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Abstract. Let p(-): T" — (0,00) be a variable exponent function satisfying
the globally log-Holder condition and 0 < ¢ < co. We introduce the periodic vari-
able Hardy and Hardy-Lorentz spaces H,(.(T%) and H,.) ,(T%) and prove their
atomic decompositions. A general summability method, the so called #-summa-
bility is considered for multi-dimensional Fourier series. Under some conditions
on 0, it is proved that the maximal operator of the #-means is bounded from
Hyy (T to Lyy(T?) and from Hy(yo(T?) to Ly(),(T%). This implies some
norm and almost everywhere convergence results for the summability means. The
Riesz, Bochner—Riesz, Weierstrass, Picard and Bessel summations are investigated
as special cases.

1. Introduction

It was proved by Lebesgue [24] that the Fejér means [11] of the trigono-
metric Fourier series of a one-dimensional integrable function f € Li(T) con-
verge almost everywhere to the function. This result was generalized for
several summability methods, such as for the Riesz, Weierstrass, Abel, etc.
summations in Zygmund [46], Butzer and Nessel [2], Stein and Weiss [38] or
Trigub and Belinsky [39].

A general method of summation, the so called #-summation method,
which is generated by a single function 6 and which includes all summations
just mentioned, is studied intensively in the literature (see e.g. Butzer and
Nessel [2], Trigub and Belinsky [39], Gat [12-14], Goginava [15-17], Persson,
Tephnadze and Wall [31], Simon [33-35] and Feichtinger and Weisz [9,10,
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41-43]). For multi-dimensional Fourier series, the summability means are
defined by

@)=Y 3 o) e,
ki1€Z ka€Z

~

where | - | denotes the Euclidean norm and f(k) is the kth Fourier coefficient
of f. The choice 0(u) = max(1 — |ul],0) yields the Fejér summation.

Stein, Taibleson and Weiss [37] proved for the Bochner—Riesz summa-
bility that the maximal operator o/ of the §-means is bounded from the
Hardy space H,(T?) to L,(T?) if p > po (see also Grafakos [18] and Lu
[28]). Recently, the author [44] generalized this result and verified for
multi-dimensional Fourier transforms that ¢¥ is bounded from Hpyy(R?) to
Lyy(R?) and from Hp(y,(R?) to Ly (R?) for all p(-) > po, where p(-):
R? — (0,00) is a variable exponent function satisfying the globally log-
Holder condition and 0 < ¢ < oo.

In this paper, we prove similar results for the periodic spaces and for
multi-dimensional Fourier series. We consider a variable exponent defined
on T and the periodic Lebesgue, Lorentz, Hardy and Hardy-Lorentz spaces
Ly (T%), Ly o(TY), Hyy(T?) and Hyy o(T%) defined by p(-). If p(-) is a
constant, then we get back the classical spaces. We will prove the atomic
decompositions of Hyy(T?) and H, . ,(T%). Moreover, we show that 0¥ is
bounded from H,,.)(T%) to Ly (T?%) and from Hp( 4(T?) to L, 4(T%). As
a consequence of these results, we obtain some norm and almost everywhere
convergence results for the summability means. Our results can be applied
to the Riesz, Bochner—Riesz, Weierstrass, Picard and Bessel summations.

2. Variable Lebesgue and Lorentz spaces

In this section, we recall some basic notations on variable Lebesgue
spaces and variable Lorentz spaces and give some elementary and necessary
facts about these spaces. Our main references are Cruz-Uribe and Fiorenza
[5], Diening et al. [6] and Kempka and Vybiral [22].

For a constant p, the Lp(']l‘d) space is equipped with the quasi-norm

= ([ reras)” 0<p<oo

with the usual modification for p = co. Here we integrate with respect to
the Lebesgue measure A on the torus T?, that can be identified with [0, 1)9.
The Lebesgue measure of a set H will be denoted also by |H]|.
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We are going to generalize these spaces. A measurable function p(-):
T?¢ — (0, 00] is called a variable exzponent. For any variable exponent p(-),
let

p— :=essinfp(x) and py = esssupp(x).
r€T? rETd

Denote by P(T%) the collection of all variable exponents p(-) satisfying
0<p_ <py <oo.
In what follows, we use the symbol
p=min{p_,1}.

For p(-) € P(T?) and a measurable function f, the modular functional 2p(")
is defined by

oo = [ 1f@P da
and the Luxemburg quasi-norm is given by setting
1 fllz, ey :==inf {p € (0,00) : g,)(f/p) <1}.

The variable Lebesque space Lp(.)(']I'd) is defined to be the set of all measur-
able functions f such that g,.)(f) < co and equipped with the quasi-norm
I Iz, (rey- It is easy to see that if p(-) is a constant, then we get back the

L,(T%) spaces. It is known that [[pf]z,c,czo) = lol £,z
(1) H |f|SH Ly (T4) = ||f|

and

S
Lsp((T?)

Hf+9H]Zp(,>(1rd) < HfH]Zp(,>(1rd) + HgHim.)(wy

where p(-) € P(T?), s € (0,00), p € C and f, g € Ly (T9).

We denote by C°8(T%) the set of all functions p(-) € P(T?) satisfying
the so-called log-Hdélder continuous condition, namely, there exists a positive
constants Clog(p) such that, for any z,y € T,

| < Clog(p)
" log(e+1/jz —yl)

Given an integrable function f, the Hardy-Littlewood maximal opera-
tor M is defined by

Ip(z) — p(y)

i@ =sw o [ iy @e).

zeB
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where the supremum is taken over all balls B of T¢ containing . It is known
that M is bounded on L,(T9) if 1 < p < oo and is of weak type (1,1). This
is extended to the variable Lebesgue spaces in the following lemma (see
Cruz-Uribe et al. [4], Nekvinda [30] or Cruz-Uribe and Fiorenza [5, Theorem
3.16)).

LEMMA 1. Suppose that p(-) € C'°8(T?) and f € Lp(.)(']I‘d). If p_ >1,
then

(2) sup (pHX{xGTd: Mf@)>p}] Lp(_>(w)> < |Ifllz,.,(Te)-

p€(0,00)
If in addition p— > 1, then
(3) 1M £z, @y < Clfllz,. T

The variable Lorentz spaces were introduced and investigated by Kempka
and Vybiral [22]. Ly, (T?) is defined to be the space of all measurable func-
tions f such that

1/q
q dp : .
Loy (T4) p ) , if0<g<oo;

_ ) (0 ollxeers sl

1Al 2y 0(rey : '
SUP pe(0,00) Pl X{weTs: ()53 Lymey g =00
is finite. If p(-) is a constant, we get back the classical Lorentz spaces (see
Lorentz [27] or Bergh and Lofstrom [1]).
Now we give an equivalent discrete characterizationof |||z, .,  (re)- Later
it allows us to do the calculation in a more convenient way. For the proof,
we refer to Kempka and Vybrial [22, Lemma 2.4].

LEMMA 2. Assume that p(-) € P(T?) and 0 < g < co. Then, for any
measurable function f,

. /g
(Sicz 29 Xpzersisaisan s, mn) »  0<a<oo;

1N Ly q(mey ~ o o
Ly (T4)’ 4=

suPsez, 2'|| X (zera| f(a))>21} |

Now we generalize inequality (3) and recall the Fefferman—Stein vector-
valued inequality on variable Lebesgue spaces, whose proof is contained in
Cruz-Uribe et al. [3, Corollary 2.1] and Jiao [21, Theorem 3.4].

LEMMA 3. If p(-) € C'8(T9) with p_ >1,0< q¢< o0 and 1 <r < oo,
then

(Snr)”

J=1

Ly (T4 Ly (T4)

0 1/r
< CH(Zlij)
) j=1
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and

($rr)”

Jj=1

00 1/r
< CH<Z|f]‘|T>
) j=1

Lp(-),q(’]rd LP(-),,q(Td)

3. Variable Hardy and Hardy—Lorentz spaces

Now we introduce the variable Hardy and Hardy—Lorentz spaces and give
the atomic decompositions. Denote by S(RY) the set of all Schwartz func-
tions, by S’ (R%) the set of all tempered distributions and by D(T%) the set of
all distributions. For a distribution f € D(T?), the nth Fourier coefficient is

defined by f(n) = f(en), where e,(x) == e72™% (n € Z9, x = (v1,...,24)
€ERY), u-x:= ZZ:1 upzy (z,u € RY) and +=+/—1. In special case, if
f € Li(T%), then

~

fn)= [ flx)e 2™ %dz (ncZ%.
’]I‘d

For f € D(T9),
=" f(n)e, in D(TY

neNd

and f(n) = O(|n|*), where k € N is the order of f (sce Edwards [7, p. 68]).
Conversely, if ¢, = O(|n|¥), then f =", . cnen in D(T?). We define the
convolution of f € D(T¢) and v € L;(RY) by

frv=Y" f(n)(n)e, in D(TY),

neNd

where ¢ denotes the Fourier transform of 1 € Ly (RY),
P() = | ) ™t (z e RY).
Rd

Note that this is the usual convolution if f € D(T%) and 1 € Li(T%). For
t € (0,00) and & € T, let

(€)=t~ (E/D).
For f € D(T9) and v € Li(R?), we have

(4) Fre=">_ fn)d(tn)e, in D(TY).

neNd
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The convergence in (4) does exist because Ve Loo(RY). Moreover, if 1 €
S(R%), then (4) converges absolutely in each point as well. It is easy to see
that

(5) f (e /fx—uwt w) du

for f € Li(T9) and ¢ € L (RY).
Fix ¢ € S(RY) such that [, 1(z)dz # 0. We define the radial maximal
function and the non-tangential maxunal function of f € S’(R™) associated

to ¥ by
Vi(f)(x) = sup |f x1(z)]
te(0,00)
and

Po(f)() = sup [fxih(y)l;

te(0,00),|ly—z|<t

respectively. For N € N, let

Fr®Y)={pes®Y): s (14 V()| <1},
z€RY||B]L<N

where ||B]|1 = 81+ -+ B4. For any N € N, the radial grand maximal func-

tion and the non-tangential grand maximal function of f € S'(R%) are de-
fined by

fi(z):= sup  sup |fxy(y)l

YeEFn(RY) t€(0,00)

and

fo(x):= sup sup  [f x ¢u(y)l,
waN(Rd) t€(07oo)"y_x|<t
respectively. Let p(-) € P(R") and 0 < ¢ < oo. We introduce the number
dp(.).:: |d(1/p— —1)] and fix a positive integer N > dp(.y, where | x| denotes
the integer part of x € R. The variable Hardy and Hardy—Lorentz spaces

Hp(,)(']l‘d) and Hp(,)ﬁq(’]I‘d) are defined to be the sets of all f € D(R?) such

that f5 € Lp(,)(']I'd) and f3 € Lp(,m(']l'd) equipped with the quasi-norms
Wl 22,y (ray := 1O (O, vy and (| fllm, ., ra) = 1L L0 00T

respectively. Let us denote by Hp(.)voo(']l'd) the closure of the step functions

in Hp(.)voo(']l‘d). We will see in the next theorem that the Hardy spaces are
independent of N, more exactly, different integers N give the same space
with equivalent norms.
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THEOREM 1. Let p(-) € C'8(T%) and 0 < q¢ < oo. Fiz 1 € S(R?) such
that [, ¢¥(x)dx # 0 and fiz a positive integer N > dyy.y. Then f € Hp(.)(']I‘d) if
and only if f3 € Lp(.)(']l‘d) or Y5 (f) € Lp(.)(']l‘d) or P (f) € Lp(.)(']I‘d). More-
over, f € Hp(.)yq(']l'd) if and only if f3 € Lp(,)vq(']l‘d) or vi(f) € Lp(.)vq(']l'd) or
vE(f) € Lp(.)yq(’]I‘d). We have the following equivalences of norms:

1 ez mey ~ IRz 0ty ~ Nl oy ~ 195 (DL, o)

and
HfHHp(.)yq(Td) ~ ||f—T—HLP(.)’q(T‘i) ~ ||f§||Lp(.)yq(Td) ~ ng(f)HLp(.),q(Td)'
THEOREM 2. Let p(-) € C'8(T9), 1 < p_ < 0o and 0 < q < co. Then

H

p()(TY) ~ Ly (T, Hy( (T ~ Ly o(TY.

We omit the proofs of these theorems because they are very similar to
the proofs of the corresponding theorems for Hp(.)(Rd) and Hp(.)ﬁq(Rd) (see
e.g. Nakai and Sawano [29,32], Yan et al. [45], Liu et al. [25,26] and Jiao
et al. [21]). If p(-) is a constant, then we get back the classical Hardy and
Hardy-Lorentz spaces Hy,(T?) and H, 4(T?) investigated in Fefferman, Stein
and Weiss [8,36,38], Gundy [19], Lu [28], Uchiyama [40] and Weisz [43].

The atomic decomposition is a useful characterization of the Hardy
spaces by the help of which some boundedness results, duality theorems,
inequalities and interpolation results can be proved.

Let p(-) € P(T?) and fix a nonnegative integer dpy < s < oo. A measur-
able function a is called a (p(-),r)-atom if there exists a ball B C T? such
that

(i) supp a C B,

(ii) HGHLT(’JI‘d) < 1%

(iil) [pa a(z)z*dz = 0 for all multi-indices a with |a| < 's.

Note that supp a denotes the support of a. The atomic decomposition
of variable Hardy spaces Hp(.)(Rd) was proved in Nakai and Sawano [29,32,
Theorem 4.5, Theorem 1.1] and Liu et al. [25] (in the classical case see e.g.
Latter [23], Lu [28] or Weisz [43]).

Before proving the atomic decomposition, we present the next theorem
about the atoms. For a ball B with center ¢ and radius p, let 7B denote the
ball with the same center and with radius 7p (7 > 0). Set Zg := {l € Z% :
l; €{0,1,—-1},i=1,...,d}.

THEOREM 3. Let p(-) € C'8(T%), N =d,y+ 1,1 <7 < oo and dy.) <
s < oo. Ifa is a (p(-),r)-atom and 1 € Fn(RY), then

) |3 @@)] < OBl L, o Mxp @I

)\(B)l/r

B||Lp(_)(1rd)’
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564 F. WEISZ
for all x € T? \ 2B, where the ball B is the support of the atom.

PROOF. Suppose that B is a ball with center ¢ and radius p. We use

Taylor’s formula for a fixed I € Z¢ and for g(u) = ¢ (x;“)

N-1 4 d )’LJ
:Z Z - tgle+1) H

k=0 |ill.=k
. d —cj—1;)¥
+ Z o - 82;9 H ]
llills=N j=1

for some u! € B + 1. By the definition of the atom and by (5),

a*x P (x Zt_/ a(u) (a; )du-Zt_/ a(u)

lezad B+l lezd B+l
d s
X 1/)<at—ut> Z Z o -9l g( —I-l)H(uj_Cj_lj)J d
i g(c i Uu.
k=0 |lifl=k j=1 .

Note that s > N — 1, where s is given in the definition of the (p(:),r)-atoms.
Since

i1 ia i)l p—Ilillx i1 ia, (LU
81~~~8dg(u):(—1)””t||”81~~8d1/1< t )

we conclude

(7) Ia*@bt(w)ngt—d/ ja(u)] Y el

lezd B+l il =N

Xailu'a(iid/l/}<x )‘HW] . —l|

<C’Zt_N d/ a(u)|‘x_tUI‘_N_d\u—c—HNdu

lezd B+l

<CZ,0 / N w)||z —ut| N du

1E€Zg

b0 S [t = A+

1€Z4\Z
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SUMMABILITY OF FOURIER SERIES IN PERIODIC HARDY SPACES 565
Since x & ez, 2(B +1),
lz—d|>lr—c—1l|—|Ju'—c—1|>|z—c—1]/2 (€ Z).

By the definition of the atom,

AgCZpN\x—c—er_d/ la(u)| du

€70 B+l

<CY e —c— UV all oA (BT

1E€Zy
<CY A" Mxsllg,, @ole —c— U7
lE€Zo
<O IxallEL o Mo — DN+
1E€Zy

< ClXBIE. o Mxs () ¥+
If | ¢ Zog and x € T, then |z —u!| > [I|/2 (I € Zo) and
B<C Y oM Uxslst ol < Cp xslT) g
1EZIN\Zo
< P ngl7 ke — e < Clixaliz) o | M (@) V+/,

which completes the proof of the theorem. [

THEOREM 4. Let p(-) € C°8(T%), max(py,1)<r<oc and dpy<s < 00.
A distribution f € D(T?) is in Hp(.)(']I‘d) if and only if there exist a sequence
{a;}ien of (p(+),r)-atoms with support {B;}ien and a sequence {\;}ien of
positive numbers such that

(8) f=> Xa; inD(T?.

1€EN

Moreover, for every 0 <t < p,

)\iXBi t 1t
‘(Z <||XBi Lp(-)(Td)) >

€N

9) | £l e, (vey ~ inf

)

Lp(-)(Td)

where the infimum is taken over all decompositions of f as above.

PROOF. Let N = d,)+ 1 and choose ¢ € Fn(R?) such that the support
of ¢ is a subset of T and [5, ¢(2)dz # 0. Suppose that f € D(T%) has an
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atomic decomposition (8) such that the right hand side of (9) is finite. Since
the sum of (8) converges in D(T?), we have

f*y = Z Aia; x 1y (ae.)

iEN
Then
(10) L) <N (as)
iEN
and so
193 (L) S Z)‘iwj—(ai)X2Bi
ieN Ly (T4)
+ Z A (ai)X(2B,)e =: A1 + As.
ieN Lp()(T?)

Let us choose 0 < ¢t < p <1 and apply (1) to obtain

1/t
A < ZAgi/}i(az‘)tXwi

1€N

Lp(ye(T)

We use p/(+) to denote the conjugate variable exponent, namely, p%.) + 1o=1.

()
Choose g € L)1y (RY) with 19112, (ra) < 1 such that

> A () X,

1€N

_ / SN (@) xam,9 .
Lpy/¢(T9) T

i€N

Choosing p4+/t < u < r < oo and applying Hélder’s inequality, we deduce

A < / SN (@) xamg AN < 30 5 (@) x|
T jeN ieN

< 2Nl @7, o A@B Y xam.9 1y
€N

L.(T4) H X2Big| L,/(T4)

By the definition of the p(-)-atom and the boundedness of 1% (a;), we con-
clude

AL S Mailly, e AN2B)Y  xam,g
1€EN

L., (Ta)
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<D Ml o M2B) Y Ixz gL, ra)

1€N
1 ) 1/u/
A2B; Yd
2 i )<A<2Bi> /23;" )

— u'\) 1/
<23 bl o [, X (M)

1€N

Again by Holder’s inequality,
— w N\ L/u
<2 [ SNl (M) an

€N
2> A

1€N

| (M(g))
Lp(ye(T9)

Ny @nxn.

)

Since (p(+)/t)’ < oo and p4/t < w imply that (p(-)/t)’ > v/, we get by (1)
and (3) that

1/t

Y Nlxa ! raxs, |31 (g*)|| M/ )
P p() (T4) Ly e(T4) (T4)
Z 1 1/t
AEHXBzHZt Td XB; HgHL (T4
pe »((T4) Loy e(T) wey/ey (T
AiXB; 1 1/t
=i L)) -
1€N * P(')(T) Lp(.)(Td)
By Theorem 3,
| MxB, X 28,
ieN Ly (T?)
—d d) (N+d)/d
<1 (WO o 5D A )
ieN Lp(-)(Td)
d/(N+d) —d/(N+d) (N+d)/a\ ¥ N+d) | (N+d)/d
<[ (Z (e mmz s aal) ™) |
N Lin+ayp(y/a(T4)
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Since N = dp,.y + 1 implies p_ > d/(N + d), we can apply Lemma 3 to con-

clude
d/(N+d)
Az < H< il X B; _1_ ) IXB; >
ieN !

ZXB

(N+d)/d

Ln+ayp(y/a(T?)

b
Ly (T4)

ieN p()

which shows that f € H,, (T?). The other part of the theorem can be shown
as for H), .)(]Rd) (see e.g. Nakai and Sawano [29,32] and Liu et al. [25] or
Weisz [43]8. O

The next result can be found for Hp(,m(Rd) in Yan et al. [45, Theorem
4.4], Liu et al. [26] and Jiao et al. [21, Theorem 5.4].

THEOREM 5. Let p(-) € C°8(T9), 0 < ¢ < o0, max(py,1) <r < oo and
dyy < s < o0. A tempered distribution f € D(T?) is in Hy.) ,(T%) if and
only if there ezists a sequence {a; j}icz jen of (p(-),r)-atoms with support
{Bi,j}iEZ,jEN such that

(11) f = Z Z )\Z'JCLZ'J’ mn D(Td),
i€Z jEN
where

Z xB,,(x) < A

JEN

for allz € TY and i € Z and \;j := C2'||xp, 2,0, (re) (1 € Z,j € N) with A
and C' being positive constants. Moreover,

<Z< )‘i,jXBi,j )p>l/p q >1/q
HXBm |Lp<-)(Td) Ly (T?) 7

JEN
where the infimum is taken over all decompositions of f as above and with
the usual modification for ¢ = oo

(12) [ fllm,, ooy ~ in (Z

1€Z

PROOF. Suppose that f € D(T?) has an atomic decomposition (11) such
that the right hand side of (12) is finite. As in (10),

P X (aig)

i€Z jeN
= § § i ]1/}-1- az,] X2B; ; + § g i ]¢+ az,] (2B;,;)¢
i<ko jEN 1<ko jEN
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SUMMABILITY OF FOURIER SERIES IN PERIODIC HARDY SPACES 569
* *
+ 0D Nig¥i(ai)xes., + Y > Mg (ai)Xes,, )
i>ko jEN i>ko jEN

=1 Ay + Ay + Az + Ay,
where kg € Z is arbitrary. Then

4
(13) X s (py>200t ) S D Ixas2ro-2y L, me)-

=1

Let us choose the numbers ¢, 6, v, u such that 0 < ¢ < min(p,q), 1 < < v,
max(ps,1) < ue < uev < r and ve < 1. Then

AI/
< 1
(14) IxXgai>2t0-23 e HQ’W Ly (T%)
ve||l/e
S 2—]60'/ < Z Z )\ZJTZJj_ (ai,j)XQBi,j>
i<ko jEN Frre (29
1/e
—k ]
S 9—kov Z give Z ||XBi,j |zi(,)(Td)wj—(ai’j)%XQBi'j
i<ko JEeN Frtos(T)
1/e
—k i
s (5 S bt eotioven | )
e e Ly e (T4)

To compute the norm in the last expression let us choose g € L) ey (T%)
with [[g[,,,., (rey < 1 such that

> lxs.,

JeN
- / S s,
T? en

By Hoélder’s inequality,
> lxs.,
JEN

<> lxs.,

jEN

|7, oy ¥4 (@i ) x2B

Ly(yye(T?)

T, ¥ (aig) " x28, ,9-

|ﬁ<-) 1)V (i) X2, ,

Ly(ye(T?)

‘ﬁ(,>(1rd) H (V3 (aig)" X8, ‘ L. (T4) H XQBw'gH Lo/ (T4)
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<3 I 15 o 6 @i ) o M2Ba ) o, gl
JEN

By Theorem 2 and the definition of the atom,

Z ||XBH ||Zi(,) (’Ed)wj;— (aiyj)yaszi,j

Lyp(y(T?)

JEN
S Y B 17y llas 15wy A2Bi ) |Ix2m, 9l . (o)
JEN
<D I IE o IXBUIL 20 A2Big) Y Ixen., 9L, (o)
JEN

<3 A@2Byy) < (23”)/ g“,d)\>1/u <Z/ ., (M(g*)) "™ d

JEN jEN
E XB; ;
jEN

(M(g“)™

Ly(y/e(T9) Lpy/ey (T

Since e < p_ and p4 /e < u, we have that ((p(-)/e))+ < oo and (p(+)/e)’ > u
Thus

Z ||XBH ||Ei(.)(Td)wj—(a@j)y(SXQBi,j

jeN
Z XBi,;

jEN

Lyp(ye(T?)

||gHL(p()/E)/(Td) *
Lpy/e(T4)

As (gl rey < Land 3 .y xp,,(z) < A (i € Z), we conclude
ZXBM

) 1/e
jEN Lp(y/e(T?)

€ )1/5

Lp(-)(Td)

€ >1/8
Ly (T4)

(15) ||X{A1>2ko—2}||Lp(_)(']1‘d) 5 2—k0V< Z 2iVe
i<ko

()

jEN

ZXBM

jEN

S 2—kou< Z 2iu€

1<ko

< 2—k0V< Z 2iu8

1<ko
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For a finite ¢, we suppose that € < ¢ and apply Holder’s inequality for

g—e | e _ :
q +q—1toobtam

| X (A, 520021

LP(')(Td)
(f)e 1/q
so(prer ) (eS| )
i<ko i<ko jeN Ly (T4)
4 q 1/q
srt(Se| Y, )
i<ko JEN Lp((T?)
This implies that
o) 0 ko—1 q
k q ko(1—6 19
Z 2 0q||><{,41>2k0}HLP<->(W) S Z 20 Z 2% ZXB” d
ko=—o00 ko=—00 1=—00 jJEN Ly (T4)
_ Z 216(1 ZXB” Z Qk’ol 5q< Z 214 ZXB”
i=—00 JjeEN Ly (T ko=i+1 1=—00 JEN Ly )(Td)

Hence, for all 0 < g < oo,

[e8) 1/q
ko
(16) < Z 2 qHX{A1>2ko}||%p(_)(qrd)>

k():—OO
q >1/q
Lp(l)('ﬂ‘d)

(X)) e

i€Z ' jEN HXB” |Lp()(T 4)

For ¢ = oo, (15) implies that

ZXB”

JeN

H X{A1>2k0—2}H Ly (T4) = <27 kﬂ”( Z 2@6 v—1) 225
1<ko

) 1/e
Lp(-)(Td)

' 1/e
< ( sup 9t : 2—k0V< 215(1/—1))
<zez 2 X, (T > Z
jEN Ly (T?) i<ko
<27 ko(sup? ZXB” >
€2l jeN Lp((T)

Acta Mathematica Hungarica 162, 2020



572 F. WEISZ

Henceforth,

:Up? HX{A1>2’~0 2}HLP(>(W SUP
0

AijXBi,
Z ||XB

jEN HLp() Ly (T4)

For As, we choose ¢, d,v such that 0 < ¢ < min(p,q), 1 <d <v,ve <1

and ve(N +d)/d > 1. Note that N = d,.y+ 1 implies p_ > d/(N +d). Using
(6), we get as in (14) that

H X{Az>2+0-2} H Ly (T4)

S 2—kou< Z 27L1/5

i<ko

S 2—k0y< Z 22'1/6
1<ko
< 2—koy< Z 22'1/6

i<ko

>1/€
Lyp(y<(T?)

> 1/6
Ly(yse(T?)

d/ve(N+d)

D IxB I ey (a0) X 2B, e
JEN

Z |MXB» A|1/6(N+d)/d
JEN

<Z |MXBi,j

jEN

ue(N+d)/d>

ve(N+d)/d )l/a
Lypyv(ntay/a(T?)

Since ve(N +d)/d > 1 and p_v(N +d)/d > 1, we can apply Lemma 3 to get

1/e
Z XBi > .
Ly(y/e(T4)

JEN

IX{As>200-23 |2, () S 2750 ( i
i<ko

Then we can prove as after (15) that

00 1/q
ko
" (X 2 hxasanlt, o)

k():—OO
(Sl e T
iez I jeN HXB HLF() Ly (T4)

for 0 < ¢ < .
For Az let us choose the numbers ¢, d, v, u such that 0 < & < min(p, q),
v <6< 1and max(py,1) < ue < r. Then, for 0 < ¢ < o0,

oo

(18) (X

k’o:—OO

3 1/q
0 q
Pl o0 )
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q 1/q
<Z S, ) /
IxB: Ly (T?)
can be proved exactly as (16).

1€Z " jEN 3 |LP<)
For A4, we choose e, §, v such that 0 <e <min(p,q), ¥ <6 <1,
V(N +d)/d>1and p_v(N +d)/d > 1. Similarly to (14),

HX{A4>2k0‘2}| Lp(y(T%) S H 9kov

Lp(H(T9)
ve||l/e
< 9 kov ( Z Z )\i,j@bj— (ai,j)X(QBi,j)°>
>k, jen Ly (T?)
e l/e
_k i *
<27k 3" 2”€<Z IxB:, HE,,(.)('H‘d)w—i-(ai,j)VX(QBi,j)c>
= = Lpy/=(T4)
e 1/e
<9 0”< 3o <Z HXBi,j\IEP<,><Td>¢+(az‘,ﬁ”X@Bi,j)C) > '
= = Lpy/=(T9)

By Theorem 3 and Lemma 3,

X520 Ly (T4)

< 2—kou< Z give <Z |MXBi,]~ |1/(N+d)/d>

€ )1/5
Lp(y/e(T?)

i>ko JjeN
d/v(N+d) jve(N+d)/d 1/e
g 2—k01/< Z give (Z |MXB v(N+d)/d > >
i>ko jEN Lypywv+ay/a(T9)
1/e
S 2—kou < Z 22‘1/5 Z XB., )
i>ko jEN Lyp(y/e(T)

and so

00 1/q
ko
(19) ( > 2zl oo

k():—OO
q >1/q
p( )(Td)
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for 0 < ¢ < oo. Taking into account (13), (16), (17), (18) and (19), we get

o

e S (3
ko=—00
(2

:E: AijXBi;
2| Z s, Ny e

) . 1/q
2 Oqllxm(f»?ko}”Lp(mrd))

q >1/q
p( )(Td)

The proof can be finished as for H,y ,(R?) (see e.g. Yan et al. [45], Liu

¢(RY)
et al. [26] and Jiao et al. [21] or Weisz [43]). O

4. f-summability of Fourier transforms

The #-summability is a general summation generated by a single func-
tion 6. This summation was considered in a great number of papers and
books, see e.g. Butzer and Nessel [2], Grafakos [18], Trigub and Belinsky
[39] and Feichtinger and Weisz [10,41,42] and the references therein. Let
0: R — R be even and y(x) := 0(|z|), where | - | denotes the Euclidean norm.
We suppose always that

(20) #(0)=1 and 6, € L'(RY).
For n € Ny, the nth #-mean of a distribution f € D(T¢) is defined by
— kN ~
0 = “e
olf=3 -3 90( ; )f(k)en.
ki1€Z ka€Z
Similarly to (5), this can be rewritten as
of f(x)=n? [ fla—u)fo(nu)du
Rd
if f € L1(T%) and 6 € Li(R%). In this case, we can also write
ol fx)= [ f(z—u)Kl(u)du,
Td
where

—ndZHO (u+k)) (ueT?
kezd

is the nth #-kernel. Thus K¢ € Li(T9).
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First, we estimate the maximal 8-operator defined by
o f == suplop f].
n>0
THEOREM 6. Let (20) be satisfied. Assume that By is (N + 1)-times dif-
ferentiable for some N € N and there exists d+ N < 8 < d+ N +1 such that
(21) |0y - 0 fo(@)] < Cla| ™ (x #0)
whenever iy + -+ +iqg =N orij + - +ig= N+1. If p(-) € C'°8(T?), then
|0%a(@)| < CllxalT o Mxn(2)|

for all (p(+),00)-atoms a and all x € T¢\ 2B, where the ball B is the support
of the atom.

PROOF. Suppose that B is a ball with center ¢ and radius p. We may
assume that s > N + 1, where s is given in the definition of the (p(-),c0)-
atoms. First let n > 1/p. Similarly to (7),

ola(x n? a(u pllill
oha@) < Yont [ o] Y

lezs il =N

d i
~ 8{1"'52d97)(n(:r—ul))‘H|u3_c,]_l]| du

|
§CZ’I’LN+d/

|
lezd B+l

i
j=1 J

a(u)|‘n(ax—ul)‘_6|u— c— 1N du

< C'ZnNer_BpN/B l\a(u)Hx —ul| 7P dt
+

lE€Zo

+C Z nNer_ﬁpN/ la(uw)| |z —u!| P du=: A+ B.
l€ZNZq Bl

Moreover,

ASCZp’B_d|x—c—l\_’8/ la(u)| du
B+l

1E€Zg

<Y Plslit ole —c— 11 < ClBIT, ol Mxa(@)
lE€Zo
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and

B<C Y PPlIXBIL. palll ™
lEZINZo

< COPINBIL moyl — P < CllXalIL" ooy Mxa(@) P2

Now suppose that n < 1/p. We can see as above that

ola(z nd a(u pllill
a@| < Yot [ a3

lezs llillh=N+1

X

|

d .

i g~ U'—C'—l'zj
o - 070 (n(x — ul))‘ H [ Z] i du
j=1 7

<C Y ¥ [ Jau)nte - o) du
B+l

lez

<O INalIEL o Mxpa@)L O
€7y

Note that if 8 =d+ N + 1 in (21), then it is enough to suppose that
(22) |0+ 3jtbo ()| < Cla| " N" (2 #0)

forig +---+ig=N+1.
THEOREM 7. Let (20) and (22) be satisfied. If p(-) € C'°8(T?), then

|o%a(x)| < Cllxlz} oy M (@) N/

for all (p(-),00)-atoms a and all x € T¢\ 2B, where the ball B contains the
support of the atom.

5. Summability in H,.)(T¢)

In this section, we investigate the boundedness of the maximal opera-
tor V, from Hp(,)(']I‘d) to Lp(.)(']l‘d), where V;, is defined on D(T¢) and

Vif = sup |V, fl.
neN
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THEOREM 8. Let p(-) € C°8(T9), v > 1 and p_ > 1/~. For each n € N,
let the linear operator Vi, be defined on D(T?) and be bounded on Li(T%).
Suppose that

Vaa(@)] < ClIxaILY oo Mxs@]' (o &2B)

for all (p(+),00)-atoms a, where the ball B is the support of the atom. If V,
is bounded from Loo(T?) to Loo(T), then

(23) Vit Ly ey S Mo may (f € Hpy (T 0 Hy(T?).
If imy_soo [ = [ in the Hp(.)(']I'd)—norm implies that imy_oo Vi ft. = Vo f in
D(T?) for all n € N, then (23) holds for all f € Hp(.)('ﬂ‘d).
Proor. If f € Hp(.)(']I'd), then, by Theorem 4, f can be written as
f= ZAM in D(T9).
ieN
It is known (see e.g. Weisz [42]) that the series converge in the Hi(T9)-
norm as well as in the Ly (T%)-norm if f € H,)(T%) N Hy(T?). Since V,, is a
bounded linear operator on the L;(T%) space,
Va(f) =D AiVa(a)
ieN
and so
Va(f) <D AiVa(ai).
ieN
Then inequality (23) can be proved exactly as Theorem 4. The density ar-
gument can be found in [44]. O
The following theorem is shown in [44].
THEOREM 9. Suppose that Vf := f+ K for all f € D(TY), where K €
Ly (TY). If p() € C'¥(T%) and

(24) lim fr = f in the Hp(.)(']I‘d)—norm, then lim Vf, = Vf in D(TY).
k—o0 k—o0

Since ¢f is bounded from Lo (T%) to Loo(T9) (see e.g. Weisz [41]), The-
orems 6, 8 and 9 imply

COROLLARY 1. Let (20) and (21) be satisfied. If p(-) € C°8(T?) and
p— > d/3, then

o2 f2yriray S Wl yepcrey  (f € Hyy(T):
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Note that if p(-) = p is a constant, then we get back the classical result
(see Weisz [41,42]). The classical result was proved in a special case, for the
Bochner—Riesz means in Stein, Taibleson and Weiss [37], Grafakos [18] and
Lu [28]. For the same case [37] contains a counterexample which shows that
the theorem is not true for p < d/f. The corresponding result for Hp(.)(Rd)
was proved by the author in [44].

The following corollary comes from Theorems 7, 8 and 9.

COROLLARY 2. Let (20) and (22) be satisfied. If p(-) € C°8(T?) and
p— >d/(d+ N +1), then

o2 Lyeriray S W F iy crey - (f € Hpy(T):

Using Corollaries 1 and 2 and a usual density argument, we obtain the
next convergence results in the usual way.

COROLLARY 3. Suppose the same conditions as in Corollary 1 or 2.
If fe Hp(.)(’]I‘d), then o%f converges almost everywhere as well as in the

Ly (T4 -norm as T — .

COROLLARY 4. Suppose the same conditions as in Corollary 1 or 2. If
fe Hp(.)(’]I‘d) and there exists an interval I C T such that the restriction
flp € Lyy(I) with r— > 1, then

Tlim o f(x) = f(x) for a.e. x €I as well as in the Lyy(I)-norm.
—00

The next consequence follows from Theorem 2.
COROLLARY 5. Suppose the same conditions as in Corollary 1 or 2. If
p_>1and f € Lp(.)(']l‘d), then

Tlim o f(x) = f(x) for ae. x €T as well as in the Lp(.)(']I'd)-norm.
—00

6. Summability in Hp.) o(T%)

The next theorem can be proved similarly to Theorems 5 and 8.

THEOREM 10. Besides the conditions of Theorem 8, suppose that 0 <
q < oo. Then

(25) Vel S Flly w0 (F € Hy)g(TY) N Hi(TY)).

If limy_oo fr = f in the Hp(.),q(’]I‘d)—norm implies that limy_oo Vifx = Vif
in D(T?) for all n € N, then (25) holds for all f € Hy(.) ,(T?). The theorem
holds for ¢ = oo as well if we change Hp(.)m(ﬂrd) by Hp(.)yoo(']rd).
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THEOREM 11. Besides the conditions of Theorem 9, suppose that 0 < q
< 00. Then (24) holds for Hy. ,(T%).

The following results follow from Theorems 6, 7, 10 and 11.

COROLLARY 6. Let (20) and (21) be satisfied. If p(-) € C'°8(T9), 0 <
q < oo and p— > d/f, then

108 Iz, umey S W mey  (f € Hppyo(TD).
The theorem holds for ¢ = oo as well if we change Hp(.)voo(’]I‘d) by Hp(.)voo(']l‘d).
COROLLARY 7. Let (20) and (22) be satisfied. If p(-) € C'°8(T9), 0 <
g<ooandp_>d/(d+ N +1), then
||O-ffHLp(,),q(Td) S HfHHp(.),q('ﬂ‘d) (f € Hp('),q(Td))'

The theorem holds for ¢ = 0o as well if we change Hp.) o (T?) by Hp(.)po(']l‘d).

Using Corollaries 6 and 7, the following consequences can be proved as
in [9,10,20,26].

COROLLARY 8. Suppose the same conditions as in Corollary 6 or 7. If
fe Hp(.),q(']I‘d) with 0 < g < oo, then U%f converges almost everywhere as

well as in the Lp(.)vq(’]l‘d)—norm as T — oo. The theorem holds for ¢ = co as
well if we change Hp(.)yoo(’]I‘d) by Hp(.)yoo(']l‘d).

COROLLARY 9. Suppose the same conditions as in Corollary 6 or 7. If
fe Hp(.)yq('ﬂ‘d) with 0 < ¢ < oo and if there exists an interval I C T¢ such
that the restriction f|; € Ly s(I) withr— >1 and 1 < s < oo, then

lim o9 f(x) = f(z) for ae. x €I as well as in the Lyy,q(1)-norm.
T—o00 )

The theorem holds for ¢ = 0o as well if we change Hp(.) o (T%) by Hp(.)voo(']l‘d).
By Theorem 2, we have

COROLLARY 10. Suppose the same conditions as in Corollary 6 or 7. If
p.>1,1<qg<ocand f € Lp(.)yq(']l‘d), then

Tlim o f(z) = f(x) forae x €I as well as in the Lp(.),q(']l'd)—norm.
—00

The theorem holds for ¢ = 0o as well if we change Hp(.) o (T%) by Hp(.)m(']l‘d).

We can verify the almost everywhere convergence for the spaces L, (T9)
with p_ > 1 as well, which is an improvement of Corollary 5.
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COROLLARY 11. Suppose the same conditions as in Corollary 1 or 2. If
p— > 1 and f € Ly (T?), then

lim o%f(z) = f(z) for a.e xeT%
T—o0
PROOF. Since f < M(f), inequality (2) implies

||fHHp(.)’oo(Td) S CHM(f)HLP()’OQ(Td) S CHfHLp(.)(Td) (f € Lp()(Td))

Now the result can be shown as Corollary 9. O

7. Some summability methods

As special cases, we consider some summability methods. The details of
the necessary computations are left to the reader. All the examples satisfy
condition (20).

ExAMPLE 1. The function

A=) i > 1 d
90(0_{0, if [t <1 (t € RY)

defines the Riesz summation if 0 < o < oo and «y is a positive integer. It is
called Bochner-Riesz summation if v = 2. If a > 93!, then (21) holds with
B=d/2+ a4+ 1/2 (see Weisz [43]) and the results of Sections 5 and 6 hold
for

d—1
o > ,

< p_ < 0.
2 P-s

d/2+a+1/2

The results for constant p’s can be found in Stein and Weiss [38], Lu [28,
p. 132] and Weisz [43].

EXAMPLE 2. The Weierstrass summation is defined by
Oo(t) = e /2 (t e RY)
or by
Oo(t) = e (¢ e RY),
or, in the one-dimensional case, by
Go(t) =e " (teR, 1<~ < 0).

It is called Abel summation if v =1. It is known that in the first case
fo(z) = e~1#1"/2 and in the second one fy(z) = cq/(1 + |2|2)@*FD/2 for some
cqg € R (see Stein and Weiss [38, p. 6]). Then (22) holds for all N € N and
the results of Sections 5 and 6 hold for all p(-) € C'°8(T¢9).

Acta Mathematica Hungarica 162, 2020



SUMMABILITY OF FOURIER SERIES IN PERIODIC HARDY SPACES 581

ExaMPLE 3. The Picard and Bessel summations are given by

Then
ple 2.

[ J.

[2] P.

3] D.

e
)

=
—

=
Tz o=

[10]

[11] L.
[12] G.

13 G.

[14] G.

[15]

[17]

(18] L.

9] R

U
[16] U.
U

1

— d
%)= | ypyarne EERD:

GAO(:U) = cqe 17! for some ¢,y € R and the same results hold as in Exam-
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