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In the Furstenberg-Sárközy Theorem we cannot ask for z in the same
set as x and y – consider {x ∈ [N ] : x ≡ 1 (mod 3)} – however Bergelson [2,
p. 53] using a method from [1] showed that in any k-colouring of N there are
solutions to x− y = z2 with x, y and z all the same colour. Our purpose is
to establish the following quantitative result.

Theorem 1.1. Suppose that k,N ∈ N are such that there is a k-
colouring of {1, . . . ,N} with no monochromatic solutions to x−y = z2. Then

N ≤ 22
2O(k)

.

This is not the first quantitative result in this direction, in fact Lindqvist
gave a bound in [8, Theorem 5.1.2].

This bound cannot be replaced by anything smaller than 22
k−1

: if N =
22

k−1

, consider the colouring with colour classes

C := {{1}} ∪
{
{22i

, . . . , 22
i+1} : 0 ≤ i ≤ k − 2

}
.

This is a k-colouring and if x, y, z ∈ {22i

, . . . , 22
i+1} then x− y < 22

i+1

≤ (22
i

)2 ≤ z2 and so x− y �= z2, and if x, y, z ∈ {1} then x− y = 0 < 1 = z2.
It follows that this colouring contains no monochromatic solutions to
x− y = z2.

Prendiville in [9, Theorem 1.2] as a special case of a much more general
result has established a counting version of Theorem 1.1 showing that there
is a colour class with Ωk(N

3/2k

) solutions to x− y = z2 (at least once k is
sufficiently large); the above construction show that this is close to optimal.

Finally, we remark that it is a well-known open problem to ask for
monochromatic solutions to x2 − y2 = z2 in place of x− y = z2 (see e.g.
[3, Problem 3.9]), and some modular analogues have been investigated by
Lindqvist [7], including the modular version of Theorem 1.1.

Notation. When writing A ⊂ B we do not require the inclusion to be
strict, and by O(1) we mean an absolute constant.

2. The argument

The argument is an iterative application of the following.

Corollary 2.1. Suppose that A ⊂ [N ] has size at least αN . Then either

N ≤ exp(α−O(1)) or there are natural numbers r ≤ exp(α−O(1)) and L ≥ N
1

4

such that

#
{
x ∈ r · [L] : x2 ∈ A−A

}
≥ 1

2
αL.

This corollary is proved in Section 3, but reading it out of Sárközy’s work
[10] is completely routine.
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Abstract. For k ∈ N, write S(k) for the largest natural number such that
there is a k-colouring of {1, . . . , S(k)} with no monochromatic solution to x− y =
z2. That S(k) exists is a result of Bergelson, and a simple example shows that

S(k) ≥ 22
k−1

. The purpose of this note is to show that S(k) ≤ 22
2O(k)

.

1. Introduction

In [6], Khalfalah and Szemerédi answered a question of Roth, Erdős,
Sárközy, and Sós by showing that for r ∈ N and N sufficiently large in terms
of r, any r-colouring of [N ] := {1, . . . ,N} contains two distinct elements x
and y with the same colour and x+ y = z2 for some natural z.

On the other hand it was shown by Csikvári, Gyarmati, and Sárközy in
[4, Theorem 3] that one cannot extend the Khalfalah–Szemerédi result to
ask that z be the same colour as x and y. This was refined by Green and
Lindqvist [5] who showed that there are 3-colourings of N without solutions
to x+ y = z2 with x and y distinct and all of x, y, and z having the same
colour; and furthermore they showed that 3 cannot be reduced to 2.

If x+y is replaced by x−y things are quite different. Here the celebrated
Furstenberg–Sárközy Theorem (so named in view of [10], and the comment
after the main theorem there) gives a density analogue of the Khalfalah–
Szemerédi result meaning that for any δ ∈ (0, 1] if N is sufficiently large in
terms of δ then any subset of [N ] of size at least δN contains two distinct
elements x and y such that x− y = z2 for some z ∈ N.
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Proof of Theorem 1.1. Let C be a cover of [N ] of size k. We proceed
iteratively: at stage i we have natural numbers Ni and di, a set Ji ⊂ C, and
integers xC,i for each C ∈ Ji, and a final integer xi. We write

Si :=
⋂

C∈Ji

(xC,i + C) and αi :=
#(xi + Si) ∩ d2i · [Ni]

Ni
.

Let A := {x ∈ [Ni] : d
2
ix ∈ xi + Si} so that A ⊂ [Ni] and #A ≥ αiNi. By

Corollary 2.1 applied to A either Ni ≤ exp(α
−O(1)
i ) and we terminate, or

there are natural numbers Li and ri with

Li ≥ N
1

4

i and ri ≤ exp(α
−O(1)
i )

such that

#
{
x ∈ ri · [Li] : x

2 ∈ Si − Si

}
≥ 1

2
αiLi.

But then by design x2 ∈ A−A and hence

(dix)
2 ∈ d2iA− d2iA ⊂ (xi + Si)− (xi + Si) ⊂

⋂

C∈Ji

(C − C),

and so putting di+1 := diri we have

(2.1) #
{
x ∈ di+1 · [Li] : x

2 ∈
⋂

C∈Ji

(C − C)
}
≥ 1

2
αiLi.

It follows that assuming we have no monochromatic triple, the set on the
left of (2.1) must be covered by the sets in C \ Ji. By averaging we conclude
that there is some Ci ∈ C \ Ji such that

#
(
di+1 · [Li]

)
∩ Ci ≥

1

2k
αiLi,

and so putting Ni+1 := Li/ridi+1 there is some x∗ such that

#
(
x∗ + d2i+1 · [Ni+1]

)
∩ Ci ≥

1

2k
αiNi+1.

Finally, since riNi+1 ≤ Ni we have

#d2i · [Ni]− d2i+1 · [Ni+1] = #[Ni]− r2i · [Ni+1] ≤ 2Ni,

whence

1

2k
α2
iNiNi+1 ≤ #(xi + Si) ∩ (d2i · [Ni])#(Ci − x∗) ∩ (d2i+1 · [Ni+1])(2.2)
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=
∑

x

#
(
x+ ((xi + Si) ∩ (d2i · [Ni]))

)
∩
(
(Ci − x∗) ∩ (d2i+1 · [Ni+1])

)

≤ max
x

#(x+xi+Si) ∩ (Ci−x∗) ∩ (d2i+1 · [Ni+1])#d2i · [Ni]− d2i+1 · [Ni+1]

≤ 2Nimax
x

#(x+ Si) ∩ (Ci − x∗) ∩ (di+1 · [Ni+1]).

Let xi+1 be an integer such that maximum in (2.2) on the right is achieved.
Put xCi,i := −x∗, xC,i+1 = xi+1 + xC,i, Ji+1 := Ji ∪ {Ci}, and note that

αi+1 ≥
1

4k
α2
i .

Since there are at most k colours, this process most terminate with some

j ≤ k. Thus αi ≥ 2−2O(k)

for all i ≤ j, and hence ri ≤ 22
2O(k)

for all i ≤ j.

But then di+1 = diri and hence di ≤ 22
2O(k)

for all i ≤ j. Finally Ni+1 ≥
N

1/4
i /d2i+1 for all i ≤ j and so Nj ≥ 2−22O(k)

N4−k

. However at stage j we

have Nj ≤ exp(α
−O(1)
j ) ≤ 22

2O(k)

, and the bound on N follows. �

3. Counting in the Furstenberg–Sárközy theorem

Proof of Corollary 2.1. This can be read out of Sárközy’s original
argument in [10]. Unfortunately that argument is presented to deal with
existence rather than counting so we have to go some distance into the proof
to extract what we need.

We shall make use of the Fourier transform: write T := R/Z, and for
θ ∈ T put e(θ) := exp(2πiθ). Given f ∈ ℓ1(Z) we write

f̂(θ) :=
∑

n∈Z
f(n)e(θn) for all θ ∈ T,

and f̃(z) := f(−z). Finally, for f, g ∈ ℓ1(Z) we write

f ∗ g(z) :=
∑

x+y=z

f(x)g(y) for all z ∈ Z.

For a finite non-empty set of integers S we write mS for the function assign-
ing mass #S−1 to each element S and 0 elsewhere.

We shall actually prove the following from which Corollary 2.1 follows
immediately (with the L in the corollary being the

√
L′ of the proposition)

since
∑

x−y=u 1A′(x)1A′(y) ≤ #A′.
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Proposition 3.1. Suppose that A ⊂ [N ] has size at least αN . Then

there are natural numbers r ≤ exp(α−O(1)), L ≥ (logN)α
−O(1)

N and L′ ≥
αO(1)L such that A′ := A ∩ (x0 + r2 · [L]) has α′ := #A′/L with α′ ≥ α and

∑

x−y=z2

1A′(x)1A′(y)1r·[
√
L′](z) ≥

1

2
(α′)2LL′.

The argument is an iteration of the following standard exercise in the circle
method in which we can afford to be far sloppier than Sárközy.

Lemma 3.2. Suppose that A ⊂ [N ] has size αN , and N ′ is a further

integer. Then at least one of the following holds:
(i) N ′ ≥ αO(1)N ;

(ii)
∑

x−y=z2 1A(x)1A(y)1[
√
N ′ ](z) ≥ 1

2α
2N

√
N ′ ;

(iii) there is some q ≤ α−O(1) and N ′′ ≥ αO(1)N ′/ logN ′ such that

sup
x

#A ∩ (x+ q2 · [N ′′]) ≥ (α+ αO(1))N ′′.

Proof of Lemma 3.2. Write f := 1A −α1[N ] and S := {1 ≤ z2 ≤ N ′},
and note that

�f ∗ f̃ , 1S�ℓ2 =
∑

x−y=w

1A(x)1A(y)1S(w)− α2N
√
N ′ +O(N ′)3/2,

whence either N ′ ≥ αO(1)N or

∫
|f̂(θ)|2| 1̂S(θ)| dθ ≥ 1

4
α2N

√
N ′ .

Let Q := cα2N ′/ logN ′ for an absolute c > 0 to be chosen shortly. By the
box principle, for every θ ∈ T there are integers a and q with (a, q) = 1,
1 ≤ q ≤ Q and such that |θ − a/q| ≤ 1/qQ. [10, Lemma 4] (the notation for

our 1̂S is Sárközy’s T , defined on [10, p. 126]) is Weyl’s inequality in a form
we can make easy use of:
(3.1)

|1̂S(θ)| = O
(√

N ′/q+(
√
N ′ log q)

1

2 +(q log q)1/2
)
= O(1/

√
q+cα)

√
N ′ .

We define the major arcs to be

Mq :=
{
θ ∈ T : ∃a with (a, q) = 1 and

∣∣∣θ − a

q

∣∣∣ ≤ 1

qQ

}
,
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so that by Parseval’s inequality and (3.1) with Q0 := (cα)−2 we have
∫
⋃Q

q=Q0
Mq

|f̂(θ)|2 |1̂S(θ)| dθ = O(cα2N
√
N ′ ).

Thus there is an absolute c > 0 such that

Q0∑

q=1

O
( 1√

q

)∫

Mq

|f̂(θ)|2 dθ ≥ 1

8
α2N.

We conclude that there is some q = O(α−2) such that
∫

Mq

|f̂(θ)|2 dθ = Ω(α3N).

Let P be a progression of length 2Q+ 1 and common difference q2. Then
for all θ ∈ Mq we have

|m̂P (θ)| =
∣∣∣ sin(Qπq2θ)

#P sin(πq2θ)

∣∣∣ = Ω(q−1).

By Parseval’s theorem we conclude that

�(1A − α1[N ]) ∗mP �2ℓ2 =
∫

|f̂(θ)|2 |m̂P (θ)|2 dθ ≥ αO(1)N

and so

�1A ∗mP ′�2ℓ2 ≥ α2N + αO(1)N −O(#P ′/N),

and this gives the result with N ′′ = #P ′ by averaging. �

Proof of Proposition 3.1. We construct natural numbers di, Ni,
and N ′

i iteratively with N ′
i = αO(1)Ni such that conclusion (i) of Lemma 3.2

does not hold if N ′
i is the ‘further integer’ of that lemma. At stage i let xi be

such that #A ∩ (xi + d2i · [Ni]) is maximal over all possible choices; write αi

for the ratio of this size to Ni.
Apply Lemma 3.2 to the set Si := {x ∈ [Ni] : xi+d2ix ∈ A} with the ‘fur-

ther integer’ being N ′
i . In case (ii) stop; in case (iii) there is some qi ≤ α

−O(1)
i

and Ni+1 ≥ αO(1)N ′
i/ logN

′
i such that

αi + α
O(1)
i ≤ #Si ∩ (x+ q2i · [Ni+1])

Ni+1
=

#A ∩ (xi + d2ix+ (d2i q
2
i ) · [Ni+1])

Ni+1
.

Set di+1 = diqi so that αi+1 ≥ αi + α
O(1)
i . This process terminates for some

j = α−O(1) because density cannot exceed 1. We set L := Nj , L′ := N ′
j ,
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r := dj and have the result since N ′
j ≥ αO(1)Nj , and Ni+1 ≥ αO(1)Ni/ logNi

and di+1 ≤ diα
−O(1) for all i < j. �
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