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Abstract. Let p(·) : Tn
→ (0,∞) be a variable exponent function satisfying

the globally log-Hölder condition and 0 < q ≤ ∞. We introduce the periodic vari-
able Hardy and Hardy–Lorentz spaces Hp(·)(T

d) and Hp(·),q(T
d) and prove their

atomic decompositions. A general summability method, the so called θ-summa-
bility is considered for multi-dimensional Fourier series. Under some conditions
on θ, it is proved that the maximal operator of the θ-means is bounded from
Hp(·)(T

d) to Lp(·)(T
d) and from Hp(·),q(T

d) to Lp(·),q(T
d). This implies some

norm and almost everywhere convergence results for the summability means. The
Riesz, Bochner–Riesz, Weierstrass, Picard and Bessel summations are investigated
as special cases.

1. Introduction

It was proved by Lebesgue [24] that the Fejér means [11] of the trigono-
metric Fourier series of a one-dimensional integrable function f ∈ L1(T) con-
verge almost everywhere to the function. This result was generalized for
several summability methods, such as for the Riesz, Weierstrass, Abel, etc.
summations in Zygmund [46], Butzer and Nessel [2], Stein and Weiss [38] or
Trigub and Belinsky [39].

A general method of summation, the so called θ-summation method,
which is generated by a single function θ and which includes all summations
just mentioned, is studied intensively in the literature (see e.g. Butzer and
Nessel [2], Trigub and Belinsky [39], Gát [12–14], Goginava [15–17], Persson,
Tephnadze and Wall [31], Simon [33–35] and Feichtinger and Weisz [9,10,

This research was supported by the Hungarian National Research, Development and Innova-
tion Office – NKFIH, K115804 and KH130426.

Key words and phrases: variable Hardy space, variable Hardy–Lorentz space, atomic decom-
position, θ-summability, maximal operator.

Mathematics Subject Classification: primary 42B08, secondary 42B30, 42A24, 42B25.

0236-5294/$20.00 c© 0 Akadémiai Kiadó, Budapest
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41–43]). For multi-dimensional Fourier series, the summability means are
defined by

σθ
nf(x) :=

∑

k1∈Z

· · ·
∑

kd∈Z

θ
( |k|
n

)
f̂(k)e2πık·x,

where | · | denotes the Euclidean norm and f̂(k) is the kth Fourier coefficient
of f . The choice θ(u) = max(1− |u|, 0) yields the Fejér summation.

Stein, Taibleson and Weiss [37] proved for the Bochner–Riesz summa-
bility that the maximal operator σθ

∗ of the θ-means is bounded from the
Hardy space Hp(T

d) to Lp(T
d) if p > p0 (see also Grafakos [18] and Lu

[28]). Recently, the author [44] generalized this result and verified for
multi-dimensional Fourier transforms that σθ

∗ is bounded from Hp(·)(R
d) to

Lp(·)(R
d) and from Hp(·),q(R

d) to Lp(·),q(R
d) for all p(·) > p0, where p(·):

Rd → (0,∞) is a variable exponent function satisfying the globally log-
Hölder condition and 0 < q ≤ ∞.

In this paper, we prove similar results for the periodic spaces and for
multi-dimensional Fourier series. We consider a variable exponent defined
on T

d and the periodic Lebesgue, Lorentz, Hardy and Hardy–Lorentz spaces
Lp(·)(T

d), Lp(·),q(T
d), Hp(·)(T

d) and Hp(·),q(T
d) defined by p(·). If p(·) is a

constant, then we get back the classical spaces. We will prove the atomic
decompositions of Hp(·)(T

d) and Hp(·),q(T
d). Moreover, we show that σθ

∗ is

bounded from Hp(·)(T
d) to Lp(·)(T

d) and from Hp(·),q(T
d) to Lp(·),q(T

d). As
a consequence of these results, we obtain some norm and almost everywhere
convergence results for the summability means. Our results can be applied
to the Riesz, Bochner–Riesz, Weierstrass, Picard and Bessel summations.

2. Variable Lebesgue and Lorentz spaces

In this section, we recall some basic notations on variable Lebesgue
spaces and variable Lorentz spaces and give some elementary and necessary
facts about these spaces. Our main references are Cruz-Uribe and Fiorenza
[5], Diening et al. [6] and Kempka and Vyb́ıral [22].

For a constant p, the Lp(T
d) space is equipped with the quasi-norm

�f�p :=
(∫

Td

|f(x)|p dx
)1/p

(0 < p < ∞),

with the usual modification for p = ∞. Here we integrate with respect to
the Lebesgue measure λ on the torus Td, that can be identified with [0, 1)d.
The Lebesgue measure of a set H will be denoted also by |H|.

Acta Mathematica Hungarica

F. WEISZ558



Acta Mathematica Hungarica 162, 2020

SUMMABILITY OF FOURIER SERIES IN PERIODIC HARDY SPACES 3

We are going to generalize these spaces. A measurable function p(·):
Td → (0,∞] is called a variable exponent. For any variable exponent p(·),
let

p− := ess inf
x∈Td

p(x) and p+ := ess sup
x∈Td

p(x).

Denote by P(Td) the collection of all variable exponents p(·) satisfying

0 < p− ≤ p+ < ∞.

In what follows, we use the symbol

p = min{p−, 1}.

For p(·) ∈ P(Td) and a measurable function f , the modular functional ̺p(·)
is defined by

̺p(·)(f) :=

∫

Td

|f(x)|p(x) dx

and the Luxemburg quasi-norm is given by setting

�f�Lp(·)(Td) := inf
{
ρ ∈ (0,∞) : ̺p(·)(f/ρ) ≤ 1

}
.

The variable Lebesgue space Lp(·)(T
d) is defined to be the set of all measur-

able functions f such that ̺p(·)(f) < ∞ and equipped with the quasi-norm
� · �Lp(·)(Td). It is easy to see that if p(·) is a constant, then we get back the

Lp(T
d) spaces. It is known that �ρf�Lp(·)(Td) = |ρ|�f�Lp(·)(Td),

(1)
∥∥ |f |s

∥∥
Lp(·)(Td)

= �f�sLsp(·)(Td)

and
∥∥f + g

∥∥p

Lp(·)(Td) ≤
∥∥f

∥∥p

Lp(·)(Td) +
∥∥g

∥∥p

Lp(·)(Td),

where p(·) ∈ P(Td), s ∈ (0,∞), ρ ∈ C and f, g ∈ Lp(·)(T
d).

We denote by C log(Td) the set of all functions p(·) ∈ P(Td) satisfying
the so-called log-Hölder continuous condition, namely, there exists a positive
constants Clog(p) such that, for any x, y ∈ Td,

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/|x− y|) .

Given an integrable function f , the Hardy–Littlewood maximal opera-
tor M is defined by

Mf(x) := sup
x∈B

1

|B|

∫

B
|f(y)| dy (x ∈ T

d),
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where the supremum is taken over all balls B of Td containing x. It is known
that M is bounded on Lp(T

d) if 1 < p < ∞ and is of weak type (1, 1). This
is extended to the variable Lebesgue spaces in the following lemma (see
Cruz-Uribe et al. [4], Nekvinda [30] or Cruz-Uribe and Fiorenza [5, Theorem
3.16]).

Lemma 1. Suppose that p(·) ∈ C log(Td) and f ∈ Lp(·)(T
d). If p− ≥ 1,

then

(2) sup
ρ∈(0,∞)

�
ρ
��χ{x∈Td: Mf(x)>ρ}

��
Lp(·)(Td)

�
≤ �f�Lp(·)(Td).

If in addition p− > 1, then

(3) �Mf�Lp(·)(Td) ≤ C�f�Lp(·)(Td).

The variable Lorentz spaces were introduced and investigated by Kempka
and Vyb́ıral [22]. Lp(·),q(T

d) is defined to be the space of all measurable func-
tions f such that

�f�Lp(·),q(Td) :=





��∞
0 ρq

��χ{x∈Td: |f(x)|>ρ}

�� q

Lp(·)(Td)
dρ
ρ

�1/q
, if 0<q<∞;

supρ∈(0,∞) ρ
��χ{x∈Td: |f(x)|>ρ}

��
Lp(·)(Td)

, if q = ∞

is finite. If p(·) is a constant, we get back the classical Lorentz spaces (see
Lorentz [27] or Bergh and Löfström [1]).

Now we give an equivalent discrete characterization of �·�Lp(·),q(Td). Later
it allows us to do the calculation in a more convenient way. For the proof,
we refer to Kempka and Vybŕıal [22, Lemma 2.4].

Lemma 2. Assume that p(·) ∈ P(Td) and 0 < q ≤ ∞. Then, for any
measurable function f ,

�f�Lp(·),q(Td) ∼





��
i∈Z 2

iq
��χ{x∈Td:|f(x)|>2i}

�� q

Lp(·)(Td)

�1/q
, if 0<q<∞;

supi∈Z 2
i
��χ{x∈Td:|f(x)|>2i}

��
Lp(·)(Td)

, if q = ∞.

Now we generalize inequality (3) and recall the Fefferman–Stein vector-
valued inequality on variable Lebesgue spaces, whose proof is contained in
Cruz-Uribe et al. [3, Corollary 2.1] and Jiao [21, Theorem 3.4].

Lemma 3. If p(·) ∈ C log(Td) with p− > 1, 0 < q ≤ ∞ and 1 < r < ∞,
then

����
� ∞�

j=1

(Mfj)
r

�1/r����
Lp(·)(Td)

≤ C

����
� ∞�

j=1

|fj |r
�1/r����

Lp(·)(Td)
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and

∥∥∥∥
( ∞∑

j=1

(Mfj)
r

)1/r∥∥∥∥
Lp(·),q(Td)

≤ C

∥∥∥∥
( ∞∑

j=1

|fj|r
)1/r∥∥∥∥

Lp(·),,q(Td)

.

3. Variable Hardy and Hardy–Lorentz spaces

Now we introduce the variable Hardy and Hardy–Lorentz spaces and give
the atomic decompositions. Denote by S(Rd) the set of all Schwartz func-
tions, by S′(Rd) the set of all tempered distributions and by D(Td) the set of
all distributions. For a distribution f ∈ D(Td), the nth Fourier coefficient is

defined by f̂(n) := f(en), where en(x) := e−2πın·x (n ∈ Zd, x = (x1, . . . , xd)

∈ Rd), u · x :=
∑d

k=1 ukxk (x, u ∈ Rd) and ı =
√
−1. In special case, if

f ∈ L1(T
d), then

f̂(n) =

∫

Td

f(x)e−2πın·x dx (n ∈ Z
d).

For f ∈ D(Td),

f =
∑

n∈Nd

f̂(n)en in D(Td)

and f̂(n) = O(|n|k), where k ∈ N is the order of f (see Edwards [7, p. 68]).
Conversely, if cn = O(|n|k), then f =

∑
n∈Nd cnen in D(Td). We define the

convolution of f ∈ D(Td) and ψ ∈ L1(R
d) by

f ∗ ψ :=
∑

n∈Nd

f̂(n)ψ̂(n)en in D(Td),

where ψ̂ denotes the Fourier transform of ψ ∈ L1(R
d),

ψ̂(x) :=

∫

Rd

ψ(t)e−2πıx·t dt (x ∈ R
d).

Note that this is the usual convolution if f ∈ D(Td) and ψ ∈ L1(T
d). For

t ∈ (0,∞) and ξ ∈ Td, let

ψt(ξ) := t−dψ(ξ/t).

For f ∈ D(Td) and ψ ∈ L1(R
d), we have

(4) f ∗ ψt =
∑

n∈Nd

f̂(n)ψ̂(tn)en in D(Td).
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The convergence in (4) does exist because ψ̂ ∈ L∞(Rd). Moreover, if ψ ∈
S(Rd), then (4) converges absolutely in each point as well. It is easy to see
that

(5) f ∗ ψt(x) =

∫

Rd

f(x− u)ψt(u) du

for f ∈ L1(T
d) and ψ ∈ L1(R

d).
Fix ψ ∈ S(Rd) such that

∫
Rd ψ(x)dx �= 0. We define the radial maximal

function and the non-tangential maximal function of f ∈ S′(Rn) associated
to ψ by

ψ∗
+(f)(x) := sup

t∈(0,∞)
|f ∗ ψt(x)|

and

ψ∗
▽(f)(x) := sup

t∈(0,∞),|y−x|<t
|f ∗ ψt(y)|,

respectively. For N ∈ N, let

FN(Rd) :=
{
ψ ∈ S(Rd) : sup

x∈Rd,�β�1≤N
(1 + |x|)N+d|∂βψ(x)| ≤ 1

}
,

where �β�1 = β1 + · · ·+ βd. For any N ∈ N, the radial grand maximal func-
tion and the non-tangential grand maximal function of f ∈ S′(Rd) are de-
fined by

f∗
+(x) := sup

ψ∈FN (Rd)
sup

t∈(0,∞)
|f ∗ ψt(y)|

and

f∗
▽(x) := sup

ψ∈FN (Rd)
sup

t∈(0,∞),|y−x|<t
|f ∗ ψt(y)|,

respectively. Let p(·) ∈ P(Rn) and 0 < q ≤ ∞. We introduce the number
dp(·) := ⌊d(1/p− − 1)⌋ and fix a positive integer N > dp(·), where ⌊x⌋ denotes
the integer part of x ∈ R. The variable Hardy and Hardy–Lorentz spaces
Hp(·)(T

d) and Hp(·),q(T
d) are defined to be the sets of all f ∈ D(Rd) such

that f∗
▽ ∈ Lp(·)(T

d) and f∗
▽ ∈ Lp(·),q(T

d) equipped with the quasi-norms

�f�Hp(·)(Td) := �ψ∗
+(f)�Lp(·)(Td) and �f�Hp(·),q(Td) := �ψ∗

+(f)�Lp(·),q(Td),

respectively. Let us denote by Hp(·),∞(Td) the closure of the step functions

in Hp(·),∞(Td). We will see in the next theorem that the Hardy spaces are
independent of N , more exactly, different integers N give the same space
with equivalent norms.
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Theorem 1. Let p(·) ∈ C log(Td) and 0 < q ≤ ∞. Fix ψ ∈ S(Rd) such
that

∫
Rd ψ(x)dx �= 0 and fix a positive integer N > dp(·). Then f ∈ Hp(·)(T

d) if

and only if f∗
▽ ∈ Lp(·)(T

d) or ψ∗
▽(f) ∈ Lp(·)(T

d) or ψ∗
+(f) ∈ Lp(·)(T

d). More-

over, f ∈ Hp(·),q(T
d) if and only if f∗

▽ ∈ Lp(·),q(T
d) or ψ∗

▽(f) ∈ Lp(·),q(T
d) or

ψ∗
+(f) ∈ Lp(·),q(T

d). We have the following equivalences of norms:

�f�Hp(·)(Td) ∼ �f∗
+�Lp(·)(Td) ∼ �f∗

▽�Lp(·)(Td) ∼ �ψ∗
▽(f)�Lp(·)(Td)

and

�f�Hp(·),q(Td) ∼ �f∗
+�Lp(·),q(Td) ∼ �f∗

▽�Lp(·),q(Td) ∼ �ψ∗
▽(f)�Lp(·),q(Td).

Theorem 2. Let p(·) ∈ C log(Td), 1 < p− < ∞ and 0 < q ≤ ∞. Then

Hp(·)(T
d) ∼ Lp(·)(T

d), Hp(·),q(T
d) ∼ Lp(·),q(T

d).

We omit the proofs of these theorems because they are very similar to
the proofs of the corresponding theorems for Hp(·)(R

d) and Hp(·),q(R
d) (see

e.g. Nakai and Sawano [29,32], Yan et al. [45], Liu et al. [25,26] and Jiao
et al. [21]). If p(·) is a constant, then we get back the classical Hardy and
Hardy–Lorentz spaces Hp(T

d) and Hp,q(T
d) investigated in Fefferman, Stein

and Weiss [8,36,38], Gundy [19], Lu [28], Uchiyama [40] and Weisz [43].
The atomic decomposition is a useful characterization of the Hardy

spaces by the help of which some boundedness results, duality theorems,
inequalities and interpolation results can be proved.

Let p(·) ∈ P(Td) and fix a nonnegative integer dp(·) ≤ s < ∞. A measur-

able function a is called a (p(·), r)-atom if there exists a ball B ⊂ Td such
that

(i) supp a ⊂ B,

(ii) �a�Lr(Td) ≤ λ(B)1/r

�χB�Lp(·)(T
d)
,

(iii)
∫
Td a(x)x

αdx = 0 for all multi-indices α with |α| ≤ s.
Note that supp a denotes the support of a. The atomic decomposition

of variable Hardy spaces Hp(·)(R
d) was proved in Nakai and Sawano [29,32,

Theorem 4.5, Theorem 1.1] and Liu et al. [25] (in the classical case see e.g.
Latter [23], Lu [28] or Weisz [43]).

Before proving the atomic decomposition, we present the next theorem
about the atoms. For a ball B with center c and radius ρ, let τB denote the
ball with the same center and with radius τρ (τ > 0). Set Z0 := {l ∈ Zd :
li ∈ {0, 1,−1}, i = 1, . . . , d}.

Theorem 3. Let p(·) ∈ C log(Td), N = dp(·) + 1, 1 < r ≤ ∞ and dp(·) ≤
s < ∞. If a is a (p(·), r)-atom and ψ ∈ FN (Rd), then

(6)
∣∣ψ∗

+(a)(x)
∣∣ ≤ C

∥∥χB

∥∥−1

Lp(·)(Td)
|MχB(x)|(N+d)/d
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for all x ∈ Td \ 2B, where the ball B is the support of the atom.

Proof. Suppose that B is a ball with center c and radius ρ. We use
Taylor’s formula for a fixed l ∈ Z

d and for g(u) = ψ
(
x−u
t

)
:

g(u) =
N−1∑

k=0

∑

�i�1=k

∂i1
1 · · · ∂id

d g(c+ l)
d∏

j=1

(uj − cj − lj)
ij

ij !

+
∑

�i�1=N

∂i1
1 · · · ∂id

d g(ul)
d∏

j=1

(uj − cj − lj)
ij

ij !

for some ul ∈ B + l. By the definition of the atom and by (5),

a ∗ ψt(x) =
∑

l∈Zd

t−d

∫

B+l
a(u)ψ

(x− u

t

)
du =

∑

l∈Zd

t−d

∫

B+l
a(u)

×
(
ψ
(
x−ut

)
−

N−1∑

k=0

∑

�i�1=k

∂i1
1 · · · ∂id

d g(c+ l)
d∏

j=1

(uj−cj− lj)
ij

ij !

)
du.

Note that s ≥ N − 1, where s is given in the definition of the (p(·), r)-atoms.
Since

∂i1
1 · · · ∂id

d g(u) = (−1)�i�1t−�i�1∂i1
1 · · · ∂id

d ψ
(x− u

t

)
,

we conclude

|a ∗ ψt(x)| ≤
∑

l∈Zd

t−d

∫

B+l
|a(u)|

∑

�i�1=N

t−�i�1(7)

×
∣∣∣∂i1

1 · · · ∂id
d ψ

(x− ul

t

)∣∣∣
d∏

j=1

|uj − cj − lj |ij
ij !

du

≤ C
∑

l∈Zd

t−N−d

∫

B+l
|a(u)|

∣∣∣x− ul

t

∣∣∣
−N−d

|u− c− l|N du

≤ C
∑

l∈Z0

ρN
∫

B+l
|a(u)||x − ul|−N−d du

+ C
∑

l∈Zd\Z0

ρN
∫

B+l
|a(u)||x− ul|−N−d du =: A+B.
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Since x  ∈
⋃

l∈Z0
2(B + l),

|x− ul| ≥ |x− c− l| − |ul − c− l| ≥ |x− c− l|/2 (l ∈ Z0).

By the definition of the atom,

A ≤ C
∑

l∈Z0

ρN |x− c− l|−N−d

∫

B+l
|a(u)| du

≤ C
∑

l∈Z0

ρN |x− c− l|−N−d�a�Lr(Td)λ(B)1/r
′

≤ C
∑

l∈Z0

ρN+d�χB�−1
Lp(·)(Td)|x− c− l|−N−d

≤ C
∑

l∈Z0

�χB�−1
Lp(·)(Td)|MχB(x− l)|(N+d)/d

≤ C�χB�−1
Lp(·)(Td)|MχB(x)|(N+d)/d.

If l  ∈ Z0 and x ∈ T
d, then |x− ul| ≥ |l|/2 (l  ∈ Z0) and

B ≤ C
∑

l∈Zd\Z0

ρN+d�χB�−1
Lp(·)(Td)|l|

−N−d ≤ CρN+d�χB�−1
Lp(·)(Td)

≤ CρN+d�χB�−1
Lp(·)(Td)|x− c|−N−d ≤ C�χB�−1

Lp(·)(Td)|MχB(x)|(N+d)/d,

which completes the proof of the theorem. �

Theorem 4. Let p(·) ∈ C log(Td), max(p+, 1)<r≤∞ and dp(·)≤s < ∞.

A distribution f ∈ D(Td) is in Hp(·)(T
d) if and only if there exist a sequence

{ai}i∈N of (p(·), r)-atoms with support {Bi}i∈N and a sequence {λi}i∈N of
positive numbers such that

(8) f =
∑

i∈N

λiai in D(Td).

Moreover, for every 0 < t ≤ p,

(9) �f�Hp(·)(Td) ∼ inf

∥∥∥∥
(∑

i∈N

( λiχBi

�χBi
�Lp(·)(Td)

)t
)1/t∥∥∥∥

Lp(·)(Td)

,

where the infimum is taken over all decompositions of f as above.

Proof. Let N = dp(·)+1 and choose ψ ∈ FN(Rd) such that the support

of ψ is a subset of T d and
∫
Rd ψ(x)dx  = 0. Suppose that f ∈ D(Td) has an
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atomic decomposition (8) such that the right hand side of (9) is finite. Since
the sum of (8) converges in D(Td), we have

f ∗ ψt =
∑

i∈N

λiai ∗ ψt (a.e.)

Then

(10) ψ∗
+(f) ≤

∑

i∈N

λiψ
∗
+(ai)

and so

�ψ∗
+(f)�Lp(·)(Td) �

∥∥∥∥
∑

i∈N

λiψ
∗
+(ai)χ2Bi

∥∥∥∥
Lp(·)(Td)

+

∥∥∥∥
∑

i∈N

λiψ
∗
+(ai)χ(2Bi)c

∥∥∥∥
Lp(·)(Td)

=: A1 +A2.

Let us choose 0 < t < p ≤ 1 and apply (1) to obtain

A1 ≤
∥∥∥∥
∑

i∈N

λt
iψ

∗
+(ai)

tχ2Bi

∥∥∥∥
1/t

Lp(·)/t(Td)

.

We use p′(·) to denote the conjugate variable exponent, namely, 1
p(·)+

1
p′(·) =1.

Choose g ∈ L(p(·)/t)′ (R
d) with �g�L(p(·)/t)′ (Rd) ≤ 1 such that

∥∥∥∥
∑

i∈N

λt
iψ

∗
+(ai)

tχ2Bi

∥∥∥∥
Lp(·)/t(Td)

=

∫

Td

∑

i∈N

λt
iψ

∗
+(ai)

tχ2Bi
g dλ.

Choosing p+/t < u < r < ∞ and applying Hölder’s inequality, we deduce

At
1 ≤

∫

Td

∑

i∈N

λt
iψ

∗
+(ai)

tχ2Bi
g dλ ≤

∑

i∈N

λt
i

∥∥ψ∗
+(ai)

tχ2Bi

∥∥
Lu(Td)

∥∥χ2Bi
g
∥∥
Lu′(Td)

�
∑

i∈N

λt
i

∥∥ψ∗
+(ai)

∥∥ t

Lr(Td)
λ(2Bi)

1/u−t/r
∥∥χ2Bi

g
∥∥
Lu′ (Td)

.

By the definition of the p(·)-atom and the boundedness of ψ∗
+(ai), we con-

clude

At
1 �

∑

i∈N

λt
i�ai�tLr(Td)λ(2Bi)

1/u−t/r�χ2Bi
g�Lu′(Td)

Acta Mathematica Hungarica

F. WEISZ566



Acta Mathematica Hungarica 162, 2020

SUMMABILITY OF FOURIER SERIES IN PERIODIC HARDY SPACES 11

≤
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)λ(2Bi)

1/u�χ2Bi
g�Lu′(Td)

≤
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)λ(2Bi)

(
1

λ(2Bi)

∫

2Bi

gu
′

dλ

)1/u′

≤ 2
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)

∫

Td

χBi

(
M(gu

′

)
)1/u′

dλ.

Again by Hölder’s inequality,

At
1 ≤ 2

∫

Td

∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)χBi

(
M(gu

′

)
)1/u′

dλ

≤ 2

∥∥∥∥
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)χBi

∥∥∥∥
Lp(·)/t(Td)

∥∥(M(gu
′

)
)1/u′∥∥

L(p(·)/t)′ (Td)
.

Since (p(·)/t)′ < ∞ and p+/t < u imply that (p(·)/t)′ > u′, we get by (1)
and (3) that

A1 ≤
∥∥∥∥
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)χBi

∥∥∥∥
1/t

Lp(·)/t(Td)

∥∥M(gu
′

)
∥∥1/tu′

L((p(·)/t)′)/u′ (Td)

�

∥∥∥∥
∑

i∈N

λt
i�χBi

�−t
Lp(·)(Td)χBi

∥∥∥∥
1/t

Lp(·)/t(Td)

�g�1/tL(p(·)/t)′ (Td)

�

∥∥∥∥
(∑

i∈N

( λiχBi

�χBi
�Lp(·)(Td)

)t
)1/t∥∥∥∥

Lp(·)(Td)

.

By Theorem 3,

A2 �

∥∥∥∥
∑

i∈N

λi�χBi
�−1
Lp(·)(Td)|MχBi

|(N+d)/dχ(2Bi)c

∥∥∥∥
Lp(·)(Td)

�

∥∥∥∥
∑

i∈N

(
λ
d/(N+d)
i �χBi

�−d/(N+d)
Lp(·)(Td) |MχBi

|
)(N+d)/d

∥∥∥∥
Lp(·)(Td)

≤
∥∥∥∥
(∑

i∈N

(
λ
d/(N+d)
i �χBi

�−d/(N+d)
Lp(·)(Td) |MχBi

|
)(N+d)/d

)d/(N+d)∥∥∥∥
(N+d)/d

L(N+d)p(·)/d(Td)

.
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Since N = dp(·) + 1 implies p− > d/(N + d), we can apply Lemma 3 to con-
clude

A2 ≤
∥∥∥∥
(∑

i∈N

λi�χBi
�−1
Lp(·)(Td)|χBi

|
)d/(N+d)∥∥∥∥

(N+d)/d

L(N+d)p(·)/d(Td)

�

∥∥∥∥
∑

i∈N

λiχBi

�χBi
�Lp(·)(Td)

∥∥∥∥
Lp(·)(Td)

,

which shows that f ∈ Hp(·)(T
d). The other part of the theorem can be shown

as for Hp(·)(R
d) (see e.g. Nakai and Sawano [29,32] and Liu et al. [25] or

Weisz [43]). �

The next result can be found for Hp(·),q(R
d) in Yan et al. [45, Theorem

4.4], Liu et al. [26] and Jiao et al. [21, Theorem 5.4].

Theorem 5. Let p(·) ∈ C log(Td), 0 < q ≤ ∞, max(p+, 1) < r ≤ ∞ and
dp(·) ≤ s < ∞. A tempered distribution f ∈ D(Td) is in Hp(·),q(T

d) if and
only if there exists a sequence {ai,j}i∈Z,j∈N of (p(·), r)-atoms with support
{Bi,j}i∈Z,j∈N such that

(11) f =
∑

i∈Z

∑

j∈N

λi,jai,j in D(Td),

where ∑

j∈N

χBi,j
(x) ≤ A

for all x ∈ Td and i ∈ Z and λi,j := C2i�χBi,j
�Lp(·)(Td) (i ∈ Z, j ∈ N) with A

and C being positive constants. Moreover,

(12) �f�Hp(·),q(Td) ∼ inf

(∑

i∈Z

∥∥∥∥
(∑

j∈N

( λi,jχBi,j

�χBi,j
�Lp(·)(Td)

)p
)1/p∥∥∥∥

q

Lp(·)(Td)

)1/q

,

where the infimum is taken over all decompositions of f as above and with
the usual modification for q = ∞.

Proof. Suppose that f ∈ D(Td) has an atomic decomposition (11) such
that the right hand side of (12) is finite. As in (10),

ψ∗
+(f) ≤

∑

i∈Z

∑

j∈N

λi,jψ
∗
+(ai,j)

=
∑

i<k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ2Bi,j

+
∑

i<k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ(2Bi,j)c
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+
∑

i≥k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ2Bi,j

+
∑

i≥k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ(2Bi,j)c

=: A1 + A2 +A3 + A4,

where k0 ∈ Z is arbitrary. Then

(13) �χ{ψ∗

+(f)>2k0}�Lp(·)(Td) �

4∑

i=1

�χ{Ai>2k0−2}�Lp(·)(Td).

Let us choose the numbers ε, δ, ν, u such that 0 < ε < min(p, q), 1 < δ < ν,
max(p+, 1) < uε < uεν < r and νε < 1. Then

�χ{A1>2k0−2}�Lp(·)(Td) �
∥∥∥ Aν

1

2k0ν

∥∥∥
Lp(·)(Td)

(14)

� 2−k0ν

∥∥∥∥
(∑

i<k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ2Bi,j

)νε∥∥∥∥
1/ε

Lp(·)/ε(Td)

� 2−k0ν

∥∥∥∥
∑

i<k0

2iνε
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
1/ε

Lp(·)/ε(Td)

� 2−k0ν

(∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

.

To compute the norm in the last expression let us choose g ∈ L(p(·)/ε)′(T
d)

with �g�L(p(·)/ε)′ (Td) ≤ 1 such that

∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
Lp(·)/ε(Td)

=

∫

Td

∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j
g.

By Hölder’s inequality,

∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
Lp(·)/ε(Td)

≤
∑

j∈N

�χBi,j
�νεLp(·)(Td)

∥∥(ψ∗
+(ai,j)

νεχ2Bi,j

∥∥
Lu(Td)

∥∥χ2Bi,j
g
∥∥
Lu′(Td)
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�
∑

j∈N

�χBi,j
�νεLp(·)(Td)�ψ∗

+(ai,j)�νεLr(Td)λ(2Bi,j)
1/u−νε/r�χ2Bi,j

g�Lu′(Td).

By Theorem 2 and the definition of the atom,

∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
Lp(·)/ε(Td)

�
∑

j∈N

�χBi,j
�νεLp(·)(Td)�ai,j�νεLr(Td)λ(2Bi,j)

1/u−νε/r�χ2Bi,j
g�Lu′ (Td)

≤
∑

j∈N

�χBi,j
�νεLp(·)(Td)�χBi,j

�−νε
Lp(·)(Td)λ(2Bi,j)

1/u�χ2Bi,j
g�Lu′ (Td)

≤
∑

j∈N

λ(2Bi,j)

(
1

λ(2Bi,j)

∫

2Bi,j

gu
′

dλ

)1/u′

≤
∑

j∈N

∫

Td

χBi,j

(
M(gu

′

)
)1/u′

dλ

≤
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)/ε(Td)

∥∥∥
(
M(gu

′

)
)1/u′

∥∥∥
L(p(·)/ε)′ (Td)

.

Since ε < p− and p+/ε < u, we have that ((p(·)/ε)′)+ < ∞ and (p(·)/ε)′ > u′.
Thus

∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ2Bi,j

∥∥∥∥
Lp(·)/ε(Td)

�

∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)/ε(Td)

�g�L(p(·)/ε)′ (Td).

As �g�L(p(·)/ε)′ (Td) ≤ 1 and
∑

j∈N χBi,j
(x) ≤ A (i ∈ Z), we conclude

�χ{A1>2k0−2}�Lp(·)(Td) � 2−k0ν

( ∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

(15)

� 2−k0ν

( ∑

i<k0

2iνε
∥∥∥∥
(∑

j∈N

χBi,j

)1/ε∥∥∥∥
ε

Lp(·)(Td)

)1/ε

≤ 2−k0ν

(∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
ε

Lp(·)(Td)

)1/ε

.
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For a finite q, we suppose that ε < q and apply Hölder’s inequality for
q−ε
q + ε

q = 1 to obtain

∥∥χ{A1>2k0−2}

∥∥
Lp(·)(Td)

≤ 2−k0ν

( ∑

i<k0

2i(ν−δ)ε q

q−ε

) q−ε

εq
( ∑

i<k0

2iδq
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
q

Lp(·)(Td)

)1/q

� 2−k0δ

(∑

i<k0

2iδq
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
q

Lp(·)(Td)

)1/q

.

This implies that

∞∑

k0=−∞

2k0q�χ{A1>2k0}�qLp(·)(Td) �

∞∑

k0=−∞

2k0(1−δ)q
k0−1∑

i=−∞

2iδq
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
q

Lp(·)(Td)

=
∞∑

i=−∞

2iδq
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
q

Lp(·)(Td)

∞∑

k0=i+1

2k0(1−δ)q �

∞∑

i=−∞

2iq
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
q

Lp(·)(Td)

.

Hence, for all 0 < q < ∞,

( ∞∑

k0=−∞

2k0q�χ{A1>2k0}�qLp(·)(Td)

)1/q

(16)

�

(∑

i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
q

Lp(·)(Td)

)1/q

.

For q = ∞, (15) implies that

∥∥χ{A1>2k0−2}

∥∥
Lp(·)(Td)

≤ 2−k0ν

( ∑

i<k0

2iε(ν−1)2iε
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
ε

Lp(·)(Td)

)1/ε

≤
(
sup
i∈Z

2i
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)(Td)

)
2−k0ν

( ∑

i<k0

2iε(ν−1)

)1/ε

≤ 2−k0

(
sup
i∈Z

2i
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)(Td)

)
.
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Henceforth,

sup
k0∈Z

2k0�χ{A1>2k0−2}�Lp(·)(Td) � sup
i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
Lp(·)(Td)

.

For A2, we choose ε, δ, ν such that 0 < ε < min(p, q), 1 < δ < ν, νε < 1
and νε(N +d)/d > 1. Note thatN = dp(·)+1 implies p− > d/(N+d). Using
(6), we get as in (14) that

∥∥χ{A2>2k0−2}

∥∥
Lp(·)(Td)

� 2−k0ν

(∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

�χBi,j
�νεLp(·)(Td)ψ

∗
+(ai,j)

νεχ(2Bi,j)c

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

� 2−k0ν

( ∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

|MχBi,j
|νε(N+d)/d

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

� 2−k0ν

( ∑

i<k0

2iνε
∥∥∥∥
(∑

j∈N

|MχBi,j
|νε(N+d)/d

)d/νε(N+d)∥∥∥∥
νε(N+d)/d

Lp(·)ν(N+d)/d(Td)

)1/ε

.

Since νε(N + d)/d > 1 and p−ν(N + d)/d > 1, we can apply Lemma 3 to get

�χ{A2>2k0−2}�Lp(·)(Td) � 2−k0ν

(∑

i<k0

2iνε
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

.

Then we can prove as after (15) that

( ∞∑

k0=−∞

2k0q�χ{A2>2k0}�qLp(·)(Td)

)1/q

(17)

�

(∑

i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
q

Lp(·)(Td)

)1/q

for 0 < q ≤ ∞.
For A3 let us choose the numbers ε, δ, ν, u such that 0 < ε < min(p, q),

ν < δ < 1 and max(p+, 1) < uε < r. Then, for 0 < q ≤ ∞,

( ∞∑

k0=−∞

2k0q�χ{A3>2k0}�qLp(·)(Td)

)1/q

(18)
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�

(∑

i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
q

Lp(·)(Td)

)1/q

can be proved exactly as (16).
For A4, we choose ε, δ, ν such that 0 < ε < min(p, q), ν < δ < 1,

ν(N + d)/d > 1 and p−ν(N + d)/d > 1. Similarly to (14),

∥∥χ{A4>2k0−2}

∥∥
Lp(·)(Td)

�
∥∥∥ Aν

1

2k0ν

∥∥∥
Lp(·)(Td)

� 2−k0ν

∥∥∥∥
( ∑

i≥k0

∑

j∈N

λi,jψ
∗
+(ai,j)χ(2Bi,j)c

)νε∥∥∥∥
1/ε

Lp(·)/ε(Td)

� 2−k0ν

∥∥∥∥
∑

i≥k0

2iνε
(∑

j∈N

�χBi,j
�νLp(·)(Td)ψ

∗
+(ai,j)

νχ(2Bi,j)c

)ε∥∥∥∥
1/ε

Lp(·)/ε(Td)

� 2−k0ν

( ∑

i≥k0

2iνε
∥∥∥∥
(∑

j∈N

�χBi,j
�νLp(·)(Td)ψ

∗
+(ai,j)

νχ(2Bi,j )c

)ε∥∥∥∥
Lp(·)/ε(Td)

)1/ε

.

By Theorem 3 and Lemma 3,

∥∥χ{A4>2k0−2}

∥∥
Lp(·)(Td)

� 2−k0ν

( ∑

i≥k0

2iνε
∥∥∥∥
(∑

j∈N

|MχBi,j
|ν(N+d)/d

)ε∥∥∥∥
Lp(·)/ε(Td)

)1/ε

� 2−k0ν

( ∑

i≥k0

2iνε
∥∥∥∥
(∑

j∈N

|MχBi,j
|ν(N+d)/d

)d/ν(N+d)∥∥∥∥
νε(N+d)/d

Lp(·)ν(N+d)/d(Td)

)1/ε

� 2−k0ν

(∑

i≥k0

2iνε
∥∥∥∥
∑

j∈N

χBi,j

∥∥∥∥
Lp(·)/ε(Td)

)1/ε

and so

( ∞∑

k0=−∞

2k0q�χ{A4>2k0}�qLp(·)(Td)

)1/q

(19)

�

(∑

i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
q

Lp(·)(Td)

)1/q
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for 0 < q ≤ ∞. Taking into account (13), (16), (17), (18) and (19), we get

�f�Hp(·),q(Td) �

( ∞∑

k0=−∞

2k0q�χ{ψ∗

+(f)>2k0}�qLp(·)(Td)

)1/q

�

(∑

i∈Z

∥∥∥∥
∑

j∈N

λi,jχBi,j

�χBi,j
�Lp(·)(Td)

∥∥∥∥
q

Lp(·)(Td)

)1/q

.

The proof can be finished as for Hp(·),q(R
d) (see e.g. Yan et al. [45], Liu

et al. [26] and Jiao et al. [21] or Weisz [43]). �

4. θ-summability of Fourier transforms

The θ-summability is a general summation generated by a single func-
tion θ. This summation was considered in a great number of papers and
books, see e.g. Butzer and Nessel [2], Grafakos [18], Trigub and Belinsky
[39] and Feichtinger and Weisz [10,41,42] and the references therein. Let
θ : R → R be even and θ0(x) := θ(|x|), where | · | denotes the Euclidean norm.
We suppose always that

(20) θ(0) = 1 and θ̂0 ∈ L1(Rd).

For n ∈ N+, the nth θ-mean of a distribution f ∈ D(Td) is defined by

σθ
nf :=

∑

k1∈Z

· · ·
∑

kd∈Z

θ0

(−k

n

)
f̂(k)en.

Similarly to (5), this can be rewritten as

σθ
nf(x) = nd

∫

Rd

f(x− u)θ̂0(nu) du

if f ∈ L1(T
d) and θ̂0 ∈ L1(R

d). In this case, we can also write

σθ
nf(x) =

∫

Td

f(x− u)Kθ
n(u) du,

where

Kθ
n(u) = nd

∑

k∈Zd

θ̂0(n(u+ k)) (u ∈ T
d)

is the nth θ-kernel. Thus Kθ
n ∈ L1(T

d).
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First, we estimate the maximal θ-operator defined by

σθ
∗f := sup

n>0
|σθ

nf |.

Theorem 6. Let (20) be satisfied. Assume that θ̂0 is (N + 1)-times dif-
ferentiable for some N ∈ N and there exists d+N < β ≤ d+N +1 such that

(21)
∣∣∂i1

1 · · · ∂id
d θ̂0(x)

∣∣ ≤ C|x|−β (x �= 0)

whenever i1 + · · ·+ id = N or i1 + · · ·+ id = N +1. If p(·) ∈ C log(Td), then

∣∣σθ
∗a(x)

∣∣ ≤ C�χB�−1
Lp(·)(Td)|MχB(x)|β/d

for all (p(·),∞)-atoms a and all x ∈ Td \ 2B, where the ball B is the support

of the atom.

Proof. Suppose that B is a ball with center c and radius ρ. We may
assume that s ≥ N + 1, where s is given in the definition of the (p(·),∞)-
atoms. First let n ≥ 1/ρ. Similarly to (7),

|σθ
na(x)| ≤

∑

l∈Zd

nd

∫

B+l
|a(u)|

∑

�i�1=N

n�i�1

×
∣∣∣∂i1

1 · · · ∂id
d θ̂0(n(x− ul))

∣∣∣
d∏

j=1

|uj − cj − lj |ij
ij !

du

≤ C
∑

l∈Zd

nN+d

∫

B+l
|a(u)|

∣∣n(x− ul)
∣∣−β |u− c− l|N du

≤ C
∑

l∈Z0

nN+d−βρN
∫

B+l
|a(u)| |x− ul|−β dt

+ C
∑

l∈Zd\Z0

nN+d−βρN
∫

B+l
|a(u)| |x− ul|−β du =: A+ B.

Moreover,

A ≤ C
∑

l∈Z0

ρβ−d|x− c− l|−β

∫

B+l
|a(u)| du

≤ C
∑

l∈Z0

ρβ�χB�−1
Lp(·)(Td)|x− c− l|−β ≤ C�χB�−1

Lp(·)(Td)|MχB(x)|β/d
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and

B ≤ C
∑

l∈Zd\Z0

ρβ�χB�−1
Lp(·)(Td)|l|

−β

≤ Cρβ�χB�−1
Lp(·)(Td)|x− c|−β ≤ C�χB�−1

Lp(·)(Td)|MχB(x)|β/d.

Now suppose that n < 1/ρ. We can see as above that

|σθ
na(x)| ≤

∑

l∈Zd

nd

∫

B+l
|a(u)|

∑

�i�1=N+1

n�i�1

×
∣∣∣∂i1

1 · · · ∂id
d θ̂0(n(x− ul))

∣∣∣
d∏

j=1

|uj − cj − lj|ij
ij !

du

≤ C
∑

l∈Zd

nN+1+dρN+1

∫

B+l
|a(u)||n(x− ul)|−β du

≤ C
∑

l∈Z0

�χB�−1
Lp(·)(Td)|MχB+l(x)|β/d. �

Note that if β = d+N + 1 in (21), then it is enough to suppose that

(22)
∣∣∂i1

1 · · · ∂id
d θ̂0(x)

∣∣ ≤ C|x|−d−N−1 (x �= 0)

for i1 + · · ·+ id = N + 1.

Theorem 7. Let (20) and (22) be satisfied. If p(·) ∈ C log(Td), then

∣∣σθ
∗a(x)

∣∣ ≤ C�χB�−1
Lp(·)(Td)|MχB(x)|(d+N+1)/d

for all (p(·),∞)-atoms a and all x ∈ Td \ 2B, where the ball B contains the

support of the atom.

5. Summability in Hp(·)(T
d)

In this section, we investigate the boundedness of the maximal opera-
tor V∗ from Hp(·)(T

d) to Lp(·)(T
d), where Vn is defined on D(Td) and

V∗f := sup
n∈N

|Vnf |.
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Theorem 8. Let p(·) ∈ C log(Td), γ > 1 and p− > 1/γ. For each n ∈ N,
let the linear operator Vn be defined on D(Td) and be bounded on L1(T

d).
Suppose that

|V∗a(x)| ≤ C�χB�−1
Lp(·)(Td)|MχB(x)|γ (x �∈ 2B)

for all (p(·),∞)-atoms a, where the ball B is the support of the atom. If V∗

is bounded from L∞(Td) to L∞(Td), then

(23) �V∗f�Lp(·)(Td) � �f�Hp(·)(Td) (f ∈ Hp(·)(T
d) ∩H1(T

d)).

If limk→∞ fk = f in the Hp(·)(T
d)-norm implies that limk→∞ Vnfk = Vnf in

D(Td) for all n ∈ N, then (23) holds for all f ∈ Hp(·)(T
d).

Proof. If f ∈ Hp(·)(T
d), then, by Theorem 4, f can be written as

f =
∑

i∈N

λiai in D(Td).

It is known (see e.g. Weisz [42]) that the series converge in the H1(T
d)-

norm as well as in the L1(T
d)-norm if f ∈ Hp(·)(T

d) ∩H1(T
d). Since Vn is a

bounded linear operator on the L1(T
d) space,

Vn(f) =
∑

i∈N

λiVn(ai)

and so

V∗(f) ≤
∑

i∈N

λiV∗(ai).

Then inequality (23) can be proved exactly as Theorem 4. The density ar-
gument can be found in [44]. �

The following theorem is shown in [44].

Theorem 9. Suppose that V f := f ∗K for all f ∈ D(Td), where K ∈
L1(T

d). If p(·) ∈ C log(Td) and

(24) lim
k→∞

fk = f in the Hp(·)(T
d)-norm, then lim

k→∞
V fk = V f in D(Td).

Since σθ
∗ is bounded from L∞(Td) to L∞(Td) (see e.g. Weisz [41]), The-

orems 6, 8 and 9 imply

Corollary 1. Let (20) and (21) be satisfied. If p(·) ∈ C log(Td) and
p− > d/β, then

�σθ
∗f�Lp(·)(Td) � �f�Hp(·)(Td) (f ∈ Hp(·)(T

d)).
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Note that if p(·) = p is a constant, then we get back the classical result
(see Weisz [41,42]). The classical result was proved in a special case, for the
Bochner–Riesz means in Stein, Taibleson and Weiss [37], Grafakos [18] and
Lu [28]. For the same case [37] contains a counterexample which shows that
the theorem is not true for p ≤ d/β. The corresponding result for Hp(·)(R

d)
was proved by the author in [44].

The following corollary comes from Theorems 7, 8 and 9.

Corollary 2. Let (20) and (22) be satisfied. If p(·) ∈ C log(Td) and
p− > d/(d+N + 1), then

�σθ
∗f�Lp(·)(Td) � �f�Hp(·)(Td) (f ∈ Hp(·)(T

d)).

Using Corollaries 1 and 2 and a usual density argument, we obtain the
next convergence results in the usual way.

Corollary 3. Suppose the same conditions as in Corollary 1 or 2.
If f ∈ Hp(·)(T

d), then σθ
T f converges almost everywhere as well as in the

Lp(·)(T
d)-norm as T → ∞.

Corollary 4. Suppose the same conditions as in Corollary 1 or 2. If
f ∈ Hp(·)(T

d) and there exists an interval I ⊂ Td such that the restriction
f |I ∈ Lr(·)(I) with r− ≥ 1, then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ I as well as in the Lp(·)(I)-norm.

The next consequence follows from Theorem 2.

Corollary 5. Suppose the same conditions as in Corollary 1 or 2. If
p− > 1 and f ∈ Lp(·)(T

d), then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ T

d as well as in the Lp(·)(T
d)-norm.

6. Summability in Hp(·),q(T
d)

The next theorem can be proved similarly to Theorems 5 and 8.

Theorem 10. Besides the conditions of Theorem 8, suppose that 0 <
q < ∞. Then

(25) �V∗f�Lp(·),q(Td) � �f�Hp(·),q(Td) (f ∈ Hp(·),q(T
d) ∩H1(T

d)).

If limk→∞ fk = f in the Hp(·),q(T
d)-norm implies that limk→∞ Vtfk = Vtf

in D(Td) for all n ∈ N, then (25) holds for all f ∈ Hp(·),q(T
d). The theorem

holds for q = ∞ as well if we change Hp(·),∞(Td) by Hp(·),∞(Td).
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Theorem 11. Besides the conditions of Theorem 9, suppose that 0 < q
≤ ∞. Then (24) holds for Hp(·),q(T

d).

The following results follow from Theorems 6, 7, 10 and 11.

Corollary 6. Let (20) and (21) be satisfied. If p(·) ∈ C log(Td), 0 <
q < ∞ and p− > d/β, then

�σθ
∗f�Lp(·),q(Td) � �f�Hp(·),q(Td) (f ∈ Hp(·),q(T

d)).

The theorem holds for q = ∞ as well if we change Hp(·),∞(Td) by Hp(·),∞(Td).

Corollary 7. Let (20) and (22) be satisfied. If p(·) ∈ C log(Td), 0 <
q < ∞ and p− > d/(d+N + 1), then

�σθ
∗f�Lp(·),q(Td) � �f�Hp(·),q(Td) (f ∈ Hp(·),q(T

d)).

The theorem holds for q = ∞ as well if we change Hp(·),∞(Td) by Hp(·),∞(Td).

Using Corollaries 6 and 7, the following consequences can be proved as
in [9,10,20,26].

Corollary 8. Suppose the same conditions as in Corollary 6 or 7. If
f ∈ Hp(·),q(T

d) with 0 < q < ∞, then σθ
T f converges almost everywhere as

well as in the Lp(·),q(T
d)-norm as T → ∞. The theorem holds for q = ∞ as

well if we change Hp(·),∞(Td) by Hp(·),∞(Td).

Corollary 9. Suppose the same conditions as in Corollary 6 or 7. If
f ∈ Hp(·),q(T

d) with 0 < q < ∞ and if there exists an interval I ⊂ Td such

that the restriction f |I ∈ Lr(·),s(I) with r− ≥ 1 and 1 ≤ s ≤ ∞, then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ I as well as in the Lp(·),q(I)-norm.

The theorem holds for q = ∞ as well if we change Hp(·),∞(Td) by Hp(·),∞(Td).

By Theorem 2, we have

Corollary 10. Suppose the same conditions as in Corollary 6 or 7. If
p− > 1, 1 ≤ q < ∞ and f ∈ Lp(·),q(T

d), then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ I as well as in the Lp(·),q(T

d)-norm.

The theorem holds for q = ∞ as well if we change Hp(·),∞(Td) by Hp(·),∞(Td).

We can verify the almost everywhere convergence for the spaces Lp(·)(T
d)

with p− ≥ 1 as well, which is an improvement of Corollary 5.
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Corollary 11. Suppose the same conditions as in Corollary 1 or 2. If
p− ≥ 1 and f ∈ Lp(·)(T

d), then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ Td.

Proof. Since f� ≤ M(f), inequality (2) implies

�f�Hp(·),∞(Td) ≤ C�M(f)�Lp(·),∞(Td) ≤ C�f�Lp(·)(Td) (f ∈ Lp(·)(T
d)).

Now the result can be shown as Corollary 9. �

7. Some summability methods

As special cases, we consider some summability methods. The details of
the necessary computations are left to the reader. All the examples satisfy
condition (20).

Example 1. The function

θ0(t) =

{
(1− |t|γ)α, if |t| > 1;

0, if |t| ≤ 1
(t ∈ R

d)

defines the Riesz summation if 0 < α < ∞ and γ is a positive integer. It is
called Bochner–Riesz summation if γ = 2. If α > d−1

2 , then (21) holds with
β = d/2 + α+ 1/2 (see Weisz [43]) and the results of Sections 5 and 6 hold
for

α >
d− 1

2
,

d

d/2 + α+ 1/2
< p− < ∞.

The results for constant p’s can be found in Stein and Weiss [38], Lu [28,
p. 132] and Weisz [43].

Example 2. The Weierstrass summation is defined by

θ0(t) = e−|t|2/2 (t ∈ R
d)

or by

θ0(t) = e−|t| (t ∈ R
d),

or, in the one-dimensional case, by

θ0(t) = e−|t|γ (t ∈ R, 1 ≤ γ < ∞).

It is called Abel summation if γ = 1. It is known that in the first case

θ̂0(x) = e−|x|2/2 and in the second one θ̂0(x) = cd/(1 + |x|2)(d+1)/2 for some
cd ∈ R (see Stein and Weiss [38, p. 6]). Then (22) holds for all N ∈ N and
the results of Sections 5 and 6 hold for all p(·) ∈ C log(Td).
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Example 3. The Picard and Bessel summations are given by

θ0(t) =
1

(1 + |t|2)(d+1)/2
(t ∈ R

d).

Then θ̂0(x) = cde
−|x| for some cd ∈ R and the same results hold as in Exam-

ple 2.
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