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Abstract. This paper deals with the nonlinear differential equation

(r(t)|x′|p(t)−2
x
′)′ + c(t)|x|p(t)−2

x = 0,

where r(t) > 0 and c(t) are continuous functions, and p(t) > 1 is a smooth func-
tion. We establish a comparison theorem for the oscillation problem for this equa-
tion with respect to the power p(t). Using our result, we can utilize oscillation
criteria given for half-linear differential equations to equations with p(t)-Laplacian.

1. Introduction

We consider the second order nonlinear differential equation

(1.1) (r(t)|x′|p(t)−2x′)′ + c(t)|x|p(t)−2x = 0,

where r(t) and c(t) are positive continuous functions satisfying

(1.2) 0 < lim inf
t→∞

r(t) and lim sup
t→∞

r(t) < ∞,

and p(t) > 1 is a smooth function defined on (0,∞).
A nontrivial solution x(t) of (1.1) is said to be oscillatory if there exists

a sequence {tn} tending to ∞ such that x(tn) = 0. Otherwise, it is said to
be nonoscillatory, that is, it is eventually positive (or eventually negative).
For simplicity, we call it a positive solution (or negative solution).
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The differential operator in (1.1) is called p(t)-Laplacian. Such opera-
tor appears in mathematical models in the study of image processing and
electrorheological fluids (see [1,10,11]). In recent years, increasing attention
has been paid to the study of oscillation problems for nonlinear differential
equations with p(t)-Laplacian. For example, those results can be found in
[9,13–15,18–20].

If p(t) ≡ p > 1, then p(t)-Laplacian is the well-known p-Laplacian, and
(1.1) becomes the half-linear differential equation

(1.3)
(

r(t)|x′|p−2x′
) ′

+ c(t)|x|p−2x = 0,

whose solution space has just one half of the properties which characterize
linearity, namely homogeneity. Numerous papers have been devoted to the
study of oscillation problems for half-linear differential equations; we can
refer to [2–8,12,16,17] and the references cited therein. For example, the
following Leighton–Wintner type oscillation criterion is well-known (see [7]).

Theorem A. All nontrivial solutions of (1.3) are oscillatory provided

∫ ∞

1
(r(t))1−p̃ dt = ∞ and

∫ ∞

1
c(t) dt = ∞,

where p̃ = p/(p− 1).

Moreover, according to [7], we see that the classical linear Sturmian com-
parison theorem extends verbatim to (1.3). From the Sturmian comparison
theorem, the comparison theorems with respect to the power p were es-
tablished in [2,4,7,12,16]. In particular, Sugie and Yamaoka [16] gave the
following result, which serves as a main motivation for our research in this
paper.

Theorem B. Assume r(t) ≡ 1 and c(t) > 0. Consider the equation

(1.4) (|x′|q−2x′)′ + c(t)|x|q−2x = 0,

where q > 1 is a constant. Suppose that p > q. If all nontrivial solutions of

(1.4) are oscillatory, then those of (1.3) are also oscillatory.

For the elliptic partial differential equations involving higher-dimensional
p(t)-Laplacian, comparison theorems were given in [18,19] as applications of
Picone identities. However, the structure of solutions of this equation dif-
fers from one of (1.1). Hence, unfortunately, we cannot expect to obtain
the same kind of results. Here, a natural question now arises. Does (1.1)
have any comparison properties? The purpose of this paper is to answer the
question. To be precise, we extend Theorem B for (1.1), in order to utilize
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the oscillation criteria which have been given for (1.3) to (1.1). Consider the
pair of equations (1.1) and

(1.5) (r(t)|x′|q(t)−2x′)′ + c(t)|x|q(t)−2x = 0,

where q(t) > 1 is a smooth function defined on (0,∞). Our main result is
following.

Theorem 1.1. Assume (1.2) and the hypotheses
(H1) p(t) is nondecreasing and tends to p∗ > 1 as t → ∞,
(H2) q(t) is nonincreasing and tends to q∗ > 1 as t → ∞,
(H3) p∗ > q∗,
(H4) either p(t) ≡ p∗ for t sufficiently large or

(1.6)

∫ ∞

1
c(s) ds < ∞ and

∫ ∞

1

(
∫ ∞

t
c(s) ds

)1/(p(t)−1)

dt = ∞

hold.
If all solutions of (1.5) are oscillatory, then those of (1.1) are also os-

cillatory.

A prototype of (1.1) is the Euler type differential equation

(1.7) (|x′|p(t)−2x′)′ +
λ

tp(t)
|x|p(t)−2x = 0.

Assume (H1). Suppose that there exists 0 < M < e satisfying the log-Hölder
decay condition

(1.8) t|p∗−p(t)| < M

for t sufficiently large. Then, (1.6) holds obviously. In [9], it has been
proved that (1.7) is conditionally oscillatory, that is, if λ > γ(p∗) then all
nontrivial solutions of (1.7) are oscillatory, and if λ < γ(p∗) then (1.7) has a
nonoscillatory solution, where γ(p∗) = ((p∗ − 1)/p∗)

p∗ . Hence, together with
Theorem A, (1.6) is optimal in a certain sense.

In addition, we get the following oscillation criterion, which is an ana-
logue of Theorem A.

Theorem 1.2. Assume (1.2) and (H1). All nontrivial solutions of (1.1)
are oscillatory provided

(1.9)

∫ ∞

1
(r(t))1−p̃(t) dt = ∞ and lim

t→∞

1

t

∫ t

1
c(s) ds = ∞,

where p̃(t) = p(t)/(p(t)− 1).
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This paper is organized as follows. In Section 2, we prepare two lemmas
to prove our result. In Section 3, we give the proofs of our main results The-
orems 1.1 and 1.2. In the final section, we illustrate our result by corollaries
and simple examples. Moreover, we propose some open problems.

2. Preliminaries

Lemma 2.1. Assume

(2.1) lim sup
t→∞

r(t) < ∞,

and

(2.2) 1 < lim inf
t→∞

p(t) and lim sup
t→∞

p(t) < ∞.

Suppose that (1.1) has a positive solution x(t). Then x(t) is strictly increas-
ing for t sufficiently large. In addition, if (1.6) holds then x(t) tends to
infinity as t → ∞.

Proof. There exists t0 ≥ 1 such that x(t) > 0 for t ≥ t0. From (1.1),
we have

(2.3) (r(t)|x′(t)|p(t)−2x′(t))′ = −c(t)(x(t))p(t)−1 < 0

for t ≥ t0. Suppose that there exists t1 ≥ t0 such that x′(t1) ≤ 0. Without
loss of generality, we may assume x′(t1) < 0. In fact, (2.3) shows that

r(t)|x′(t)|p(t)−2x′(t) < r(t1)|x
′(t1)|

p(t1)−2x′(t1) ≤ 0,

which implies x′(t) < 0 for t > t1 even if x′(t1) = 0. Hence we get

−r(t)|x′(t)|p(t)−1 ≤ −r(t1)|x
′(t1)|

p(t1)−1 < 0

for t ≥ t1. Together with (2.1) and (2.2), we can find c1 > 0 such that

x′(t) ≤ −
(r(t1)

r(t)

)1/(p(t)−1)
|x′(t1)|

(p(t1)−1)/(p(t)−1) ≤ −c1

for t ≥ t1. Integrating both sides of this inequality from t1 to t, we get x(t)
≤ x(t1)− c1(t− t1) → −∞ as t → ∞, which is a contradiction. Thus, we see
that x′(t) > 0 for t ≥ t0.

We next assume (1.6). From (2.2) and x′(t) > 0 for t sufficiently large,
there exist t2 ≥ t0 and c2 > 0 such that

(r(t)(x′(t))p(t)−1)′ = −c(t)(x(t))p(t)−1 ≤ −c2c(t)
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for t ≥ t2. Integrating both sides of this inequality from t ≥ t2 to T ≥ t, we
get

r(t)(x′(t))p(t)−1 ≥ r(T )(x′(T ))p(T )−1 + c2

∫ T

t
c(s) ds ≥ c2

∫ T

t
c(s) ds,

which implies

x′(t) ≥
( c2
r(t)

)1/(p(t)−1)
(
∫ T

t
c(s) ds

)1/(p(t)−1)

.

Using (2.1) and (2.2), and taking limit T → ∞, we can choose t3 ≥ t2 and
c3 > 0 such that

x′(t) ≥ c3

(
∫ ∞

t
c(s) ds

)1/(p(t)−1)

for t ≥ t3. Hence we obtain

x(t) ≥ x(t3) + c3

∫ t

t3

(
∫ ∞

s
c(τ) dτ

)1/(p(s)−1)

ds,

which implies that x(t) → ∞ as t → ∞ because of (1.6). �

Lemma 2.2. Assume lim inf t→∞ q(t) > 1. Suppose that there exist
c0 ≥ 0 and an eventually positive smooth function y(t) satisfying

(2.4) r(t)(y′(t))q(t)−1 ≥ c0 +

∫ ∞

t
c(s)(y(s))q(s)−1 ds

for t sufficiently large. Then (1.5) has a positive solution.

Proof. There exists t0 > 1 such that y(t) is positive and (2.4) holds for
t ≥ t0. Let {wn} and {xn} be sequences of continuous functions satisfying

w1(t) = y′(t), x1(t) = y(t),

wn+1(t) =

{

1

r(t)

(

c0 +

∫ ∞

t
c(s)(xn(s))

q(s)−1 ds

)}q̃(t)−1

,(2.5)

xn+1(t) =

∫ t

t0

wn+1(s) ds+ y(t0)(2.6)

for t ≥ t0, where q̃(t) = q(t)/(q(t)− 1). Then w1(t) and x1(t) are well-
defined.

By mathematical induction, we will show that

(2.7) 0 < wn+1(t) ≤ wn(t) and y(t0) ≤ xn+1(t) ≤ xn(t)
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hold for any n ∈ N and t ≥ t0. In the case of n = 1, using (2.4) and (2.5),
we get

0 < (w2(t))
q(t)−1 =

1

r(t)

(

c0 +

∫ ∞

t
c(s)(y(s))q(s)−1 ds

)

≤ (y′(t))q(t)−1 = (w1(t))
q(t)−1

for t ≥ t0. Hence we have 0 < w2(t) ≤ w1(t) and

y(t0) ≤ x2(t) =

∫ t

t0

w2(s) ds+ y(t0) ≤

∫ t

t0

w1(s) ds+ y(t0) = x1(t)

for t ≥ t0, which imply (2.7) with n = 1. Suppose that (2.7) with n = k
holds. Then we get

0 < (wk+2(t))
q(t)−1 =

1

r(t)

(

c0 +

∫ ∞

t
c(s)(xk+1(s))

q(s)−1 ds

)

≤
1

r(t)

(

c0 +

∫ ∞

t
c(s)(xk(s))

q(s)−1 ds

)

= (wk+1(t))
q(t)−1

for t ≥ t0. Hence we have 0 < wk+2(t) ≤ wk+1(t) and

y(t0) ≤ xk+2(t) =

∫ t

t0

wk+2(s) ds+ y(t0) ≤ xk+1(t)

for t ≥ t0, which imply (2.7) with n = k + 1.
Let x(t) = limn→∞ xn(t) and w(t) = limn→∞wn(t) for t ≥ t0. Then, us­

ing (2.7) and applying the Lebesgue dominated convergence theorem to (2.5)
and (2.6), we have

r(t)(w(t))q(t)−1 = c0 +

∫ ∞

t
c(s)(x(s))q(s)−1 ds and x(t) =

∫ t

t0

w(s) ds+ y(t0)

for t ≥ t0. Since x′n(t) = wn(t) > 0, we get

x(t) = lim
n→∞

xn(t) ≥ lim
n→∞

xn(t0) = y(t0) > 0

for t ≥ t0. Thus, we see that x(t) is a positive solution of (1.5). �

3. Proofs of the main theorems

Proof of Theorem 1.1. In order to prove Theorem 1.1 by contradic­
tion, we suppose that (1.1) has a positive solution x(t). We consider the
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case when (1.6) holds. Using Lemma 2.1, we see that there exists t0 > 1
such that x(t) > 1 and x′(t) > 0 for t ≥ t0. Let

w(t) = r(t)
(x′(t)

x(t)

)p(t)−1
> 0

for t ≥ t0. Then, we have

w′(t) = −c(t)− (p(t)− 1)r(t)
(w(t)

r(t)

)p(t)/(p(t)−1)
− p′(t)(logx(t))w(t)(3.1)

≤ −c(t)− (p(t)− 1)r(t)
(w(t)

r(t)

)p(t)/(p(t)−1)
< 0

for t ≥ t0. Hence w(t) > 0 is strictly decreasing for t ≥ t0. We note that, in
the case when p(t) ≡ p∗, we can show this inequality without x(t) > 1 for t
sufficiently large because of p′(t) = 0.

Suppose that there exists w∗ > 0 such that w(t) → w∗ as t → ∞, and let
r∗ = lim supt→∞ r(t) < ∞. Then we can find 0 < η < 1 satisfying η < w∗/r∗.
Since c(t) is positive and p(t) is nondecreasing, there exist t1 ≥ t0 and c1 > 0
such that

w′(t) ≤ −c(t)− (p(t)− 1)r(t)ηp(t)/(p(t)−1)(3.2)

≤ −c1(p(t1)− 1)ηp(t1)/(p(t1)−1)

for t ≥ t1. Here, we note that the function

f(x) =
x

x− 1
= 1 +

1

x− 1

is strictly decreasing for x > 1. Integrating both sides of (3.2) from t1 to t,
we get

w(t) ≤ w(t1)− c1(p(t1)− 1)ηp(t1)/(p(t1)−1)(t− t1).

This implies w(t) → −∞ as t → ∞, which is a contradiction to the positivity
of w(t). Hence we obtain w(t) → 0 as t → ∞.

From (1.2) and p∗ > q∗, there exists t2 ≥ t0 such that

(q(t)− 1)
(w(t)

r(t)

)q(t)/(q(t)−1)
≤ (p(t)− 1)

(w(t)

r(t)

)p(t)/(p(t)−1)

for t ≥ t2. By using (3.1), we have

(3.3) w′(t) ≤ −c(t)− (q(t)− 1)r(t)
(w(t)

r(t)

)q(t)/(q(t)−1)
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for t ≥ t2. Let

y(t) = exp

(
∫ t

t2

(w(s)

r(s)

)1/(q(s)−1)
ds

)

> 1.

Then we have

y′(t) =
(w(t)

r(t)

)1/(q(t)−1)
y(t) > 0.

Since q(t) is nonincreasing, we obtain

(r(t)(y′(t))q(t)−1)′

=
{

w′(t) + (q(t)− 1)r(t)
(w(t)

r(t)

)q(t)/(q(t)−1)
+ q′(t)(log y(t))w(t)

}

(y(t))q(t)−1

≤
{

w′(t) + (q(t)− 1)r(t)
(w(t)

r(t)

)q(t)/(q(t)−1)}

(y(t))q(t)−1.

Thus, from (3.3), we get

(r(t)(y′(t))q(t)−1)′ ≤ −c(t)(y(t))q(t)−1 < 0,

and therefore, r(t)(y′(t))q(t)−1 is positive decreasing. Integrating both sides
of this inequality from t ≥ t2 to T ≥ t, we have

r(t)(y′(t))q(t)−1 ≥ r(T )(y′(T ))q(T )−1 +

∫ T

t
c(s)(y(s))q(s)−1 ds.

Taking limit T → ∞, we can find c0 ≥ 0 such that

r(t)(y′(t))q(t)−1 ≥ c0 +

∫ ∞

t
c(s)(y(s))q(s)−1 ds.

Thus, from Lemma 2.2, (1.5) has a positive solution, which is a contradic-
tion. �

Proof of Theorem 1.2. Suppose that (1.1) has a positive solution
x(t). Then, from Lemma 2.1, there exists t0 > 1 such that x(t) > 0 and
x′(t) > 0 for t ≥ t0. Let

w(t) = r(t)
(x′(t)

x(t)

)p(t)−1
> 0.

Then we have

(3.4) w′(t) = −c(t)− (p(t)− 1)r(t)
(w(t)

r(t)

)p(t)/(p(t)−1)
− p′(t)(logx(t))w(t).
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We first consider the case when there exists t1 ≥ t0 such that x(t) ≥ 1
for t ≥ t1. In this case, we have

w′(t) ≤ −c(t)− (p(t)− 1)r(t)
(w(t)

r(t)

)p(t)/(p(t)−1)

because p(t) is nondecreasing. Integrating both sides of this inequality from
T ≥ t0 to t ≥ T , we obtain

w(t) ≤ w(T )−

∫ t

T
c(s) ds−

∫ t

T
(p(s)− 1)r(s)

(w(s)

r(s)

)p(s)/(p(s)−1)
ds.

From (1.9), there exists t2 ≥ t1 such that

w(t) ≤ −

∫ t

T
(p(s)− 1)r(s)

(w(s)

r(s)

)p(s)/(p(s)−1)
ds < 0

for t ≥ t2. This is a contradiction to the positivity of w(t).
We next consider the case when x(t) < 1 for t sufficiently large. In this

case, we get w(t) → 0 as t → ∞ because x(t) is strictly increasing, p(t) > 1 is
nondecreasing, and x(t), p(t), and r(t) are bounded above. Since logx(t) < 0
for t sufficiently large, there exist t3 ≥ t0 and c1 > 0 such that

−c1 ≤ p′(t)(logx(t))w(t) ≤ 0

for t ≥ t3. Integrating both sides of (3.4) from T ≥ t3 to t ≥ T , we get

w(t) ≤ w(T ) −

∫ t

T
c(s) ds−

∫ t

T
(p(s)− 1)r(s)

(w(s)

r(s)

)p(s)/(p(s)−1)
ds+

∫ t

T
c1 ds

= w(T )− c1T + t

(

c1 −
1

t

∫ t

T
c(s) ds

)

−

∫ t

T
(p(s)− 1)r(s)

(w(s)

r(s)

)p(s)/(p(s)−1)
ds.

From (1.9), there exists t4 ≥ t3 such that

w(t) ≤ −

∫ t

T
(p(s)− 1)r(s)

(w(s)

r(s)

)p(s)/(p(s)−1)
ds < 0

for t ≥ t4. This is a contradiction to the positivity of w(t). �

4. Examples and discussion

From Theorem 1.1 and [9, Theorem 1.2], we have the following example.
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Example 4.1. Assume (H1), (H2), and (H3). We see that if λ < γ(p∗)
then equation

(|x′|q(t)−2x′)′ +
λ

tp(t)
|x|q(t)−2x = 0

has a nonoscillatory solution, where γ(p∗) = ((p∗ − 1)/p∗)
p∗ . We note that,

by Lemma 2.1, it is a positive increasing solution. In addition, if there ex-
ists 0 < M < e such that (1.8) holds for t sufficiently large, then it tends to
infinity as t → ∞.

In the case when p(t) ≡ p > 1, in view of Lemma 2.1, we can easily get
the following corollary.

Corollary 4.1. Assume (1.2), (H2), and q∗ < p. If (1.3) has a non-
oscillatory solution, then (1.5) has a positive increasing solution.

Let us consider the equation

(4.1)

(

(

a1 +
a2

log2 t

)1−p
|x′|p−2x′

)′

+
(

b1 + sin t2 +
b2

log2 t

) 1

tp
|x|p−2x = 0,

where a1, a2, b1, b2 ∈ R satisfy a1 > 0, b1 > 0. According to [5], we see that all

nontrivial solutions of (4.1) are oscillatory if ap−1
1 b1 > p̃−p, and are nonoscil-

latory if ap−1
1 b1 < p̃−p, where p̃ = p/(p− 1). Furthermore, in the case when

ap−1
1 b1 = p̃−p, all nontrivial solutions of (4.1) are oscillatory if

p
a2
a1

+ p̃
b2
b1

>
p̃2

2
,

and are nonoscillatory if

(4.2) p
a2
a1

+ p̃
b2
b1

<
p̃2

2
.

Hence, using Corollary 4.1, we obtain the following example.

Example 4.2. Assume (1.2), (H2), and b1 > 1. If either ap−1
1 b1 < p̃−p

holds for some p > q∗, or a
p−1
1 b1 = p̃−p with (4.2) holds for some p > q∗, then

the equation

(

(

a1 +
a2

log2 t

)1−p
|x′|q(t)−2x′

)′

+
(

b1 + sin t2 +
b2

log2 t

) 1

tp
|x|q(t)−2x = 0

has a positive increasing solution.

Moreover, from Corollary 4.1, we can give the following application.
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Corollary 4.2. Assume (H2). If

(4.3)

∫ ∞

1
sp−1c(s) ds < ∞

holds for some p > q∗, then the equation

(4.4) (|x′|q(t)−2x′)′ + c(t)|x|q(t)−2x = 0

has a positive increasing solution.

Proof. From [7, Theorem 2.2.8], all nontrivial solutions of (1.3) with
(4.3) are nonoscillatory. Hence, together with Corollary 4.1, we see that
(4.4) has a positive increasing solution. �

Example 4.3. Assume (H2). Consider the equation

(4.5) (|x′|p(t)−2x′)′ +
λ

tp+1
|x|p(t)−2x = 0,

where p > q∗ and λ > 0. From Corollary 4.2, for any λ > 0, (4.5) has a
positive increasing solution.

Using Theorem 1.2, we also have the following example.

Example 4.4. Assume (1.2) and (H1). Consider the equation

(4.6) (|x′|p(t)−2x′)′ + (log t)|x|p(t)−2x = 0.

From Theorem 1.2, all nontrivial solutions of (4.6) are oscillatory.

Finally, we propose the following open problems.
(1) Extend Theorem 1.1 to the case of p∗ ≥ q∗.
(2) Does Theorem 1.1 hold when p(t) is nonincreasing and q(t) is nonde-

creasing?
(3) Yoshida [18, Theorem 3.1] studied the equation of the form

(r(t)|x′|p(t)−2x′)′ − p′(t)r(t)|x′|p(t)−2x′ log |x| + c(t)|x|p(t)−2x = 0.

Picone identities have been applied to a comparison theorem. However, due
to the expression log |x|, the structure of solutions of this equation and one
of (1.1) differs considerably. It is an open problem to give the Sturmian
comparison theorem for (1.1).
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[11] K.R. Rajagopal and M. Růžička, On the modeling of electrorheological materials,
Mech. Res. Comm., 23 (1996), 401–407.
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