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that h(n, c) < c′
√
n. A clever construction of Fox and Loh [14] shows that in

fact for any fixed c < 1/4 , h(n, c) ≤ nO(1/ log logn). While this is still very far
from the lower bound based on the triangle removal lemma and its improved
quantitative version in [13], which provides a lower bound exponential in
log∗ n for any fixed c > 0, it does show that h(n, c) = no(1). Note that the
constant 1/4 is tight, as it is known that any n-vertex graph with ⌊n2/4⌋+1
edges must contain an edge lying in at least n/6 triangles (see [16]).

The construction of Fox and Loh triggered another surprising result in
the study of a closely related problem. The first author, Moitra and Sudakov
[1] constructed (r, t)-Ruzsa–Szemerédi graphs on n vertices with r = n1−o(1)

and rt = (1− o(1))
(

n
2

)

. A graph is an (r, t)-Ruzsa–Szemerédi graph if its
set of edges can be partitioned into t pairwise disjoint induced matchings,
each of size r. These graphs were introduced in a paper by Ruzsa and Sze-
merédi [22]. They used these graphs, together with the regularity lemma of
Szemerédi [24] to tackle the so called (6, 3)-problem dealing with the maxi-
mum possible number of edges of a 3-uniform hypergraph on n vertices that
contains no 3 edges spanning at most 6 vertices. Ruzsa–Szemerédi graphs
have been studied extensively since, finding applications in Combinatorics,
Complexity Theory and Information Theory. A natural line of research is
to find dense graphs with relatively large r. One such construction is given
by Birk, Linial and Meshulam [4], with r = (logn)Ω(log logn/(log log logn)2) and
t = Ω(n2/r). Meshulam conjectured that there are no (r, t)-Ruzsa–Szemerédi
graphs with both rt = Θ(

(

n
2

)

) and r ≥ nΩ(1). The construction from [1] dis-
proved Meshulam’s conjecture in a strong form, vastly improving the one
in [4].

The first aim of the present paper is to describe these results in communi-
cation complexity terms by providing algorithmic Number-On-the-Forehead
(NOF, for short) protocols that entail them. Ruzsa–Szemerédi graphs are
closely related to the NOF model in communication complexity. This con-
nection (without an explicit reference to [22]) appeared first in [6], see also
[19] for a more recent detailed account. They are related to the communi-
cation complexity of 2-dimensional permutations and sub-permutations (see
details in the sequel). We observe here that communication protocols in
the NOF model for 2-dimensional permutations also imply upper bounds on
h(n, c).

We give algorithmic NOF protocols that derive the constructions of dense
Ruzsa–Szemerédi graphs from [1] and also the results of Fox and Loh [14].
Although all our constructions can also be described combinatorially we
believe that their derivation using communication protocols provides new
insights, leading to explicit simple constructions which supply a clear link
between these results and the original ones of Ruzsa and Szemerédi [22].

The second aim of this paper is to extend the above mentioned results
to uniform hypergraphs. To do so we extend the protocols to any number

Acta Mathematica Hungarica

Acta Math. Hungar.
DOI: 0

NUMBER ON THE FOREHEAD PROTOCOLS

YIELDING DENSE RUZSA–SZEMERÉDI
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ties. We also generalize the above protocols to more than three players, in order to
construct dense uniform hypergraphs in which every edge lies in a positive small
number of simplices, extending a result of Fox and Loh.

1. Introduction

For an integer n and a positive real c, let h(n, c) denote the maximum
number so that any n vertex graph with at least cn2 edges in which every
edge is contained in a triangle, must contain an edge lying in at least h(n, c)
triangles. Erdős and Rothschild asked to determine or estimate h(n, c), see
[5], [9], [10], [11]. Szemerédi observed that the triangle removal lemma (see
[22]) implies that for every fixed c > 0, h(n, c) tends to infinity with n, and
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Key words and phrases: Ruzsa–Szemerédi graph, induced matching, communication com-

plexity, NOF protocol.
Mathematics Subject Classification: 05C35, 05C65, 94A99.

0236-5294/$20.00 c� 0 Akadémiai Kiadó, Budapest
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that h(n, c) < c′
√
n. A clever construction of Fox and Loh [14] shows that in
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log∗ n for any fixed c > 0, it does show that h(n, c) = no(1). Note that the
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Although all our constructions can also be described combinatorially we
believe that their derivation using communication protocols provides new
insights, leading to explicit simple constructions which supply a clear link
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k > 3 of players. Let Kk = K
(k−1)
k denote the complete (k − 1)-uniform hy-

pergraph ((k − 1)-graph, for short) on k vertices. For an integer n and a
positive real c, let hk−1(n, c) denote the maximum number so that any n
vertex (k − 1)-graph with at least cnk−1 edges, in which every edge is con-
tained in a copy of Kk, must contain an edge lying in at least hk−1(n, c)
such copies. By the hypergraph removal lemma proved in [15] and indepen-
dently in [21], [20], for any fixed positive c, hk−1(n, c) tends to infinity with
n. Indeed, for example, if G is an n-vertex 3-graph with at least cn3 edges,
and each edge is contained in at least 1 and at most h = h3(n, c) copies of

K = K4, then G must contain at least cn3

4h pairwise edge-disjoint copies of K.
Hence at least that many edges have to be omitted from G in order to de-
stroy all copies of K, and thus by the hypergraph removal lemma if h is
a constant then G must contain at least Ω(n4) copies of K, implying that
some edges are contained in Ω(n) such copies, contradiction.

Unlike the graph case, the maximum possible number exk−1(n,Kk) of
edges of an n-vertex (k − 1)-graph with no copies of Kk is not known. The
determination of this number is an old problem posed by Turán [23], and
Erdős offered a significant award for its solution, see [8]. By a general result
proved in [17], the limit of the ratio

exk−1(n,Kk)

nk−1

as n tends to infinity exists. This is a positive number called the Turán
density of Kk. Let dk = d(Kk) denote this number, which is conjectured
to be 5/9 for k=4. See [7] and its references for some of the work on this
problem. Although dk is not known, we can prove the following.

Theorem 1.1. For any fixed c < dk there is some b > 0 so that hk−1(n, c)

≤ nb/ log logn.

Note that by the results of [12] on supersaturated hypergraphs if c > dk
then any (k−1)-graph on n vertices with at least cnk−1 edges contains Ω(nk)
copies of Kk. Therefore, for any such c there is a constant b = b(c) > 0 so
that hk−1(n, c) ≥ bn, implying that the dk bound in Theorem 1.1 is tight.

Our protocols also provide an extension of the main result of [1]. This
extension is a construction of nearly complete (k − 1)-graphs whose edges
can be partitioned into a nearly linear number of subgraphs, each being
what we call here a weakly-induced partial Steiner system. Recall that a
(k − 1)-graph is a partial Steiner system if no two of its edges share k − 2
common vertices. A subgraph H of a (k − 1) graph G is a weakly-induced
partial Steiner system if it is a partial Steiner system and there is no edge A
of G−H so that each of the (k − 1) subsets of cardinality k − 2 of A is
contained in an edge of H . Note that for the special case k − 1 = 2 this is
equivalent to the assumption that H is an induced matching in the graph G.
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It is clear that any partial Steiner system as above on n vertices can-
not contain more than 1

k−1

(

n
k−2

)

< nk−2 edges, and hence any (k− 1)-graph

with at least bnk−1 edges cannot be partitioned into less than Θ(n) weakly-
induced partial Steiner systems. The hypergraph removal lemma together
with the definition above of weakly-induced partial Steiner systems implies
that the number of edges in any such system is o(nk−2). Therefore here, too,
the number of such systems in a partition as above cannot be Θ(n), that is,
for any fixed positive b, this number divided by n must tend to infinity with
n. The following result shows, however, that this number can be smaller
than n1+ε for any positive ε.

Theorem 1.2. For every integer k ≥ 3, there is an absolute constant
c > 0 so that for sufficiently large n there is a (k − 1)-graph on n vertices
with at least

(1− o(1))

(

n

k − 1

)

edges, whose edges can be decomposed into at most n1+c/ log logn subgraphs,
each being a weakly-induced partial Steiner system.

The rest of the paper contains the proofs of the above two theorems.
The organization is as follows. Section 2 contains background on communi-
cation complexity and high-dimensional permutations, a recipe for proving
Theorem 1.1 and Theorem 1.2 using communication protocols, and a simple
application of this recipe to construct a graph on n vertices and Ω(n2/ logn)
edges, decomposable into n1+O(1/ log logn) induced matchings. Section 3 con-
tains the application of this recipe to prove Theorem 1.1 and Theorem 1.2.
The details of the graphs and hypergraphs produced by this recipe, and the
proof that it works correctly are given in Section 4. The final Section 5 con-
tains a brief summary. All logarithms throughout the paper are in base 2,
unless otherwise specified.

2. From communication to graphs and hypergraphs

2.1. Background and notation.

General notation. We let [n] = {1, 2, . . . , n}. A k-tuple is denoted
either (x1, . . . , xk) or in abbreviated form �x.

Communication complexity. We start with a few basic communi-
cation complexity notions. The definitions we give are a simplified version
and adjusted to our needs. The interested reader can see [18] for a more
comprehensive survey. In the NOF model k players wish to compute a func-
tion f : X1 ×X2 × · · · ×Xk → {0,1}. The players agree on a communication
protocol P . Then, an input (x1, x2, . . . , xk) is presented to the players so
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n
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player i sees all input except xi, we sometimes refer to this player as the
xi-player. The players take turns to write messages on a blackboard accord-
ing to the agreed protocol P . Each message of each player may depend on
the part of the input seen by this player, and except for the last player it can
also depend on the messages written so far on the blackboard. The message
written by the last player depends only on the part of the input he sees, and
is independent of the content of the blackboard. One way to visualize this
is as if the last player wrote a message first and then did not participate in
the rest of the transaction. The value of the function can be computed by
all players from the content of the board at the end of the protocol. The
cost of a protocol, denoted C(P ), is the maximal number of bits written on
the board, over all inputs, by the first k − 1 players1.

The string of bits written on the blackboard for a given input �x =
(x1, . . . , xk) is called a transcript, denoted T (�x). We let Ti(�x) for i = 1, . . . , k
be the part of this transcript that is written by player i. Let T be a tran-
script, the subset S = S(T ) of vectors �x ∈ X1 × ...×Xk satisfying T (�x) = T
and f(�x) = 1, is called a cylinder intersection2. Note that a cylinder inter-
section is defined with respect to a function and a protocol for this function,
we specify the function and protocol when it is necessary for a clear presen-
tation and otherwise omit them.

We say that a subset of entries S is symmetric if membership in S does
not depend on the order of the first k − 1 entries. That is, S is symmetric
if (x1, . . . , xk−1, xk) ∈ S if and only if (xπ(1), . . . , xπ(k−1), xk) ∈ S for every
permutation π on {1, 2, . . . , k − 1}.

High-dimensional permutations. A line in [n]k is a subset L ⊂ [n]k

such that k − 1 of the coordinates in L are fixed, and the remaining coordi-
nate takes all possible values. Following is a simple example with n = 5 and
k = 3:

L =
{

(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (1, 5, 4)
}

.

In this example the first and third coordinates are fixed, and the second co-
ordinate takes all possible values in [5] = {1, 2, 3, 4, 5}. There is a distinct
line for every choice of unconstrained coordinate i ∈ [k], and a choice of val-
ues to fix the remaining coordinates. A line in [n1]× · · · × [nk] is defined
similarly. We say that the line is in the ith dimension if the unconstrained
coordinate is i.

1 In the basic communication complexity definition all players can see each others messages,
and the cost of the protocol depends also on the message of the last player. The version of com-
munication complexity we gave here is from the one-sided model. Since we only need this version,
we simplify our notations.

2The usual definition of cylinder intersection is more general, what we defined here is referred
to as a 1-monochromatic cylinder intersection. Since we are only interested in 1-monochromatic
cylinder intersections we abbreviate the notation.
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A (k − 1)-dimensional permutation is a function f : [n]k → {0, 1} such
that for every line L in [n]k there is exactly one �x ∈ L such that f(�x) = 1.
A sub-permutation is a function f : [n]k−1× [N ] → {0,1} such that every line
in the kth dimension contains a single 1, and every other line contains at
most one 1.

For example, letG be a group, define f : Gk → {0,1} by f(x1, . . . , xk) = 1
if and only if x1 + x2 + · · ·+ xk = 0. Then f is a permutation. Let H be a
subset of G, then the function h : Hk−1 ×G → {0, 1} defined similarly to f ,
is a subpermutation.

A weak permutation is a function f : [n]k → {0, 1} such that every line
contains at most one 1entry, and a weak sub-permutation is defined sim
ilarly: it is an f : [n]k−1 × [N ] → {0, 1} with N ≥ n such that every line
contains at most one 1entry.

Ruzsa–Szemerédi graphs and hypergraphs. As mentioned in the
introduction, a graph is an (r, t)Ruzsa–Szemerédi graph if its set of edges
can be partitioned into t pairwise disjoint induced matchings, each of size r.
Such a graph obviously has rt edges. A challenge in constructing Ruzsa–
Szemerédi graphs is to make the density of edges as large as possible while
keeping the number of matchings relatively low. We are therefore less con
cerned with the size of each matching, and only worry about the number of
matchings and the density of the edges.

There is a natural way to extend the notion of Ruzsa–Szemerédi graphs
to hypergraphs, by considering Steiner systems S(k − 2, k − 1). A Steiner
system S(t− 1, t) in a set V , is a family of telement subsets of V (called
blocks) such that each (t− 1)element subset of V is contained in exactly one
block. A partial Steiner system is defined similarly with the exception that
each (t− 1)element subset of V is contained in at most one block. Recall
that a subgraph H of a tgraph G is called a weaklyinduced partial Steiner
system if it is a partial Steiner and there is no edge of G−H such that each
of its subsets of cardinality t− 1 is contained in an edge of H .

For a natural number k > 2, and a (k − 1)graph G = (V,E) we are
interested in partitioning E into weakly induced partial Steiner systems
S(k−2, k−1). Note that if V is the set of vertices of a graph, then a weakly
induce partial Steiner system S(1, 2) in G is an induced matching. Thus,
this induced definition extends the notion of a Ruzsa–Szemerédi graph.

2.2. A recipe. Given a function f : [n]k−1 × [N ] → {0, 1}, a protocol
P for f , and a transcript T of the last player, denote

Sk(T ) =
{

(x1, . . . , xk) ∈ [n]k−1 × [N ] :

Tk(x1, . . . , xk) = T and f(x1, . . . , xk) = 1
}

.

Next we describe a recipe for generating Ruzsa–Szemerédi graphs and hy
pergraphs, as well as upper bounds on hk−1(n, c), from NOF protocols.
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to hypergraphs, by considering Steiner systems S(k − 2, k − 1). A Steiner
system S(t− 1, t) in a set V , is a family of telement subsets of V (called
blocks) such that each (t− 1)element subset of V is contained in exactly one
block. A partial Steiner system is defined similarly with the exception that
each (t− 1)element subset of V is contained in at most one block. Recall
that a subgraph H of a tgraph G is called a weaklyinduced partial Steiner
system if it is a partial Steiner and there is no edge of G−H such that each
of its subsets of cardinality t− 1 is contained in an edge of H .

For a natural number k > 2, and a (k − 1)graph G = (V,E) we are
interested in partitioning E into weakly induced partial Steiner systems
S(k−2, k−1). Note that if V is the set of vertices of a graph, then a weakly
induce partial Steiner system S(1, 2) in G is an induced matching. Thus,
this induced definition extends the notion of a Ruzsa–Szemerédi graph.
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Recipe 1 (from protocols to graphs and hypergraphs).
1. Choose a weak sub-permutation f : [n]k−1 × [N ] → {0, 1},

for natural numbers n, N and k > 2.
2. Construct a communication protocol P for f .
3. Pick a transcript T of the last player so that Sk(T ) is sym-

metric, and let S = Sk(T ).

The following theorem describes the outcome when following Recipe 1.

Theorem 2.1. Let P be a protocol found in the second step of Recipe 1,
and let S be the subset of inputs picked in the last step. Let p = |S|/nk−1,
γ = C(P ) and N ′ = N · 2γ , then

1. There is an (explicitly defined) (k− 1)-graph on n vertices whose edge
density is p, that is the union of N ′ weakly-induced partial Steiner systems
S(k − 2, k − 1).

2. If p = 1− o(1), then hk−1(n, c) ≤ (N ′/n)2 for c < dk. Here, the con-
struction of the (k − 1)-graph that gives the bound is also explicit, given
explicit constructions of (k − 1)-graphs of density dk − o(1) which contain
no Kk.

We defer the proof of Theorem 2.1 and the explicit definition of the
graphs produced by Recipe 1 to Section 4. In the next section we give a sim-
ple example of how Theorem 2.1 can be applied, then in Section 3 we apply
it to prove Theorems 1.1 and 1.2.

2.3. Applying Theorem 2.1 – an example. We apply Theorem 2.1
to prove:

Lemma 2.2. There is a graph on n vertices with edge density Ω(1/ logn)
that is the union of n1+1/Ω(log logn) induced matchings.

Proof. We follow the steps of Recipe 1:

Choosing the function. Let q, d > 1 be natural numbers, denote n =
qd, and define Zq,d = {1

2(x+y) : x, y ∈ [q]d}. Denote by gq,d : ([q]
d)2×Zq,d →

{0, 1} the function satisfying gq,d(x, y, z) = 1 if and only if x+ y = 2z (here

addition is in R
d). It is not hard to verify that gq,d is a sub-permutation.

Denote N = Nq,d = |Zq,d|, then

N ≤ (2q)d = qd · 2d = n1+1/ log q.

Since log logn = log d+ log log q, we have that N ≤ n1+1/Ω(log logn) as long
as d ≤ qc for some constant c. We will later choose d = q4.

The protocol. Next we present a protocol for gq,d.
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Protocol 1 (a protocol for gq,d).
1. The z-player computes �x− y�22, and writes the result on

the board.
2. The y-player writes 1 iff �x− y�22 = 4�x− z�22.
3. The x-player writes 1 iff �x− y�22 = 4�y − z�22.

At the end, all players know the value of the function. Indeed, the value
of the function is 1 if the last two bits written on the board are both equal
to 1, and 0 otherwise.

The cost of the protocol. The cost of the protocol is C(P ) = 2, as
the first two players send only 2 verification bits.

The choice of S. By the Chernoff–Hoeffding’s inequality (c.f., e.g.,
[2]), when x, y ∈ [q]d are drawn randomly, uniformly and independently, then
the quantity �x− y�22 computed by the third player satisfies

P
(
∣

∣�x− y�22 − E(�x− y�22)
∣

∣ ≥ t
)

≤ 2e−
2t2

dq4 .

Thus, with constant probability, �x− y�22 takes one of
√
dq2 values. There

is, therefore, a transcript T for the third player such that |S3(T )| ≥
Ω(n2/

√
dq2). If we take d = q4 we get |S3(T )| ≥ Ω(n2/d) ≥ Ω(n2/ logn).

The fact that S3(T ) is symmetric is easy to verify. Lemma 2.2 now follows
from Theorem 2.1, part 1. �

Note that we could improve the density of the graph in Lemma 2.2 to
Ω(log logn/ logε n) for any constant ε > 1/2 by taking d = qc for an appro-
priately chosen large constant c. This seems to be the best one can get when
using Protocol 1 though. In the next section we use a variant of this protocol
in which the first two players participate more, in order to save communica-
tion bits of the last player. This will allow us to increase the density to near
optimal.

3. Applying Theorem 2.1 to prove Theorems 1.1 and 1.2

3.1. The case k = 3.

Choosing the function. The function we choose is gq,d, defined in
Section 2.3. We later fix d = q5.

The protocol. For a natural number r let Gr = (V,Er) be the graph
with V = [q]d, where d is even, and Er = {x, y : �x− y�22 ≤ r} (later we take

r =
√
d ). The players agree on a proper coloring χ of G2r by d2r + 1 colors,

where d2r is its maximum degree. Note that µ = E(�x− y�22) = 1
6d(q

2 − 1).
Indeed, by linearity of expectation and the fact that the expectation of the
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product of two independent random variables is the product of their expecta-
tion µ = d(2E(z2)− (2E(z))2), where z is a uniform random variable on [q].
For such z, E(z2) = (q + 1)(2q+ 1)/6 and E(z) = (q + 1)/2 providing the
above value of µ. The players also agree on some partition P of [0, dq2] into
intervals of length r2 +O(1). The players choose P that satisfies the follow-
ing: the number of intervals in the partition is ⌈dq2/r2⌉, and the number µ
is in the middle of the interval containing it. As an example, the players
can choose a partition which is a translation of the partition in which each
number L is placed in part number ⌈ L

r2 ⌉. The translation is taken so that µ

lies in the middle of its interval. Let Ir : [0, dq
2] → {0, 1, . . . , dq2/r2} map a

number in [0, dq2] to the index of the interval containing it, according to P .
Given an input (x, y, z), the players then use the following protocol:

Protocol 2 (a protocol for gq,d).
1. The z-player writes Ir(�x− y�22) on the board.
2. The y-player verifies that Ir(�x− y�22) = Ir(4�x− z�22), and

writes 1 on the board iff this is the case.
3. The x-player verifies that Ir(�x− y�22) = Ir(4�y− z�22), and

writes 1 on the board iff this is the case.
4. If one of the last two bits are equal to 0, reject and finish.
5. The x-player writes χ(2z − y) on the board.
6. The y-player writes the value of gq,d(x, y, z).

Theorem 3.1. Protocol 2 is correct.

For the proof of correctness and cost of the protocol, we use the following
two observations (used also in [1]):

Lemma 3.2 (parallelogram law). Let x, y, z ∈ R
d then:

�x− y�22 + �x+ y − 2z�22 = 2�x− z�22 + 2�y − z�22

Lemma 3.3 [1]. For an even integer d > 0, the number of integral points
contained in the ball of radius r in R

d is at most:

πd/2(r + 0.5)d

(d/2)!
<

(2πe)d/2(r + 0.5
√
d)d

dd/2
.

Note that a similar estimate holds for odd d as well, but as the formula for
the volume of the unit ball is cleaner for even values of d we prefer to state
the lemma only for the even case.
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Proof of Theorem 3.1. By Lemma 3.3, the maximum degree of Gr

is at most

dr ≤
(2πe)d/2(r + 0.5

√
d)d

dd/2
.

The chromatic number of G2r is trivially at most d2r + 1 which can be
bounded by the last lemma.

If x+ y = 2z then obviously the protocol reaches step 5. On the other
hand, if the protocol reached step 5 then �x− y�22, 4�x− z�22, and 4�y− z�22,
all lie in the same interval of length r2. Thus, by the Parallelogram law

�x+ y − 2z�22 = 2�x− z�22 + 2�y − z�22 − �x− y�22

=
1

2

(

4�x− z�22 + 4�y − z�22
)

− �x− y�22 ≤ r2.

Thus, (2z − y) is in a ball B(x, r) of radius r around x. Every other vector
v ∈ B(x, r) is at distance at most 2r from (2z − y). The color of (2z − y) in
this ball is therefore unique. It follows that at step 6 the y-player knows the
value of y and hence knows everything. �

The cost of the protocol. The number of bits used by the first two
players is:

log d2r +Θ(1) = Θ
(

d+ d log
2r + 0.5

√
d√

d

)

.

If we take r =
√
d , the cost of the protocol is therefore bounded by

C(P ) ≤ O(d) = O
( logn

log q

)

.

The choice of S. A transcript T of the z-player corresponds to a
message Ir(�x− y�22). The size of S3(T ) is therefore equal to the number of
pairs x, y ∈ [q]d satisfying Ir(�x− y�22) = T . Hoeffding’s inequality implies
that for every positive t

P
(

|�x− y�22 − µ| ≥ t
)

≤ 2e−
2t2

dq4 .

In particular, applying it with t = r2/2 we conclude that the probability that

Ir(�x− y�22) = Ir(µ) is at least (1− 2e−
r4

2dq4 ) since we chose the partition of
the intervals so that µ lies in the middle of the interval containing it.

Take r =
√
d , and pick S = S3(T ) for T = I√d (µ), we have

|S| ≥ (1− 2e−
d

2q4 )n2.
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Conclusion. When applying Theorem 2.1 the parameters that we get
are:

• p = (1− 2e−
d

2q4 ),
• N ′ = n1+1/Ω(log logn)2O(d).
Taking d = q5 it follows that 2O(d) = n1/Ω(log logn). Observing that S is

symmetric, this proves the k = 3 case of Theorems 1.1 and 1.2.

3.2. The case k > 3.

Choosing the function. Let Zm,q,d = { 1
m(

∑m
i=1 xi) : xi ∈ [q]d} and

define gk,q,d : ([q]
d)k−1×Zk−1,q,d → {0,1} by gk,q,d(x1, . . . , xk) = 1 if and only

if x1 + · · ·+ xk−1 = (k − 1)xk. Thus, in particular, Z2,q,d is exactly Zq,d de-
fined earlier and g3,q,d = g(q, d). It is easy to verify that gk,q,d is a sub-
permutation, and

|Zk−1,q,d| ≤ (kq)d = n1+1/ logk q.

The protocol. The protocol is a simple reduction to the case k = 3.

Protocol 3 (a protocol for gk,q,d).
1. The first player writes 1 on the board if and only if

1

2
((k − 1)xk − x3 − · · · − xk−1) ∈ Z2,q,d.

2. If the bit written by the first player is 0, the protocol ends
with rejection.

3. Players 1, 2 and k run Protocol 2 for g3,q,d with r =
√
d on

input x′ = x1, y
′ = x2, and z′ = 1

2 ((k − 1)xk − x3 − · · · − xk−1).

The correctness of the above protocol follows from the correctness of
Protocol 2 and the fact that the equation

x1 + x2 + x3 + · · · + xk−1 = (k − 1)xk

holds if and only if x1+x2 = 2(12((k−1)xk−x3−· · ·−xk−1)). Note that the

last equation cannot hold if 1
2 ((k − 1)xk − x3 − · · · − xk−1) does not belong

to Z2,q,d.

The cost of the protocol. Outside the reduction to Protocol 2, the
players send only one more bit. The cost of the protocol thus satisfies C(P )

≤ O(d) ≤ O( lognlog q ), as before.

The choice of S. We can choose, as in Section 3.1, the set S = Sk(T )
for T = I√d (µ). By Hoeffding’s inequality, the size of S is (1− o(1))nk−1
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as long as d >> q4. The only problem is that S is not symmetric. To rem-
edy that, just add to the protocol a test whether Ir(�xi − xj�22) = Ir(µ) for
every 1 ≤ i < j < k. These tests can all be carried out by the last player,
so this adds only one more communication bit, which for simplicity we as-
sume is the last bit. Now pick the transcript T ′ = (T, 1) which implies that
Ir(�xi − xj�22) = Ir(µ) for all 1 ≤ i < j < k. The corresponding set Sk(T

′)
is now symmetric, and as long as k is a constant, Hoeffding’s inequality and
the union bound still imply that the size of Sk(T

′) is at least (1− o(1))nk−1.

4. Proof of Theorem 2.1

We first rephrase Theorem 2.1 slightly.

Theorem 4.1. Let f : [n]k−1 × [N ] → {0, 1} be a weak sub-permutation,
and let S be a symmetric cylinder intersectio/ (w.r.t. f ). Let p = |S|/nk−1,
then

1. There is an (explicitly defined) (k− 1)-graph on n vertices whose edge
density is p, that is the union of N weakly-induced partial Steiner systems
S(k − 2, k − 1).

2. If p = 1− o(1), then hk−1(n, c) ≤ (N/n)2 for c < dk. Here, the con-
struction of the (k − 1)-graph that gives the bound is explicit, given explicit
constructions of (k − 1)-graphs of density dk − o(1) which contain no Kk.

Lemma 4.2. Theorem 4.1 implies Theorem 2.1.

Proof. The difference between Theorem 4.1 and Theorem 2.1 lies in
the different properties of the subset S. In Theorem 2.1 S is defined by

S = Sk(Tk) =
{

(x1, . . . , xk) ∈ [n]k−1 × [N ] :

Tk(x1, . . . , xk) = Tk and f(x1, . . . , xk) = 1
}

,

for some transcript Tk of the last player. In Theorem 4.1 on the other hand,
S is a cylinder intersection, that is

S = S(T ) =
{

(x1, . . . , xk) ∈ [n]k−1 × [N ] :

T (x1, . . . , xk) = T and f(x1, . . . , xk) = 1
}

,

for some transcript T of all players.
This difference is easily bridged though. Let f : [n]k−1 × [N ] → {0, 1}

be a weak sub-permutation, P a protocol for f , Tk a transcript of the last
player, and S = Sk(Tk) a subset, found using Recipe 1. Let γ = C(P ), and
denote N ′ = N · 2γ . For simplicity identify [N ′] with [N ] × {0, 1}γ .

Define g : [n]k−1 × [N ′] → {0, 1} by g(x1, . . . , xk−1, (xk, T1...k−1)) = 1 if
and only if

f(x1, . . . , xk−1, xk) = 1 and T1...k−1=T1(x1, . . . , xk)◦ · · · ◦Tk−1(x1, . . . , xk),
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where ◦ here denotes a concatenation of strings. That is, T1...k−1 is the mes-
sage written on the board by the first k− 1 players, according to protocol P ,
on input (x1, . . . , xk).

It is not hard to verify that g is a weak sub-permutation. We use the
following protocol P ′ for g, on input (x1, . . . , xk−1, (xk, T1...k−1)): the last
player sends his message as in P , then each of the other players verifies
(using one bit of communication each) that his part in T1...k−1 agrees with P .
Obviously P ′ is correct if and only if P is correct. The subset

S′ =
{

(x1, . . . , (xk, T1...k−1)) ∈ [n]k−1 × [N ′] :

Tk(x1, . . . , xk) = Tk and f(x1, . . . , xk) = 1
}

is a cylinder intersection with respect to P ′ and g, and |S′|/nk−1 = |S|/nk−1.
Theorem 4.1 can now be applied to prove Theorem 2.1. �

In the rest of this section we prove Theorem 4.1. For simplicity we first
prove it for the case of graphs (k = 3) and then explain the necessary adjust-
ments for the general case (k ≥ 3). Note that we no longer need to specify
the protocol with respect to which the cylinder intersections are defined, as
the statement of Theorem 4.1 makes it redundant.

4.1. The case k = 3. We prove the first conclusion of Theorem 4.1,
concerning Ruzsa–Szemerédi graphs, in Section 4.1.1. The upper bound on
h(n, c) is proved in Section 4.1.2. We use the following simple fact proved in
[19].

Lemma 4.3 [19]. Let f : [n]× [n]× [N ] → {0, 1} be a function satisfying
that every line in the third dimension contains at most a single 1, and let S
be a cylinder intersection (w.r.t. f ). Then, S does not contain stars: triplets
of the form (x′, y, z), (x, y′, z), (x, y, z′) where x �= x′, y �= y′ and z �= z′.

4.1.1. Ruzsa–Szemerédi graphs. The relation between Ruzsa–
Szemerédi graphs and the communication complexity of 2-dimensional per-
mutations was observed in [19]. The graphs constructed in [19] are bipartite
though, and we need slightly different settings3. Let S ⊆ [n]× [n]× [N ] be
symmetric, define

ES = {(x, y), (x, z), (y, z) : (x, y, z) ∈ S}.

Let GS = (V,ES) be the graph with vertex set V = VA ∪ VB , where VA = [n]
and VB = [N ], and edge set ES . We allow self loops in ES , and consider

3 In fact, this is the reason we considered symmetric cylinder intersections throughout this
paper.
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a collection of self loops as a matching. Note that when S is a cylinder
intersection with respect to a weak sub-permutation there is always at most
one edge between a pair of vertices. The following lemma implies the first
conclusion in Theorem 4.1.

Lemma 4.4. Let f : [n]× [n]× [N ] → {0, 1} be a weak sub-permutation,
and let S be a symmetric cylinder intersection. Let H = ([n], F ) be the sub-
graph of GS induced on VA. That is:

F =
{

(x, y) : ∃z ∈ VB s.t. (x, y, z) ∈ S
}

.

Then, the edges of |F | can be partitioned into N induced matchings.

Proof. Partition the edge set F as follows, for every z ∈ B let

Fz =
{

(x, y) : (x, y, z) ∈ S
}

.

This is a partition of F since f a sub-permutation, and therefore there is at
most a single z such that (x, y, z) ∈ S for every (x, y) ∈ [n]2.

The fact that Fz is an induced matching follows from Lemma 4.3. As-
sume in contradiction that Fz is not an induced matching, then there is an
edge (x, y) ∈ Fz′ for z′ �= z such that (x, y′), (x′, y) are in Fz . We then get
a star (x′, y, z), (x, y′, z), (x, y, z′) ∈ S, contradicting Lemma 4.3. Note that
the fact that f is a sub-permutation also implies that x′ �= x and y′ �= y. �

4.1.2. An upper bound on h(n, c). Consider the same graph GS

as in the previous section. A basic observation is:

Lemma 4.5. Let f : [n]× [n]× [N ] → {0, 1} be a function satisfying that
every line in the third dimension contains at most a single 1, and let S be
a symmetric cylinder intersection (w.r.t. f ). Then, a triangle (x, y, z) where
x, y ∈ VA and z ∈ VB exists in GS if and only if (x, y, z) ∈ S.

Proof. The fact that a triangle (x, y), (x, z), (y, z) where x, y ∈ VA and
z ∈ VB exists in GS for every (x, y, z) ∈ S follows immediately from the defi-
nition of ES . Assume in contradiction that there is also such a triangle in GS

for (x, y, z) �∈ S. Then necessarily there are x′, y′ ∈ VA and z′ ∈ VB such that
(x′, y, z), (x, y′, z), (x, y, z′) ∈ S. But then S contains a star, in contradiction
to Lemma 4.3. �

Lemma 4.6. Let f : [n]× [n]× [N ] → {0, 1} be a weak sub-permutation,
and let S be a symmetric cylinder intersection satisfying |S| = (1− o(1))n2.
Then h(n, c) ≤ N2/n2 for c < 1/4.

Proof. Consider the graph GS again. By Lemma 4.5, and the fact
that f is a weak sub-permutation, an edge in GS appears in exactly one
triangle (x, y, z) with x, y ∈ VA and z ∈ VB . Therefore, if we take a bipartite
subgraph inside VA, we will have every edge lie in exactly one triangle, which

Acta Mathematica Hungarica

N. ALON and A. SHRAIBMAN500



Acta Mathematica Hungarica 161, 2020

14 N. ALON and A. SHRAIBMAN

a collection of self loops as a matching. Note that when S is a cylinder
intersection with respect to a weak sub-permutation there is always at most
one edge between a pair of vertices. The following lemma implies the first
conclusion in Theorem 4.1.

Lemma 4.4. Let f : [n]× [n]× [N ] → {0, 1} be a weak sub-permutation,
and let S be a symmetric cylinder intersection. Let H = ([n], F ) be the sub-
graph of GS induced on VA. That is:

F =
{

(x, y) : ∃z ∈ VB s.t. (x, y, z) ∈ S
}

.

Then, the edges of |F | can be partitioned into N induced matchings.

Proof. Partition the edge set F as follows, for every z ∈ B let

Fz =
{

(x, y) : (x, y, z) ∈ S
}

.

This is a partition of F since f a sub-permutation, and therefore there is at
most a single z such that (x, y, z) ∈ S for every (x, y) ∈ [n]2.

The fact that Fz is an induced matching follows from Lemma 4.3. As-
sume in contradiction that Fz is not an induced matching, then there is an
edge (x, y) ∈ Fz′ for z′ �= z such that (x, y′), (x′, y) are in Fz . We then get
a star (x′, y, z), (x, y′, z), (x, y, z′) ∈ S, contradicting Lemma 4.3. Note that
the fact that f is a sub-permutation also implies that x′ �= x and y′ �= y. �

4.1.2. An upper bound on h(n, c). Consider the same graph GS

as in the previous section. A basic observation is:

Lemma 4.5. Let f : [n]× [n]× [N ] → {0, 1} be a function satisfying that
every line in the third dimension contains at most a single 1, and let S be
a symmetric cylinder intersection (w.r.t. f ). Then, a triangle (x, y, z) where
x, y ∈ VA and z ∈ VB exists in GS if and only if (x, y, z) ∈ S.

Proof. The fact that a triangle (x, y), (x, z), (y, z) where x, y ∈ VA and
z ∈ VB exists in GS for every (x, y, z) ∈ S follows immediately from the defi-
nition of ES . Assume in contradiction that there is also such a triangle in GS

for (x, y, z) �∈ S. Then necessarily there are x′, y′ ∈ VA and z′ ∈ VB such that
(x′, y, z), (x, y′, z), (x, y, z′) ∈ S. But then S contains a star, in contradiction
to Lemma 4.3. �

Lemma 4.6. Let f : [n]× [n]× [N ] → {0, 1} be a weak sub-permutation,
and let S be a symmetric cylinder intersection satisfying |S| = (1− o(1))n2.
Then h(n, c) ≤ N2/n2 for c < 1/4.

Proof. Consider the graph GS again. By Lemma 4.5, and the fact
that f is a weak sub-permutation, an edge in GS appears in exactly one
triangle (x, y, z) with x, y ∈ VA and z ∈ VB . Therefore, if we take a bipartite
subgraph inside VA, we will have every edge lie in exactly one triangle, which

Acta Mathematica Hungarica

FOREHEAD PROTOCOLS YIELDING DENSE RUZSA–SZEMERÉDI GRAPHS 501



Acta Mathematica Hungarica 161, 2020

FOREHEAD PROTOCOLS YIELDING DENSE RUZSA–SZEMERÉDI GRAPHS 15

is optimal. But, the density of edges in GS is relatively small, since there are
n+N vertices and order of (1− o(1))n2 edges. To remedy this, we define a
product function, aiming to increase the density of edges. The price we pay
is that the number of triangles an edge can lie in increases.

Let t ≥ 2 be a natural number, define f t : ([2t]× [n])2 × [N ] → {0, 1} by
f((α, x), (β, y), z) = 1 if and only if f(x, y, z) = 1. Let

St =
{

((α, x), (β, y), z) : (x, y, z) ∈ S
}

.

It is not hard to verify that St is a symmetric cylinder intersection with
respect to f t. By Lemma 4.5 a triangle ((α, x), (β, y), z) where (α, x), (β, y)
∈ ([2t]× [n]) and z ∈ [N ] exists in GSt if and only if (x, y, z) ∈ S. Thus, every
edge of Gst lies in at most 2t triangles of this sort. To remove the other kind
of triangles let H = ([2t]× [n], EH) be a bipartite graph with density 1/4.
Now define

E′
St =

{

((α, x), (β, y)), ((α, x), z), ((β, y), z) :

(x, y, z) ∈ S, ((α, x), (β, y)) ∈ EH

}

.

Then every edge in E′
St lies in at least one triangle and at most 2t trian-

gles. The number of edges satisfies |E′
St | ≥ (1− o(1))(2tn)2/4. The density

of edges is thus

(1− o(1))
1

4

(2tn)2

(2tn+N)2
.

If we take t = 2 log(N/n) this becomes

(1− o(1))
1

4

(N2/n)2

(N2/n+N)2
.

Recall that S is a cylinder intersection of size (1− o(1))n2. It therefore fol-
lows from the graph removal lemma (and the hypergraph removal lemma for
larger k) - see Theorem 34 in [19] for details - that necessarily n = o(N).
The density is thus (1− o(1)) 14 . Since every edge is in at most 2t = N2/n2

triangles, this completes the proof. �

4.2. The general case. We outline the proof of Theorem 4.1 for
k ≥ 3. Since the general case is very similar to the proof of the k = 3 case,
we do not repeat all the details here.

For �x = (x1, . . . , xk) ∈ [n]k−1× [N ] denote by [�x]k−1 the family of all sub-
sets of size k − 1 of entries of �x. That is:

[�x]k−1 =

({x1, . . . , xk}
k − 1

)

.
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Let S ⊆ [n]k−1 × [N ] be a symmetric subset of entries, define

ES =
⋃

�x∈S
[�x]k−1.

Let GS = (V,ES) be the (k − 1)-graph with vertex set V = VA ∪ VB ,
where VA = [n] and VB = [N ], and edge set ES .

The generalized version of Lemma 4.3 is:

Lemma 4.7 [19]. Let f : [n]k−1 × [N ] → {0, 1} be a function satisfying
that every line in the kth dimension contains at most a single 1, and let S be
a cylinder intersection (w.r.t. f ). Then, S does not contain stars: k entries
of the form (x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), (x1, x2, . . . , x

′
k) where x′i �= xi

for i = 1 . . . k.

This immediately gives:

Lemma 4.8. Let f : [n]k−1 × [N ] → {0, 1} be a function satisfying that
every line in the kth dimension contains at most a single 1, and let S be a
symmetric cylinder intersection (w.r.t. f ). Then, we have that [�x]k−1 is a
copy of Kk in GS with x1, . . . xk−1 ∈ VA and xk ∈ VB , if and only if �x =
(x1, . . . , xk) ∈ S.

Proof. Similar to the proof of Lemma 4.5, but using Lemma 4.7 instead
of Lemma 4.3. �

The following two lemmas generalize Lemma 4.4 and Lemma 4.6:

Lemma 4.9. For an integer k ≥ 3, let f : [n]k−1× [N ] → {0,1} be a weak
sub-permutation, and let S be a symmetric cylinder intersection. Let G′ =
([n], E′) be the subrgraph of GS induced on VA. Then, the edges of |E′| can
be partitioned into N weakly-induced partial Steiner systems S(k− 2, k − 1).

Proof. The proof is similar to the proof of Lemma 4.4, we rewrite the
main points. The edges of G′ are:

E′ =
{

(x1, . . . , xk−1) : ∃xk ∈ VB s.t. (x1, . . . , xk−1, xk) ∈ S
}

.

Partition the edge set E′ as follows, for every z ∈ VB let

E′
z =

{

(x1, . . . , xk−1) : (x1, . . . , xk−1, z) ∈ S
}

.

This is a partition of E′ since f is a (weak) sub-permutation, and the fact
that E′

z is a weakly-induced partial Steiner system follows from Lemma 4.7.
�

Lemma 4.10. For an integer k ≥ 3, let f : [n]k−1 × [N ] → {0, 1} be a
weak sub-permutation, and let S be a symmetric cylinder intersection satis-
fying |S| = (1− o(1))nk−1. Then hk−1(n, c) ≤ (N/n)2 for c < dk.
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Proof. The proof is very similar to the proof of Lemma 4.6, just in-
stead of taking the subgraph H = ([2t]× [n], EH ) to be a bipartite graph

with density 1/4, take a subhypergraph with no copies of K
(k−1)
k and den-

sity sufficiently close to dk. Note that we do not need to know dk or H , we
just need to know that dk and H exist and this follows from the fact that
dk is the limit, as n tends to infinity, of the maximum possible density of a

(k − 1)-graph on n vertices with no K
(k−1)
k . �

5. Summary

As mentioned in the introduction, there is a link between the main con-
struction of [1] and the original construction of Ruzsa and Szemerédi [22].
We describe this link here, starting with a new construction, equivalent to
the one of Ruzsa and Szemerédi, derived using the recipe in Section 2.2.
Note that this approach avoids the use of Behrend’s construction of a large
set of integers with no three-term arithmetic progressions [3], which is the
heart of the construction of Ruzsa and Szemerédi.

Lemma 5.1 [22]. There exists a graph on n vertices, with n2/2O(
√
logn)

edges, that is the union of Θ(n) induced matchings.

Proof. We follow the steps of Recipe 1. The details are very similar to
those in Section 2.3, with slight modifications.

Choosing the function. Let q, d > 1 be natural numbers and denote
n = qd. Let fq,d : ([q]

d)3 → {0, 1} be the function satisfying fq,d(x, y, z) = 1
if and only if x+ y = 2z. It is not hard to verify that fq,d is a weak sub-
permutation, in fact it is a weak permutation. We later set q to be even and
d = log(q) = Θ(

√
logn).

The protocol. The protocol is identical to the protocol for gq,d in Sec-
tion 2.3.

The cost of the protocol. The cost of the protocol is C(P ) = 2.

The choice of S. By Hoeffding’s (or Chebyshev’s) inequality, with

probability bounded away from zero, �x− y�22 takes one of
√
dq2 values.

There is, therefore, a transcript T for the third player such that |Sk(T )|
≥ Ω(|f−1

q,d (1)|/
√
dq2). Where |f−1

q,d (1)| is the number of 1’s of the function

fq,d. That is, it is the number of x, y ∈ [q]d such that (x+ y)/2 is also in [q]d.

Assume for simplicity that q is even, then |f−1
q,d (1)| ≥ qd · (q/2)d. Therefore

|Sk(T )| ≥ Ω
(

qd · (q/2)d/
√
dq2

)

≥ Ω
(

n2/2d
√
dq2

)

.

Taking d = log q = Θ(
√
logn) we get |Sk(T )| ≥ n2/2O(

√
logn). Sk(T ) is sym-

metric, thus Lemma 5.1 follows from Theorem 2.1. �
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We can now describe the relation between the construction of Ruzsa and
Szemerédi [22] and that of [1]. Call the construction above A, the simple
construction of Section 2.3 B, and the construction of Section 3.1 (providing
the graphs similar to [1]) C. The table below compares these constructions.

A B C

Function Domain: ([q]d)3

Def. rule: x+y=2z
Dom.: ([q]d)2 × Zq,d

Def. rule: x+y=2z
Dom.: ([q]d)2 × Zq,d

Def. rule: x+y=2z

Protocol
idea

Third player sends
�x− y�22.

Third player sends
�x− y�22.

Third player sends
some bits of �x−y�22,
then the first two
players compute the
rest.

Number of
vertices

n = qd n = qd n = qd

Edge density 2−O(
√
log n) Ω(log log n/ logε n)

for any constant
ε > 1/2

1-o(1)

Number of
matchings

Θ(n) n1+O(1/ log logn) n1+O(1/ log log n)
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