ‖x‖ = min{|x−n| : n ∈ Z} denotes the distance of x from the nearest
integer. Moreover, for any positive integer h, applying Lemma 5.1 we obtain
that uniformly over h, we have∫ 1

0
min

{ 1

‖2hx‖
,N

}
dx =

∫ 1

0
min

{ 1

‖x‖
,N

}
dx � logN,

hence

M2,2(N) � N logN.

Note that this is tight except, possibly, for the logarithm factor.
For d = 3 we use that by [11, Proposition 8.2]:

sup
y,z∈[0,1]

∣∣∣∣
N∑

n=1

e(xn3 + yn2 + zn)

∣∣∣∣4

� N
N∑

g=−N

N∑
h=−N

min
{ 1

‖6ghx‖
,N

}
� N3 +N

N∑
g,h=−N
gh �=0

min
{ 1

‖6ghx‖
,N

}
,

and arguing as before we obtain

M3,4(N) � N3 logN.

It is natural to ask whether similar arguments can improve Theorem 2.1
for higher degrees. Note that typically methods based on the Vinogradov
mean value theorem yield better bounds for higher degrees. Indeed this also
happens here, which means that Theorem 2.1 gives stronger bounds than
using [11, Proposition 8.2] for d ≥ 4 and applying the above arguments.

6.2. Open questions. It is interesting to try to use the “self-improving”
idea of [9] and in particular [9, Corollary 3.9] to obtain stronger results in
the case when one of the polynomials ϕk+1, . . . , ϕd is linear. There are
however some obstacles which the authors have not been able to overcome.
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It is also natural to study the mixed mean values

Mk,ρ,τ(a,ϕ,N) =

∫
x∈[0,1]k

(∫
y∈[0,1]d−k

∣∣Ta,ϕ(x,y;N)
∣∣ τ dy)ρ

dx,

and obtain bounds which are stronger than those following from the trivial
inequality

Mk,ρ,τ(a,ϕ,N) ≤ Mk,ρτ (a,ϕ,N)

and Theorem 2.1. The case of the classical Weyl sums is of special interest.

Acknowledgement. The authors are grateful to Angel Kumchev for
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