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Abstract. Let f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d) be a polynomial with
k ≥ 2, d ≥ 1. We consider the Diophantine equation

∏
r

i=1
f(xi, ki, d) = y2, r ≥ 1.

Using the theory of Pell equations, we affirm a conjecture of Bennett and van
Luijk [3]; extend some results of this Diophantine equation for d = 1, and give a
positive answer to Question 3.2 of Zhang [19].

1. Introduction

Let us define the polynomial

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d)

with k ≥ 2, d ≥ 1. Many authors have studied the Diophantine equation

(1.1)
r∏

i=1

f(xi, ki, d) = y2,

where r ≥ 1, f(xi, ki, d) = xi(xi + d) · · · (xi + (ki − 1)d) are disjoint for i =
1, . . . , r, and 2 ≤ k1 ≤ k2 ≤ · · · ≤ kr.

(1) The case r = 1, d ≥ 1. There are many results about (1.1) and the
more general Diophantine equation

f(x, k, d) = byl,

This research was supported by the National Natural Science Foundation of China (Grant
No. 11501052), Younger Teacher Development Program of Changsha University of Science and
Technology (Grant No. 2019QJCZ051), Hunan Provincial Key Laboratory of Mathematical Mod-
eling and Analysis in Engineering (Changsha University of Science and Technology) and the Natural
Science Foundation of Zhejiang Province (Project No. LY18A010016).

Key words and phrases: Diophantine equation, consecutive arithmetic progression, positive
integer solution, Pell equation.

Mathematics Subject Classification: primary 11D25, secondary 11D72.

Acta Math. Hungar. 163163 (2) (2021), 407–428
https://doi.org/10.1007/s10474-020-01108-4

First published online November 30, 2020

0236-5294/$20.00 © 2020 Akadémiai Kiadó, Budapest, Hungary
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where b > 0, l ≥ 3 and the greatest prime factor of b does not exceed k; we
can refer to [2,5–9,12,13].

(2) The case r ≥ 2, d = 1. When r = 2, d = 1, ki = 3, Sastry [6] showed
that (1.1) has infinitely many positive integer solutions (x1, x2, y), where
x1, x2 satisfying x2 = 2x1 − 1 and (x1 + 1)(2x1 − 1) is a square.

Erdős and Graham [4, p. 67] asked whether (1.1) has, for fixed r ≥ 1,
d = 1 and k1, k2, . . ., kr with ki ≥ 4 for i = 1, 2, . . . , r, at most finitely many
positive integer solutions (x1, x2, . . . , xr, y) with xi + ki − 1 < xi+1 for 1 ≤ i
≤ r−1. Ska�lba [14] obtained a bound for the smallest solution and estimated
the number of solutions below a given bound. Ulas [17] answered the above
question of Erdős and Graham in the negative when either r = 4, d = 1,
ki = 4, i = 1, 2, 3, 4, or r ≥ 6, d = 1, ki = 4, 1 ≤ i ≤ r. Bauer and Bennett
[1] extended Ulas’s result to the cases r = 3 and r = 5.

For the case r = 2, d = 1, k1 = k2 = 4, (1.1) has a positive integer solu-
tion (x1, x2, y) = (33, 1680, 3361826160). Luca and Walsh [11] studied this
case by using the identity (x− 1)x(x+ 1)(x+ 2) = (x2 + x− 1)2 − 1 to re-
duce the original problem to a Pell equation (x2 + x− 1)2 − dy2 = 1, where
d > 1 is a square-free integer. Tengely [15] provided an upper bound for the
size of the solutions and determined all solutions up to some bounds for this
case.

Bennett and van Luijk [3] constructed an infinity of positive integer solu-
tions of (1.1) for r ≥ 5, d = 1, ki = 5. Tengely and Ulas [16] studied (1.1) for
r = 2, d = 1, k1 = 2, k2 = 3, 4, 5. Zhang [19] gave infinitely many positive in-
teger solutions of (1.1) with d = 1 for the cases r = 2, k1 = 3, k2 = 4; r = 3,
k1 = 3, k2 = k3 = 4; r = 3, k1 = 3, k2 = 4, k3 = 5; r ≥ 2, k1 = 3, ki = 4,
i = 2, . . . , r; and r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i = 3, . . . , r. Yıldız and Gürel
[18] presented new algorithms generating new polynomial parameterizations
that extend the ones given by Bennett and van Luijk [3], and produced the
first examples of (1.1) for r = 7, 8, d = 1, ki = 6, 7.

(3) The case r ≥ 2, d ≥ 2. We are looking for the positive integer solu-
tions of (1.1) which satisfy d � xi for some i. If the solutions (x1, . . . , xr, y)
satisfy d | xi, i = 1, . . . , r, we call them trivial. For r = 2, ki = 3 and even
number d, Zhang and Cai [20] have proved that (1.1) has infinitely many
nontrivial positive integer solutions. For r = 2, ki = 3, d ≥ 2, Katayama [10]
showed that (1.1) also has infinitely many nontrivial positive integer solu-
tions when the integers d is divisible by a prime p (≡ ±1 (mod 8)). Zhang
[19] gave infinitely many nontrivial positive integer solutions of (1.1) with
d ≥ 2 for some cases, such as r ≥ 2, k1 = 2, ki ≥ 2, i = 2, . . . , r, and r ≥ 2,
k1 = k2 = 3, ki ≥ 3, i = 3, . . . , r with d ≥ 2; r = 3 or r ≥ 5, ki = 4, i = 1, . . . , r
with even number d; and r = 3 or r ≥ 5, ki = 4, i = 1, . . . , r with d = 3.

For more information on (1.1), we can refer to the references above and
the related ones they cited.

In this paper, firstly, we study the case r = 4, d = 1, ki = 5 and affirm a
conjecture of Bennett and van Luijk [3].
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Theorem 1.1. For r = 4, d = 1, ki = 5, i = 1, 2, 3, 4, (1.1) has infinitely
many positive integer solutions.

Secondly, we consider the cases for r ≥ 2, d = 1 with ki are different.
Let us recall that Bennett and van Luijk [3] showed that (1.1) has infinitely
many positive integer solutions for the cases r ≥ 2, d = 1, k1 = 2, ki ≥ 2,
i = 2, . . . , r, and r ≥ 2, d = 1, k1 = k2 = 3, ki ≥ 3, i = 3, . . . , r. Tengely and
Ulas [16] proved that (1.1) has infinitely many solutions in the ring Z[t] for
the cases r = 2, d = 1, k1 = 2, k2 = 3, 4, and at least two solutions in the
ring Z[t] for the case r = 2, d = 1, k1 = 2, k2 = 5.

Now we extend Theorem 1.1, Corollary 1.2 and Theorem 1.3 of [19] and
have the following theorems.

Theorem 1.2. For r = 3, d = 1, k1 = k2 = 4, k3 = 5, 6, 7, 8, 9, (1.1) has
infinitely many positive integer solutions.

Theorem 1.3. For r ≥ 3, d = 1, k1 = 3, k2 = 4, ki ≥ 4, i = 3, . . . , r, if
the Pell equation U2 − AV 2 = 5 has a positive integer solution (U0, V0) sat-
isfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2),

then (1.1) has infinitely many positive integer solutions.

Theorem 1.4. For r ≥ 4, d = 1, k1 = 4, k2 = 6, ki ≥ 4, i = 3, . . . , r,
if the Pell equation U2 −AV 2 = 17 has a positive integer solution (U0, V0)
satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2),

then (1.1) has infinitely many positive integer solutions.

For r = 3, d = 1, k1 = 4, k2 = 6, k3 ≥ 5, we cannot give infinitely many
positive integer solutions of (1.1).

Thirdly, we investigate the case r = 4, d ≥ 2, ki = 4, and give a positive
answer to Question 3.2 of [19] in the following theorem.

Theorem 1.5. For r = 4, ki = 4, i = 1, 2, 3, 4, and even number d ≥ 2,
(1.1) has infinitely many nontrivial positive integer solutions, i.e., the Dio-
phantine equation

x(x+ d)(x+ 2d)(x+ 3d)y(y+ d)(y + 2d)(y+ 3d)(1.2)

× z(z + d)(z + 2d)(z + 3d)w(w + d)(w + 2d)(w+ 3d) = t2

has infinitely many nontrivial positive integer solutions for even number d.

Moreover, we generalize the results in Theorem 1.8 and Corollary 1.9 of
[19] to r = 4 and any positive integer d with 3 | d.

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS 409
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Theorem 1.6. For r = 4, ki = 4, i = 1, 2, 3, 4, and any positive integer
d ≥ 2 with 3 | d, (1.1) has infinitely many nontrivial positive integer solu-
tions, i.e., (1.2) has infinitely many nontrivial positive integer solutions for d
with 3 | d.

Combining the above results, Theorem 1.6 and Corollary 1.7 of [19], we
get

Corollary 1.7. For any positive integer d ≥ 2 with 2 | d or 3 | d, if
r ≥ 3, ki = 4, i = 1, . . . , r, then (1.1) has infinitely many nontrivial positive
integer solutions.

Lastly, we study the case r = 4, d ≥ 2, ki = 5, and obtain

Theorem 1.8. For r = 4, ki = 5, i = 1, 2, 3, 4, and even number d ≥ 2,
(1.1) has infinitely many nontrivial positive integer solutions, i.e., the Dio-
phantine equation

x(x+ d)(x+ 2d)(x+ 3d)(x+ 4d)y(y + d)(y + 2d)(y + 3d)(y + 4d)(1.3)

× z(z+d)(z+2d)(z+3d)(z+4d)w(w+d)(w+2d)(w+3d)(w+4d) = t2

has infinitely many nontrivial positive integer solutions for even number d.

For even number d ≥ 2, the Diophantine equation

x(x+ d)(x+ 2d)(x+ 3d)(x+ 4d)y(y + d)(y + 2d)(y + 3d)(y + 4d) = z2

has integer solutions

(x, y, z) =
(d
2
, 6d, 945d5

)
,
(5d
2
, 11d,

45045d5

2

)
.

Since each even number r ≥ 4 is of the form 4s+ 2, 4s+ 4, then we have

Corollary 1.9. For r ≥ 4, d ≥ 2, ki = 5, i = 1, . . . , r, where r and d
are even numbers, (1.1) has infinitely many nontrivial positive integer solu-
tions.

2. Proofs

Proof of Theorem 1.1. For r = 4, d = 1, ki = 5, i = 1, 2, 3, 4, take

x1 = u, x2 = 2u+ 4, x3 = v, x4 =
v − 2
2

,

then (1.1) leads to

u(u+ 1)(2u+ 5)(2u+ 7)(v − 2)(v + 1)(v + 3)(v + 6)(2.1)

× (v(v + 2)(v + 4)(u+ 2)(u+ 3)(u+ 4))2

4
= y2.

Y. ZHANG410
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Using the same method as Bauer and Bennett [1], if we let

(2.2) u(2u+ 7) =
1
3
(v − 2)(v + 6),

then

(u+ 1)(2u+ 5) =
1
3
(v + 1)(v + 3),

and (2.1) has positive integer solutions.
(2.2) is equivalent to the Pell equation

U2 − 6V 2 = 57,

where U = 12u+21, V = 2v+4. An infinity of positive integer solutions of
U2 − 6V 2 = 57 are given by

Un + Vn

√
6 =

(
9 + 2

√
6
)(

5 + 2
√
6
)n

, n ≥ 0.

Thus, {
Un = 10Un−1 − Un−2, U0 = 9, U1 = 69, U2 = 681;
Vn = 10Vn−1 − Vn−2, V0 = 2, V1 = 28, V2 = 278.

From

u =
U − 21

12
, v =

V − 4
2

,

we have {
un = 10un−1 − un−2 + 14, u0 = −1, u1 = 4, u2 = 55;
vn = 10vn−1 − vn−2 + 16, v0 = −1, v1 = 12, v2 = 137.

It is easy to check that

un, vn ∈ Z+, n ≥ 1,

and

v2n+1 ≡ 0 (mod 2).

Then

x4 =
v2n+1 − 2

2
∈ Z+, n ≥ 0.

Thus, we have

y2n+1 =
1
2
v2n+1(v2n+1 + 1)(v2n+1 + 2)(v2n+1 + 3)(v2n+1 + 4)

× u2n+1(u2n+1 + 2)(u2n+1 + 3)(u2n+1 + 4)(2u2n+1 + 7) ∈ Z+, n ≥ 0.

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS 411
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From the recurrence relations of un and vn, we can check the following in-
equalities

u2n+1 + 4 <
v2n+1 − 2

2
,
v2n+1 − 2

2
+ 4 < 2u2n+1 + 4, 2u2n+1 + 8 < v2n+1,

for n ≥ 1.
Therefore, for r = 4, d = 1, ki = 5, i = 1, 2, 3, 4, (1.1) has infinitely many

positive integer solutions(
u2n+1, 2u2n+1 + 4, v2n+1,

v2n+1 − 2
2

, y2n+1

)
,

where n ≥ 1, such that xi(xi+1)(xi+2)(xi+3)(xi+4), i = 1, . . . , 4 are dis-
joint. �

Example 2.1. From Theorem 1.1, take n = 1, 2, 3, the Diophantine
equation

4∏
i=1

xi(xi + 1)(xi + 2)(xi + 3)(xi + 4) = y2

has three positive integer solutions

(x1, x2, x3, x4, y) = (560, 1124, 1374, 686, 277777320572507953270993920000),

(55044, 110092, 134832, 67415,

22524006547104146276382215253709792146707513241600),

(5393920, 10787844, 13212354, 6606176,

1838335805601903471144278744162145983318410028719909868112028289433600).

For the cases r = 3, d = 1, k1 = k2 = 4, k3 = 5, 6, 7, 8, 9, we have not a
unified method to deal with (1.1), so we have to give the proofs one by one.

Proof of Theorem 1.2. 1) For r = 3, d = 1, k1 = k2 = 4, k3 = 5, (1.1)
reduces to

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4) = y2.

Let x1 = u, x2 = v, x3 = 2v, then we get

8u(u+ 1)(u+ 2)(u+ 3)(v + 3)(2v + 1)(2v + 3)v2(v + 1)2(v + 2)2 = y2.

One only needs to consider

2u(u+ 1)(u+ 2)(u+ 3)(v + 3)(2v + 1)(2v + 3) = z2.

Y. ZHANG412
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Take

v =
3(u2 + 3u− 2)

4
,

then

3u2 + 9u− 4
2

[3u(u+ 1)(u+ 2)(u+ 3)]2

4
= z2.

Considering

3u2 + 9u− 4
2

= w2,

it is equivalent to the Pell equation

U2 − 6W 2 = 129,

where U = 6u+ 9,W = 2w.
An infinity of positive integer solutions of U2 − 6W 2 = 129 is given by

Un +Wn

√
6 =

(
15 + 4

√
6
)(

5 + 2
√
6
)n

, n ≥ 0.

Thus, {
Un = 10Un−1 − Un−2, U0 = 15, U1 = 123, U2 = 1215;
Wn = 10Wn−1 −Wn−2, W0 = 4, W1 = 50, W2 = 496.

From

u =
U − 9

6
, w =

W

2
,

we have {
un = 10un−1 − un−2 + 12, u0 = 1, u1 = 19, u2 = 201;
wn = 10wn−1 − wn−2, w0 = 2, w1 = 24, w2 = 248.

Note that

v =
3(u2 + 3u− 2)

4
is a positive integer, so we need u ≡ 2, 3 (mod 4). By the recurrence relation
of un, it is easy to show that u2n+1 ≡ 3 (mod 4). Thus,

v2n+1 =
3(u2

2n+1 + 3u2n+1 − 2)
4

∈ Z+, n ≥ 0.

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS 413
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Then

y2n+1 = 3w2n+1u2n+1(u2n+1 + 1)(u2n+1 + 2)(u2n+1 + 3)

× v2n+1(v2n+1 + 1)(v2n+1 + 2) ∈ Z+, n ≥ 0.

Therefore, for r = 3, d = 1, k1 = k2 = 4, k3 = 5, (1.1) has infinitely many
positive integer solutions

(u2n+1, v2n+1, 2v2n+1, y2n+1), n ≥ 1,

such that x1(x1+1)(x1+2)(x1+3), x2(x2+1)(x2+2)(x2+3) and x3(x3+1)
(x3 + 2)(x3 + 3)(x3 + 4) are disjoint.

2) For r = 3, d = 1, k1 = k2 = 4, k3 = 6, (1.1) leads to

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5) = y2.

Let x1 = 16 and

x2 =
u(u+ 5)

2
, x3 = u,

then we have

646(u2 + 5u+ 2)(3u(u+ 1)(u+ 2)(u+ 3)(u+ 4)(u+ 5))2 = y2.

Considering

u2 + 5u+ 2 = 646v2,

it is equivalent to the Pell equation

U2 − 646V 2 = 17,

where U = 2u+ 5, V = 2v.
An infinity of positive integer solutions of U2 − 646V 2 = 17 is given by

Un + Vn

√
646 =

(
51 + 2

√
646

)(
305 + 12

√
646

)n
, n ≥ 0.

Thus,{
Un = 610Un−1 − Un−2, U0 = 51, U1 = 31059, U2 = 18945939;
Vn = 610Vn−1 − Vn−2, V0 = 2, V1 = 1222, V2 = 745418.

From

u =
U − 5

2
, v =

V

2
,

Y. ZHANG414
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we have{
un = 610un−1 − un−2 + 1520, u0 = 23, u1 = 15527, u2 = 9472967;
vn = 610vn−1 − vn−2, v0 = 1, v1 = 611, v2 = 372709.

By the recurrence relation of un, we have un ≡ 1 (mod 2), then

x2 =
un(un + 5)

2
∈ Z+, n ≥ 0.

Thus,

yn = 1938un(un + 1)(un + 2)(un + 3)(un + 4)(un + 5)vn ∈ Z+, n ≥ 0.

So the Diophantine equation

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5) = y2

has infinitely many positive integer solutions(
16,

un(un + 5)
2

, un, yn

)
, n ≥ 0,

such that

x1(x1 + 1)(x1 + 2)(x1 + 3), x2(x2 + 1)(x2 + 2)(x2 + 3),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)

are disjoint.
3) For r = 3, d = 1, k1 = k2 = 4, k3 = 7. Let

x1 =
p2(p2 + 7)

4
, x2 = 2x1 + 2, x3 = p2 + 1,

where p is a positive integer. Then

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6) = y2,

where

y =
1
64

p(p2 + 1)(p2 + 2)(p2 + 3)(p2 + 4)(p2 + 5)(p2 + 6)(p2 + 7)

× (p4 + 7p2 + 4)(p4 + 7p2 + 8),

and p ≥ 2.

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS 415
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It is easy to check that x1, y ∈ Z+, and

x1(x1 + 1)(x1 + 2)(x1 + 3), x2(x2 + 1)(x2 + 2)(x2 + 3),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)

are disjoint for p ≥ 2.
4) For r = 3, d = 1, k1 = k2 = 4, k3 = 8. Take

x1 = p(4p+ 7), x2 = 2x1 + 2, x3 = 4p.

Then

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)(x3 + 7) = y2,

where

y = 16p(p+ 1)(2p+ 1)(2p+ 3)(4p+ 1)(4p+ 3)(4p+ 5)(4p+ 7)

× (4p2 + 7p+ 1)(4p2 + 7p+ 2),

and p ≥ 1.
We can also put

x1 = (p+ 2)(4p+ 1), x2 = 2x1 + 2, x3 = 4p+ 1.

Then

y = 16(p+ 1)(p+ 2)(2p+ 1)(2p+ 3)(4p+ 1)(4p+ 3)(4p+ 5)(4p+ 7)

× (4p2 + 9p+ 3)(4p2 + 9p+ 4),

and p ≥ 2.
It is easy to show that

x1(x1 + 1)(x1 + 2)(x1 + 3), x2(x2 + 1)(x2 + 2)(x2 + 3),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)(x3 + 7)

are disjoint for p ≥ 2.
5) For r = 3, d = 1, k1 = k2 = 4, k3 = 9. Let

x1 = (p2 + 2)(4p2 + 1), x2 = 2x1 + 2, x3 = 4p2.

Then

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)(x3 + 7)(x3 + 8) = y2,

Y. ZHANG416
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where

y = 32p(p2 + 1)(p2 + 2)(p2 + 3)(2p2 + 1)(2p2 + 3)(4p2 + 1)(4p2 + 3)

× (4p2 + 5)(4p2 + 7)(4p4 + 9p2 + 3)(4p4 + 9p2 + 4),

and p ≥ 1.
It is easy to check that

x1(x1 + 1)(x1 + 2)(x1 + 3), x2(x2 + 1)(x2 + 2)(x2 + 3),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)(x3 + 7)(x3 + 8)

are disjoint for p ≥ 2. �

Remark 2.2. In fact, for r = 3, d = 1, k1 = k2 = 4, k3 = 9, we have
another simple method to give infinitely many positive integer solutions
of (1.1). By the solutions of the case r = 3, d = 1, k1 = k2 = 4, k3 = 8,
we can take 4p+ 8 = (2q)2 or 4p+ 9 = (2q + 1)2, then

p = q2 − 2 or q2 + q − 2.

1) When p = q2 − 2, let

x1 = p(4p+ 7), x2 = 2x1 + 2, x3 = 4p.

Then

x1(x1 + 1)(x1 + 2)(x1 + 3)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)(x3 + 6)(x3 + 7)(x3 + 8) = y2,

where

y = 32qp(p+ 1)(2p+ 1)(2p+ 3)(4p+ 1)(4p+ 3)(4p+ 5)(4p+ 7)

× (4p2 + 7p+ 1)(4p2 + 7p+ 2),

and q ≥ 2.
2) When p = q2 + q − 2, take

x1 = (p+ 2)(4p+ 1), x2 = 2x1 + 2, x3 = 4p+ 1.

Then

y = 16(2q+1)(p+1)(p+2)(2p+1)(2p+3)(4p+1)(4p+3)(4p+5)(4p+7)

× (4p2 + 9p+ 3)(4p2 + 9p+ 4),

and q ≥ 2.
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Proof of Theorem 1.3. For r ≥ 3, d = 1, k1 = 3, k2 = 4, ki ≥ 4, i =
3, . . . , r, let

r∏
i=3

xi(xi + 1) · · · (xi + ki − 1) = Aw2.

Choose xi ∈ Z+, ki ≥ 4, i = 3, . . . , r such that xi(xi + 1) · · · (xi + ki − 1) are
disjoint, A is not a perfect square, and the Pell equation U2 −AV 2 = 5 has
a positive integer solution (U0, V0) satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2).

By the transformation

x2 = u, x1 = u(u+ 3),

(1.1) leads to

A(u2 + 3u+ 1)u2(u+ 1)2(u+ 2)2(u+ 3)2w2 = y2.

Let

u2 + 3u+ 1 = Av2,

then U2 − AV 2 = 5, where U = 2u+ 3, V = 2v.
If (U ′, V ′) is the fundamental solution of the Pell equation U2 −AV 2 = 1,

then an infinity of positive integer solutions of U2 − AV 2 = 5 is given by

Un + Vn

√
A =

(
U ′ + V ′

√
A
)n(

U0 + V0
√
A
)
, n ≥ 0.

Thus, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Un = 2U ′Un−1 − Un−2, U0 = U0, U1 = U ′U0 +AV ′V0,

U2 = (2U ′2 − 1)U0 + 2AU ′V ′V0;
Vn = 2U ′Vn−1 − Vn−2, V0 = V0, V1 = U ′V0 + V ′U0,

V2 = (2U ′2 − 1)V0 + 2U ′V ′U0.

From

u =
U − 3

2
, v =

V

2
,

we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
un = 2U ′un−1 − un−2 + 3(U ′ − 1), u0 = U0−3

2 , u1 = U ′U0+AV ′V0−3
2 ,

u2 = U ′(U ′U0 + AV ′V0)− U0+3
2 ;

vn = 2U ′vn−1 − vn−2, v0 = V0

2 , v1 = U ′V0+V ′U0

2 ,

v2 = U ′(U ′V0 + V ′U0)− V0

2 .

Y. ZHANG418



Acta Mathematica Hungarica 163, 2021

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS 13

In view of the condition of U0 and V0, we obtain u0 ∈ Z, v0 ∈ Z+. By the
recurrence relation of un and vn, we have u2n ∈ Z+, v2n ∈ Z+, and

y2n = Awu2n(u2n + 1)(u2n + 2)(u2n + 3)v2n ∈ Z+, n ≥ 1.

Therefore, for r ≥ 3, d = 1, k1 = 3, k2 = 4, ki ≥ 4, i = 3, . . . , r, (1.1) has
infinitely many positive integer solutions

(u2n(u2n + 3), u2n, x3, . . . , xr, y2n),

where n ≥ 1, such that xi(xi + 1) · · · (xi + ki − 1), i = 1, . . . , r are disjoint.
�

Example 2.3. 1) For r = 3, d = 1, k1 = 3, k2 = 4, k3 = 4, we can take
x3 = 8, then

8 · (8 + 1) · (8 + 2) · (8 + 3) = 55 · 122.

It is easy to see that (U0, V0) = (15, 2) is a positive integer solution of the
Pell equation U2 − 55V 2 = 5 satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2).

Hence, (1.1) has infinitely many positive integer solutions

(un(un + 3), un, 8, yn),

such that

x1(x1+1)(x1+1), x2(x2+1)(x2+2)(x2+3), x3(x3+1)(x3+2)(x3+3)

are disjoint, where{
un = 178un−1 − un−2 + 264, u0 = 6, u1 = 1326, u2 = 236286;
vn = 178vn−1 − vn−2, v0 = 1, v1 = 179, v2 = 31861,

yn = 660un(un + 1)(un + 2)(un + 3)vn,

and n ≥ 1. This is not covered by Theorem 1.1 of [19].
2) For r = 3, d = 1, k1 = 3, k2 = 4, k3 = 5, we can put x3 = 2, which is

the third case in Theorem 1.1 of [19]. In fact, our result is motivated by this
case.

3) For r = 3, d = 1, k1 = 3, k2 = 4, k3 = 6, this is a new case. Set x3 = 1,
then

1 · (1 + 1) · (1 + 2) · (1 + 3) · (1 + 4) · (1 + 5) = 5 · 122.
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Note that (U0, V0) = (5, 2) is a positive integer solution of the Pell equation
U2 − 5V 2 = 5 satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2).

Hence, (1.1) has infinitely many positive integer solutions

(un(un + 3), un, 1, yn),

such that

x1(x1 + 1)(x1 + 2), x2(x2 + 1)(x2 + 2)(x2 + 3),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4)(x3 + 5)

are disjoint, where{
un = 18un−1 − un−2 + 24, u0 = 1, u1 = 41, u2 = 761;
vn = 18vn−1 − vn−2, v0 = 1, v1 = 19, v2 = 341,

yn = 60un(un + 1)(un + 2)(un + 3)vn,

and n ≥ 1.

Proof of Theorem 1.4. For r ≥ 4, d = 1, k1 = 4, k2 = 6, ki ≥ 4, i =
3, . . . , r, let

r∏
i=3

xi(xi + 1) · · · (xi + ki − 1) = Aw2.

Choose xi ∈ Z+, ki ≥ 4, i = 3, . . . , r such that xi(xi + 1) · · · (xi + ki − 1) are
disjoint, A is not a perfect square, and the Pell equation U2 −AV 2 = 17 has
a positive integer solution (U0, V0) satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2).

By the transformation

x1 =
u(u+ 5)

2
, x2 = u,

(1.1) leads to

A(u2 + 5u+ 2)w2
(u(u+ 1)(u+ 2)(u+ 3)(u+ 4)(u+ 5)

4

)2
= y2.

Let u2 + 5u+ 2 = Av2, then U2 − AV 2 = 17, where U = 2u+ 5, V = 2v.
The rest of the proof is similar as Theorem 1.3, so we omit it. �
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Example 2.4. For r = 4, d = 1, k1 = 4, k2 = 6, k3 = 5, k4 = 7. Set x3 =
12, x4 = 1, then

12 · (12 + 1) · (12 + 2) · (12 + 3) · (12 + 4) · (1 + 5)

· 1 · (1 + 1) · (1 + 2) · (1 + 3) · (1 + 4) · (1 + 5) · (1 + 6) = 26 · 100802.

Note that (U0, V0) = (11, 2) is a positive integer solution of the Pell equation
U2 − 26V 2 = 17 satisfying the condition

U0 ≡ 1 (mod 2), V0 ≡ 0 (mod 2).

Hence, (1.1) has infinitely many positive integer solutions(un(un + 5)
2

, un, 12, 1, yn
)
,

such that

x1(x1 + 1)(x1 + 2)(x1 + 3), x2(x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)(x2 + 5),

x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4),

x4(x4 + 1)(x4 + 2)(x4 + 3)(x4 + 4)(x4 + 5)(x4 + 6)

are disjoint, where{
un = 102un−1 − un−2 + 250, u0 = 3, u1 = 538, u2 = 55123;
vn = 102vn−1 − vn−2, v0 = 1, v1 = 106, v2 = 10811,

yn = 65520un(un + 1)(un + 2)(un + 3)(un + 4)(un + 5)vn,

and n ≥ 1.

Proof of Theorem 1.5. For even number d ≥ 2, let z = 2x+ 3d and
w = 2y − d. From (1.2), we have

x(x+ d)(2x+ 3d)(2x+ 5d)(y + 2d)(y + 3d)(2y− d)(2y+ d)(2.3)

× 16y2(y + d)2(x+ 2d)2(x+ 3d)2 = t2.

As in Theorem 1.1, if we let

(2.4) x(x+ 5d) =
3
5
(y + 3d)(2y − d),

then

(x+ d)(2x+ 3d) =
3
5
(y + 2d)(2y + d),

and (2.3) has positive integer solutions.
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(2.4) is equivalent to the Pell equation

X2 − 15Y 2 = −110d2,

where X = 20x+ 25d, Y = 4y+ 5d. An infinity of positive integer solutions
of X2 − 15Y 2 = −110d2 are given by

Xn + Yn

√
15 =

(
5d+ 3d

√
15

)(
4 +

√
15

)n
, n ≥ 0.

Thus, {
Xn = 8Xn−1 −Xn−2, X0 = 5d, X1 = 65d, X2 = 515d;
Yn = 8Yn−1 − Yn−2, Y0 = 3d, Y1 = 17d, Y2 = 133d.

From

x =
X − 25d

20
, y =

Y − 5d
4

,

we have {
xn = 8xn−1 − xn−2 + 15d

2 , x0 = −d, x1 = 2d, x2 = 49d
2 ;

yn = 8yn−1 − yn−2 + 15d
2 , y0 = −d

2 , y1 = 3d, y2 = 32d.

For even number d ≥ 2, we have

xn ∈ Z+, yn ∈ Z+, n ≥ 1.

It is easy to prove that

d � x4n+2, d � x4n+3, n ≥ 0,

and

d � y4n+3, d � y4n+4, n ≥ 0.

We only consider the 4n+ 2-th term of xn and yn, then

z4n+2 = 2x4n+2 + 3d ∈ Z+, w4n+2 = 2y4n+2 − d ∈ Z+, n ≥ 0.

Thus, we have

t4n+2 = 4y4n+2(y4n+2 + d)(y4n+2 + 3d)(2y4n+2 − d)

× (x4n+2 + d)(x4n+2 + 2d)(x4n+2 + 3d)(2x4n+2 + 3d) ∈ Z+, n ≥ 0.

From the recurrence relations of xn and yn, we can obtain

x4n+2+3d < y4n+2, y4n+2+3d < 2x4n+2 + 3d, 2x4n+2+6d < 2y4n+2 − d,

for n ≥ 0.
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Therefore, for even number d ≥ 2, (1.2) has infinitely many nontrivial
positive integer solutions

(x4n+2, y4n+2, 2x4n+2 + 3d, 2y4n+2 − d, t4n+2),

where n ≥ 0. �

Example 2.5. For d = 2, (1.2) has infinitely many nontrivial positive
integer solutions

(x4n+2, y4n+2, 2x4n+2 + 6, 2y4n+2 − 2, t4n+2),

such that 2 � x4n+2 and xi(xi + 2)(xi + 4)(xi + 6), i = 1, . . . , 4 are disjoint,
where {

xn = 8xn−1 − xn−2 + 15, x0 = −2, x1 = 4, x2 = 49;
yn = 8yn−1 − yn−2 + 15, y0 = −1, y1 = 6, y2 = 64,

t4n+2 = 4y4n+2(y4n+2 + 2)(y4n+2 + 6)(2y4n+2 − 2)

× (x4n+2 + 2)(x4n+2 + 4)(x4n+2 + 6)(2x4n+2 + 6),

and n ≥ 0.

Proof of Theorem 1.6. For positive integer d with 3 | d, let z=3x+3d
and w = 2y + 4d. From Eq. (1.2), we have

x(x+ 3d)(3x+ 4d)(3x+ 5d)y(y + d)(2y + 5d)(2y + 7d)(2.5)

× 36(x+ d)2(x+ 2d)2(y + 2d)2(y + 3d)2 = t2.

As in Theorem 1.1, take

(2.6) x(x+ 3d) =
4
9
y(2y + 7d),

then

(3x+ 4d)(3x+ 5d) = 4(y + d)(2y + 5d),

and (2.5) has positive integer solutions.
(2.6) is equivalent to the Pell equation

X2 − 2Y 2 = −17d2,

where X = 6x+ 9d, Y = 4y + 7d. An infinity of positive integer solutions
of X2 − 2Y 2 = −17d2 is given by

Xn + Yn

√
2 =

(
d+ 3d

√
2
)(

3 + 2
√
2
)n

, n ≥ 0.
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Thus, {
Xn = 6Xn−1 −Xn−2, X0 = d, X1 = 15d, X2 = 89d;
Yn = 6Yn−1 − Yn−2, Y0 = 3d, Y1 = 11d, Y2 = 63d.

From

x =
X − 9d

6
, y =

Y − 7d
4

,

we have {
xn = 6xn−1 − xn−2 + 6d, x0 = −4d

3 , x1 = d, x2 = 40d
3 ;

yn = 6yn−1 − yn−2 + 7d, y0 = −d, y1 = d, y2 = 14d.

For positive integer d with 3 | d, we have

xn ∈ Z+, yn ∈ Z+, n ≥ 1.

It is easy to prove that d � x2n, n ≥ 1. Then

z2n = 2x2n + 3d ∈ Z+, w2n = 2y2n + 4d ∈ Z+, n ≥ 1.

Thus, we have

t2n = 18x2n(x2n + d)(x2n + 2d)(x2n + 3d)

× (y2n + d)(y2n + 2d)(y2n + 3d)(2y2n + 5d) ∈ Z+, n ≥ 1.

From the recurrence relations of xn and yn, we can check the following in-
equalities

x2n + 3d < y2n, y2n + 3d < 2y2n + 4d, 2y2n + 7d < 3x2n + 3d,

for n ≥ 2.
Therefore, for positive integer d with 3 | d, (1.2) has infinitely many non-

trivial positive integer solutions

(x2n, y2n, 3x2n + 3d, 2y2n + 4d, t2n),

where n ≥ 2. �

Example 2.6. For d = 3, (1.2) has infinitely many nontrivial positive
integer solutions

(x2n, y2n, 3x2n + 9, 2y2n + 12, t2n),
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such that 3 � x2n and xi(xi+3)(xi+6)(xi+9), i = 1, . . . ,4 are disjoint, where{
xn = 6xn−1 − xn−2 + 18, x0 = −4, x1 = 3, x2 = 40;
yn = 6yn−1 − yn−2 + 21, y0 = −3, y1 = 3, y2 = 42,

t2n = 18x2n(x2n + 3)(x2n + 6)(x2n + 9)

× (y2n + 3)(y2n + 6)(y2n + 9)(2y2n + 15),

and n ≥ 2.

Proof of Theorem 1.8. Take

z = 2x+ 4d, w =
y − 2d

2
.

From (1.3), we have

x(x+ d)(2x+ 5d)(2x+ 7d)(y − 2d)(y + d)(y + 3d)(y + 6d)(2.7)

× y2(y + 2d)2(y + 4d)2(x+ 2d)2(x+ 3d)2(x+ 4d)2

4
= t2.

As Theorem 1.1, if we put

(2.8) x(2x+ 7d) =
1
3
(y − d)(y + 6d),

then

(x+ d)(2x+ 5d) =
1
3
(y + d)(y + 3d),

and (2.7) has positive integer solutions.
(2.8) is equivalent to the Pell equation

X2 − 6Y 2 = 57d2,

where X = 12x+ 21d, Y = 2y+ 4d. An infinity of positive integer solutions
of X2 − 6Y 2 = 57d2 are given by

Xn + Yn

√
6 =

(
9d+ 2d

√
6
)(

5 + 2
√
6
)n

, n ≥ 0.

Thus, {
Xn = 10Xn−1 −Xn−2, X0 = 9d, X1 = 69d, X2 = 681d;
Yn = 10Yn−1 − Yn−2, Y0 = 2d, Y1 = 28d, Y2 = 278d.
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From

x =
X − 21d

12
, y =

Y − 4d
2

,

we have{
xn = 10xn−1 − xn−2 + 14d, x0 = −d, x1 = 4d, x2 = 55d;
yn = 10yn−1 − yn−2 + 16d, y0 = −d, y1 = 12d, y2 = 137d.

Then

zn = 2xn + 4d, wn =
yn − 2d

2
.

For even number d ≥ 2, the xn, yn, zn and wn are positive integers for
n ≥ 1. It is easy to prove that d � w2n, n ≥ 1. Thus, we have

t2n =
1
2
y2n(y2n − d)(y2n + 2d)(y2n + 4d)(y2n + 6d)

× (x2n + d)(x2n + 2d)(x2n + 3d)(x2n + 4d)(2x2n + 5d) ∈ Z+, n ≥ 1.

From the recurrence relations of xn and yn, we can obtain

x2n + 4d <
y2n − 2d

2
,

y2n − 2d
2

+ 4d < 2x2n + 4d, 2x2n + 8d < y2n,

for n ≥ 1.
Therefore, for even number d ≥ 2, (1.3) has infinitely many nontrivial

positive integer solutions

(
x2n, y2n, 2x2n + 4d,

y2n − 2d
2

, t2n

)
,

where n ≥ 1. �

Example 2.7. For d = 2, (1.3) has infinitely many nontrivial positive
integer solutions (

x2n, y2n, 2x2n + 8,
y2n − 4

2
, t2n

)
,

such that 2 � w2n = y2n−4
2 and xi(xi + 2)(xi + 4)(xi + 6)(xi + 8), i = 1, . . . , 4

are disjoint, where{
xn = 10xn−1 − xn−2 + 28, x0 = −2, x1 = 8, x2 = 110;
yn = 10yn−1 − yn−2 + 32, y0 = −2, y1 = 24, y2 = 274,
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t2n =
1
2
y2n(y2n − 2)(y2n + 4)(y2n + 8)(y2n + 12)

× (x2n + 2)(x2n + 4)(x2n + 6)(x2n + 8)(2x2n + 10),

and n ≥ 1.

3. Some related questions

As we know, for r ≥ 3, d = 1, k1 = 3, k2 = 3, 4, 5, ki ≥ 3, i = 3, . . . , r,
(1.1) has infinitely many positive integer solutions. Hence, we have

Question 3.1. For r ≥ 3, d = 1, k1 = 3, ki ≥ 6, i = 2, . . . , r, does (1.1)
have infinitely many positive integer solutions?

Bauer and Bennett [1] conjectured that if r = 2, d = 1, k1 ≥ 4, then (1.1)
has at most finitely many positive integer solutions. However, the case is
different for r = 3, d = 1, k1 ≥ 4. In Theorem 1.2, we have got infinitely
many positive integer solutions of (1.1) for r = 3, d = 1, k1 = k2 = 4, k3 =
5, 6, 7, 8, 9. For r ≥ 3, d = 1, k1 ≥ 4, there are some simple cases which we
cannot give infinitely many positive integer solutions, such as

Question 3.2. For r = 3, d = 1, k1 = k2 = 4, k3 ≥ 10, are there in-

finitely many positive integer solutions of (1.1)?

Question 3.3. For r = 3, d = 1, k1 = 4, k2 = 5, k3 ≥ 5, does (1.1) have
infinitely many positive integer solutions?

Question 3.4. For r ≥ 3, d = 1, k1 = 4, ki ≥ 5, i = 2, . . . , r, except

k2 = 6, are there infinitely many positive integer solutions of (1.1)?

For r ≥ 3, d = 1, k1 ≥ 5, or r ≥ 3, d ≥ 2, k1 ≥ 3, we can study similar
questions for (1.1).
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