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Abstract. Let x→ ∞ be a parameter. Feng [5] proved that the Deshouillers–
Dress–Tenenbaum’s arcsine law on divisors of the integers less than x also holds in
arithmetic progressions for “non-exceptional moduli” q � exp{( 1

4
− ε)(log2 x)

2},
where ε is an arbitrarily small positive number. We show that in the case of a
prime-power modulus (q := p

� with p a fixed odd prime and � ∈ N) the arcsine

law on divisors holds in arithmetic progressions for q ≤ x15/52−ε.

1. Introduction

For each positive integer n, denote by τ(n) the number of divisors of n
and define the random variable Dn to take the value (log d)/ logn, as d runs
through the set of the divisors of n, with the uniform probability 1/τ(n).
The distribution function Fn of Dn is given by

(1.1) Fn(t) := Prob(Dn � t) =
1

τ(n)

∑
d|n, d�nt

1 (0 � t � 1).

Deshouillers, Dress and Tenenbaum ([4] or [10, Theorem II.6.7]) proved that
the Cesàro means of Fn converge uniformly to the arcsine law. More pre-
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cisely, the asymptotic formula

(1.2)
1
x

∑
n�x

Fn(t) =
2
π
arcsin

√
t+O

( 1√
log x

)

holds uniformly for x � 2 and 0 � t � 1 and the error term in (1.2) is opti-
mal. Various cases of (1.2) have been investigated by different authors. In
particular, Cui and Wu [3] and Cui, Lü and Wu [2] considered generaliza-
tions of (1.2) to the short interval case; and Feng and Wu [6] showed that
the average distribution of divisors over integers representable as the sum of
two squares converges to the beta law. Based on Cui and Wu’s method [3],
Feng [5] studied the analogue of (1.2) for arithmetic progressions. His result
can be stated as follows: Let a and q be integers such that (a, q) = 1, and
suppose that q is not an “exceptional modulus”. Then for any ε ∈ (0, 1

4 ) we
have

(1.3)
1

(x/q)

∑
n�x

n≡a(mod q)

Fn(t) =
2
π
arcsin

√
t+Oε

(
e
√

log q

√
log x

)

uniformly for 0 � t � 1, x � 2 and q � exp{(1
4 − ε)(log2 x)2}, where log2 :=

log log.
The aim of this paper is to improve the result above in the case of prime

power modulus. Our result is as follows.

Theorem 1.1. Let q := p� with p an odd prime and � ∈ N. Then for

any ε > 0, we have

(1.4)
1

(x/q)

∑
n�x

n≡a(mod q)

Fn(t) =
2
π
arcsin

√
t+Op,ε

( 1√
log x

)

uniformly for 0 � t � 1, x � 2, q ≤ x15/52−ε and a ∈ N such that (a, q) = 1,
where the implied constant depends only on p and ε.

Our improvement is double. Firstly, with q = p� any Siegel zero must
occur for L(s, χ) where χ is a real character modulo p. Since the implied
constant in Theorem 1 is allowed to depend on p, there is no Siegel zero for
the modulus q = p�. These considerations allow to remove the assumption
of Siegel zero in Feng’s result for q = p� with an implied constant in the
error term depending on p. Alternatively, this follows from Feng’s result and
Corollary 3.4 of Banks and Shparlinski’s paper [1] (cf. Lemma 2.3 below).
Secondly the domain of q is extended significantly.
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2. Preliminary

Our first lemma is an effective Perron formula (cf. [10, Corollary
II.2.2.1]).

Lemma 2.1. Let F (s) :=
∑∞

n=1 ann
−s be a Dirichlet series with finite ab-

scissa of absolute convergence σa. Suppose that there exist some real number
α > 0 and a non-decreasing function B(n) such that

(a)
∑∞

n=1 |an|n−ς � (ς − σa)−α (ς > σa),
(b) |an| � B(n) (n � 1).

Then for x � 2, T � 2, σ � σa and κ := σa − σ + 1/ log x, we have

∑
n�x

an
ns

=
1
2πi

∫ κ−iT

κ+iT
F (s+ w)xw

dw
w

+O
(
xσa−σ (logx)

α

T
+

B(2x)
xσ

(
1 + x

log T
T

))
.

Lemma 2.2. Let q > 2 be an integer.
(i) If χ is a Dirichlet character modulo q, then we have

L(σ + iτ, χ) � q1−σ(|τ |+ 1)1/6 log(|τ |+ 1).

(ii) If χ is a non-principal Dirichlet character modulo q, then for 0<ε< 1
2 ,

ε � σ � 1, |τ |+ 2 � T , we have

L(σ + iτ, χ) �ε (q1/2T )1−σ+ε.

Proof. See [9, p. 485, Theorem 1] and [11, Exercise 241]. �

The next lemma is due to Banks and Shparlinski [1, Corollary 3.4.] and
plays a key role in the proof of Theorem 1.1.

Lemma 2.3. Let q = p� with p an odd prime and � ∈ N. For each con-
stant A > 0, there is a constant c0 = c0(A,p) > 0 depending only on A and p

such that for any character χ modulo q, the Dirichlet L-function has no zero
in the region

(2.1) σ > 1− c0
(log q)2/3(log2 q)1/3

and |τ | ≤ qA.

The following lemma is a key for the proof of Theorem 1.1.

Lemma 2.4. Let q := p� with p an odd prime and � ∈ N and let χ0 be
the principal character to the modulus q. Then we have

(2.2)
∑
n�x

χ0(n)
τ(nd)

=
hx√
π log x

{
g(d) +O

((3/4)ω(d)

log x

)}
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uniformly for x � 2, 1 � d � x and � � 1, where the implied constant is
absolute, ω(d) is the number of all distinct prime factors of d,

(2.3) h :=
√
1− p−1

∏
(p,p)=1

√
1− p−1 log(1− p−1)

−p−1

and

(2.4) g(d) :=
∏
pα‖d

( ∞∑
j=0

(χ0(p)p−1)j

j + α+ 1

) −χ0(p)p−1

log(1− χ0(p)p−1)
.

Proof. As usual, denote by vp(n) the p-adic valuation of n. By using
the formula

(2.5) τ(dn) =
∏
p

(vp(n) + vp(d) + 1),

we write for Re s > 1

fd(s, χ0) :=
∞∑
n=1

χ0(n)
τ(dn)

n−s =
∏
p

∞∑
j=0

(χ0(p)p−s)j

j + vp(d) + 1
(2.6)

=
∏

(p,d)=1

∞∑
j=0

(χ0(p)p−s)j

j + 1
×

∏
pα‖d

∞∑
j=0

(χ0(p)p−s)j

j + α+ 1

=
∏
p

∞∑
j=0

(χ0(p)p−s)j

j + 1
×

∏
pα‖d

∞∑
j=0

(χ0(p)p−s)j

j + α+ 1

( ∞∑
j=0

(χ0(p)p−s)j

j + 1

)−1

= L(s, χ0)1/2Gd(s, χ0),

where

Gd(s, χ0) :=
∏
p

∞∑
j=0

(χ0(p)p−s)j

j + 1

√
1− χ0(p)/ps

×
∏
pα‖d

∞∑
j=0

(χ0(p)p−s)j

j + α+ 1

( ∞∑
j=0

(χ0(p)p−s)j

j + 1

)−1

is a Dirichlet series that converges absolutely for Re s > 1
2 .

We easily see that

∏
pα‖d

∞∑
j=0

(χ0(p)p−s)j

j + α + 1

( ∞∑
j=0

(χ0(p)p−s)j

j + 1

)−1

=
1

α+ 1
+ O

( 1√
p

)
.
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for Re s � 1
2 , where the implied constant is absolute. This implies that for

any ε > 0,

(2.7) Gd(s, χ0) �
∏
pα‖d

{ 1
α + 1

+O
( 1√

p

)}
� Cε

(3
4

)ω(d)

for Re s � 1
2 + ε, where Cε > 0 is a constant depending on ε only.

We can apply Lemma 2.1 with the choice of parameters σa = 1, B(n) = 1,
α = 1

2 and σ = 0 to write

∑
n�x

χ0(n)
τ(nd)

=
1
2πi

∫ b+iT

b−iT
fd(s, χ0)

xs

s
ds+Oε

(x log x
T

)
,

where b = 1+2/ logx and 100 � T � x such that ζ(σ+ iT ) �= 0 for 0 < σ < 1.
Let MT be the boundary of the modified rectangle with vertices ( 1

2 + ε)
± iT and b± iT as follows (see Fig. 1):

• ε > 0 is a small constant chosen such that ζ(1
2 +ε+ iγ) �= 0 for |γ| < T ;

• the zeros of ζ(s) of the form ρ = β + iγ with β > 1
2 + ε and |γ| < T

are avoided by the horizontal cut drawn from the critical line inside this
rectangle to ρ = β + iγ;

• the pole of ζ(s) at the points s = 1 is avoided by the truncated Hankel
contour Γ (its upper part is made up of an arc surrounding the point s = 1
with radius r := 1/ logx and a line segment joining 1− r to (1

2 + ε).
Clearly the function fd(s, χ0) is analytic inside MT . By the residue the-

orem, we can write

(2.8)
∑
n�x

χ0(n)
τ(nd)

= I +
1
2πi

(
I1 + · · · + I4 +

∑
β> 1

2
+ε, |γ|<T

Iρ

)
+Oε

(x log x
T

)
,

where

I :=
1
2πi

∫
Γ
fd(s,χ0)

xs

s
ds, Iρ :=

∫
Γρ

fd(s,χ0)
xs

s
ds, Ij :=

∫
Lj

fd(s,χ0)
xs

s
ds.

A. Evaluation of I . Let 0 < c < 1
10 be a small constant. Since

Gd(s, χ0)((s− 1)ζ(s))1/2(1− p
−s)1/2

is holomorphic and O((3/4)ω(d)) in the disc |s− 1| � c thanks to (2.7), the
Taylor formula allows us to write

Gd(s, χ0)((s− 1)ζ(s))1/2(1− p
−s)1/2

= Gd(1, χ0)(1− p
−1)1/2 +O((3/4)ω(d)|s− 1|)
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Γρ

Γ

L1

L2

L4

L3

b = 1 + 2
log x

τ

O 1
2

+ ε
1

Fig. 1: Contour MT

for |s− 1| � 1
2c. In view of

L(s, χ0) = ζ(s)(1− p
−s) and Gd(1, χ0)(1− p

−1)1/2 = hg(d),

it follows that

fd(s, χ0) = hg(d)(s− 1)−1/2 +O((3/4)ω(d)|s− 1|1/2)

for |s− 1| � 1
2c. So we have

(2.9) I = hg(d)M(x) +O((3/4)ω(d)E0(x)),

where

M(x) :=
1
2πi

∫
Γ
(s− 1)−1/2xs ds, E0(x) :=

∫
Γ
|(s− 1)1/2xs||ds|.

Firstly we evaluate M(x). By using [10, Corollary II.5.2.1], we have

(2.10) M(x) :=
x√
log x

{ 1
Γ(1

2)
+O(x−c/2)

}
.
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Next we deduce that

E0(x) �
∫ 1−1/ logx

1/2+ε
(1− σ)1/2xσ dσ +

x

(log x)3/2
(2.11)

� x

(log x)3/2

(∫ ∞

1
t1/2e−t dt+ 1

)
� x

(logx)3/2
.

Inserting (2.10) and (2.11) into (2.9) and noticing that Γ( 1
2) =

√
π, we

find that

(2.12) I =
x√

π log x

{
hg(d) +Oε

((3/4)ω(d)

log x

)}
.

B. Estimations of I1 and I2. It is well known that (cf. [10, Corollary
II.3.5.2])

(2.13) |ζ(σ + iτ)| � |τ |(1−σ)/3 log |τ | (1
2 � σ � 1 + log−1 |τ |, |τ | � 3).

Noticing that q := p�, it follows that

(2.14) L(s, χ0) = ζ(s)(1− p
−s) � |τ |(1−σ)/3 log |τ |

for 1
2 � σ � 1 + log−1(|τ |+ 3) and |τ | � 3. From (2.6), (2.7) and (2.14), we

derive that

|I1|+ |I2| �ε (3/4)ω(d)
∫ 1+2/ log x

1/2+ε
T (1−σ)/6(logT )

xσ

T
dσ(2.15)

�ε (3/4)ω(d) x

T
log T.

C. Estimations of I3 and I4. As before, (2.6) and (2.14) allow us to
deduce

|I3|+ |I4| �ε (3/4)ω(d)
∫ T

1
(|τ |+1)1/12 log(|τ |+1)

x1/2+ε

|(1
2 + ε) + iτ)| dτ(2.16)

�ε (3/4)ω(d)x1/2+ε

∫ T

1
(τ + 1)−1+1/12 dτ �ε (3/4)ω(d)x1/2+εT 1/12.

D. Estimation of Iρ. With the help of (2.14) and (2.7), we can derive
that for s = σ + iγ with

(2.17) Iρ �ε (3/4)ω(d)
∫ β

1/2+ε
|γ|(1−σ)/6(log |γ|)1/2 xσ

|σ + iγ| dσ.

B. FENG and J. WU398
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Denote by N(α, T ) the number of zeros of ζ(s) in the region Re s � α and
|Im s| � T and define σ(τ) := c log−2/3(|τ |+ 3) log−1/3

2 (|τ |+ 3) (c > 0 abso-
lute constant). Summing (2.17) over |γ| < T and interchanging the summa-
tions and noticing that β < 1− σ(T1) (the Korobov–Vinogradov zero free
region), we have∑

β> 1

2
+ε, |γ|<T

|Iρ| � (3/4)ω(d)(log T ) max
T1�T

∑
β> 1

2
+ε, T1/2<|γ|<T1

|Iρ|

�ε (3/4)ω(d)(log T ) max
T1�T

∫ 1−σ(T1)

1/2+ε
T

(1−σ)/6
1 · x

σ

T1
·N(σ, T1) dσ.

According to [7], it is well known that

(2.18) N(σ, T ) � T (12/5)(1−σ)(logT )44

for 1
2 + ε � σ � 1, and T � 2. Thus

∑
β> 1

2
+ε, |γ|<T

|Iρ|(2.19)

� (3/4)ω(d)(logT )45 max
T1�T

∫ 1−σ(T1)

1/2+ε
T

(1−σ)/6
1

xσ

T1
T

(12/5)(1−σ)
1 dσ

� x(log T )45 max
T1�T

∫ 1−σ(T1)

1/2+ε

(T 17/30
1
x

)1−σ
dσ

� x(log T )45 max
T1�T

(T 17/30
1
x

)σ(T1) � x(log T )45
(T 17/30

x

)σ(T )
.

Inserting (2.12), (2.15), (2.16) and (2.19) into (2.8), we find that

∑
n�x

χ0(n)
τ(nd)

=
x√

π log x

{
hg(d) + Oε

((3/4)ω(d)

log x

)}
+Oε(Rd,T (x)),

where

Rd,T (x) :=
(3
4

)ω(d){ x

T
log T + x1/2+εT 1/12

+ x(log T )45
(T 17/30

x

)σ(T )}
+

x log x
T

.

Taking T = x and ε = 10−3 and noticing that

ω(d) � (logx)/ log2 x for d ≤ x,
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it is easy to verify that

Rd,T (x) � (3/4)ω(d)x/(logx)3/2 for d ≤ x.

This completes the proof. �

Lemma 2.5. Under the notation in Lemma 2.4, we have

(2.20) h
∑
d�x

χ0(d)g(d) =
(ϕ(q)/q)x√

π log x

{
1 + O

( 1
log x

)}
,

where the implied constant is absolute.

Proof. According to (2.4), it is easy to see that g(d) is a multiplicative
function and

g(pν) =
∑
j≥0

(χ0(p)p−1)j

j + ν + 1

(∑
k≥0

(χ0(p)p−1)k

k + 1

)−1

(2.21)

=
−χ0(p)p−1

log(1− χ0(p)p−1)

∑
j≥0

(χ0(p)p−1)j

j + ν + 1
.

For σ > 1, we can write
∑
n�1

χ0(n)g(n)n−s = L(s, χ0)1/2
∑
n�1

β(n)n−s

= ζ(s)1/2(1− p
−s)1/2

∑
n�1

β(n)n−s,

where β(n) is a multiplicative function determined by

(2.22)
∑
ν�1

β(pν)ξν = (1− χ0(p)ξ)1/2
∑
ν≥0

χ0(p)g(pν)ξν (|ξ| < 1).

Since |g(pν)| � 1, the right-hand side is holomorphic for |ξ| < 1 and we have
β(pν) � ( 3

2

) ν (ν = 1, 2, . . .). In addition,

β(p) = χ0(p)(g(p)− 1/2) = O(1/p).

These imply the absolute convergence of
∑

β(n)n−s for σ > 1
2 and

∑
β(n)n−s

�ε 1 for σ ≥ 1
2 + ε.

Applying [10, Theorem II.5.3], we have

∑
n�x

χ0(n)g(n) =
x√
log x

{
λ0(1

2) +O
( 1
log x

)}
,

B. FENG and J. WU400
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where we have

λ0(1
2) :=

(1− p−1)1/2

Γ(1
2)

∏
p

(1− χ0(p)p−1)1/2
∑
ν≥0

χ0(p)νg(pν)
pν

,

thanks to (2.21) and (2.22). In view of (2.21), it follows, with the notation
ξ = χ0(p)p−1,

∑
ν≥0

χ0(p)νg(pν)
pν

(1− χ0(p)p−1) =
(∑

j≥0

ξj

j + 1

)−1

(1− ξ)
∑
ν≥0

∑
j≥0

ξj+ν

j + ν + 1

=
(∑

j≥0

ξj

j + 1

)−1

(1− ξ)
∑
k≥0

ξk =
−χ0(p)p−1

log(1− χ0(p)p−1)
.

Thus

λ0(1
2) =

(1− p−1)1/2√
π

∏
p

(1− χ0(p)p−1)−1/2 −χ0(p)p−1

log(1− χ0(p)p−1)

and hλ0(1
2) = (1− p−1)/

√
π = (ϕ(q)/q)/

√
π, which concludes the proof of

(2.20). �

Lemma 2.6. Let q = p� with p an odd prime and � ∈ N. For any ε > 0,
there is a positive constant c1(ε) > 0 depending on ε such that we have

(2.23)
∑
χ �=χ0

χ(a)χ(d)
∑
n�x

χ(n)
τ(nd)

� xe−c1(ε)(log x)1/3(log
2
x)−1/3

uniformly for d � 1, x � 2, q ≤ x15/52−ε and a ∈ Z
∗ such that (a, q) = 1.

Proof. Since the proof is rather close to that of Lemma 2.4, we only
mention the principal points. As before, by (2.5), we can write for σ :=
Re s > 1

(2.24) fd(s, χ) :=
∞∑
n=1

χ(n)τ(dn)−1n−s = L(s, χ)1/2Gd(s, χ),

where

Gd(s, χ) :=
∏
p

∞∑
j=0

(χ(p)p−s)j

j + 1
(1− χ(p)p−s)1/2

×
∏
pα‖d

∞∑
j=0

(χ(p)p−s)j

j + α+ 1

( ∞∑
j=0

(χ(p)p−s)j

j + 1

)−1
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is a Dirichlet series that converges absolutely for σ > 1
2 and verifies |Gd(s, χ)|

� Cε(3
4)

ω(d) for σ � 1
2 + ε and d ≥ 1, where ε is an arbitrarily small positive

constant and Cε > 0 is a constant depending only on ε.
We apply Lemma 2.1 with σa = 1, B(n) = 1, α = 1

2 and σ = 0 to write

∑
n�x

χ(n)
τ(nd)

=
1
2πi

∫ b+iT

b−iT
fd(s, χ)

xs

s
ds+ O

(x log x
T

)
,

where b = 1 + 2/ log x and 100 � T � x such that L(σ + iT, χ) �= 0 for 0 <
σ < 1.

Let MT be the boundary of the modified rectangle with vertices ( 1
2 + ε)

± iT and b± iT as follows:
• ε > 0 is a small constant chosen such that L(1

2 + ε+ iγ, χ) �= 0 for
|γ| < T ;

• the zeros of L(s, χ) of the form ρ = β + iγ with β > 1
2 and |γ| < T

are avoided by the horizontal cut drawn from the critical line inside this
rectangle to ρ = β + iγ.

Clearly the function fd(s, χ) is analytic inside MT . By the Cauchy
residue theorem, we can write

(2.25)
∑
n�x

χ(n)
τ(nd)

= I1 + · · · + I4 +
∑

β> 1

2
+ε, |γ|<T

Iρ +O
(x log x

T

)
,

where

Ij :=
1
2πi

∫
Lj

fd(s, χ)
xs

s
ds, Iρ :=

1
2πi

∫
Γρ

fd(s, χ)
xs

s
ds

and Lj and Γρ are as in Fig. 1.
A. Estimations of I1 and I2. In view of (2.24) and Lemma 2.2, we have

|I1|+ |I2| �
∫ 1+2/ log x

1/2+ε
(q1/2T )

1

2
(1−σ)+ε · x

σ

T
dσ(2.26)

� x

T

∫ 1+2/ log x

1/2+ε

(q1/4T 1/2

x

)1−σ
dσ � x

T
.

B. Estimations of I3 and I4. By (2.24) and Lemma 2.2, we have

|I3|+ |I4| �
∫ T

1
q1/4(|τ |+1)1/12

x1/2+ε

|(1
2 +ε)+iτ)|dτ � x1/2+εq1/4T 1/12.(2.27)
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C. Estimation of Iρ. With the help of (2.24) and Lemma 2.5, we have

(2.28) Iρ �
∫ β

1/2+ε

(
q

1−σ

2 |γ|1/12+ε
) xσ

|σ + iγ| dσ.

Denote by N(σ, T, χ) the number of zeros of L(s, χ) in the region Re s � σ
and |Im s| � T . Summing (2.28) over |γ| < T and interchanging the sum-
mations, we have

∑
β> 1

2
+ε, |γ|<T

|Iρ| � (log T ) max
T1≤T

∫ 1−σ(T1;q)

1/2+ε
q

1

2
(1−σ)T

1/12+ε
1

xσ

T1
N(σ, T1, χ) dσ.

where

σ(τ ; q) := C log−2/3(q|τ |+ 3q) log−1/3
2 (q|τ |+ 3q),

C = C(p is a positive constant depending on p) and we have used Lemma 2.3.
It is well-known that (cf. [8, Theorem 12.1] and [7])

N(σ, T, q) :=
∑

χ (mod q)

N(σ, T, χ) � (qT )
12

5
(1−σ) log9(qT ).

Thus ∑
χ �=χ0

∑
β> 1

2
+ε, |γ|<T

|Iρ|(2.29)

� log10(qT ) max
T1≤T

∫ 1−σ(T1;q)

1/2+ε
q

1−σ

2 T
1/12+ε
1

xσ

T1
(qT1)

12

5
(1−σ) dσ

� x log10(qT ) max
T1≤T

∫ 1−σ(T1;q)

1/2+ε

(q87/30T
17/30
1

x

)1−σ
dσ

� x log10(qT ) max
T1≤T

(q87/30T
17/30
1

x

)σ(T1;q) � x log10(qT )
(q87/30T 17/30

x

)σ(T ;q)
.

provided q87/30T 17/30 ≤ x. Inserting (2.26), (2.27) and (2.29) into (2.25), we
find that

∑
χ �=χ0

χ(a)χ(d)
∑
n�x

χ(n)
τ(nd)

� qx log x
T

+ x1/2q5/4T 1/12+ε + x log10(qT )
(q87/30T 17/30

x

)σ(T ;q)

� (x−13q104)1/17+ε + (x33q42)1/51+ε + x(log x)10x−εσ(T ;q)/195
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thanks to the choice of T = (x30(1−ε)q−87)1/17. This implies the required
result. �

3. Proof of Theorem 1

Firstly we write

(3.1) S(x, t; q, a) :=
1

(x/q)

∑
n�x

n≡a(mod q)

Fn(t).

In view of the symmetry of the divisors of n about
√
n, it follows that

Fn(t) = Prob(Dn � 1− t) = 1−Prob(Dn < 1− t) = 1−Fn(1− t)+O(τ(n)−1).

Summing over n � x with n ≡ a (mod q), we have

S(x, t; q, a) + S(x, 1 − t; q, a)

=
1

(x/q)

∑
n�x

n≡a(mod q)

{1 + O(τ(n)−1)} = 1 +O
( 1√

log x

)

uniformly for x ≥ 3, q ≤ x15/52−ε and a ∈ Z
∗ such that (a, q) = 1, where we

have used the orthogonality and Lemmas 2.4 and 2.6 with d = 1 to deduce
that

1
(x/q)

∑
n�x

n≡a(mod q)

1
τ(n)

=
q

xϕ(q)

∑
χ(mod q)

χ(a)
∑
n�x

χ(n)
τ(n)

� (q/ϕ(q))
ec1(ε)(log x)1/3(log

2
x)−1/3

� 1√
log x

.

On the other hand, we have the identity

2
π
arcsin

√
t+

2
π
arcsin

√
1− t = 1 (0 � t � 1).

Therefore it is sufficient to prove (1.3) for 0 � t � 1
2 .

For 0 � t � 1
2 , we can write

S(x, t; q, a) =
q

xϕ(q)

∑
n�x

∑
χ(mod q)

χ(a)χ(n)
τ(n)

∑
d|n, d�nt

1 (n = dm)(3.2)
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=
q

xϕ(q)

∑
d�xt

∑
χ(mod q)

χ(a)χ(d)
∑

d1/t−1≤m�x/d

χ(m)
τ(md)

=
q

xϕ(q)
(S1 − S2 + S3 − S4),

where

S1 :=
∑
d�xt

χ0(a)χ0(d)
∑

m�x/d

χ0(m)
τ(md)

, S2 :=
∑
d�xt

χ0(a)χ0(d)
∑

m�d1/t−1

χ0(m)
τ(md)

,

S3 :=
∑
d�xt

∑
χ �=χ0

χ(a)χ(d)
∑

m�x/d

χ(m)
τ(md)

,

S4 :=
∑
d�xt

∑
χ �=χ0

χ(a)χ(d)
∑

m�d1/t−1

χ(m)
τ(md)

.

For S1, we apply Lemmas 2.4 and 2.5 to write

S1 =
h√
π

∑
d�xt

χ0(d)
d
√
log(x/d)

{
g(d) +O

((3/4)ω(d)

log x

)}
(3.3)

=
ϕ(q)
q

x
{ 2
π
arcsin

√
t+O

( 1√
log x

)}
.

For S2, we have

S2 �
∑
d�xt

∑
m<d1/t−1

1
τ(m)

�
∑
d�xt

d1/t−1√
1 + log d1/t−1

(3.4)

� x√
1 + log x1−t

� x√
log x

.

By Lemma 2.6, we have

S3 �
∑
d�xt

∑
χ �=χ0

χ(a)χ(d)
∑

m�x/d

χ(m)
τ(md)

� xe−c2(ε) 3

√
(log x)/ log

2
x,(3.5)

S4 �
∑
d�xt

∑
χ �=χ0

χ(a)χ(d)
∑

m�d1/t−1

χ(m)
τ(md)

� xe−c2(ε) 3

√
(log x) log

2
x(3.6)

uniformly for x ≥ 3, q ≤ x15/52−ε and a ∈ Z
∗ such that (a, q) = 1.
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Inserting (3.3)–(3.6) into (3.2), we find that

S(x, t; q, a) =
2
π
arcsin

√
t+ Op,ε

( 1√
log x

)

uniformly for 0 ≤ t ≤ 1
2 , x ≥ 3, q ≤ x15/52−ε and a ∈ Z

∗ such that (a, q) = 1.
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nombres: 307 exercices corrigés, Belin (2014).

406 B. FENG and J. WU: THE ARCSINE LAW ON DIVISORS IN ARITHMETIC . . .


	THE ARCSINE LAW ON DIVISORS INARITHMETIC PROGRESSIONS MODULOPRIME POWERS
	Abstract.
	1. Introduction
	2. Preliminary
	3. Proof of Theorem 1
	References




