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gcd of its elements is 1.1 Under these assumptions we know that

0 ∈ A ⊂ 2A ⊂ 3A ⊂ · · · ⊂ N,

where N is the natural numbers, defined to be the integers ≥ 0. Moreover
there exist integers m1, . . . ,mk such that m1a1 + · · ·+mkak = 1, and there-
fore

P(A) =

{

∑

a∈A

naa : each na ∈ N

}

= lim
N→∞

NA = N \ E(A)

for some finite exceptional set E(A).2

One very special case is the Frobenius postage stamp problem in which
we wish to determine what exact postage cost one can make up from an
unlimited of a cent and b cent stamps. In other words, we wish to determine
P(A) for A = {0, a, b}. It is a fun challenge for a primary school student to
show that E({0, 3, 5}) = {1, 2, 4, 7}, and more generally, [14], that

max E({0, a, b}) = ab− a− b, and |E({0, a, b})| = 1
2(a− 1)(b− 1).

Erdős and Graham [3] conjectured precise bounds for max{e : e ∈ E(A)}; see
also Dixmier [1].

In this article we study the variant in which we only allow the use of at
most N stamps; that is, can we determine the structure of the set NA? If
b = maxA, then NA ⊂ {0, . . . , bN} ∩P(A) = {0, . . . , bN} \ E(A). Moreover,
we can use symmetry to determine a complementary exceptional set: Define
the set b−A := {b− a : a ∈ A}. Then NA = Nb−N(b−A) and so NA
cannot contain any elements Nb− e where e ∈ E(b−A). Therefore

NA ⊂ {0, . . . , bN} \
(

E(A) ∪ (bN − E(b− A))
)

.

We ask when equality holds?

Theorem 1. Let A be a given finite subset of the integers, with smallest
element 0 and largest element b, in which the gcd of the elements of A is 1.
If N ≥ 2[ b2 ] and 0 ≤ n ≤ Nb with n �∈ E(A) ∪ (Nb− E(b−A)) then n ∈ NA.
Equivalently, we have

NA = {0, . . . , bN} \ (E(A) ∪ (bN − E(b− A))).

In the next section we will show that if A has just three elements then
Theorem 1 holds for all integers N ≥ 1 (which does not seem to have been

1 Since if we translate A then we translate NA predictably, as N(A+ τ) = NA+Nτ , and
since if A = g ·B := {gb : b ∈ B} then NA = g ·NB.

2We give a simple proof that E(A) is finite in section 1.1.
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Abstract. Let A be a finite subset of Zn, which generates Z
n additively.

We provide a precise description of the N-fold sumsets NA for N sufficiently large,
with some explicit bounds on “sufficiently large.”

1. Introduction

Let A be a given finite subset of the integers. For any integer N ≥ 1, we
are interested in determining the N -fold sumset of A,

NA :=
{

a1 + · · · + aN : a1, . . . , aN ∈ A
}

,

where the ai’s are not necessarily distinct. For simplicity we may assume
without loss of generality that the smallest element of A is 0, and that the
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Erdős and Graham [3] conjectured precise bounds for max{e : e ∈ E(A)}; see
also Dixmier [1].

In this article we study the variant in which we only allow the use of at
most N stamps; that is, can we determine the structure of the set NA? If
b = maxA, then NA ⊂ {0, . . . , bN} ∩P(A) = {0, . . . , bN} \ E(A). Moreover,
we can use symmetry to determine a complementary exceptional set: Define
the set b−A := {b− a : a ∈ A}. Then NA = Nb−N(b−A) and so NA
cannot contain any elements Nb− e where e ∈ E(b−A). Therefore

NA ⊂ {0, . . . , bN} \
(

E(A) ∪ (bN − E(b− A))
)

.

We ask when equality holds?

Theorem 1. Let A be a given finite subset of the integers, with smallest
element 0 and largest element b, in which the gcd of the elements of A is 1.
If N ≥ 2[ b2 ] and 0 ≤ n ≤ Nb with n �∈ E(A) ∪ (Nb− E(b−A)) then n ∈ NA.
Equivalently, we have

NA = {0, . . . , bN} \ (E(A) ∪ (bN − E(b− A))).

In the next section we will show that if A has just three elements then
Theorem 1 holds for all integers N ≥ 1 (which does not seem to have been

1 Since if we translate A then we translate NA predictably, as N(A+ τ) = NA+Nτ , and
since if A = g ·B := {gb : b ∈ B} then NA = g ·NB.

2We give a simple proof that E(A) is finite in section 1.1.

Acta Mathematica Hungarica

THE FROBENIUS POSTAGE STAMP PROBLEM, AND BEYOND 701



Acta Mathematica Hungarica 161, 2020

THE FROBENIUS POSTAGE STAMP PROBLEM, AND BEYOND 3

observed before). However this is not true for larger A: If A = {0,1, b− 1, b}
then E(A) = E(b−A) = ∅ and b− 2 ∈ (b− 2)A but b− 2 �∈ (b− 3)A, in which
case Theorem 1 can only hold for N ≥ b− 2. In a forthcoming paper [4] with
Aled Walker we prove that Theorem 1 indeed does hold for N ≥ b− 2, and
even for N ≥ b+2−#A whenever #A ≥ 4. This is best possible bearing in
mind representing N by mA where A = {0, 1,N + 1,N + 2, . . . , b}.

Theorem 1 was first proved, but with the bound N ≥ b2(#A− 1), by
Nathanson [6] in 1972, which was improved to

N ≥
∑

a∈A,a�=0

(a− 1)

in [15].3

We will generalize Theorem 1 to sets A embedded in arbitrarily many
dimensions. Here we assume that 0 ∈ A ⊂ Z

n. The convex hull of the points
in A is given by

H(A) =

{

∑

a∈A

caa :
∑

a∈A

ca = 1, each ca ≥ 0

}

,

so that

CA :=

{

∑

a∈A

caa : each ca ≥ 0

}

= lim
N→∞

NH(A),

is the cone generated by A. Let P(A) be the set of sums in CA where each
ca ∈ N, so that P(A) ⊂ CA ∩ Zn. We define the exceptional set to be

E(A) := (CA ∩ Z
n) \ P(A),

the integer points that are in the convex hull of positive linear combinations
of points from A, and yet are not an element of NA, for any integer N ≥ 1.
With this notation we can formulate our result:

Theorem 2. Let 0 ∈ A ⊂ Zn be such that A spans Zn as a vector space

over Z. There exists a constant NA such that if N ≥ NA then

NA = (NH(A)∩Z
n) \ EN (A) where EN (A) :=

(

E(A)∪
⋃

a∈A

(aN−E(a−A))
)

.

3 [15] claim that their result is “best possible,” but this is a consequence of how they formulate
their result. Indeed Theorem 1 yields at least as good a bound for all sets A with #A ≥ 4, and is
better in all but a couple of families of examples.
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We have been unable to find exactly this result in the literature. It
would be good to obtain an upper bound on NA, presumably in terms of the
geometry of the convex hull of A.

In Theorem 1, when A ⊂ N
1, the sets E(A) are finite, which can be

viewed as a finite union of 0 dimensional objects. In the two dimensional
example

(1) A =
{

(0, 0), (2, 0), (0, 3), (1, 1)
}

,

we find that E(A) can be infinite, explicitly

E(A) =
{

(0, 1), (1, 0), (1, 2)
}

+ P
(

{(0, 0), (2, 0)}
)

∪
{

(0, 1), (0, 2), (1, 0), (1, 2), (2, 1), (3, 0)
}

+ P
(

{(0, 0), (0, 3)}
)

,

the union of nine onedimensional objects. More generally we prove the
following:

Theorem 3. Let 0 ∈ A ⊂ Zn be such that A spans Zn as a vector space

over Z. Then E(A) is a finite union of sets of the form

{

v +
∑

b∈B

mbb : mb ∈ Z≥0

}

= v + P(B ∪ {0})

where v ∈ CA ∩Zn
≥0, with B ⊂ A contains ≤ n− 1 elements, and the vectors

in B − 0 are linearly independent.

We deduce from Theorem 3 that

(2) #EN (A) = O(Nn−1).

Theorem 3 also implies that there is a bound BA such that every element
of CA ∩ Zn which is further than a distance BA from its boundary, is an
element of P(A) (and so not in E(A)). (This is also [5, Theorem 3].)

The most remarkable result in this area is the 1992 theorem of Khovan
skii [5, Corollary 1] who proved that #NA is a polynomial of degree n in N
for N sufficiently large, where the leading coefficient is Vol(H(A)). His ex
traordinary proof proceeds by constructing a finitelygenerated graded mod
ule M1, M2, . . . over C[t1, . . . , tk] with k = #A, where each MN is a vector
space over C of dimension |NA|. One then deduces that |NA| = dimCMN

is a polynomial in N , for N sufficiently large, by a theorem of Hilbert.
Nathanson [7] showed that this can generalized to sums N1A1 + · · ·+NkAk

when all the Ni are sufficiently large. This was all reproved by Nathanson
and Ruzsa [8] using elementary, combinatorial ideas (using several ideas in
common with us). Moreover it can also be deduced from Theorems 2 and 3.

Acta Mathematica Hungarica

A. GRANVILLE and G. SHAKAN702



Acta Mathematica Hungarica 161, 2020

4 A. GRANVILLE and G. SHAKAN

We have been unable to find exactly this result in the literature. It
would be good to obtain an upper bound on NA, presumably in terms of the
geometry of the convex hull of A.

In Theorem 1, when A ⊂ N
1, the sets E(A) are finite, which can be

viewed as a finite union of 0 dimensional objects. In the two dimensional
example

(1) A =
{

(0, 0), (2, 0), (0, 3), (1, 1)
}

,

we find that E(A) can be infinite, explicitly

E(A) =
{

(0, 1), (1, 0), (1, 2)
}

+ P
(

{(0, 0), (2, 0)}
)

∪
{

(0, 1), (0, 2), (1, 0), (1, 2), (2, 1), (3, 0)
}

+ P
(

{(0, 0), (0, 3)}
)

,

the union of nine onedimensional objects. More generally we prove the
following:

Theorem 3. Let 0 ∈ A ⊂ Zn be such that A spans Zn as a vector space

over Z. Then E(A) is a finite union of sets of the form

{

v +
∑

b∈B

mbb : mb ∈ Z≥0

}

= v + P(B ∪ {0})

where v ∈ CA ∩Zn
≥0, with B ⊂ A contains ≤ n− 1 elements, and the vectors

in B − 0 are linearly independent.

We deduce from Theorem 3 that

(2) #EN (A) = O(Nn−1).

Theorem 3 also implies that there is a bound BA such that every element
of CA ∩ Zn which is further than a distance BA from its boundary, is an
element of P(A) (and so not in E(A)). (This is also [5, Theorem 3].)

The most remarkable result in this area is the 1992 theorem of Khovan
skii [5, Corollary 1] who proved that #NA is a polynomial of degree n in N
for N sufficiently large, where the leading coefficient is Vol(H(A)). His ex
traordinary proof proceeds by constructing a finitelygenerated graded mod
ule M1, M2, . . . over C[t1, . . . , tk] with k = #A, where each MN is a vector
space over C of dimension |NA|. One then deduces that |NA| = dimCMN

is a polynomial in N , for N sufficiently large, by a theorem of Hilbert.
Nathanson [7] showed that this can generalized to sums N1A1 + · · ·+NkAk

when all the Ni are sufficiently large. This was all reproved by Nathanson
and Ruzsa [8] using elementary, combinatorial ideas (using several ideas in
common with us). Moreover it can also be deduced from Theorems 2 and 3.

Acta Mathematica Hungarica

THE FROBENIUS POSTAGE STAMP PROBLEM, AND BEYOND 703



Acta Mathematica Hungarica 161, 2020

THE FROBENIUS POSTAGE STAMP PROBLEM, AND BEYOND 5

Inexplicit versions of Theorems 2 and 3 can also be deduced from Pres-
burger’s 1929 theorem in logic [9]. This theorem was motivated by Hilbert’s
2nd problem, which asked whether arithmetic is consistent; Hilbert’s rather
vague question was interpreted to ask whether the “standard axioms” lead
one to be able to determine whether every arithmetic question can be proven
to be true or false by an appropriate finite algorithm (and thus the “theory”’
is both decidable and complete). In 1931, Gödel famously showed that Peano
arithmetic is not complete, but before that Presburger had shown that the
standard axioms omitting multiplication on the ordered group of integers
(that is, (Z; 0, 1,+,−, <)) is decidable and complete. The idea is to assume
that 0 < 1, the rules for an abelian additive group, induction and other ax-
ioms and to build up from there. This “theory” is significantly simpler than
Peano arithmetic.

By adding axioms to justify the relations “n ≡ 0 (mod m)”, one can
eliminate all quantifiers. For example, if a and b are positive coprime inte-
gers then we are interested here in whether there exist x, y ∈ Z with x, y ≥ 0
for which a given integer n = ax+ by. To remove the unbounded set of pos-
sibilities for x and y, we can note that if r is the least non-negative integer
≡ n/a (mod b) then x = r+ ℓb for some integer ℓ ≥ 0, and so if n = ar+mb
where m ≥ 0 then we are asking for integers ℓ, y ≥ 0 for which m = aℓ+ y.
Selecting say ℓ = 0 and y = m, we have eliminated the quantifiers x and y to
find a precise solution. Presburger supplied an algorithm to do this in gen-
eral (within the theory he considered), eliminating one quantifier at a time.
Algorithms of this kind can be applied to obtain Theorem 4. However this
approach does not, in general, seem to reveal the precise bounds asked for
in this paper. (See [2] for more about Presburger arithmetic.)

In Section 2 we look at the case where A has three elements, showing
that the result holds for all N ≥ 1. This easier case introduces some of the
ideas we will need later. In Section 3 we prove Theorem 1. Obtaining the
bound N ≥ 2b− 2 is not especially difficult, but improving this to N ≥ 2[ b2 ]
becomes complicated and so we build up to it in a number of steps. In
Section 4 we begin the study of a natural higher dimensional analog. The
introduction of even one new dimension creates significant complications, as
the exceptional set E(A) is no longer necessarily finite. In the next subsec-
tion we indicate how one begins to attack these questions.

1.1. Representing most elements of Zn

≥0
. If A = {0, 3, 5} one can

represent

8 = 1× 3 + 1× 5, 9 = 3× 3 and 10 = 2× 5

and then every integer n ≥ 11 is represented by adding a positive multi-
ple of 3 to one of these representations, depending on whether n ≡ 2, 0 or
1mod 3, respectively. In effect we are find representatives r1 = 10, r2 = 8,
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r3 = 9 of Z/3Z that belong to P(A), and then Z≥8 = {r1, r2, r3}+ 3Z≥0

⊂ P(A), which implies that E(A) ⊂ {0, . . . , 7}.
We can generalize this to arbitrary finiteA ⊂ Z≥0 with gcd(a : a∈A) = 1,

as follows: Let b ≥ 1 be the largest element of A (with 0 the smallest). Since
gcd(a : a ∈ A) = 1 there exist integers ma, some positive, some negative,
for which

∑

a∈A maa = 1. Let m := maxa∈A(−ma) and N := bm
∑

a∈A a,
so that

rk := N + k =
∑

a∈A

(bm+ kma)a ∈ P(A) for 1 ≤ k ≤ b

(as each bm+ kma ≥ bm− km ≥ 0) and rk ≡ kmod b. But then

Z>N =N+Z≥1 = N+{1, . . . , b}+b · Z≥0 = {r1, . . . , rb}+b · Z≥0 ⊂ P(A),

which implies that E(A) ⊂ {0, . . . ,N}.
We can proceed similarly in Z

n
≥0 with n > 1, most easily when CA is

generated by a set B containing exactly n non-zero elements (for exam-
ple, B := {(0, 0), (2, 0), (0, 3)} ⊂ A, in the example from (1)). Let ΛB be
the lattice of integer linear combinations of elements of B. We need to
find R ⊂ P(A), a set of representatives of Zn/ΛB , and then (R+ CB) ∩ Zn

⊂ P(A). In the example (1) we can easily represent {(m,n) ∈ Z2 : 4 ≤ m
≤ 5, 3 ≤ n ≤ 5}. Therefore if (r, s) ∈ E(A) then either 0 ≤ r ≤ 3 or 0 ≤ s
≤ 2, and so we see that E(A) is a subset of a finite set of translates of
one-dimensional objects.

2. Classical postage stamp problem with at most N stamps

It is worth pointing out explicitly that if, for given coprime integers 0 <
a < b, we have n ∈ N{0, a, b} so that n = ax+ by with x+ y ≤ N then4

(N − x− y)× b+ x× (b− a) = bN − n

so that bN − n ∈ N{0, b− a, b}.

Theorem 4 (Postage Stamp with at most N stamps). Let 0 < a < b be
coprime integers and A = {0, a, b}. If N ≥ 1 then

NA = {0, . . . , bN} \
(

E(A) ∪ (bN − E(b− A))
)

.

In other words, NA contains all the integers in [0, bN ], except a few
unavoidable exceptions near to the endpoints of the interval.

4 In this displayed equation, and throughout, we write “r × a” to mean r copies of the inte-
ger a.
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Proof. Suppose that n ∈ {0, . . . , bN}, n �∈ E(A) and bN −n �∈ E(b−A),
so that there exist r, s, r′, s′ ∈ N such that

(3) ra+ sb = n,

and

(4) r′(b− a) + s′b = bN − n.

We may assume 0 ≤ r, r′ ≤ b− 1, as we may replace r with r− b and s with
s+ a, and r′ with r′ − b and s′ with s′ + b− a. Now reducing (3) and (4)
modulo b, we have

ra ≡ n (mod b), −r′a ≡ −n (mod b).

Since (a, b) = 1, we deduce r ≡ r′ (mod b). Therefore r = r′ as |r − r′| < b,
and so adding (3) and (4) we find

rb+ sb+ s′b = bN.

This implies that r + s+ s′ = N and so r + s ≤ N which gives n ∈ NA, as
desired. �

3. Arbitrary postage problem with at most N stamps

3.1. Sets with three or more elements. Let

A = {0 = a1 < a2 < . . . < ak = b} ⊂ Z,

with (a1, . . . , ak) = 1. In general we have n ∈ NA if and only if Nb− n ∈
N(b−A), since

n =
k

∑

i=1

miai if and only if Nb− n =
k

∑

i=1

mi(b− ai)

where we select m1 so that
∑k

i=1mi = N . For 0 ≤ a ≤ b− 1 define

na,A := min
{

n ≥ 0 : n ≡ a (mod b) and n ∈ P(A)
}

and

Na,A := min
{

N ≥ 1 : na,A ∈ NA
}

We always have n0,A = 0 and N0,A = 1. If 1 ≤ a ≤ b− 1 then neither 0 nor
b can be a term in the sum for na,A else we can remove it and contradict
the definition of na,A. But this implies that na,A ≤ Na,A ·maxc∈A:c<b c ≤
(b− 1)Na,A.
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Lemma 1. If n ≡ a (mod b) then n ∈ P(A) if and only if n ≥ na,A.

Proof. If n < na,A then n �∈ P(A) by the definition of na,A. Write
na,A =

∑

c∈A ncc where each nc ≥ 0. If n ≡ a (mod b) and n ≥ na,A then
n = na,A + rb for some integer r ≥ 0 and so n =

∑

c∈A,c �=b ncc+ (nb + r)b

∈ P(A). �

We deduce that

E(A) =
b−1
⋃

a=1

{

1 ≤ n < na,A : n ≡ a (mod b)
}

;

We also have the following:

Corollary 1. Suppose that 0 ≤ n ≤ bN and n ≡ a (mod b). Then

n �∈ E(A) ∪ (Nb− E(b−A)) if and only if na,A ≤ n ≤ bN − nb−a,b−A.

Thus there are such integers n if and only if N ≥ N∗
a,A := 1

b
(na,A+nb−a,b−A).

Lemma 2. Suppose that N0 ≥ N∗
a,A. Assume that if 0 ≤ n ≤ bN0 with

n ≡ a (mod b), and n �∈ E(A)∪(N0b−E(b−A)) then n ∈ N0A. Then for any
integer N ≥ N0 we have n ∈ NA whenever 0 ≤ n ≤ bN with n ≡ a (mod b),
and n �∈ E(A) ∪ (Nb− E(b−A)).

Proof. By induction. By hypothesis it holds for N = N0. Suppose it
holds for some N ≥ N0. If n ≡ a (mod b) with a ≤ n ≤ b(N +1)− nb−a,b−A

then either a ≤ n ≤ bN − nb−a,b−A so that n ∈ NA ⊂ (N + 1)A, or n = b+
(bN − nb−a,b−A) ∈ b+NA ⊂ (N + 1)A. �

If na,A = a1 + · · · + aN where N = Na,A then

bNa,A − na,A = (b− a1) + · · ·+ (b− aN ) ≥ nb−a,b−A,

by definition. Therefore

Na,A ≥ 1
b
(na,A + nb−a,b−A) = N∗

a,A,

and the analogous argument implies that Nb−a,b−A ≥ N∗
a,A.

Corollary 2. Given a set A, fix a (mod b). The statement “For all
integers N ≥ 1, for all integers n ∈ [0,Nb] with n ≡ a (mod b) we have
n ∈ NA if and only if n �∈ E(A) ∪ (Nb− E(b−A))” holds true if and only if
Na,A = N∗

a,A.

Proof. There are no such integers n if N < N∗
a,A by Corollary 1, so the

statement is true. If the statement is true for N = N∗
a,A then it holds for all

n ≥ N∗
a,A by Lemma 2. Finally for N = N∗

a,A, the statement claims (only)
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Lemma 1. If n ≡ a (mod b) then n ∈ P(A) if and only if n ≥ na,A.

Proof. If n < na,A then n �∈ P(A) by the definition of na,A. Write
na,A =

∑

c∈A ncc where each nc ≥ 0. If n ≡ a (mod b) and n ≥ na,A then
n = na,A + rb for some integer r ≥ 0 and so n =

∑

c∈A,c �=b ncc+ (nb + r)b

∈ P(A). �

We deduce that

E(A) =
b−1
⋃

a=1

{

1 ≤ n < na,A : n ≡ a (mod b)
}

;

We also have the following:

Corollary 1. Suppose that 0 ≤ n ≤ bN and n ≡ a (mod b). Then

n �∈ E(A) ∪ (Nb− E(b−A)) if and only if na,A ≤ n ≤ bN − nb−a,b−A.

Thus there are such integers n if and only if N ≥ N∗
a,A := 1

b
(na,A+nb−a,b−A).

Lemma 2. Suppose that N0 ≥ N∗
a,A. Assume that if 0 ≤ n ≤ bN0 with

n ≡ a (mod b), and n �∈ E(A)∪(N0b−E(b−A)) then n ∈ N0A. Then for any
integer N ≥ N0 we have n ∈ NA whenever 0 ≤ n ≤ bN with n ≡ a (mod b),
and n �∈ E(A) ∪ (Nb− E(b−A)).

Proof. By induction. By hypothesis it holds for N = N0. Suppose it
holds for some N ≥ N0. If n ≡ a (mod b) with a ≤ n ≤ b(N +1)− nb−a,b−A

then either a ≤ n ≤ bN − nb−a,b−A so that n ∈ NA ⊂ (N + 1)A, or n = b+
(bN − nb−a,b−A) ∈ b+NA ⊂ (N + 1)A. �

If na,A = a1 + · · · + aN where N = Na,A then

bNa,A − na,A = (b− a1) + · · ·+ (b− aN ) ≥ nb−a,b−A,

by definition. Therefore

Na,A ≥ 1
b
(na,A + nb−a,b−A) = N∗

a,A,

and the analogous argument implies that Nb−a,b−A ≥ N∗
a,A.

Corollary 2. Given a set A, fix a (mod b). The statement “For all
integers N ≥ 1, for all integers n ∈ [0,Nb] with n ≡ a (mod b) we have
n ∈ NA if and only if n �∈ E(A) ∪ (Nb− E(b−A))” holds true if and only if
Na,A = N∗

a,A.

Proof. There are no such integers n if N < N∗
a,A by Corollary 1, so the

statement is true. If the statement is true for N = N∗
a,A then it holds for all

n ≥ N∗
a,A by Lemma 2. Finally for N = N∗

a,A, the statement claims (only)
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that na,A ∈ NA. This happens if and only if N = N∗
a,A ≥ Na,A. The result

follows since we just proved that Na,A ≥ N∗
a,A. �

In fact one can re-run the proof on bN −a to see that if Na,A = N∗
a,A then

Nb−a,b−A = N∗
a,A. Suppose A has just three elements, say A = {0, c, b} with

(c, b) = 1. For any non-zero a (mod b) we have an integer r,1 ≤ r ≤ b−1 with
a ≡ cr (mod b), and one can easily show that na,A = cr while Na,A = r. Now
b−A = {0, b− c, b} so that nb−a,b−A = (b− c)r while Nb−a,b−A = r. There-

fore Na,A = Nb−a,b−A = N∗
a,A = 1

b
(na,A + nb−a,b−A) for every a, and so we

recover Theorem 4 from Corollary 2.
However Theorem 1 does not hold for all N ≥ 1 for some sets A of size 4.

For example, if A = {0, 1, b− 1, b} then b−A = A. We have na,A = a for 1 ≤
a ≤ b−1, and so N∗

a,A = 1, but Na,A = a for 1 ≤ a ≤ b−2, and so Theorem 1
does not hold for all N ≥ 1 by Corollary 2. In fact since Nb−2,b = b− 2 >
N∗

b−2,b = 1, if the statement “if n ≤ Nb and n �∈ E(A)∪ (Nb−E(b−A)) then
n ∈ NA” is true then N ≥ b− 2.

It would be interesting to have a simple criterion for the set A to have
the property that Na,A = N∗

a,A for all a (mod b) (so that Corollary 2 takes

effect). Certainly many sets A do not have this property; For example if
there exists an integer a, 1 ≤ a ≤ b− 1 such that a �∈ A but a, b+ a ∈ 2A,
then na,A = a, nb−a,b−A = b− a, so that Na,A = 2 and N∗

a,A = 1.

3.2. Proving a “sufficiently large” result. We begin getting bounds
by proving the following.

Proposition 1. Fix 0 ≤ a ≤ b− 1 and suppose N ≥ Na,A +Nb−a,b−A.
If 0 ≤ n ≤ Nb with n ≡ a (mod b) and n �∈ E(A) ∪ (Nb− E(b− A)) then
n ∈ NA.

Corollary 3. If 0 ≤ n ≤ Nb and n �∈ E(A) ∪ (Nb− E(b− A)) then
n ∈ NA, whenever N ≥ max1≤a≤b−1 Na,A +Nb−a,b−A.

To prove Proposition 1, we need the following.

Proposition 2. Fix 1 ≤ a ≤ b− 1. If n ≤ (N −Na,A)b with n ≡ a
(mod b) and n �∈ E(A) then n ∈ NA.

Proof. If n �∈ E(A) then n ≥ na,A by the definition of na,A. Therefore
n = na,A + kb where 0 ≤ kb ≤ n ≤ (N −Na,A)b, so that 0 ≤ k ≤ N −Na,A

and kb ∈ (N −Na,A)A. Now na,A ∈ Na,AA and so n = na,A + kb ∈ Na,AA+
(N −Na,A)A = NA. �

Proof of Proposition 1. This is trivial for a = 0. Otherwise, by hy-
pothesis n �∈ E(A) and bN −n �∈ E(b−A). Moreover either n ≤ (N −Na,A)b
or bN − n ≤ (N −Nb−a,b−A)b, else

bN = n+ (bN − n) > (N −Na,A)b+ (N −Nb−a,b−A)b
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= (2N −Na,AA−Nb−a,b−A)b ≥ Nb,

which is impossible. Therefore Proposition 1 either follows by applying
Proposition 2 to A, or by applying Proposition 2 to b−A to obtain Nb− n
∈ N(b−A) which implies n ∈ NA. �

It remains to bound Na,A. We start with the following.

Lemma 3. We have Na,A ≤ b− 1. If A = {0, 1, b} then Na,A = b− 1.

Proof. Suppose that na,A = a1 + a2 + · · ·+ ar with each ai ∈ A, and r
minimal. We have r < b else two of 0, a1, a1 + a2, . . . , a1 + · · · + ab are con-
gruent mod b by the pigeonhole principle, so their difference, which is a
subsum of the ai’s is ≡ 0 (mod b). If these ai’s are removed from the sum
then we obtain a smaller element of P(A) that is ≡ a (mod b), contradict-
ing the definition of na,A. We deduce that NA ≤ b− 1. If A = {0, 1, b} then
b− 1 �∈ (b− 2)A and so NA ≥ b− 1. �

Corollary 4. Suppose that N ≥ 2b− 2. If n ≤ Nb and n �∈ E(A)
∪ (Nb− E(b−A)) then n ∈ NA.

Proof. Insert the bounds Na,A,Nb−a,b−A ≤ b− 1 from Lemma 3 into
Corollary 3. �

3.3. The proof of Theorem 1. With more effort we now prove The-
orem 1, improving upon Corollary 4 by a factor of 2, and getting close to
the best possible bound b− 2 (which, as we have seen, is as good as can be
attained when A = {0, 1, b− 1, b}). One cannot obtain a better consequence
of Corollary 3 since we have the following examples:

If A = {0, 1, b− 1, b} then N[ b
2
],A +Nb−[ b

2
],b−A = 2[ b2 ].

If A = {0, 1, 2, b} with b even then Nb−1,A +N1,b−A = b. This is a par-
ticularly interesting case as one can verify that one has “If n ≤ Nb and
n �∈ E(A) ∪ (Nb− E(b− A)) then n ∈ NA” for all N ≥ 1.

We can apply Corollary 3 to obtain Theorem 1 provided Na,A,Nb−a,b−A

≤ [ b2 ] for each a. Therefore we need to classify those A for which Na,A > b
2 .

Let (t)b is the least non-negative residue of t (mod b).
Suppose that 1 ≤ a ≤ b− 1, and write na = na,A = a1 + · · ·+ am where

m = Na,A is minimal. No subsum of a1 + · · · + am can sum to ≡ 0 (mod b)
else we remove this subsum from the sum to get a smaller sum of elements
of A which is ≡ a (mod b), contradicting the definition of na. Also the com-
plete sum cannot be ≡ 0 (mod b) else a = 0 and m = 0. Let k = m+ 1
and ak = −(a1 + · · ·+ am), so that a1 + · · ·+ ak ≡ 0 (mod b) and no proper
subsum is 0 (mod b); we call this a minimal zero-sum. The Savchev–Chen
structure theorem [11] states that if k ≥ [ b2 ]+2 then a1+ · · ·+ak ≡ 0 (mod b)
is a minimal zero-sum if and only if there is a reduced residue w (mod b)
and positive integers c1, . . . , ck such that

∑

j cj = b and aj ≡ wcj (mod b)
for all j.
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= (2N −Na,AA−Nb−a,b−A)b ≥ Nb,

which is impossible. Therefore Proposition 1 either follows by applying
Proposition 2 to A, or by applying Proposition 2 to b−A to obtain Nb− n
∈ N(b−A) which implies n ∈ NA. �

It remains to bound Na,A. We start with the following.

Lemma 3. We have Na,A ≤ b− 1. If A = {0, 1, b} then Na,A = b− 1.

Proof. Suppose that na,A = a1 + a2 + · · ·+ ar with each ai ∈ A, and r
minimal. We have r < b else two of 0, a1, a1 + a2, . . . , a1 + · · · + ab are con-
gruent mod b by the pigeonhole principle, so their difference, which is a
subsum of the ai’s is ≡ 0 (mod b). If these ai’s are removed from the sum
then we obtain a smaller element of P(A) that is ≡ a (mod b), contradict-
ing the definition of na,A. We deduce that NA ≤ b− 1. If A = {0, 1, b} then
b− 1 �∈ (b− 2)A and so NA ≥ b− 1. �

Corollary 4. Suppose that N ≥ 2b− 2. If n ≤ Nb and n �∈ E(A)
∪ (Nb− E(b−A)) then n ∈ NA.

Proof. Insert the bounds Na,A,Nb−a,b−A ≤ b− 1 from Lemma 3 into
Corollary 3. �

3.3. The proof of Theorem 1. With more effort we now prove The-
orem 1, improving upon Corollary 4 by a factor of 2, and getting close to
the best possible bound b− 2 (which, as we have seen, is as good as can be
attained when A = {0, 1, b− 1, b}). One cannot obtain a better consequence
of Corollary 3 since we have the following examples:

If A = {0, 1, b− 1, b} then N[ b
2
],A +Nb−[ b

2
],b−A = 2[ b2 ].

If A = {0, 1, 2, b} with b even then Nb−1,A +N1,b−A = b. This is a par-
ticularly interesting case as one can verify that one has “If n ≤ Nb and
n �∈ E(A) ∪ (Nb− E(b− A)) then n ∈ NA” for all N ≥ 1.

We can apply Corollary 3 to obtain Theorem 1 provided Na,A,Nb−a,b−A

≤ [ b2 ] for each a. Therefore we need to classify those A for which Na,A > b
2 .

Let (t)b is the least non-negative residue of t (mod b).
Suppose that 1 ≤ a ≤ b− 1, and write na = na,A = a1 + · · ·+ am where

m = Na,A is minimal. No subsum of a1 + · · · + am can sum to ≡ 0 (mod b)
else we remove this subsum from the sum to get a smaller sum of elements
of A which is ≡ a (mod b), contradicting the definition of na. Also the com-
plete sum cannot be ≡ 0 (mod b) else a = 0 and m = 0. Let k = m+ 1
and ak = −(a1 + · · ·+ am), so that a1 + · · ·+ ak ≡ 0 (mod b) and no proper
subsum is 0 (mod b); we call this a minimal zero-sum. The Savchev–Chen
structure theorem [11] states that if k ≥ [ b2 ]+2 then a1+ · · ·+ak ≡ 0 (mod b)
is a minimal zero-sum if and only if there is a reduced residue w (mod b)
and positive integers c1, . . . , ck such that

∑

j cj = b and aj ≡ wcj (mod b)
for all j.
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Theorem 3.1. If Na,A > b
2 then na,A is the sum of Na,A copies of some

integer h, 1 ≤ h ≤ b− 1 with (h, b) = 1. Moreover if k ∈ A with k �= 0, h, b
then (k/h)b ≥ Na,A + 1.

Proof. Above we have k = m+1 = Na,A +1 ≥ [ b2 ] + 2 so we can apply
the Savchev–Chen structure theorem. Some cj with j ≤ m must equal 1 else
b =

∑m
j=1 cj ≥ 2m > b, a contradiction. Hence h ∈ A where h = (w)b. Let

n := #{j ∈ [1,m] : cj = 1} = #{j ∈ [1,m] : aj = h} ≥ 1.
If (ℓh)b ∈ A where 1 < ℓ < b then n ≤ ℓ− 1 else we can remove ℓ copies

of h from the original sum for na,A and replace them by one copy of (ℓh)b.
If (ℓh)b < ℓh then this makes the sum smaller, contradicting the definition
of na. Otherwise this makes the number of summands smaller contradicting
the definition of Na,A.

Therefore if k is the smallest cj-value > 1, with 1 ≤ j ≤ m, then (kh)b
∈ A so that k ≥ n+ 1, and so

b−1 ≥
m
∑

j=1

cj ≥ n× 1+(m−n)× k = m+(m−n)(k−1) ≥ m+(m−n)n.

If 1 ≤ n ≤ m− 1 then this gives b− 1 ≥ m+ (m− 1) > b− 1, a contradic-
tion. Hence n = m; that is, na = h+h+ · · ·+h. Therefore hm ≡ a (mod b).
Moreover if (ℓh)b ∈ A with ℓ �= 1 then ℓ ≥ n+ 1 = m+ 1. �

We now give a more precise version of the argument in Proposition 2.

Proposition 3. Fix 0 ≤ a ≤ b− 1 and suppose

N ≥ max{Na,A,Nb−a,b−A}.

For all 0 ≤ n ≤ Nb with n ≡ a (mod b) and n �∈ E(A) ∪ (Nb− E(b−A)) we
have that n ∈ NA, except perhaps if n = na,A + jb where

(5) N −Na,A < j < Nb−a,b−A −
1

b
(na,A + nb−a,b−A).

Proof. Since na,A ∈ Na,AA, we have

na,A + jb ∈ (Na,A + j)A ∈ NA whenever 0 ≤ j ≤ N −Na,A.

The analogous statement for b−A implies that

bNb−a,b−A − nb−a,b−A + ib ∈ NA whenever 0 ≤ i ≤ N −Nb−a,b−A. �

Lemma 4. Let B be a subset of Z/bZ which generates Z/bZ additively,
with 0 ∈ B and |B| = 3. Then |kB| ≥ min{b, 2k + 1} for all k ≥ 1.
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Proof. We prove by induction on k ≥ 1 that |kB| ≥ min{b,2k+1}. For
k = 1 it follows from the hypothesis. So now suppose we know that it is true
for k − 1 with k ≥ 2. Kneser’s Theorem states that if U and V are subsets
of a finite abelian group G then

|U + V | ≥ |U +H|+ |V +H| − |H|

whereH = H(U+V ) is the stabilizer of U +V , defined byH(W ) := {g ∈ G :
g+W = W}. Therefore |kB| ≥ |(k− 1)B+H|+ |B +H|− |H|. We may as
sume that H is a proper subgroup of Z/bZ else |kB| = b+ b− b = b. In this
case we have |(k− 1)B+H| ≥ |(k− 1)B| ≥ 2k− 1. Moreover |B+H| > |H|
else B +H is a coset of H , which must be H as 0 ∈ B but this is im
possible as B generates Z/bZ. Therefore if |kB| < 2k + 1 then we must
have |H +B| = |H|+ 1. However H +B is a union of cosets of H so
|H +B| − |H| = 1 is divisible by |H|. Therefore H = {0}, and so |kB|
≥ |(k − 1)B|+ |B| − 1 = |(k − 1)B|+ 2 ≥ 2k + 1. �

Proof of Theorem 1. Suppose that N ≥ N0 := 2[ b2 ] ≥ b− 1. We will
prove the result now for N = N0; the result for all N ≥ N0 follows from
Lemma 2.

If Na,A,Nb−a,b−A ≤ [ b2 ] then the result follows from Proposition 1. Hence

we may assume that Na,A > [ b2 ] (if necessary changing A for b−A).
Theorem 3.1 implies there exists an integer h,1 ≤ h ≤ b−1 with (h, b) = 1

such that na,A = Na,A × h. We already proved the result when A has three
elements, so we may now assume it has a fourth, say {0, h, ℓ, b} ⊂ A.

Let B = {0, h, ℓ} ⊂ Z/bZ. Since B is not contained in any proper sub
group of Z/bZ (as (h, b) = 1), Kneser’s theorem (as in Lemma 4) implies
that |kB| ≥ 2k + 1.

For N0 −Na,A ≤ k ≤ b−1
2 , let S := 2k − b+Na,A + 1 so that there are

b− 2k elements in {Sh, (S + 1)h, . . . ,Na,Ah}. By the pigeonhole princi
ple, sh ∈ kB for some s, S ≤ s ≤ Na,A and therefore sh+ tb = a1 + · · · + ak
where each ai ∈ A, for some integer t. Now t ≥ 0 else we can replace sh
by a1 + · · · + ak contradicting the definition of na,A. On the other hand,
tb < sh+ tb = a1 + · · · + ak ≤ k(b− 1) and so t ≤ k. Therefore

na,A+kb = (Na,A−s)h+ (a1+ · · · +ak) + (k−t)b ∈ (Na,A−s+2k−t)A

⊂ (Na,A − S + 2k − t)A = (b− 1− t)A ⊂ N0A.

We have filled in the range (5) for all j ≤ b−1
2 , which gives the whole of (5)

if Nb−a,b−A ≤ [ b2 ]. Therefore we may now assume that Nb−a,b−A > [ b2 ].

Since Nb−a,b−A > [ b2 ] we may now rerun the argument above and obtain
that

nb−a,b−A + kb ∈ N0(b−A) for all k ≤
b− 1

2
,
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Proof. We prove by induction on k ≥ 1 that |kB| ≥ min{b,2k+1}. For
k = 1 it follows from the hypothesis. So now suppose we know that it is true
for k − 1 with k ≥ 2. Kneser’s Theorem states that if U and V are subsets
of a finite abelian group G then

|U + V | ≥ |U +H|+ |V +H| − |H|

whereH = H(U+V ) is the stabilizer of U +V , defined byH(W ) := {g ∈ G :
g+W = W}. Therefore |kB| ≥ |(k− 1)B+H|+ |B +H|− |H|. We may as
sume that H is a proper subgroup of Z/bZ else |kB| = b+ b− b = b. In this
case we have |(k− 1)B+H| ≥ |(k− 1)B| ≥ 2k− 1. Moreover |B+H| > |H|
else B +H is a coset of H , which must be H as 0 ∈ B but this is im
possible as B generates Z/bZ. Therefore if |kB| < 2k + 1 then we must
have |H +B| = |H|+ 1. However H +B is a union of cosets of H so
|H +B| − |H| = 1 is divisible by |H|. Therefore H = {0}, and so |kB|
≥ |(k − 1)B|+ |B| − 1 = |(k − 1)B|+ 2 ≥ 2k + 1. �

Proof of Theorem 1. Suppose that N ≥ N0 := 2[ b2 ] ≥ b− 1. We will
prove the result now for N = N0; the result for all N ≥ N0 follows from
Lemma 2.

If Na,A,Nb−a,b−A ≤ [ b2 ] then the result follows from Proposition 1. Hence

we may assume that Na,A > [ b2 ] (if necessary changing A for b−A).
Theorem 3.1 implies there exists an integer h,1 ≤ h ≤ b−1 with (h, b) = 1

such that na,A = Na,A × h. We already proved the result when A has three
elements, so we may now assume it has a fourth, say {0, h, ℓ, b} ⊂ A.

Let B = {0, h, ℓ} ⊂ Z/bZ. Since B is not contained in any proper sub
group of Z/bZ (as (h, b) = 1), Kneser’s theorem (as in Lemma 4) implies
that |kB| ≥ 2k + 1.

For N0 −Na,A ≤ k ≤ b−1
2 , let S := 2k − b+Na,A + 1 so that there are

b− 2k elements in {Sh, (S + 1)h, . . . ,Na,Ah}. By the pigeonhole princi
ple, sh ∈ kB for some s, S ≤ s ≤ Na,A and therefore sh+ tb = a1 + · · · + ak
where each ai ∈ A, for some integer t. Now t ≥ 0 else we can replace sh
by a1 + · · · + ak contradicting the definition of na,A. On the other hand,
tb < sh+ tb = a1 + · · · + ak ≤ k(b− 1) and so t ≤ k. Therefore

na,A+kb = (Na,A−s)h+ (a1+ · · · +ak) + (k−t)b ∈ (Na,A−s+2k−t)A

⊂ (Na,A − S + 2k − t)A = (b− 1− t)A ⊂ N0A.

We have filled in the range (5) for all j ≤ b−1
2 , which gives the whole of (5)

if Nb−a,b−A ≤ [ b2 ]. Therefore we may now assume that Nb−a,b−A > [ b2 ].

Since Nb−a,b−A > [ b2 ] we may now rerun the argument above and obtain
that

nb−a,b−A + kb ∈ N0(b−A) for all k ≤
b− 1

2
,
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and therefore if na,A + jb  ∈ E(b− A) then

na,A + jb ∈ N0A for all j ≥
b− 1

2
,

since

N0 −
b− 1

2
−

na,A + nb−a,b−A

b
≤ b−

b− 1

2
− 1 =

b− 1

2
. �

4. Higher dimensional postage stamp problem

Let A = {a1, . . . , ak} ⊂ Zn be a finite set of vectors with k ≥ n+2. After
translating A, we assume that 0 ∈ A so that

0 ∈ A ⊂ 2A ⊂ · · · .

We are interested in what elements are in NA. Assume that

ΛA := �A�Z = Z
n.

It is evident from the definitions that

NA ⊂ NH(A) ∩ P(A) = (NH(A) ∩ Z
n) \ E(A)

Let b ∈ A and suppose that x ∈ NA so that x =
∑

a∈A caa where the ca are
non-negative integers that sum to N . Therefore Nb− x = Nb−

∑

a∈A caa =
∑

a∈A ca(b−a) ∈ N(b−A) ⊂ P(b−A). This implies that Nb−x  ∈ E(b−A),
and so x  ∈ Nb− E(b−A). Therefore

NA ⊂ (NH(A) ∩ Z
n) \ EN (A)

where

EN (A) := NH(A) ∩
(

E(A) ∪
⋃

a∈A

(aN − E(a−A))
)

.

In Theorem 2 we will show that this is an equality for large N . We use two
classical lemmas to prove this, and include their short proofs.

4.1. Two classical lemmas.

Lemma 5 (Carathéodory’s theorem). Assume that 0 ∈ A and A−A
spans Rn. If v ∈ NH(A) then there exists a subset B ⊂ A which con-

tains n+ 1 elements, such that B −B is a spanning set for Rn, for which

v ∈ NH(B).
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Note that the condition B −B spans Rn is equivalent to the condition
that B is not contained in any hyperplane. In two dimensions, Lemma 5
asserts that each point of a polygon lies in a triangle (which depends on that
point) formed by 3 of the vertices.

Proof. Since v ∈ NH(A) we can write

v =
∑

a∈A

caa ∈ NH(A), with 0 ≤
∑

a∈A

ca ≤ N,

where each ca ≥ 0. We select the representation that minimizes #B where

B = {a : ca > 0},

Select any b0 ∈ B. We now show that the vectors b− b0, b ∈ B, b �= b0 are
linearly independent over R. If not we can write

∑

b∈B\{b0}

eb(b− b0) = 0,

where the eb are not all 0. Let eb0 = −
∑

b eb so that
∑

b∈B ebb = 0 and
∑

b∈B eb = 0, and at least one eb is positive. Now let

m = min
b: eb>0

cb/eb,

where cβ = meβ with β ∈ B. Then v =
∑

b∈B(cb −meb)b where each
cb −meb ≥ 0 with

∑

b∈B

(cb −meb) =
∑

b∈B

cb −m
∑

b∈B

eb =
∑

b∈B

cb ∈ [0,N ].

However the coefficient cβ −meβ = 0 and this contradicts the minimality of
#B.

Since the vectors b− b0, b ∈ B, b �= b0 are linearly independent, we can
add new elements of A to the set B until we have n+ 1 elements, and then
we obtain the result claimed. �

For u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Zn
≥0, we write u ≤ v if ui ≤ vi for

each i = 1, . . . , n. The following is a classical lemma in additive combina-
torics:5

Lemma 6 (Mann’s lemma). Let S ⊂ Zn
≥0. There is a finite subset T ⊂ S

such that for all s ∈ S there exists t ∈ T for which t ≤ s.

5Formerly known as “additive number theory”.
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Proof. We prove by induction on n ≥ 1. For convenience we will write
T ≤ S, if for all s ∈ S there exists t ∈ T for which t ≤ s. For n = 1 let T = {t}
where t is the smallest integer in S. For n > 1, select any element (s1, . . . , sn)
∈ S. Define Sj,r := {(u1, . . . , un) ∈ S : uj = r} for each j = 1, . . . , n and
0 ≤ r < sj . Let φj((u1, . . . , un)) = (u1, . . . , uj−1, uj+1, . . . , un). The set

φj(Sj,r) ⊂ Z
n−1
≥0 and so, by the induction hypothesis, there exists a finite sub-

set Tj,r ⊂ Sj,r such that φj(Tj,r) ≤ φj(Sj,r), which implies that Tj,r ≤ Sj,r as
their jth co-ordinates are the same. Now let

T = {(s1, . . . , sn)}
n
⋃

j=1

sj−1
⋃

r=0

Tj,r,

which is a finite union of finite sets, and so finite. If s ∈ S then either
(s1, . . . , sn) ≤ s, or s ∈ Sj,r for some j, 1 ≤ j ≤ n, and some r, 0 ≤ r < sj .
Hence T ≤ S. �

Lemma 7 (Mann’s lemma, revisited). Let S ⊂ Z
n
≥0 with the property that

if s ∈ S then s+Zn
≥0 ∈ S. Then E := Zn

≥0 \ S is a finite union of sets of the

form: For some I ⊂ {1, . . . , n}

{

(x1, . . . , xn) : xi ∈ Z≥0 for each i ∈ I
}

with xj fixed if j �∈ I.

Proof. By induction on n ≥ 1. In 1-dimension, S is either empty so
that E = Z≥0, or S has some minimum element s, in which case E is the
finite set of elements 0, 1, . . . , s− 1.

If n > 1 then in n-dimensions either S is empty so that E = Z
n
≥0 or S

contains some element (s1, . . . , sn). Therefore if (x1, . . . , xn) ∈ E there must
exist some k with xk ∈ {0, 1, . . . , sk − 1}. For each such k, xk we apply the
result to Sxk

:= {(u1, . . . , un) ∈ S : uk = xk}, which is n− 1 dimensional.
�

4.2. The proof of Theorem 2. For any v ∈ P(A) define

µA(v) := min

{

∑

a∈A

na : v =
∑

a∈A

naa, each na ∈ N

}

,

and µA(V ) := maxv∈V µA(v) for any V ⊂ P(A). By definition, V ⊂ NA if
and only if N ≥ µA(V ).

The heart of the proof of Theorem 2 is contained in the following result.

Proposition 4. Let 0 ∈ B ⊂ A ⊂ Zn where ΛA = Zn, and B∗ = B \{0}
contains exactly n elements, which span Rn (as a vector space over R). There
exists a finite subset A+ ⊂ P(A) such that if v ∈ P(A) then there is some
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w = w(v) ∈ A+ for which v−w ∈ P(B). (That is, P(A) = A+ + P(B).) Let

NA,B = µA(A
+) so that A+ ⊂ NA,BA. If N ≥ NA,B and

v ∈ (N −NA,B)H(B) ∩ Z
n

but v �∈ E(A) then v ∈ NA.

Proof. The fundamental domain for the lattice ΛB := �B�Z is

R
n/ΛB

∼= F(B) :=

{

∑

b∈B∗

cbb : each cb ∈ [0, 1)

}

.

Since F(B) is bounded, we see that

L := F(B) ∩ Z
n

is finite. The sets ℓ+ΛB partition Zn as ℓ varies over ℓ ∈ L. For each ℓ ∈ L
we define

Aℓ = (ℓ+ΛB) ∩ P(A),

which partition P(A) into disjoint sets, so that P(A) =
⋃

ℓ∈LAℓ. Define
Sℓ ⊂ N

n by

Aℓ :=

{

ℓ+
∑

b∈B∗

cbb : (c1, . . . , cn) ∈ Sℓ

}

⊂ CB .

By Mann’s lemma (Lemma 6), there is a finite subset Tℓ ⊂ Sℓ such that for
each s ∈ Sℓ there is a t ∈ Tℓ satisfying t ≤ s. We may assume that Tℓ is
minimal, and define

A+
ℓ =

{

ℓ+
∑

b∈B∗

cbb : (c1, . . . , cn) ∈ Tℓ

}

⊂ Aℓ.

By definition, for any v ∈ Aℓ there exists w ∈ A+
ℓ such that v − w ∈ P(B)

(for we write v = ℓ+ s ·B and let w = ℓ+ t ·B where t ≤ s, as above). That
is, Aℓ = A+

ℓ + P(B).

Let A+ = ∪ℓ∈LA
+
ℓ which is a finite union of finite sets, and so is finite, and

A+ ⊂ P(A). Moreover P(A) =
⋃

ℓ∈LAℓ =
⋃

ℓ∈LA+
ℓ +P(B) = A++P(B) as

claimed.
Now suppose that v ∈ (N −NA,B)H(B) ⊂ CB ⊂ CA. Since the vectors

in B are linearly independent there is a unique representation v =
∑

b vbb as
a linear combination of the elements of B, and has each vb ≥ 0 with

∑

b vb
≤ N −NA,B .
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Also suppose v ∈ Zn but v �∈ E(A) so that v ∈ P(A), as v ∈ CA ∩ Zn.
Therefore there exists a unique ℓ ∈ L for which v ∈ Aℓ, and w = w(v) =
∑

bwbb ∈ A+
ℓ for which each 0 ≤ wb ≤ vb. Therefore

v − w =
∑

b

(vb − wb)b ∈ UB

where U :=
∑

b(vb−wb) ≤
∑

b vb ≤ N −NA,B and so v − w ∈ (N −NA,B)B.
By definition, w ∈ NA,BA, and so

v = (v−w)+w ∈ (N−NA,B)B+NA,BA ⊂ (N−NA,B)A+NA,BA = NA. �

Proof of Theorem 2. For every subset B ⊂ A which contains n+ 1
elements, such that B −B is a spanning set for Rn, define N∗

A,B := NA,B +
∑

b∈B,b�=0Nb−A,b−B , and let NA be the maximum of these N∗
A,B . If N ≥ NA

and v ∈ NH(A) then v ∈ NH(B) for some such set B, by Lemma 5. If we
also have v ∈ Z

n but

v �∈ E(A) ∪
⋃

b∈B,b�=0

(Nb− E(b− A))

then we can write v =
∑

b∈B cbb for real cb ≥ 0 with

∑

b∈B

cb = N ≥ NA,B +
∑

b∈B,b�=0

Nb−A,b−B .

Therefore
• either c0 ≥ NA,B in which case

v =
∑

b∈B,b�=0

cbb ∈ (N − c0)H(B) ⊂ (N −NA,B)H(B)

as well as v ∈ Zn \ E(A) = P(A), and so v ∈ NA by Proposition 4;
• or there exists β ∈ B, β �= 0 for which cβ ≥ Nβ−A,β−B so that

βN − v =
∑

b∈B

cb(β − b) ∈ (N − cβ)H(β −B) ⊂ (N −Nβ−A,β−B)H(β −B).

Now v, β ∈ Z
n and so βN − v ∈ Zn. Also v �∈ βN −E(β −A) by hypothesis,

and so βN − v �∈ E(β −A). Therefore βN − v ∈ N(β −A) by Proposition 4,
giving that v ∈ NA. �
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5. The structure and size of the exceptional set

Proposition 5. Let 0 ∈ B ⊂ A ⊂ Z
n where ΛA = Z

n, and B∗ = B \{0}
contains exactly n elements, which span Rn, so that CB =

{
∑

b∈B∗ xbb : each

xb ≥ 0
}

. There exist rb ≥ 0 such that
{
∑

b∈B∗ xbb : each xb ≥ rb
}

∩ Zn ⊂
P(A).

We deduce that if x :=
∑

b∈B∗ xbb ∈ (CB ∩ Zn) ∩ E(A) then 0 ≤ xb < rb
for some b. In other words x is at a bounded distance from the boundary
generated by B \ {b}. ([13, Theorem 2] gives a related result but is difficult
to interpret in the language used here.)

Proof. We will use the notation of Proposition 4. The elements of
B∗ are linearly independent so that β :=

∑

b∈B b lies in the interior of CB .

Therefore if the integer M is sufficiently large then γ := β + 1
M

∑

a∈A a also
lies in the interior of CB .

Now as A generates Zn as a vector space over Z, we know that for each
ℓ ∈ L there exist integers cℓ,a such that ℓ =

∑

a∈A cℓ,aa. Let c ≥ 0 be an inte-
ger ≥ maxℓ∈L,a∈A(−cℓ,a). The set L′ = cMγ + L of Zn-points is a translate
of L that can be represented as

cMγ +
∑

a∈A

cℓ,aa = cMβ +
∑

a∈A

(c+ cℓ,a)a ∈ P(A) for each ℓ ∈ L.

The translation is by cMγ ∈ CB so L′ = cMγ + L ⊂ CB ; moreover L′ gives
a complete set of representatives of R

n/ΛB and so every lattice point in
L′ + P(B) belongs to P(A). We can re-phrase this as

(cMγ + CB) ∩ Z
n ⊂ P(A).

Therefore if cMγ =
∑

b∈B∗ rbb and x :=
∑

b∈B∗ xbb ∈ Zn, then x ∈ P(A) if
each xb ≥ rb. �

Proof of Theorem 3. We again use Lemma 5 to focus on sets B ⊂ A
which contain n+1 elements, such that B −B is a spanning set for Rn. We
translate B so that 0 ∈ B. As in the proof of Proposition 4, we fix ℓ ∈ L
(which is a finite set). Proposition 5 shows that Sℓ is non-empty. Lemma
7 yields the structure of Zn

≥0 \ Sℓ, which is not all of Zn
≥0 as Sℓ contains an

element. This implies that the structure of (ℓ+ΛB) ∩ E(A) is as claimed in
Theorem 3. The result follows as E(A) is a finite union of such sets. �
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